1
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 PMCID: PMC11974651 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Soda AK, Huang T, Zhou W, Chen H, Jiang H, Jadhav SB, Xing Z, Yu Y, Tian L, Wong DF, Perlmutter JS, Ni R, Benzinger TLS, Tu Z. Synthesis and in vivo biological characterization of six carbon-11 sigma-1 receptor radiotracers in rodent and nonhuman primate. Bioorg Med Chem 2025; 126:118218. [PMID: 40339216 DOI: 10.1016/j.bmc.2025.118218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
Six enantiomers of three racemic sigma-1 receptor (σ1R) ligands were resolved, and absolute configuration was determined. Their high σ1R potency and selectivity were determined through in vitro binding assays, further validated by molecular docking analysis. Central Nervous System Multiparameter Optimization algorithm (CNS MPO) predicts efficient brain penetration for these enantiomers. Six C-11 radiotracers were radiosynthesized successfully, ex vivo biodistribution in rats showed that (-)-[11C]7 had high brain uptake of ∼4.8-fold for 5 min versus 60 min. Mouse brain PET imaging studies showed (-)-[11C]7 and (-)-[11C]16 have in vivo binding specificity for σ1R. Macaque PET scans showed high brain uptake for all six radiotracers, with (-)-[11C]7 peaked at ∼45 min (SUV 2.5), possessing the best washout kinetics and highest cerebellum-to-white matter ratio (∼3.1), in agreement with in vitro or ex vivo measures of σ1R expression. Radiometabolite analysis showed that no newly formed radiometabolite was observed post-injection of (-)-[11C]7. Our data suggest that further evaluation is warranted to determine that (-)-[11C]7 is a suitable PET radiotracer for imaging σ1R in the brain of animal and human.
Collapse
Affiliation(s)
- Anil Kumar Soda
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjuan Zhou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandip B Jadhav
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhimin Xing
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Linlin Tian
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dean F Wong
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Programs in Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Xiao N, Yin L, Teopiz KM, Kwan ATH, Le GH, Wong S, Valentino K, Choi H, Rosenblat JD, Ho R, Lee S, McIntyre RS. The sigma-1 receptor: a mechanistically-informed therapeutic target for antidepressants. Expert Opin Ther Targets 2025:1-15. [PMID: 40298911 DOI: 10.1080/14728222.2025.2500424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION The mechanism of action of antidepressants is not fully ascertained. In addition to monoamines, disparate other effectors are also implicated in the molecular and cellular effects of chronic stress including neurogenesis, neurodifferentiation, and neuroplasticity. Evidence suggests sigma-1 receptors (S1Rs) as a putative target and possible mediator of antidepressant activity. AREAS COVERED Data from preclinical and clinical trials was synthesized from inception to August 2024. Results showed that S1Rs regulate neurotransmitter availability and release (e.g. monoamines, glutamate), and influence intracellular Ca2+ levels as well as immune inflammatory responses. The introduction of the N-Methyl-D-aspartic Acid (NMDA) antagonist/S1R agonist dextromethorphan-bupropion in August of 2022 represented the first time the Food and Drug Administration (FDA) permitted language that the hypothesized mechanism of an antidepressant involved activity at S1Rs. We also describe the physiology, pathophysiology, and function of S1Rs. EXPERT OPINION Sigma-1 modulation is relevant to the mechanism of action of agents currently FDA-approved in major depressive disorder (MDD) (e.g. dextromethorphan-bupropion). Modulating sigma-1 systems is fit for purpose as it relates to future therapeutic discoveries and development in depressive and other mental disorders. Whether sigma-1 modulation is uniquely relevant to targeting dimensions of psychopathology that are more difficult to treat (i.e. anhedonia) awaits determination.
Collapse
Affiliation(s)
- Naomi Xiao
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
- Department of Health Sciences, Queen's University, Kingston, Canada
| | - Liyang Yin
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Kayla M Teopiz
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Angela T H Kwan
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Gia Han Le
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Sabrina Wong
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Kyle Valentino
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Hayun Choi
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Psychiatry, Veteran Health Service Medical Center, Seoul, Republic of Korea
| | - Joshua D Rosenblat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
- Division of Life Science (LIFS), Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong
| | - Serene Lee
- Department of Research, Brain and Cognition Discovery Foundation, Toronto, Canada
- Department of Health Sciences, Queen's University, Kingston, Canada
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Goldberg YP, Navon-Perry L, Cruz-Herranz A, Chen K, Hecker-Barth G, Spiegel K, Cohen Y, Niethammer M, Tan AM, Schuring H, Geva M, Hayden MR. The Safety Profile of Pridopidine, a Novel Sigma-1 Receptor Agonist for the Treatment of Huntington's Disease. CNS Drugs 2025; 39:485-498. [PMID: 40055280 PMCID: PMC11982116 DOI: 10.1007/s40263-025-01171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Huntington's disease (HD) is a rare, fatal, chronic progressive neurodegenerative disorder with a significant unmet medical need for effective treatments. Pridopidine is a novel, first-in-class, highly selective and potent sigma-1 receptor (S1R) agonist in development for HD. Pridopidine has been extensively studied in adult HD across the full spectrum of disease severity and age ranges, and its safety profile has been characterized in approximately 1600 participants across multiple studies and a broad range of doses. The specific objective of this study was to gain an in-depth understanding of pridopidine's safety profile at the recommended human dose of 45 mg twice daily (bid) in patients with HD. METHODS An integrated safety analysis of pooled data from 1067 patients with HD enrolled in four double-blind, placebo-controlled studies was performed. The safety profile of pridopidine was compared with placebo. RESULTS Pridopidine was found to be generally safe and well tolerated with an adverse event (AE) profile comparable to that of placebo. Moreover, there were no significant differences observed in the safety profile of pridopidine compared with placebo when analyzed by age, sex, baseline total functional capacity (TFC), cytosine-adenine-guanine (CAG) repeat length, use of antidopaminergic medications (ADMs), and region. CONCLUSIONS The integrated analysis replicated and corroborated the good safety profile observed in the individual studies. Despite the larger sample size, no new safety signals emerged. Long-term exposure to pridopidine, up to 6.5 years in open-label extension studies, revealed no new safety concerns, supporting its potential for long-term use in patients with HD.
Collapse
Affiliation(s)
| | | | | | - Kelly Chen
- Prilenia Therapeutics B.V., Naarden, The Netherlands
| | | | | | - Yael Cohen
- Prilenia Therapeutics B.V., Naarden, The Netherlands
| | - Martin Niethammer
- North Shore University Hospital, Northwell Health, Manhasset, NY, USA
| | - Andrew M Tan
- Prilenia Therapeutics B.V., Naarden, The Netherlands
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Henk Schuring
- Prilenia Therapeutics B.V., Naarden, The Netherlands
| | - Michal Geva
- Prilenia Therapeutics B.V., Naarden, The Netherlands
| | - Michael R Hayden
- Prilenia Therapeutics B.V., Naarden, The Netherlands.
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
5
|
Bai P, Gomm A, Yoo CH, Mondal P, Lobo FM, Meng H, Zhou Y, Xie W, Wey HY, Tanzi RE, Zhang C, Wang C, Lan Y. Development of Carbon-11 Labeled Pyrimidine Derivatives as Novel Positron Emission Tomography (PET) Agents Enabling Brain Sigma-1 Receptor Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414827. [PMID: 40245194 DOI: 10.1002/advs.202414827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/06/2025] [Indexed: 04/19/2025]
Abstract
The sigma-1 receptor (σ1R) is a stress-activated chaperone protein that has emerged as a significant therapeutic target for neurodegenerative disorders. Developing effective positron emission tomography (PET) imaging probes targeting σ1R is crucial for visualizing its distribution and function in the brain, as well as facilitating related drug development. In this study, two novel 11C-labeled PET probes based on the structure of a potent σ1R ligand Lan-0101 are designed and synthesized. PET imaging studies in mice reveal that [11C]CNY-01 exhibits good brain uptake and binding specificity. Subsequent evaluation in non-human primates further demonstrates that [11C]CNY-01 displays favorable brain penetration, slow clearance kinetics, and characteristics of irreversible binding to its target in blockage experiments. To assess the clinical potential of the probe, both in vitro experiments and in vivo PET imaging using [11C]CNY-01 are conducted in Alzheimer's disease (AD) transgenic mouse models. These studies reveal a significant decrease in σ1R expression in the brain under conditions of AD amyloid pathology and microglial activation, highlighting the probe's sensitivity to disease-related receptor changes. This work establishes [11C]CNY-01 as a promising tool for investigating the relationship between σ1R and neurological disorders, potentially advancing the understanding of σ1R's role in disease pathophysiology and therapeutic interventions.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Prasenjit Mondal
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Fleur Marie Lobo
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Hui Meng
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Weiyao Xie
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan, 610041, China
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yu Lan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
6
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
7
|
Thapa K, Khan H, Chahuan S, Dhankhar S, Kaur A, Garg N, Saini M, Singh TG. Insights into therapeutic approaches for the treatment of neurodegenerative diseases targeting metabolic syndrome. Mol Biol Rep 2025; 52:260. [PMID: 39982557 DOI: 10.1007/s11033-025-10346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Due to the significant energy requirements of nerve cells, glucose is rapidly oxidized to generate ATP and works in conjunction with mitochondria in metabolic pathways, resulting in a combinatorial impact. The purpose of this review is to show how glucose metabolism disorder invariably disrupts the normal functioning of neurons, a phenomenon commonly observed in neurodegenerative diseases. Interventions in these systems may alleviate the degenerative load on neurons. Research on the concepts of metabolic adaptability during disease progression has become a key focus. The majority of the existing treatments are effective in mitigating some clinical symptoms, but they are unsuccessful in preventing neurodegeneration. Hence, there is an urgent need for breakthrough and highly effective therapies for neurodegenerative diseases. Here, we summarise the interactions that various neurodegenerative diseases have with abnormalities in insulin signalling, lipid metabolism, glucose control, and mitochondrial bioenergetics. These factors have a crucial role in brain activity and cognition, and also significantly contribute to neuronal degeneration in pathological conditions. In this article, we have discussed the latest and most promising treatment methods, ranging from molecular advancements to clinical trials, that aim at improving the stability of neurons.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, 174103, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Samrat Chahuan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | | |
