1
|
Pádua D, Figueira P, Pombinho A, Monteiro I, Pereira CF, Almeida R, Mesquita P. HMGA1 stimulates cancer stem-like features and sensitivity to monensin in gastric cancer. Exp Cell Res 2024; 442:114257. [PMID: 39293524 DOI: 10.1016/j.yexcr.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Gastric cancer represents a serious health problem worldwide, with insufficient molecular biomarkers and therapeutic options. Consequently, several efforts have been directed towards finding specific disease markers in order to develop new therapies capable of defeating gastric cancer. Attention has been pointed to cancer stem cells (CSCs) as they are primarily responsible for tumor initiation and recurrence, making them essential therapeutic targets. Using the SORE6-GFP reporter system, based on the expression of SOX2 and/or OCT4 to drive GFP expression, we isolated gastric cancer stem-like cells (SORE6+ cells) enriched in several molecules, including SOX2, C-MYC, KLF4, HIF-1α, NOTCH1 and HMGA1. Here, we explored the previously undisclosed link of HMGA1 with gastric CSCs. Our results indicated that HMGA1 can activate a transcriptional program that includes SOX2, C-MYC, and KLF4 and endows cells with CSC features. We further showed that chemical induction of gastric CSCs using ciclopirox (CPX) can be mediated by HMGA1. Finally, we showed that HMGA1 GFP+ cells were sensitive to monensin confirming the selective activity of this drug over CSCs. Thus, HMGA1 is a key player in the cellular reprogramming of gastric non-CSCs to cancer stem-like cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal; ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Paula Figueira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal
| | - António Pombinho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135, Porto, Portugal
| | - Inês Monteiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal
| | - Carlos Filipe Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal; Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, 221 84, Lund, Sweden
| | - Raquel Almeida
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal
| | - Patrícia Mesquita
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal.
| |
Collapse
|
2
|
Qiu C, Fan H, Tao S, Deng Z, Luo H, Liu F. ST8SIA6-AS1, a novel lncRNA star in liver cancer. Front Cell Dev Biol 2024; 12:1435664. [PMID: 39211393 PMCID: PMC11358109 DOI: 10.3389/fcell.2024.1435664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Liver cancer is one of the most lethal gastrointestinal malignancies. Emerging evidence has underscored the pivotal role of long non-coding RNAs (lncRNAs) in tumorigenesis, with ST8SIA6-AS1 identified as a novel oncogenic lncRNA contributing to liver cancer progression. ST8SIA6-AS1 is consistently upregulated in hepatic cancer tissues and is strongly associated with unfavorable prognosis. Moreover, it demonstrates high diagnostic efficacy in detecting HCC. ST8SIA6-AS1 is involved in various cellular processes including proliferation, migration, and invasion, primarily through its function as a competing endogenous RNA (ceRNA), thereby facilitating hepatocarcinogenesis and disease advancement. This review provides a detailed examination of the molecular functions and regulatory mechanisms of ST8SIA6-AS1 in hepatocellular carcinoma (HCC) and highlights its potential as a promising biomarker for liver cancer, aiming to propel the development of innovative therapeutic strategies for HCC management.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of General Surgery, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Haoran Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqing Deng
- Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangteng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Zou W, Fang Z, Feng Y, Gong S, Li Z, Li M, Sun Y, Ruan X, Fang X, Qu H, Li H. Transcriptomic and genomic characteristics of intrahepatic metastases of primary liver cancer. BMC Cancer 2024; 24:672. [PMID: 38824541 PMCID: PMC11144329 DOI: 10.1186/s12885-024-12428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of metastasis of HCC to arrange better treatment for patients. RESULTS To determine the differential molecular features between primary HCC with and without phenotype of metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome. CONCLUSIONS The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before metastasis occurred.
Collapse
Affiliation(s)
- Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhanjie Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Meng Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Liu Y, Shen T, Liu J, Yu X, Li Q, Chen T, Jiang T. CFHR1 involvement in bile duct carcinoma: Insights from a data mining study. Anal Biochem 2024; 688:115474. [PMID: 38286352 DOI: 10.1016/j.ab.2024.115474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The aim of this study is to investigate the role of CFHR1 in bile duct carcinoma (BDC) and its mechanism of action, and we hope that our analysis and research will contribute to a better understanding of cholangiocarcinoma (BDC) disease genesis, progression and the development of new therapeutic strategies. The prognostic receiver operating characteristic curve of CFHR1 was generated using survival ROC. The ROC curve for CFHR1 showed that there is a correlation between CFHR1 expression and clinicopathological parameters and has an impact on poor prognosis. STRING was used to predict the protein-protein interaction network of the identified genes, and the Microenvironment Cell Populations counter algorithm was used to analyze immune cell infiltration within the BDC. The combined analysis showed that CFHR1 was found to be upregulated in BDC tissues, along with a total of 20 related differentially expressed genes (DEGs) (8 downregulated and 12 upregulated genes). Also, the results showed that the expression of CFHR1 is correlated with immune cell infiltration in tumor and immune cell markers in BDC (P < 0.05). In addition, we have verified experimentally the biological function of CFHR1. These findings suggest that CFHR1 may be a prognostic marker and a potential therapeutic target for BDC. Information regarding the detailed roles of CFHR1 in BDC could be valuable for improving the diagnosis and treatment of this rare cancer.