Collapse
|
8
|
Shefner JM, Oskarsson B, Macklin EA, Chibnik LB, Quintana M, Saville BR, Detry MA, Vestrucci M, Marion J, McGlothlin A, Heiman-Patterson T, Chase M, Pothier L, Harkey BA, Yu H, Sherman AV, Hall M, Kittle G, Berry JD, Babu S, Andrews J, D'Agostino D, Tustison E, Scirocco E, Giacomelli E, Alameda G, Locatelli E, Ho D, Quick A, Ajroud-Driss S, Katz J, Heitzman D, Appel SH, Shroff S, Felice K, Maragakis NJ, Simmons Z, Miller TM, Olney N, Weiss MD, Goutman SA, Fernandes JA, Jawdat O, Owegi MA, Foster LA, Vu T, Ilieva H, Newman DS, Arcila-Londono X, Jackson CE, Ladha S, Caress JB, Swenson A, Peltier A, Lewis RA, Fee D, Elliott M, Bedlack R, Kasarskis EJ, Elman L, Rosenfeld J, Walk D, McIlduff C, Twydell P, Young E, Johnson K, Rezania K, Goyal NA, Cohen JA, Benatar M, Jones V, Shah J, Beydoun SR, Wymer JP, Zilliox L, Nayar S, Pattee GL, Martinez-Thompson J, Leitner ML, Chen K, Goldberg YP, Cohen Y, Geva M, Hayden MR, Paganoni S, Cudkowicz ME. Pridopidine in Amyotrophic Lateral Sclerosis: The HEALEY ALS Platform Trial. JAMA 2025; 333:2830509. [PMID: 40067755 PMCID: PMC11833658 DOI: 10.1001/jama.2024.26429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/25/2024] [Indexed: 03/15/2025]
Abstract
Importance Amyotrophic lateral sclerosis (ALS) is a fatal disease. The sigma-1 (σ1) receptor emerged as a target for intervention. Objective To determine the effects of pridopidine, a σ1-receptor agonist, in ALS. Design, Settings, and Participants Pridopidine was tested as a regimen of the HEALEY ALS Platform Trial, a phase 2/3, multicenter, randomized, double-blind, platform trial. The study was conducted at 54 sites in the US from January 2021 to July 2022 (final follow-up, July 14, 2022). A total of 163 participants with ALS were randomized to receive pridopidine or placebo. An additional 122 concurrently randomized participants were assigned to receive placebo in other regimens and included in the analyses. Interventions Eligible participants were randomized 3:1 to receive oral pridopidine 45 mg twice daily (n = 121) or matching oral placebo (n = 42) for a planned duration of 24 weeks. Main Outcomes and Measures The primary efficacy outcome was change from baseline through week 24 in ALS disease severity, analyzed using a bayesian shared parameter model, which has components for function (Revised Amyotrophic Lateral Sclerosis Functional Rating Scale [ALSFRS-R]) and survival that were linked through an integrated estimate of treatment-dependent disease slowing across these 2 components. This was denoted as the disease rate ratio (DRR), with DRR less than 1 indicating a slowing in disease progression on pridopidine relative to placebo. There were 5 key secondary end points: time to 2-point or greater reduction in ALSFRS-R total score among participants with bulbar dysfunction at baseline, rate of decline in slow vital capacity among participants with bulbar dysfunction at baseline, percentage of participants with no worsening in the ALSFRS-R bulbar domain score, time to 1-point or greater change in the ALSFRS-R bulbar domain score, and time to death or permanent assisted ventilation. Results Among 162 patients (mean age, 57.5 years; 35% female) who were randomized to receive the pridopidine regimen and included in the primary efficacy analysis, 136 (84%) completed the trial. In the primary analysis comparing pridopidine vs the combined placebo groups, there was no significant difference between pridopidine and placebo in the primary end point (DRR, 0.99 [95% credible interval, 0.80-1.21]; probability of DRR <1, 0.55) and no differences were seen in the components of ALSFRS-R or survival. There was no benefit of pridopidine on the secondary end points. In the safety dataset (pridopidine, n = 121; placebo, n = 163), the most common adverse events were falls (28.1% vs 29.3%, respectively) and muscular weakness (24.0% vs 31.7%, respectively). Conclusions and Relevance In this 24-week study, pridopidine did not impact the progression of ALS. Trial Registration ClinicalTrials.gov Identifiers: NCT04297683, NCT04615923.
Collapse
Affiliation(s)
| | | | - Eric A Macklin
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lori B Chibnik
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | | | | | | | | | | | | | - Marianne Chase
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lindsay Pothier
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Brittney A Harkey
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hong Yu
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alexander V Sherman
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Meghan Hall
- Barrow Neurological Institute, Phoenix, Arizona
| | - Gale Kittle
- Barrow Neurological Institute, Phoenix, Arizona
| | - James D Berry
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Suma Babu
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Derek D'Agostino
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Eric Tustison
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Erica Scirocco
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Elisa Giacomelli
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Eduardo Locatelli
- Holy Cross Hospital, Fort Lauderdale, Florida
- Nova Southeastern University, Fort Lauderdale, Florida
| | - Doreen Ho
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | | | | | | | | | - Sheetal Shroff
- Houston Methodist Neurological Institute, Houston, Texas
| | - Kevin Felice
- Hospital for Special Care, New Britain, Connecticut
| | | | - Zachary Simmons
- Pennsylvania State University Milton S. Hershey Medical Center, Hershey
| | | | | | | | | | | | - Omar Jawdat
- University of Kansas Medical Center, Kansas City
| | | | | | - Tuan Vu
- University of South Florida, Morsani College of Medicine, Tampa
| | | | | | | | | | | | - James B Caress
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Amanda Peltier
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | | | | | - David Walk
- University of Minnesota, Twin Cities ALS Research Consortium, Minneapolis
| | | | - Paul Twydell
- Spectrum Health Medical Group, Grand Rapids, Michigan
| | | | | | | | | | | | | | | | - Jaimin Shah
- Mayo Clinic Jacksonville, Jacksonville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | - Michael R Hayden
- Prilenia Therapeutics, Herzliya, Israel
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sabrina Paganoni
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Merit E Cudkowicz
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
9
|
Wahba AS, Asal DM, Mesbah NM, Abo-Elmatty DM, Hazem RM, Abdel-Hamed AR. Afobazole alleviates streptozotocin-induced diabetic nephropathy in rats via hypoglycemic, antioxidant, anti-inflammatory, and anti-apoptotic properties: Role of the S1R/Nrf2 antioxidant axis. Life Sci 2025; 363:123410. [PMID: 39842509 DOI: 10.1016/j.lfs.2025.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
AIMS Sigma-1 receptor (S1R) activation was recently identified as a promising target for preventing diabetic nephropathy (DN) by mitigating hypoxia, oxidative stress, and inflammation. This study aimed to investigate the potential reno-protective effect of the S1R agonist afobazole against streptozotocin (STZ)-induced DN in rats compared to metformin. MATERIALS AND METHODS Rats were split into six groups: the normal control group; the diabetic control group received STZ (55 mg/kg i.p.); the other four groups received STZ and were treated with different doses of either afobazole (10, 15, and 20 mg/kg) or metformin (200 mg/kg). Metabolic parameters and renal function were assessed. Expression levels of oxidative stress markers and inflammatory cytokines were measured using ELISA, apoptosis-related proteins were evaluated using immunohistochemistry, and gene expression of S1R, Nrf2, NF-κB, and TLR-4 was determined. Histopathological analysis was performed on kidney tissues. KEY FINDINGS Both afobazole and metformin exerted hypoglycemic effects, alleviating renal injury, reducing blood urea nitrogen (BUN) and serum creatinine, and restoring oxidant/antioxidant balance in diabetic rats. Both treatments boosted renal S1R and Nrf2 levels, suppressed inflammatory proteins and cytokines, and reduced apoptotic features. SIGNIFICANCE The study revealed that afobazole provided nephroprotection in STZ-induced DN through a hypoglycemic, antioxidant, anti-inflammatory, and anti-apoptotic potential mediated by activating the S1R/Nrf2 antioxidant axis. The 15 mg/kg dose elicited the most pronounced nephroprotective effects, outperforming other treatment groups.
Collapse
Affiliation(s)
- Alaa S Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dalia M Asal
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Reem M Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa R Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Sweed E, Khodir SA, Motawea SM, El-Haron H, Mostafa BA, Elkholy MS, Salim M, Shebl DZM. Targeting the sigma-1 receptor with pridopidine induces functional neurorestoration in spinal cord ischemia-reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03851-3. [PMID: 39937253 DOI: 10.1007/s00210-025-03851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Spinal cord ischemia reperfusion injury (IRI) occurs with an incidence of 1-32%, often leading to paraplegia with limited prevention options. Pridopidine (Prdpn), a highly selective sigma-1 receptor (Sig-1R) agonist, serves as a protein chaperone that is engaged in neuroplasticity and cellular defense. This research aimed to assess the neuroprotective properties of Prdpn in spinal cord IRI in rats and investigate the underlying mechanisms. Forty male Wistar albino rats were randomly allocated into 4 groups: control, sham, IRI, and IRI + Prdpn. Tarlov's test was used to examine behavioral performance, as well as withdrawal from agonizing stimuli and the placing/stepping reflex (SPR). Biochemical markers, including spinal malondialdehyde (MDA), AOPP, antioxidant GPX, TNF-α and IL-1β, and apoptotic caspase-3, were measured, along with BDNF, GDNF, and Sig-1R gene expression. Histopathological changes in spinal cord tissue were also evaluated. Spinal cord IRI significantly caused neurological deficits, evidenced by lower scores in Tarlov's test, withdrawal from agonizing stimuli, and SPR. Biochemically, spinal cord IRI led to decreased GPX and increased MDA, AOPP, TNF-α, IL-1β, caspase-3, and GDNF levels, along with downregulated BDNF and Sig-1R gene expression. Histopathologically, spinal cord IRI resulted in greater spinal neuronal degeneration, apoptosis, and demyelination. However, treatment with Prdpn significantly improved behavioral outcomes and partially reversed the biochemical and histopathological alterations. Prdpn improved spinal cord IRI-induced behavioral deficits through its antioxidant, anti-inflammatory, anti-apoptotic, and neurotrophic properties. It suggests promise as a potential treatment option to stop spinal cord IRI.
Collapse
Affiliation(s)
- Eman Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- Clinical Pharmacology Department, Menoufia National University, Menoufia, Egypt.
| | - Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| | - Shaimaa Mohamed Motawea
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| | - Hala El-Haron
- Histology and Cell Biology, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- AlRyada University for Science and Technology, Menoufia, 32511, Egypt
| | - Basma Abdelnaby Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Biochemistry, Menoufia National University, Menoufia, Egypt
| | - Mona S Elkholy
- Neuropsychiatry Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mohammud Salim
- Neurosurgery Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Doaa Z M Shebl
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Clinical Pharmacology Department, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
11
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2025; 41:305-325. [PMID: 39266936 PMCID: PMC11794855 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
12
|
Shokr MM, Badawi GA, Elshazly SM, Zaki HF, Mohamed AF. Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders. ACS Pharmacol Transl Sci 2025; 8:47-65. [PMID: 39816800 PMCID: PMC11729429 DOI: 10.1021/acsptsci.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions. Nonetheless, relatively little is known about the specific molecular mechanisms underlying S1R activity. Many studies on S1R protein have highlighted the importance of maintaining normal cellular homeostasis through its control of calcium and lipid exchange between the ER and mitochondria, ER-stress response, and many other mechanisms. In this review, we will discuss S1R different cellular localization and explain S1R-associated biological activity, such as its localization in the ER-plasma membrane and Mitochondrion-Associated ER Membrane interfaces. While outlining the cellular mechanisms and important binding partners involved in these processes, we also explained how the dysregulation of these pathways contributes to neurodegenerative disorders.
Collapse
Affiliation(s)
- Mustafa M. Shokr
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University−Arish Branch, Arish, 45511, Egypt
| | - Ghada A. Badawi
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University−Arish Branch, Arish, 45511, Egypt
| | - Shimaa M. Elshazly
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hala F. Zaki
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F. Mohamed
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty
of Pharmacy, King Salman International University
(KSIU), South Sinai 46612, Egypt
| |
Collapse
|
13
|
Azman KF, Zakaria R. Brain-Derived Neurotrophic Factor (BDNF) in Huntington's Disease: Neurobiology and Therapeutic Potential. Curr Neuropharmacol 2025; 23:384-403. [PMID: 40123457 DOI: 10.2174/1570159x22666240530105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2025] Open
Abstract
Huntington's disease is a hereditary neurodegenerative disorder marked by severe neurodegeneration in the striatum and cortex. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors. It plays a crucial role in maintaining the survival and proper function of striatal neurons. Depletion of BDNF has been linked to impairment and death of striatal neurons, leading to the manifestation of motor, cognitive, and behavioral dysfunctions characteristic of Huntington's disease. This review highlights the current update on the neurobiology of BDNF in the pathogenesis of Huntington's disease. The molecular evidence and the affected signaling pathways are also discussed. In addition, the impact of experimental manipulation of BDNF levels and its pharmaceutical potential for Huntington's disease treatment are explicitly reviewed.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
14
|
Nassrallah WB, Cheng J, Mackay JP, Hogg PW, Raymond LA. Mechanisms of synapse-to-nucleus calcium signalling in striatal neurons and impairments in Huntington's disease. J Neurochem 2024; 168:2671-2689. [PMID: 38770573 DOI: 10.1111/jnc.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Huntington's disease (HD) is a monogenic disorder with autosomal dominant inheritance. In HD patients, neurons in the striatum and cortex degenerate, leading to motor, psychiatric and cognitive disorders. Dysregulated synaptic function and calcium handling are common in many neurodegenerative diseases, including HD. N-methyl-D-aspartate (NMDA) receptor function is enhanced in HD at extrasynaptic sites, altering the balance of calcium-dependent neuronal survival versus death signalling pathways. Endoplasmic reticulum (ER) calcium handling is also abnormal in HD. The ER, which is continuous with the nuclear envelope, is purportedly involved in nuclear calcium signalling; based on this, we hypothesised that nuclear calcium signalling is altered in HD. We explored this hypothesis with calcium imaging techniques, including simultaneous epifluorescent imaging of cytosolic and nuclear calcium using jRCaMP1b and GCaMP3 sensors, respectively, in striatal spiny projection neurons in cortical-striatal co-cultures from the YAC128 mouse model of HD. Our data show contributions from a variety of calcium channels to nuclear calcium signalling. NMDA receptors (NMDARs) play an essential role in initiating action potential-dependent calcium signalling to the nucleus, and ryanodine receptors (RyR) contribute to both cytosolic and nuclear calcium signals. Unlike previous reports in glutamatergic hippocampal and cortical neurons, we found that in GABAergic striatal neurons, L-type voltage-gated calcium channels (CaV) contribute to cytosolic, but not nuclear calcium signalling. Calcium imaging also suggests impairments in nuclear calcium signalling in HD striatal neurons, where spontaneous action potential-dependent calcium transients in the nucleus were smaller in YAC128 striatal neurons compared to those of wild-type (WT). Our results elucidate mechanisms involved in action potential-dependent nuclear calcium signalling in GABAergic striatal neurons, and have revealed a clear deficit in this signalling in HD.
Collapse
Affiliation(s)
- Wissam B Nassrallah
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judy Cheng
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - James P Mackay
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter W Hogg
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynn A Raymond
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Bai P, Bagdasarian FA, Xu Y, Wang Y, Wang Y, Gomm A, Zhou Y, Wu R, Wey HY, Tanzi RE, Zhang C, Lan Y, Wang C. Molecular Imaging of Alzheimer's Disease-Related Sigma-1 Receptor in the Brain via a Novel Ru-Mediated Aromatic 18F-deoxyfluorination Probe. J Med Chem 2024; 67:6207-6217. [PMID: 38607332 DOI: 10.1021/acs.jmedchem.3c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Frederick A Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yanli Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yongle Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
16
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
17
|
Teli P, Kale V, Vaidya A. Beyond animal models: revolutionizing neurodegenerative disease modeling using 3D in vitro organoids, microfluidic chips, and bioprinting. Cell Tissue Res 2023; 394:75-91. [PMID: 37572163 DOI: 10.1007/s00441-023-03821-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by uncontrolled loss of neuronal cells leading to a progressive deterioration of brain functions. The transition rate of numerous neuroprotective drugs against Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, leading to FDA approval, is only 8-14% in the last two decades. Thus, in spite of encouraging preclinical results, these drugs have failed in human clinical trials, demonstrating that traditional cell cultures and animal models cannot accurately replicate human pathophysiology. Hence, in vitro three-dimensional (3D) models have been developed to bridge the gap between human and animal studies. Such technological advancements in 3D culture systems, such as human-induced pluripotent stem cell (iPSC)-derived cells/organoids, organ-on-a-chip technique, and 3D bioprinting, have aided our understanding of the pathophysiology and underlying mechanisms of human NDs. Despite these recent advances, we still lack a 3D model that recapitulates all the key aspects of NDs, thus making it difficult to study the ND's etiology in-depth. Hence in this review, we propose developing a combinatorial approach that allows the integration of patient-derived iPSCs/organoids with 3D bioprinting and organ-on-a-chip technique as it would encompass the neuronal cells along with their niche. Such a 3D combinatorial approach would characterize pathological processes thoroughly, making them better suited for high-throughput drug screening and developing effective novel therapeutics targeting NDs.
Collapse
Affiliation(s)
- Prajakta Teli
- Symbiosis International (Deemed University), Symbiosis School of Biological Sciences, Pune, 412115, India
- Symbiosis International (Deemed University), Symbiosis Center for Stem Cell Research, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis International (Deemed University), Symbiosis School of Biological Sciences, Pune, 412115, India
- Symbiosis International (Deemed University), Symbiosis Center for Stem Cell Research, Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis International (Deemed University), Symbiosis School of Biological Sciences, Pune, 412115, India.
- Symbiosis International (Deemed University), Symbiosis Center for Stem Cell Research, Pune, 412115, India.
| |
Collapse
|
18
|
Pchitskaya E, Vasiliev P, Smirnova D, Chukanov V, Bezprozvanny I. SpineTool is an open-source software for analysis of morphology of dendritic spines. Sci Rep 2023; 13:10561. [PMID: 37386071 PMCID: PMC10310755 DOI: 10.1038/s41598-023-37406-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
Dendritic spines form most excitatory synaptic inputs in neurons and these spines are altered in many neurodevelopmental and neurodegenerative disorders. Reliable methods to assess and quantify dendritic spines morphology are needed, but most existing methods are subjective and labor intensive. To solve this problem, we developed an open-source software that allows segmentation of dendritic spines from 3D images, extraction of their key morphological features, and their classification and clustering. Instead of commonly used spine descriptors based on numerical metrics we used chord length distribution histogram (CLDH) approach. CLDH method depends on distribution of lengths of chords randomly generated within dendritic spines volume. To achieve less biased analysis, we developed a classification procedure that uses machine-learning algorithm based on experts' consensus and machine-guided clustering tool. These approaches to unbiased and automated measurements, classification and clustering of synaptic spines that we developed should provide a useful resource for a variety of neuroscience and neurodegenerative research applications.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
| | - Peter Vasiliev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Daria Smirnova
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Vyacheslav Chukanov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, St. Petersburg, Russia, 195251
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Kraskovskaya N, Bolshakova A, Khotin M, Bezprozvanny I, Mikhailova N. Protocol Optimization for Direct Reprogramming of Primary Human Fibroblast into Induced Striatal Neurons. Int J Mol Sci 2023; 24:ijms24076799. [PMID: 37047770 PMCID: PMC10095147 DOI: 10.3390/ijms24076799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The modeling of neuropathology on induced neurons obtained by cell reprogramming technologies can fill a gap between clinical trials and studies on model organisms for the development of treatment strategies for neurodegenerative diseases. Patient-specific models based on patients’ cells play an important role in such studies. There are two ways to obtain induced neuronal cells. One is based on induced pluripotent stem cells. The other is based on direct reprogramming, which allows us to obtain mature neuronal cells from adult somatic cells, such as dermal fibroblasts. Moreover, the latter method makes it possible to better preserve the age-related aspects of neuropathology, which is valuable for diseases that occur with age. However, direct methods of reprogramming have a significant drawback associated with low cell viability during procedures. Furthermore, the number of reprogrammable neurons available for morphological and functional studies is limited by the initial number of somatic cells. In this article, we propose modifications of a previously developed direct reprogramming method, based on the combination of microRNA and transcription factors, which allowed us to obtain a population of functionally active induced striatal neurons (iSNs) with a high efficiency. We also overcame the problem of the presence of multinucleated neurons associated with the cellular division of starting fibroblasts. Synchronization cells in the G1 phase increased the homogeneity of the fibroblast population, increased the survival rate of induced neurons, and eliminated the presence of multinucleated cells at the end of the reprogramming procedure. We have demonstrated that iSNs are functionally active and able to form synaptic connections in co-cultures with mouse cortical neurons. The proposed modifications can also be used to obtain a population of other induced neuronal types, such as motor and dopaminergic ones, by selecting transcription factors that determine differentiation into a region-specific neuron.