Collapse
Affiliation(s)
- Yan Liu
- Oncology Intervention Department, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China; Institute of Tumor Intervention, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 20062, China
| | - Tianhao Shen
- Oncology Intervention Department, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jianming Liu
- Oncology Intervention Department, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xue Yu
- Oncology Intervention Department, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Qiuying Li
- Oncology Intervention Department, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Tingsong Chen
- Department of Oncology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Tinghui Jiang
- Oncology Intervention Department, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
5
|
Sun Y, Guo G, Zhang Y, Chen X, Lu Y, Hong R, Xiong J, Li J, Hu X, Wang S, Liu Y, Zhang Z, Yang X, Nan Y, Huang Q. IKBKE promotes the ZEB2-mediated EMT process by phosphorylating HMGA1a in glioblastoma. Cell Signal 2024; 116:111062. [PMID: 38242271 DOI: 10.1016/j.cellsig.2024.111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jinbiao Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xue Hu
- Department of Clinical Nutrition, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China
| | - Shuaishuai Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315000, China
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
6
|
Sun Y, Yu H, Han S, Ran R, Yang Y, Tang Y, Wang Y, Zhang W, Tang H, Fu B, Fu B, Weng X, Liu SM, Deng H, Peng S, Zhou X. Method for the extraction of circulating nucleic acids based on MOF reveals cell-free RNA signatures in liver cancer. Natl Sci Rev 2024; 11:nwae022. [PMID: 38348130 PMCID: PMC10860518 DOI: 10.1093/nsr/nwae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 02/15/2024] Open
Abstract
Cell-free RNA (cfRNA) allows assessment of health, status, and phenotype of a variety of human organs and is a potential biomarker to non-invasively diagnose numerous diseases. Nevertheless, there is a lack of highly efficient and bias-free cfRNA isolation technologies due to the low abundance and instability of cfRNA. Here, we developed a reproducible and high-efficiency isolation technology for different types of cell-free nucleic acids (containing cfRNA and viral RNA) in serum/plasma based on the inclusion of nucleic acids by metal-organic framework (MOF) materials, which greatly improved the isolation efficiency and was able to preserve RNA integrity compared with the most widely used research kit method. Importantly, the quality of cfRNA extracted by the MOF method is about 10-fold that of the kit method, and the MOF method isolates more than three times as many different RNA types as the kit method. The whole transcriptome mapping characteristics of cfRNA in serum from patients with liver cancer was described and a cfRNA signature with six cfRNAs was identified to diagnose liver cancer with high diagnostic efficiency (area under curve = 0.905 in the independent validation cohort) using this MOF method. Thus, this new MOF isolation technique will advance the field of liquid biopsy, with the potential to diagnose liver cancer.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenhao Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Boqiao Fu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Mossmann D, Müller C, Park S, Ryback B, Colombi M, Ritter N, Weißenberger D, Dazert E, Coto-Llerena M, Nuciforo S, Blukacz L, Ercan C, Jimenez V, Piscuoglio S, Bosch F, Terracciano LM, Sauer U, Heim MH, Hall MN. Arginine reprograms metabolism in liver cancer via RBM39. Cell 2023; 186:5068-5083.e23. [PMID: 37804830 PMCID: PMC10642370 DOI: 10.1016/j.cell.2023.09.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.