Collapse
Affiliation(s)
- Nina Kraskovskaya
- Center of Cellular Technologies, Institute of Cytology of the Russian Academy of Science, 194064 St. Petersburg, Russia
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mikhail Khotin
- Center of Cellular Technologies, Institute of Cytology of the Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Natalia Mikhailova
- Center of Cellular Technologies, Institute of Cytology of the Russian Academy of Science, 194064 St. Petersburg, Russia
| |
Collapse
|
21
|
Darpo B, Geva M, Ferber G, Goldberg YP, Cruz-Herranz A, Mehra M, Kovacs R, Hayden MR. Pridopidine Does Not Significantly Prolong the QTc Interval at the Clinically Relevant Therapeutic Dose. Neurol Ther 2023; 12:597-617. [PMID: 36811812 PMCID: PMC10043059 DOI: 10.1007/s40120-023-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Pridopidine is a highly selective sigma-1 receptor (S1R) agonist in development for the treatment of Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Pridopidine's activation of S1R enhances cellular processes that are crucial for neuronal function and survival but are impaired in neurodegenerative diseases. Human brain positron emission tomography (PET) imaging studies show that at the therapeutic dose of 45 mg twice daily (bid), pridopidine selectively and robustly occupies the S1R. We conducted concentration-QTc (C-QTc) analyses to assess pridopidine's effect on the QT interval and investigated its cardiac safety profile. METHODS C-QTc analysis was conducted using data from PRIDE-HD, a phase 2, placebo-controlled trial evaluating four pridopidine doses (45, 67.5, 90, 112.5 mg bid) or placebo over 52 weeks in HD patients. Triplicate electrocardiograms (ECGs) with simultaneous plasma drug concentrations were determined in 402 patients with HD. The effect of pridopidine on the Fridericia-corrected QT interval (QTcF) was evaluated. Cardiac-related adverse events (AEs) were analyzed from PRIDE-HD alone and from pooled safety data of three double-blind, placebo-controlled trials with pridopidine in HD (HART, MermaiHD, and PRIDE-HD). RESULTS A concentration-dependent effect of pridopidine on the change from baseline in the Fridericia-corrected QT interval (ΔQTcF) was observed, with a slope of 0.012 ms (ms) per ng/mL (90% confidence interval (CI), 0.0109-0.0127). At the therapeutic dose of 45 mg bid, the predicted placebo-corrected ΔQTcF (ΔΔQTcF) was 6.6 ms (upper bound 90% CI, 8.0 ms), which is below the level of concern and not clinically relevant. Analysis of pooled safety data from three HD trials demonstrates that at 45 mg bid, pridopidine cardiac-related AE frequencies are similar to those with placebo. No patients reached a QTcF of 500 ms and no patients experienced torsade de pointes (TdP) at any pridopidine dose. CONCLUSIONS At the 45 mg bid therapeutic dose, pridopidine demonstrates a favorable cardiac safety profile, with an effect on the QTc interval that is below the level of concern and not clinically relevant. TRIAL REGISTRATION PRIDE-HD (TV7820-CNS-20002) trial registration: ClinicalTrials.gov identifier, NCT02006472, EudraCT 2013-001888-23; HART (ACR16C009) trial registration: ClinicalTrials.gov identifier, NCT00724048; MermaiHD (ACR16C008) trial registration: ClinicalTrials.gov identifier, NCT00665223, EudraCT No. 2007-004988-22.
Collapse
Affiliation(s)
| | - Michal Geva
- Prilenia Therapeutics B.V., Naarden, The Netherlands.
| | - Georg Ferber
- Statistik Georg Ferber GmbH, Riehen, Switzerland
| | | | | | - Munish Mehra
- Biometrics Department, Tigermed-BDM Inc., Somerset, NJ, USA
| | - Richard Kovacs
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael R Hayden
- Prilenia Therapeutics B.V., Naarden, The Netherlands.
- Department of Medical Genetics, CMMT, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023; 24:ijms24010823. [PMID: 36614266 PMCID: PMC9820882 DOI: 10.3390/ijms24010823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.
Collapse
|
23
|
Wang SM, Wu HE, Yasui Y, Geva M, Hayden M, Maurice T, Cozzolino M, Su TP. Nucleoporin POM121 signals TFEB-mediated autophagy via activation of SIGMAR1/sigma-1 receptor chaperone by pridopidine. Autophagy 2023; 19:126-151. [PMID: 35507432 PMCID: PMC9809944 DOI: 10.1080/15548627.2022.2063003] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is an essential process for cellular survival and is implicated in many diseases. A critical step in autophagy is the transport of the transcription factor TFEB from the cytosol into the nucleus, through the nuclear pore (NP) by KPNB1/importinβ1. In the C9orf72 subtype of amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTD), the hexanucleotide (G4C2)RNA expansion (HRE) disrupts the nucleocytoplasmic transport of TFEB, compromising autophagy. Here we show that a molecular chaperone, the SIGMAR1/Sigma-1 receptor (sigma non-opioid intracellular receptor 1), facilitates TFEB transport into the nucleus by chaperoning the NP protein (i.e., nucleoporin) POM121 which recruits KPNB1. In NSC34 cells, HRE reduces TFEB transport by interfering with the association between SIGMAR1 and POM121, resulting in reduced nuclear levels of TFEB, KPNB1, and the autophagy marker LC3-II. Overexpression of SIGMAR1 or POM121, or treatment with the highly selective and potent SIGMAR1 agonist pridopidine, currently in phase 2/3 clinical trials for ALS and Huntington disease, rescues all of these deficits. Our results implicate nucleoporin POM121 not merely as a structural nucleoporin, but also as a chaperone-operated signaling molecule enabling TFEB-mediated autophagy. Our data suggest the use of SIGMAR1 agonists, such as pridopidine, for therapeutic development of diseases in which autophagy is impaired.Abbreviations: ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementiaC9ALS-FTD, C9orf72 subtype of amyotrophic lateral sclerosis-frontotemporal dementiaCS, citrate synthaseER, endoplasmic reticulumGSS, glutathione synthetaseHRE, hexanucleotide repeat expansionHSPA5/BiP, heat shock protein 5LAMP1, lysosomal-associated membrane protein 1MAM, mitochondria-associated endoplasmic reticulum membraneMAP1LC3/LC3, microtubule-associated protein 1 light chain 3NP, nuclear poreNSC34, mouse motor neuron-like hybrid cell lineNUPs, nucleoporinsPOM121, nuclear pore membrane protein 121SIGMAR1/Sigma-1R, sigma non-opioid intracellular receptor 1TFEB, transcription factor EBTMEM97/Sigma-2R, transmembrane protein 97.
Collapse
Affiliation(s)
- Shao-Ming Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland21224, USA
- China Medical University, Graduate Institute of Biomedical Sciences, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, No.91, Hsueh-Shih Road, Taichung city, 404333, Taiwan
- Department of Neurology, China Medical University Hospital, No.2, Yude Road, North District, Taichung city, 404333, Taiwan
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland21224, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland21224, USA
| | - Michal Geva
- Prilenia Therapeutics Development Ltd, Herzliya, Israel
| | - Michael Hayden
- Prilenia Therapeutics Development Ltd, Herzliya, Israel
- The Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland21224, USA
| |
Collapse
|
24
|
Mysona BA, Zhao J, De Greef O, Beisel A, Patel PA, Berman L, Smith SB, Bollinger K. Sigma-1 receptor agonist, (+)-pentazocine, is neuroprotective in a Brown Norway rat microbead model of glaucoma. Exp Eye Res 2023; 226:109308. [PMID: 36400283 PMCID: PMC9839578 DOI: 10.1016/j.exer.2022.109308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Glaucoma is a worldwide leading cause of irreversible blindness. Standard treatments lower intraocular pressure (IOP). Novel treatments to prevent optic nerve (ON) degeneration are needed. Here, we investigate the hypothesis that sigma-1 receptor (S1R) agonist (+)-pentazocine (PTZ) is neuroprotective in a Brown Norway (BN) rat, microbead model of glaucoma. METHODS BN rats (9-11 weeks, male and female) were treated by intraperitoneal injection, 3 times per week with (+)-PTZ (2 mg/kg) or vehicle (VEH) alone. Treatment started 1 week prior to intraocular injection of polystyrene microbeads to elevate IOP. IOP was measured 2-3 times per week. Five weeks post microbead injection, rats were euthanized. ONs were removed, then fixed and processed for 63x oil, light microscope imaging of toluidine blue stained ON cross sections. To facilitate comparison of ON morphology from VEH and (+)-PTZ treated rats with similar ocular hypertensive insults, rats were assigned to low (IOP ≤15.8 mmHg), moderate (15.8 < IOP <28.0 mmHg), and high (IOP ≥28.0 mmHg) groups based on average IOP in the microbead injected eye. Axon numbers, axon density, axonal and glial areas, axon loss, and axon size distributions of naïve, bead, and contralateral ONs were assessed using QuPath program for automated image analysis. RESULTS (+)-PTZ treatment of BN rats protected ONs from damage caused by moderate IOP elevation. Treatment with (+)-PTZ significantly reduced axon loss and glial areas, and increased axon density and axonal areas compared to ONs from VEH treated rats with moderate IOP. (+)-PTZ-mediated neuroprotection was independent of IOP lowering effects. At average IOP ≥28.0 mmHg, (+)-PTZ treatment did not provide measurable neuroprotection. ONs from contralateral eyes exhibited subtle, complex changes in response to conditions in the bead eyes. CONCLUSIONS S1R agonist (+)-PTZ shows promise as a neuroprotective treatment for glaucoma. Future studies to understand the complex molecular mechanisms by which (+)-PTZ provides this neuroprotection are needed.
Collapse
Affiliation(s)
- Barbara A Mysona
- Department of Cellular Biology and Anatomy CB-2304, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA; James and Jean Culver Vision Discovery Institute, Department of Ophthalmology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Jing Zhao
- James and Jean Culver Vision Discovery Institute, Department of Ophthalmology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Oceane De Greef
- Student Training and Research Program, Graduate School, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - August Beisel
- Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Parth A Patel
- Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Lindsay Berman
- Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy CB-2304, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Kathryn Bollinger
- James and Jean Culver Vision Discovery Institute, Department of Ophthalmology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
25
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
26
|
Caron NS, Haqqani AS, Sandhu A, Aly AE, Findlay Black H, Bone JN, McBride JL, Abulrob A, Stanimirovic D, Leavitt BR, Hayden MR. Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity. Brain Commun 2022; 4:fcac309. [PMID: 36523269 PMCID: PMC9746690 DOI: 10.1093/braincomms/fcac309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 08/27/2023] Open
Abstract
The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease. We conducted a hypothesis-driven analysis of 26 pre-specified protein analytes in CSF from 16 manifest Huntington disease subjects, eight premanifest Huntington disease mutation carriers and eight healthy control individuals using parallel-reaction monitoring mass spectrometry. In addition to reproducing reported changes in previously investigated CSF biomarkers (NEFL, PDYN, and PENK), we also identified novel exploratory CSF proteins (C1QB, CNR1, GNAL, IDO1, IGF2, and PPP1R1B) whose levels were altered in Huntington disease mutation carriers and/or across stages of disease. Moreover, we report strong associations of select CSF proteins with clinical measures of disease severity in manifest Huntington disease subjects (C1QB, CNR1, NEFL, PDYN, PPP1R1B, and TTR) and with years to predicted disease onset in premanifest Huntington disease mutation carriers (ALB, C4B, CTSD, IGHG1, and TTR). Using receiver operating characteristic curve analysis, we identified PENK as being the most discriminant CSF protein for stratifying Huntington disease mutation carriers from controls. We also identified exploratory multi-marker CSF protein panels that improved discrimination of premanifest Huntington disease mutation carriers from controls (PENK, ALB and NEFL), early/mid-stage Huntington disease from premanifest mutation carriers (PPP1R1B, TTR, CHI3L1, and CTSD), and late-stage from early/mid-stage Huntington disease (CNR1, PPP1R1B, BDNF, APOE, and IGHG1) compared with individual CSF proteins. In this study, we demonstrate that combinations of CSF proteins can outperform individual markers for stratifying individuals based on Huntington disease mutation status and disease severity. Moreover, we define exploratory multi-marker CSF protein panels that, if validated, may be used to improve the accuracy of disease-onset predictions, complement existing clinical and imaging biomarkers for monitoring the severity of Huntington disease, and potentially for assessing therapeutic response in clinical trials. Additional studies with CSF collected from larger cohorts of Huntington disease mutation carriers are needed to replicate these exploratory findings.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Akshdeep Sandhu
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amirah E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jeffrey N Bone
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
27
|
Lenoir S, Lahaye RA, Vitet H, Scaramuzzino C, Virlogeux A, Capellano L, Genoux A, Gershoni-Emek N, Geva M, Hayden MR, Saudou F. Pridopidine rescues BDNF/TrkB trafficking dynamics and synapse homeostasis in a Huntington disease brain-on-a-chip model. Neurobiol Dis 2022; 173:105857. [PMID: 36075537 DOI: 10.1016/j.nbd.2022.105857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by polyglutamine-encoding CAG repeat expansion in the huntingtin (HTT) gene. HTT is involved in the axonal transport of vesicles containing brain-derived neurotrophic factor (BDNF). In HD, diminished BDNF transport leads to reduced BDNF delivery to the striatum, contributing to striatal and cortical neuronal death. Pridopidine is a selective and potent sigma-1 receptor (S1R) agonist currently in clinical development for HD. The S1R is located at the endoplasmic reticulum (ER)-mitochondria interface, where it regulates key cellular pathways commonly impaired in neurodegenerative diseases. We used a microfluidic device that reconstitutes the corticostriatal network, allowing the investigation of presynaptic dynamics, synaptic morphology and transmission, and postsynaptic signaling. Culturing primary neurons from the HD mouse model HdhCAG140/+ provides a "disease-on-a-chip" platform ideal for investigating pathogenic mechanisms and drug activity. Pridopidine rescued the trafficking of BDNF and TrkB resulting in an increased neurotrophin signaling at the synapse. This increased the capacity of HD neurons to release glutamate and restored homeostasis at the corticostriatal synapse. These data suggest that pridopidine enhances the availability of corticostriatal BDNF via S1R activation, leading to neuroprotective effects.
Collapse
Affiliation(s)
- Sophie Lenoir
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Romane A Lahaye
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Amandine Virlogeux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Laetitia Capellano
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Aurélie Genoux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | | | | | - Michael R Hayden
- Prilenia Therapeutics, Herzliya, Israel; The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France..
| |
Collapse
|
28
|
Jin J, Arbez N, Sahn JJ, Lu Y, Linkens KT, Hodges TR, Tang A, Wiseman R, Martin SF, Ross CA. Neuroprotective Effects of σ 2R/TMEM97 Receptor Modulators in the Neuronal Model of Huntington's Disease. ACS Chem Neurosci 2022; 13:2852-2862. [PMID: 36108101 PMCID: PMC9547941 DOI: 10.1021/acschemneuro.2c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disease caused by an expanded CAG repeat in the Huntingtin (HTT) gene that encodes for an expanded polyglutamine (polyQ) repeat in exon-1 of the human mutant huntingtin (mHTT) protein. The presence of this polyQ repeat results in neuronal degeneration, for which there is no cure or treatment that modifies disease progression. In previous studies, we have shown that small molecules that bind selectively to σ2R/TMEM97 can have significant neuroprotective effects in models of Alzheimer's disease, traumatic brain injury, and several other neurodegenerative diseases. In the present work, we extend these investigations and show that certain σ2R/TMEM97-selective ligands decrease mHTT-induced neuronal toxicity. We first synthesized a set of compounds designed to bind to σ2R/TMEM97 and determined their binding profiles (Ki values) for σ2R/TMEM97 and other proteins in the central nervous system. Modulators with high affinity and selectivity for σ2R/TMEM97 were then tested in our HD cell model. Primary cortical neurons were cultured in vitro for 7 days and then co-transfected with either a normal HTT construct (Htt N-586-22Q/GFP) or the mHTT construct Htt-N586-82Q/GFP. Transfected neurons were treated with either σ2R/TMEM97 or σ1R modulators for 48 h. After treatment, neurons were fixed and stained with Hoechst, and condensed nuclei were quantified to assess cell death in the transfected neurons. Significantly, σ2R/TMEM97 modulators reduce the neuronal toxicity induced by mHTT, and their neuroprotective effects are not blocked by NE-100, a selective σ1R antagonist known to block neuroprotection by σ1R ligands. These results indicate for the first time that σ2R/TMEM97 modulators can protect neurons from mHTT-induced neuronal toxicity, suggesting that targeting σ2R/TMEM97 may lead to a novel therapeutic approach to treat patients with HD.
Collapse
Affiliation(s)
- Jing Jin
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
- Cellular Sciences Department, IdRS, Croissy-sur-Seine, France
| | - James J. Sahn
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Yan Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Kathryn T. Linkens
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Timothy R. Hodges
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Anthony Tang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
| | - Robyn Wiseman
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, United States
| | - Stephen F. Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, United States
| |
Collapse
|
29
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Qin Y, Xu W, Li K, Luo Q, Chen X, Wang Y, Chen L, Sha S. Repeated inhibition of sigma-1 receptor suppresses GABAA receptor expression and long-term depression in the nucleus accumbens leading to depressive-like behaviors. Front Mol Neurosci 2022; 15:959224. [PMID: 36245919 PMCID: PMC9563353 DOI: 10.3389/fnmol.2022.959224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-1 receptor (σ1R) downregulation in male mice is known to cause a depressive-like phenotype. The nucleus accumbens (NAc), a region associated with affective regulation, has high levels of σ1R. Here, we investigated the effect of repeated inhibition of σ1R in the NAc on depressive-like behaviors and synaptic plasticity by microinjecting σ1R antagonist NE-100 into NAc nuclei in mice (NE-100 mice); this was followed by behavioral tests and field potentials recordings. We first examined the effect of NE-100 administration on σ1R expression and found that cell surface levels of σ1R were significantly reduced in the NAc of NE-100 mice. Compared to control mice, NE-100 mice exhibited significantly prolonged immobility in forced swim test (FST) and tail suspension test (TST), impaired long-term depression (LTD) as well as multi-spike waveform field excitatory postsynaptic potential (fEPSP) with an extended duration and an increased paired-pulse ratio (PPR). Reduced levels of GABAA receptor (GABAAR)-α1, -α2, -β2, and -β3 subunits, membrane D2R, and PKC phosphorylation in the NAc were observed in NE-100 mice. Activation of GABAAR by muscimol corrected the extended fEPSP duration and increased PPR, restored LTD maintenance as well as alleviated depressive-like behaviors in NE-100 mice. The decline of PKC phosphorylation in the NAc of NE-100 mice was corrected by injecting NAc with quinpirole, a D2R agonist. Injections of quinpirole or PMA (a PKC activator) into NAc of NE-100 mice rescued the expression levels of GABAAR, and alleviated the increase in PPR and impairment in LTD; these effects were sensitive to GF109203X, a PKC inhibitor. Furthermore, injecting NAc with quinpirole or PMA relieved depressive-like behaviors in NE-100 mice. Collectively, these results indicate that repeated inhibition of σ1R in the NAc reduces D2R-mediated PKC phosphorylation and suppresses GABAAR expression, thus impairing LTD maintenance and leading to depressive-like behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Chen
- *Correspondence: Sha Sha Lei Chen
| | - Sha Sha
- *Correspondence: Sha Sha Lei Chen
| |
Collapse
|
31
|
Estévez-Silva HM, Cuesto G, Romero N, Brito-Armas JM, Acevedo-Arozena A, Acebes Á, Marcellino DJ. Pridopidine Promotes Synaptogenesis and Reduces Spatial Memory Deficits in the Alzheimer's Disease APP/PS1 Mouse Model. Neurotherapeutics 2022; 19:1566-1587. [PMID: 35917088 PMCID: PMC9606189 DOI: 10.1007/s13311-022-01280-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 10/16/2022] Open
Abstract
Sigma-1 receptor agonists have recently gained a great deal of interest due to their anti-amnesic, neuroprotective, and neurorestorative properties. Compounds such as PRE-084 or pridopidine (ACR16) are being studied as a potential treatment against cognitive decline associated with neurodegenerative disease, also to include Alzheimer's disease. Here, we performed in vitro experiments using primary neuronal cell cultures from rats to evaluate the abilities of ACR16 and PRE-084 to induce new synapses and spines formation, analyzing the expression of the possible genes and proteins involved. We additionally examined their neuroprotective properties against neuronal death mediated by oxidative stress and excitotoxicity. Both ACR16 and PRE-084 exhibited a concentration-dependent neuroprotective effect against NMDA- and H2O2-related toxicity, in addition to promoting the formation of new synapses and dendritic spines. However, only ACR16 generated dendritic spines involved in new synapse establishment, maintaining a more expanded activation of MAPK/ERK and PI3K/Akt signaling cascades. Consequently, ACR16 was also evaluated in vivo, and a dose of 1.5 mg/kg/day was administered intraperitoneally in APP/PS1 mice before performing the Morris water maze. ACR16 diminished the spatial learning and memory deficits observed in APP/PS1 transgenic mice via PI3K/Akt pathway activation. These data point to ACR16 as a pharmacological tool to prevent synapse loss and memory deficits associated with Alzheimer's disease, due to its neuroprotective properties against oxidative stress and excitotoxicity, as well as the promotion of new synapses and spines through a mechanism that involves AKT and ERK signaling pathways.