Collapse
Affiliation(s)
- Dirk Mossmann
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Sujin Park
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Brendan Ryback
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marco Colombi
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Eva Dazert
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Lauriane Blukacz
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Veronica Jimenez
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fatima Bosch
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland; Clarunis University Center for Gastrointestinal and Liver Diseases, 4031 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
8
|
Chia L, Wang B, Kim JH, Luo LZ, Shuai S, Herrera I, Chen SY, Li L, Xian L, Huso T, Heydarian M, Reddy K, Sung WJ, Ishiyama S, Guo G, Jaffee E, Zheng L, Cope LM, Gabrielson K, Wood L, Resar L. HMGA1 induces FGF19 to drive pancreatic carcinogenesis and stroma formation. J Clin Invest 2023; 133:151601. [PMID: 36919699 PMCID: PMC10014113 DOI: 10.1172/jci151601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/25/2023] [Indexed: 03/15/2023] Open
Abstract
High mobility group A1 (HMGA1) chromatin regulators are upregulated in diverse tumors where they portend adverse outcomes, although how they function in cancer remains unclear. Pancreatic ductal adenocarcinomas (PDACs) are highly lethal tumors characterized by dense desmoplastic stroma composed predominantly of cancer-associated fibroblasts and fibrotic tissue. Here, we uncover an epigenetic program whereby HMGA1 upregulates FGF19 during tumor progression and stroma formation. HMGA1 deficiency disrupts oncogenic properties in vitro while impairing tumor inception and progression in KPC mice and subcutaneous or orthotopic models of PDAC. RNA sequencing revealed HMGA1 transcriptional networks governing proliferation and tumor-stroma interactions, including the FGF19 gene. HMGA1 directly induces FGF19 expression and increases its protein secretion by recruiting active histone marks (H3K4me3, H3K27Ac). Surprisingly, disrupting FGF19 via gene silencing or the FGFR4 inhibitor BLU9931 recapitulates most phenotypes observed with HMGA1 deficiency, decreasing tumor growth and formation of a desmoplastic stroma in mouse models of PDAC. In human PDAC, overexpression of HMGA1 and FGF19 defines a subset of tumors with extremely poor outcomes. Our results reveal what we believe is a new paradigm whereby HMGA1 and FGF19 drive tumor progression and stroma formation, thus illuminating FGF19 as a rational therapeutic target for a molecularly defined PDAC subtype.
Collapse
Affiliation(s)
- Lionel Chia
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bowen Wang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jung-Hyun Kim
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Z Luo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuai Shuai
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Iliana Herrera
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Liping Li
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tait Huso
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Woo Jung Sung
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shun Ishiyama
- Department of Pathology.,Department of Molecular and Comparative Pathobiology
| | - Gongbo Guo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Leslie M Cope
- Department of Oncology, and.,Division of Biostatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Laura Wood
- Pathobiology Graduate Program, Department of Pathology and.,Department of Pathology.,Department of Oncology, and
| | - Linda Resar
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Pathology.,Department of Oncology, and
| |
Collapse
|
9
|
Feng T, Yao Y, Luo L, Zou H, Xiang G, Wei L, Yang Q, Shi Y, Huang X, Lai C. ST8SIA6-AS1 contributes to hepatocellular carcinoma progression by targeting miR-142-3p/HMGA1 axis. Sci Rep 2023; 13:650. [PMID: 36635290 PMCID: PMC9837176 DOI: 10.1038/s41598-022-26643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (LIHC) accounts for 90% of all liver cancers and is a serious health concern worldwide. Long noncoding RNAs (lncRNAs) have been observed to sponge microRNAs (miRNAs) and participate in the biological processes of LIHC. This study aimed to evaluate the role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis in regulating LIHC progression. RT-qPCR and western blotting were performed to determine the levels of ST8SIA6-AS1, miR-142-3p, and HMGA1 in LIHC. The relationship between ST8SIA6-AS1, miR-142-3p, and HMGA1 was assessed using luciferase assay. The role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis was evaluated in vitro using LIHC cells. Expression of ST8SIA6-AS1 and HMGA1 was significantly upregulated, whereas that of miR-142-3p was markedly lowered in LIHC specimens and cells. ST8SIA6-AS1 accelerated cell growth, invasion, and migration and suppressed apoptosis in LIHC. Notably, ST8SIA6-AS1 inhibited HMGA1 expression by sponging miR-142-3p in LIHC cells. In conclusion, sponging of miR-142-3p by ST8SIA6-AS1 accelerated the growth of cells while preventing cell apoptosis in LIHC cells, and the inhibitory effect of miR-142-3p was abrogated by elevating HMGA1 expression. The ST8SIA6-AS1-miR-142-3p-HMGA1 axis represents a potential target for the treatment of patients with LIHC.
Collapse
Affiliation(s)
- Tianhang Feng
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Yutong Yao
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Le Luo
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Haibo Zou
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Guangming Xiang
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Lingling Wei
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Qinyan Yang
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Ying Shi
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Xiaolun Huang
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000, Sichuan, China. .,Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, Chengdu, 610000, Sichuan, China.