Collapse
Affiliation(s)
- Héctor M Estévez-Silva
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Germán Cuesto
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Ninovska Romero
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - José Miguel Brito-Armas
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL/CIBERNED, Tenerife, Spain
| | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL/CIBERNED, Tenerife, Spain
| | - Ángel Acebes
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain.
| | | |
Collapse
|
32
|
Dentoni G, Castro-Aldrete L, Naia L, Ankarcrona M. The Potential of Small Molecules to Modulate the Mitochondria-Endoplasmic Reticulum Interplay in Alzheimer's Disease. Front Cell Dev Biol 2022; 10:920228. [PMID: 36092728 PMCID: PMC9459385 DOI: 10.3389/fcell.2022.920228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid β-peptide (Aβ) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca2+) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction. Interestingly, all these processes have been associated with the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) signaling hub. We and others have hypothesized that the dysregulated MERCS function may be one of the main pathogenic pathways driving AD pathology. Due to the variety of biological processes overseen at the MERCS, we believe that they constitute unique therapeutic targets to boost the neuronal function and recover neuronal homeostasis. Thus, developing molecules with the capacity to correct and/or modulate the MERCS interplay can unleash unique therapeutic opportunities for AD. The potential pharmacological intervention using MERCS modulators in different models of AD is currently under investigation. Here, we survey small molecules with the potential to modulate MERCS structures and functions and restore neuronal homeostasis in AD. We will focus on recently reported examples and provide an overview of the current challenges and future perspectives to develop MERCS modulators in the context of translational research.
Collapse
Affiliation(s)
| | | | | | - Maria Ankarcrona
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Milenina LS, Krutetskaya ZI, Antonov VG, Krutetskaya NI. Sigma-1 Receptor Ligands Chlorpromazine and Trifluoperazine Attenuate Ca 2+ Responses in Rat Peritoneal Macrophages. CELL AND TISSUE BIOLOGY 2022; 16:233-244. [PMID: 35668825 PMCID: PMC9136207 DOI: 10.1134/s1990519x22030075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Sigma-1 receptors are ubiquitous multifunctional ligand-regulated molecular chaperones in the endoplasmic reticulum membrane with a unique history, structure, and pharmacological profile. Sigma-1 receptors bind ligands of different chemical structure and pharmacological action and modulate a wide range of cellular processes in health and disease, including Ca2+ signaling. To elucidate the involvement of sigma-1 receptors in the processes of Ca2+ signaling in macrophages we studied the effect of sigma-1 receptor ligands, phenothiazine neuroleptics chlorpromazine and trifluoperazine, on Ca2+ responses induced by inhibitors of endoplasmic Ca2+-ATPases thapsigargin and cyclopiazonic acid, as well as by disulfide-containing immunomodulators Glutoxim and Molixan in rat peritoneal macrophages. Using Fura-2AM microfluorimetry we showed for the first time that chlorpromazine and trifluoperazine inhibit both phases of Ca2+ responses induced by Glutoxim, Molixan, thapsigargin, and cyclopiazonic acid in rat peritoneal macrophages. The data obtained indicate the participation of sigma-1 receptors in a complex signaling cascade caused by Glutoxim or Molixan and leading to an increase in intracellular Ca2+ concentration in macrophages. The results also indicate the involvement of sigma-1 receptors in the regulation of store-dependent Ca2+entry in macrophages.
Collapse
Affiliation(s)
- L. S. Milenina
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Z. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - V. G. Antonov
- Department of Clinical Biochemistry and Laboratory Diagnostics, Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - N. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
34
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
35
|
Shi M, Liu L, Min X, Mi L, Chai Y, Chen F, Wang J, Yue S, Zhang J, Deng Q, Chen X. Activation of Sigma-1 Receptor Alleviates ER-Associated Cell Death and Microglia Activation in Traumatically Injured Mice. J Clin Med 2022; 11:2348. [PMID: 35566476 PMCID: PMC9102000 DOI: 10.3390/jcm11092348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) is associated with neuroinflammation and subsequent cell death following traumatic brain injury (TBI). The sigma-1 receptor (Sig-1R) acts as a dynamic pluripotent modulator of fundamental cellular processes at the mitochondria-associated membranes (MAMs). The activation of Sig-1R is neuroprotective in a variety of central nervous system diseases, but its impact on ER stress induced by traumatic brain injury is not known. This study investigated the role of Sig-1R in regulating the ER stress-mediated microglial activation and programmed cell death (apoptosis and pyroptosis) induced by TBI. METHODS Ten human brain tissues were obtained from The Tianjin Medical University General Hospital. Four normal brain tissues were obtained from patients who underwent surgery for cerebral vascular malformation, through which peripheral brain tissues were isolated. Six severe TBI tissues were from patients with brain injury caused by accidents. None of the patients had any other known neurological disorders. Mice with Sig-1R deletion using CRISPR technology were subjected to controlled cortical impact-induced injury. In parallel, wild type C57BL/6J mice were analyzed for outcomes after they were exposed to TBI and received the Sig-1R agonist PRE-084 (10 mg/kg daily for three days) either alone or in combination with the Sig-1R antagonist BD-1047 (10 mg/kg). RESULTS The expression of Sig-1R and the 78 kDa glucose-regulated protein, a known UPR marker, were significantly elevated in the injured cerebral tissues from TBI patients and mice subjected to TBI. PRE-084 improved neurological function, restored the cerebral cortical perfusion, and ameliorated and brain edema in C57BL/6J mice subjected to TBI by reducing endoplasmic reticulum stress-mediated apoptosis, pyroptosis, and microglia activation. The effect of PRE-084 was abolished in mice receiving Sig-1R antagonist BD-1047. CONCLUSIONS ER stress and UPR were upregulated in TBI patients and mice subjected to TBI. Sig-1R activation by the exogenous activator PRE-084 attenuated microglial cells activation, reduced ER stress-associated programmed cell death, and restored cerebrovascular and neurological function in TBI mice.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Xiaobin Min
- Baodi Clinical College, Tianjin Medical University, Tianjin 300052, China;
| | - Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Yan Chai
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jianhao Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| |
Collapse
|
36
|
Couly S, Goguadze N, Yasui Y, Kimura Y, Wang SM, Sharikadze N, Wu HE, Su TP. Knocking Out Sigma-1 Receptors Reveals Diverse Health Problems. Cell Mol Neurobiol 2022; 42:597-620. [PMID: 33095392 PMCID: PMC8062587 DOI: 10.1007/s10571-020-00983-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Sigma-1 receptor (Sig-1R) is a protein present in several organs such as brain, lung, and heart. In a cell, Sig-1R is mainly located across the membranes of the endoplasmic reticulum and more specifically at the mitochondria-associated membranes. Despite numerous studies showing that Sig-1R could be targeted to rescue several cellular mechanisms in different pathological conditions, less is known about its fundamental relevance. In this review, we report results from various studies and focus on the importance of Sig-1R in physiological conditions by comparing Sig-1R KO mice to wild-type mice in order to investigate the fundamental functions of Sig-1R. We note that the Sig-1R deletion induces cognitive, psychiatric, and motor dysfunctions, but also alters metabolism of heart. Finally, taken together, observations from different experiments demonstrate that those dysfunctions are correlated to poor regulation of ER and mitochondria metabolism altered by stress, which could occur with aging.
Collapse
Affiliation(s)
- Simon Couly
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA.
| | - Nino Goguadze
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Yuriko Kimura
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Shao-Ming Wang
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Nino Sharikadze
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| |
Collapse
|
37
|
Bogár F, Fülöp L, Penke B. Novel Therapeutic Target for Prevention of Neurodegenerative Diseases: Modulation of Neuroinflammation with Sig-1R Ligands. Biomolecules 2022; 12:363. [PMID: 35327555 PMCID: PMC8945408 DOI: 10.3390/biom12030363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive deterioration of the structure and function of cells and their networks in the nervous system. There are currently no drugs or other treatments that can stop the progression of NDDs. NDDs have many similarities and common pathways, e.g., formation of misfolded amyloid proteins, intra- and extracellular amyloid deposits, and chronic inflammation. Initially, the inflammation process has a cytoprotective function; however, an elevated and prolonged immune response has damaging effects and causes cell death. Neuroinflammation has been a target of drug development for treating and curing NDDs. Treatment of different NDDs with non-steroid anti-inflammatory drugs (NSAIDs) has failed or has given inconsistent results. The use of NSAIDs in diagnosed Alzheimer's disease is currently not recommended. Sigma-1 receptor (Sig-1R) is a novel target for NDD drug development. Sig-1R plays a key role in cellular stress signaling, and it regulates endoplasmic reticulum stress and unfolded protein response. Activation of Sig-1R provides neuroprotection in cell cultures and animal studies. Clinical trials demonstrated that several Sig-1R agonists (pridopidine, ANAVEX3-71, fluvoxamine, dextrometorphan) and their combinations have a neuroprotective effect and slow down the progression of distinct NDDs.
Collapse
Affiliation(s)
- Ferenc Bogár
- MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary;
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| |
Collapse
|
38
|
Devadiga SJ, Bharate SS. Recent developments in the management of Huntington's disease. Bioorg Chem 2022; 120:105642. [PMID: 35121553 DOI: 10.1016/j.bioorg.2022.105642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a rare, incurable, inheritedneurodegenerative disorder manifested by chorea, hyperkinetic, and hypokinetic movements. The FDA has approved only two drugs, viz. tetrabenazine, and deutetrabenazine, to manage the chorea associated with HD. However, several other drugs are used as an off-label to manage chorea and other symptoms such as depression, anxiety, muscle tremors, and cognitive dysfunction associated with HD. So far, there is no disease-modifying treatment available. Drug repurposing has been a primary drive to search for new anti-HD drugs. Numerous molecular targets along with a wide range of small molecules and gene therapies are currently under clinical investigation. More than 200 clinical studies are underway for HD, 75% are interventional, and 25% are observational studies. The present review discusses the small molecule clinical pipeline and molecular targets for HD. Furthermore, the biomarkers, diagnostic tests, gene therapies, behavioral and observational studies for HD were also deliberated.
Collapse
Affiliation(s)
- Shanaika J Devadiga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
39
|
Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington's Disease. Int J Mol Sci 2022; 23:780. [PMID: 35054963 PMCID: PMC8775980 DOI: 10.3390/ijms23020780] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulation of misfolded proteins is a common phenomenon of several neurodegenerative diseases. The misfolding of proteins due to abnormal polyglutamine (PolyQ) expansions are linked to the development of PolyQ diseases including Huntington's disease (HD). Though the genetic basis of PolyQ repeats in HD remains prominent, the primary molecular basis mediated by PolyQ toxicity remains elusive. Accumulation of misfolded proteins in the ER or disruption of ER homeostasis causes ER stress and activates an evolutionarily conserved pathway called Unfolded protein response (UPR). Protein homeostasis disruption at organelle level involving UPR or ER stress response pathways are found to be linked to HD. Due to dynamic intricate connections between ER and mitochondria, proteins at ER-mitochondria contact sites (mitochondria associated ER membranes or MAMs) play a significant role in HD development. The current review aims at highlighting the most updated information about different UPR pathways and their involvement in HD disease progression. Moreover, the role of MAMs in HD progression has also been discussed. In the end, the review has focused on the therapeutic interventions responsible for ameliorating diseased states via modulating either ER stress response proteins or modulating the expression of ER-mitochondrial contact proteins.
Collapse
Affiliation(s)
- Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad 500078, Telangana, India; (P.K.); (V.K.); (A.S.); (A.T.); (V.C.)
| | | | | | | | | | | |
Collapse
|
40
|
Asla MM, Nawar AA, Abdelsalam A, Elsayed E, Rizk MA, Hussein MA, Kamel WA. The Efficacy and Safety of Pridopidine on Treatment of Patients with Huntington's Disease: A Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2022; 9:20-30. [PMID: 35005061 PMCID: PMC8721839 DOI: 10.1002/mdc3.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pridopidine is a novel drug that helps stabilize psychomotor function in patients with Huntington's disease (HD) by activating the cortical glutamate pathway. It promises to achieve the unmet needs of current therapies of HD without worsening other symptoms. OBJECTIVE To review the literature discussing the efficacy of pridopidine in alleviating motor symptoms and its safety in patients with HD. METHODS We searched Scopus, Web of Science, the Cochrane Library, Wiley, and PubMed for randomized controlled trials (RCTs) of pridopidine on HD. Data from eligible studies were extracted and pooled as mean differences for efficacy and risk ratios (RRs) for safety using RevMan software version 5.3. RESULTS A total of 4 relevant RCTs with 1130 patients were selected (816 in the pridopidine group and 314 in the placebo group). The pooled effect size favored pridopidine over placebo insignificantly in the Unified Huntington's Disease Rating Scale Total Motor Score (mean difference [MD], -0.93; 95% confidence interval [CI], -2.01 to 0.14; P = 0.09), whereas the effect size of 3 studies significantly favored pridopidine over placebo in the Unified Huntington's Disease Rating Scale Modified Motor Score (MD, -0.81; 95% CI, -1.48 to -0.13; P = 0.02). Pridopidine generally was well tolerated. None of the adverse effects were considerably higher in the case of pridopidine compared with placebo in overall adverse events (RR, 1.03; 95% CI, 0.94-1.13; P = 0.49) and serious adverse events (RR, 1.62; 95% CI, 0.88-2.99; P = 0.12). CONCLUSION The effects of pridopidine on motor functions (especially voluntary movements) in patients with HD are encouraging and provide a good safety profile that motivates further clinical trials on patients to confirm its effectiveness and safety.
Collapse
Affiliation(s)
| | | | - Alaa Abdelsalam
- Faculty of Human MedicineZagazig UniversityZagazig CityEgypt
| | - Esraa Elsayed
- Faculty of Human MedicineZagazig UniversityZagazig CityEgypt
| | | | | | - Walaa A. Kamel
- Neurology Department, Faculty of MedicineBeni‐Suef UniversityBeni SuefEgypt
- Neurology DepartmentIbn Sina HospitalKuwait cityKuwait
| |
Collapse
|
41
|
Sałaciak K, Pytka K. Revisiting the sigma-1 receptor as a biological target to treat affective and cognitive disorders. Neurosci Biobehav Rev 2022; 132:1114-1136. [PMID: 34736882 PMCID: PMC8559442 DOI: 10.1016/j.neubiorev.2021.10.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Depression and cognitive disorders are diseases with complex and not-fully understood etiology. Unfortunately, the COVID-19 pandemic dramatically increased the prevalence of both conditions. Since the current treatments are inadequate in many patients, there is a constant need for discovering new compounds, which will be more effective in ameliorating depressive symptoms and treating cognitive decline. Proteins attracting much attention as potential targets for drugs treating these conditions are sigma-1 receptors. Sigma-1 receptors are multi-functional proteins localized in endoplasmic reticulum membranes, which play a crucial role in cellular signal transduction by interacting with receptors, ion channels, lipids, and kinases. Changes in their functions and expression may lead to various diseases, including depression or memory impairments. Thus, sigma-1 receptor modulation might be useful in treating these central nervous system diseases. Importantly, two sigma-1 receptor ligands entered clinical trials, showing that this compound group possesses therapeutic potential. Therefore, based on preclinical studies, this review discusses whether the sigma-1 receptor could be a promising target for drugs treating affective and cognitive disorders.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
42
|
Geva M, Gershoni-Emek N, Naia L, Ly P, Mota S, Rego AC, Hayden MR, Levin LA. Neuroprotection of retinal ganglion cells by the sigma-1 receptor agonist pridopidine in models of experimental glaucoma. Sci Rep 2021; 11:21975. [PMID: 34753986 PMCID: PMC8578336 DOI: 10.1038/s41598-021-01077-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Optic neuropathies such as glaucoma are characterized by retinal ganglion cell (RGC) degeneration and death. The sigma-1 receptor (S1R) is an attractive target for treating optic neuropathies as it is highly expressed in RGCs, and its absence causes retinal degeneration. Activation of the S1R exerts neuroprotective effects in models of retinal degeneration. Pridopidine is a highly selective and potent S1R agonist in clinical development. We show that pridopidine exerts neuroprotection of retinal ganglion cells in two different rat models of glaucoma. Pridopidine strongly binds melanin, which is highly expressed in the retina. This feature of pridopidine has implications to its ocular distribution, bioavailability, and effective dose. Mitochondria dysfunction is a key contributor to retinal ganglion cell degeneration. Pridopidine rescues mitochondrial function via activation of the S1R, providing support for the potential mechanism driving its neuroprotective effect in retinal ganglion cells.
Collapse
Affiliation(s)
| | | | - Luana Naia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Philip Ly
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael R Hayden
- Prilenia Therapeutics, Herzliya, Israel
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| |
Collapse
|
43
|
Wu NH, Ye Y, Wan BB, Yu YD, Liu C, Chen QJ. Emerging Benefits: Pathophysiological Functions and Target Drugs of the Sigma-1 Receptor in Neurodegenerative Diseases. Mol Neurobiol 2021; 58:5649-5666. [PMID: 34383254 DOI: 10.1007/s12035-021-02524-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
The sigma-1 receptor (Sig-1R) is encoded by the SIGMAR1 gene and is a nonopioid transmembrane receptor located in the mitochondrial-associated endoplasmic reticulum membrane (MAM). It helps to locate endoplasmic reticulum calcium channels, regulates calcium homeostasis, and acts as a molecular chaperone to control cell fate and participate in signal transduction. It plays an important role in protecting neurons through a variety of signaling pathways and participates in the regulation of cognition and motor behavior closely related to neurodegenerative diseases. Based on its neuroprotective effects, Sig-1R has now become a breakthrough target for alleviating Alzheimer's disease and other neurodegenerative diseases. This article reviews the most cutting-edge research on the function of Sig-1R under normal or pathologic conditions and target drugs of the sigma-1 receptor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ning-Hua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
- Basic Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yu Ye
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Bin-Bin Wan
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yuan-Dong Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Qing-Jie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
44
|
Connection Lost, MAM: Errors in ER-Mitochondria Connections in Neurodegenerative Diseases. Brain Sci 2021; 11:brainsci11111437. [PMID: 34827436 PMCID: PMC8615542 DOI: 10.3390/brainsci11111437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria associated membranes (MAMs), as the name suggests, are the membranes that physically and biochemically connect mitochondria with endoplasmic reticulum. MAMs not only structurally but also functionally connect these two important organelles within the cell which were previously thought to exist independently. There are multiple points of communication between ER-mitochondria and MAMs play an important role in both ER and mitochondria functions such as Ca2+ homeostasis, proteostasis, mitochondrial bioenergetics, movement, and mitophagy. The number of disease-related proteins and genes being associated with MAMs has been continually on the rise since its discovery. There is an overwhelming overlap between the biochemical functions of MAMs and processes affected in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Thus, MAMs have received well-deserving and much delayed attention as modulators for ER-mitochondria communication and function. This review briefly discusses the recent progress made in this now fast developing field full of promise for very exciting future therapeutic discoveries.
Collapse
|
45
|
Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, Chen X. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci 2021; 15:685201. [PMID: 34658788 PMCID: PMC8515188 DOI: 10.3389/fncel.2021.685201] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone receptor that primarily resides at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) and acts as a dynamic pluripotent modulator regulating cellular pathophysiological processes. Multiple pharmacological studies have confirmed the beneficial effects of Sig-1R activation on cellular calcium homeostasis, excitotoxicity modulation, reactive oxygen species (ROS) clearance, and the structural and functional stability of the ER, mitochondria, and MAM. The Sig-1R is expressed broadly in cells of the central nervous system (CNS) and has been reported to be involved in various neurological disorders. Traumatic brain injury (TBI)-induced secondary injury involves complex and interrelated pathophysiological processes such as cellular apoptosis, glutamate excitotoxicity, inflammatory responses, endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction. Thus, given the pluripotent modulation of the Sig-1R in diverse neurological disorders, we hypothesized that the Sig-1R may affect a series of pathophysiology after TBI. This review summarizes the current knowledge of the Sig-1R, its mechanistic role in various pathophysiological processes of multiple CNS diseases, and its potential therapeutic role in TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
46
|
Jabłońska M, Grzelakowska K, Wiśniewski B, Mazur E, Leis K, Gałązka P. Pridopidine in the treatment of Huntington's disease. Rev Neurosci 2021; 31:441-451. [PMID: 32083454 DOI: 10.1515/revneuro-2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD) is a highly common inherited monogenic neurodegenerative disease, and the gene responsible for its development is located in the 4p16.3 chromosome. The product of that gene mutation is an abnormal huntingtin (Htt) protein that disrupts the neural conduction, thus leading to motor and cognitive disorders. The disease progresses to irreversible changes in the central nervous system (CNS). Although only a few drugs are available to symptomatic treatment, 'dopamine stabilizers' (as represented by the pridopidine) may be the new treatment options. The underlying causes of HD are dopaminergic conduction disorders. Initially, the disease is hyperkinetic (chorea) until it eventually reaches the hypokinetic phase. Studies confirmed a correlation between the amount of dopamine in the CNS and the stage of the disease. Pridopidine has the capacity to be a dopamine buffer, which could increase or decrease the dopamine content depending on the disease phase. A research carried out on animal models demonstrated the protective effect of pridopidine on nerve cells thanks to its ability to alter the cortical glutamatergic signaling through the N-methyl-D-aspartate (NMDA) receptors. Studies on dopamine stabilizers also reported that pridopidine has a 100-fold greater affinity for the sigma-1 receptor than for the D2 receptor. Disturbances in the activity of sigma-1 receptors occur in neurodegenerative diseases, including HD. Their interaction with pridopidine results in the neuroprotective effect, which is manifested as an increase in the plasticity of synaptic neurons and prevention of their atrophy within the striatum. To determine the effectiveness of pridopidine in the treatment of HD, large multicenter randomized studies such as HART, MermaiHD, and PRIDE-HD were carried out.
Collapse
Affiliation(s)
- Magdalena Jabłońska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Klaudyna Grzelakowska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Bartłomiej Wiśniewski
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Ewelina Mazur
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Kamil Leis
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Przemysław Gałązka
- Department of General and Oncological Pediatric Surgery, Antoni Jurasz University Hospital No. 1 in Bydgoszcz, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
47
|
Wang M, Wan C, He T, Han C, Zhu K, Waddington JL, Zhen X. Sigma-1 receptor regulates mitophagy in dopaminergic neurons and contributes to dopaminergic protection. Neuropharmacology 2021; 196:108360. [PMID: 33122030 DOI: 10.1016/j.neuropharm.2020.108360] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria are essential for neuronal survival and function, and mitochondrial dysfunction plays a critical role in the pathological development of Parkinson's disease (PD). Mitochondrial quality control is known to contribute to the survival of dopaminergic (DA) neurons, with mitophagy being a key regulator of the quality control system. In this study, we show that mitophagy is impaired in the substantia nigra pars compacta (SNc) of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Treatment with the sigma-1 receptor (Sig 1R) agonist 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084) reduced loss of DA neurons, restored motor ability and MPTP-induced damage to mitophagy activity in the SNc of PD-like mice. Additionally, knockdown of Sig 1R in SH-SY5Y DA cells inhibited mitophagy and enhanced 1-methyl-4-phenylpyridinium ion (MPP+) neurotoxicity, whereas application of the Sig 1R selective agonist SKF10047 promoted clearance of damaged mitochondria. Moreover, knockdown of Sig 1R in SH-SY5Y cells resulted in decreased levels of p-ULK1 (Unc-51 Like Autophagy Activating Kinase 1) (Ser555), p-TBK1 (TANK Binding Kinase 1) (Ser172), p-ubiquitin (Ub) (Ser65), Parkin recruitment, and stabilization of PTEN-induced putative kinase 1 (PINK1) in mitochondria. The present data provide the first evidence for potential roles of PINK1/Parkin in Sig 1R-modulated mitophagy in DA neurons.
Collapse
Affiliation(s)
- Mingmei Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Chunlei Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Tao He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Chaojun Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Kailian Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China.
| |
Collapse
|
48
|
Piechal A, Jakimiuk A, Mirowska-Guzel D. Sigma receptors and neurological disorders. Pharmacol Rep 2021; 73:1582-1594. [PMID: 34350561 PMCID: PMC8641430 DOI: 10.1007/s43440-021-00310-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Sigma receptors were identified relatively recently, and their presence has been confirmed in the central nervous system and peripheral organs. Changes in sigma receptor function or expression may be involved in neurological diseases, and thus sigma receptors represent a potential target for treating central nervous system disorders. Many substances that are ligands for sigma receptors are widely used in therapies for neurological disorders. In the present review, we discuss the roles of sigma receptors, especially in the central nervous system disorders, and related therapies.
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland
| | - Alicja Jakimiuk
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| |
Collapse
|
49
|
Sun Y, Sukumaran P, Singh BB. Sigma1 Receptor Inhibits TRPC1-Mediated Ca 2+ Entry That Promotes Dopaminergic Cell Death. Cell Mol Neurobiol 2021; 41:1245-1255. [PMID: 32514827 PMCID: PMC11448707 DOI: 10.1007/s10571-020-00892-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Regulation of Ca2+ homeostasis is essential for neuronal function and its survival. Recent data suggest that TRPC1 function as the endogenous store-mediated Ca2+ entry channel in dopaminergic cells, and loss of TRPC1 function leads to neurodegeneration; however, its regulation is not fully identified. Here we provide evidence that the sigma 1 receptor contributes to the loss of dopaminergic cells by blocking TRPC1-mediated Ca2+ entry. Importantly, downregulation of sigma 1 receptor expression significantly decreased neurotoxin-induced loss of dopaminergic cells as measured by MTT assays and caspase activity was also inhibited. Importantly, sigma 1 receptor inhibited TRPC1-mediated Ca2+ entry and silencing of sigma 1 receptor significantly restored store-dependent Ca2+ influx. Although co-immunoprecipitation failed to show an interaction between the TRPC1 and sigma 1 receptor, store depletion promoted a decrease in the sigma 1 receptor-STIM1 association. Neurotoxin-induced loss of Ca2+ entry was significantly restored in cells that had decreased sigma 1 receptor expression. Furthermore, TRPC1 or STIM1 silencing inhibited store-mediated Ca2+ entry, which was further increased upon the downregulation of the sigma 1 receptor expression. TRPC1 silencing prevented the increased neuroprotection and caspase activity observed upon the downregulation of sigma 1 receptor. Finally, sigma 1 receptor activation also significantly decreased TRPC1-mediated Ca2+ entry and lead to an increase in neurodegeneration. In contrast, addition of sigma 1 receptor antagonist prevented neurotoxin-induced neurodegeneration and facilitated TRPC1-mediated Ca2+ influx. Together these results suggest that the sigma 1 receptor is involved in the inhibition of TRPC1- mediated Ca2+ entry, which leads to the degeneration in the dopaminergic cells, and prevention of sigma 1 receptor function could protect neuronal cell death as observed in Parkinson's disease.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Pramod Sukumaran
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
50
|
Shenkman M, Geva M, Gershoni-Emek N, Hayden MR, Lederkremer GZ. Pridopidine reduces mutant huntingtin-induced endoplasmic reticulum stress by modulation of the Sigma-1 receptor. J Neurochem 2021; 158:467-481. [PMID: 33871049 DOI: 10.1111/jnc.15366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/18/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER)-localized Sigma-1 receptor (S1R) is neuroprotective in models of neurodegenerative diseases, among them Huntington disease (HD). Recent clinical trials in HD patients and preclinical studies in cellular and mouse HD models suggest a therapeutic potential for the high-affinity S1R agonist pridopidine. However, the molecular mechanisms of the cytoprotective effect are unclear. We have previously reported strong induction of ER stress by toxic mutant huntingtin (mHtt) oligomers, which is reduced upon sequestration of these mHtt oligomers into large aggregates. Here, we show that pridopidine significantly ameliorates mHtt-induced ER stress in cellular HD models, starting at low nanomolar concentrations. Pridopidine reduced the levels of markers of the three branches of the unfolded protein response (UPR), showing the strongest effects on the PKR-like endoplasmic reticulum kinase (PERK) branch. The effect is S1R-dependent, as it is abolished in cells expressing mHtt in which the S1R was deleted using CRISPR/Cas9 technology. mHtt increased the level of the detergent-insoluble fraction of S1R, suggesting a compensatory cellular mechanism that responds to increased ER stress. Pridopidine further enhanced the levels of insoluble S1R, suggesting the stabilization of activated S1R oligomers. These S1R oligomeric species appeared in ER-localized patches, and not in the mitochondria-associated membranes nor the ER-derived quality control compartment. The colocalization of S1R with the chaperone BiP was significantly reduced by mHtt, and pridopidine restored this colocalization to normal, unstressed levels. Pridopidine increased toxic oligomeric mHtt recruitment into less toxic large sodium dodecyl sulfate-insoluble aggregates, suggesting that this in turn reduces ER stress and cytotoxicity.
Collapse
Affiliation(s)
- Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya, Israel
| | | | | | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|