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
10
|
Yang Y, Ye X, Zhang H, Lin Z, Fang M, Wang J, Yu Y, Hua X, Huang H, Xu W, Liu L, Lin Z. A novel transcription factor-based signature to predict prognosis and therapeutic response of hepatocellular carcinoma. Front Genet 2023; 13:1068837. [PMID: 36685838 PMCID: PMC9845592 DOI: 10.3389/fgene.2022.1068837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common aggressive malignancies with increasing incidence worldwide. The oncogenic roles of transcription factors (TFs) were increasingly recognized in various cancers. This study aimed to develop a predicting signature based on TFs for the prognosis and treatment of HCC. Methods: Differentially expressed TFs were screened from data in the TCGA-LIHC and ICGC-LIRI-JP cohorts. Univariate and multivariate Cox regression analyses were applied to establish a TF-based prognostic signature. The receiver operating characteristic (ROC) curve was used to assess the predictive efficacy of the signature. Subsequently, correlations of the risk model with clinical features and treatment response in HCC were also analyzed. The TF target genes underwent Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, followed by protein-protein-interaction (PPI) analysis. Results: A total of 25 differentially expressed TFs were screened, 16 of which were related to the prognosis of HCC in the TCGA-LIHC cohort. A 2-TF risk signature, comprising high mobility group AT-hook protein 1 (HMGA1) and MAF BZIP transcription factor G (MAFG), was constructed and validated to negatively related to the overall survival (OS) of HCC. The ROC curve showed good predictive efficiencies of the risk score regarding 1-year, 2-year and 3-year OS (mostly AUC >0.60). Additionally, the risk score independently predicted OS for HCC patients both in the training cohort of TCGA-LIHC dataset (HR = 2.498, p = 0.007) and in the testing cohort of ICGC-LIRI-JP dataset (HR = 5.411, p < 0.001). The risk score was also positively correlated to progressive characteristics regarding tumor grade, TNM stage and tumor invasion. Patients with a high-risk score were more resistant to transarterial chemoembolization (TACE) treatment and agents of lapatinib and erlotinib, but sensitive to chemotherapeutics. Further enrichment and PPI analyses demonstrated that the 2-TF signature distinguished tumors into 2 clusters with proliferative and metabolic features, with the hub genes belonging to the former cluster. Conclusion: Our study identified a 2-TF prognostic signature that indicated tumor heterogeneity with different clinical features and treatment preference, which help optimal therapeutic strategy and improved survival for HCC patients.
Collapse
Affiliation(s)
- Yanbing Yang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xuenian Ye
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Haibin Zhang
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Zhaowang Lin
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Min Fang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jian Wang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yuyan Yu
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xuwen Hua
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxuan Huang
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Liu
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, China,*Correspondence: Ling Liu, ; Zhan Lin,
| | - Zhan Lin
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Ling Liu, ; Zhan Lin,
| |
Collapse
|
11
|
Wang L, Zhang J, Xia M, Liu C, Zu X, Zhong J. High Mobility Group A1 (HMGA1): Structure, Biological Function, and Therapeutic Potential. Int J Biol Sci 2022; 18:4414-4431. [PMID: 35864955 PMCID: PMC9295051 DOI: 10.7150/ijbs.72952] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group A1 (HMGA1) is a nonhistone chromatin structural protein characterized by no transcriptional activity. It mainly plays a regulatory role by modifying the structure of DNA. A large number of studies have confirmed that HMGA1 regulates genes related to tumours in the reproductive system, digestive system, urinary system and haematopoietic system. HMGA1 is rare in adult cells and increases in highly proliferative cells such as embryos. After being stimulated by external factors, it will produce effects through the Wnt/β-catenin, PI3K/Akt, Hippo and MEK/ERK pathways. In addition, HMGA1 also affects the ageing, apoptosis, autophagy and chemotherapy resistance of cancer cells, which are linked to tumorigenesis. In this review, we summarize the mechanisms of HMGA1 in cancer progression and discuss the potential clinical application of targeted HMGA1 therapy, indicating that targeted HMGA1 is of great significance in the diagnosis and treatment of malignancy.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Ji Zhang
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Min Xia
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, First School of Clinical Medicine, University of Southern Medical, Guangzhou 510515, Guangdong, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.,Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| |
Collapse
|
12
|
HMGA1 Promotes Macrophage Recruitment via Activation of NF-κB-CCL2 Signaling in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:4727198. [PMID: 35785026 PMCID: PMC9242763 DOI: 10.1155/2022/4727198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) are known to generate an immune-suppressive tumor microenvironment (TME) and promote tumor progression. Hepatocellular carcinoma (HCC) is a devastating disease that evolves in the background of chronic inflammatory liver damage. In this study, we aimed to uncover the mechanism by which HCC cells recruit macrophages into the TME. Methods Bioinformatic analysis was performed to identify differentially expressed genes related to macrophage infiltration. An orthotopic HCC xenograft model was used to determine the role of macrophages in HCC tumor growth. Clodronate liposomes were used to delete macrophages. Western blotting analysis, quantitative real-time PCR, and enzyme-linked immunosorbent assay were performed to determine the underlying mechanisms. Results The high mobility group A1 (HMGA1) gene was identified as a putative modulator of macrophage infiltration in HCC. Deletion of macrophages with clodronate liposomes significantly abrogated the tumor-promoting effects of HMGA1 on HCC growth. Mechanistically, HMGA1 can regulate the expression of C-C Motif Chemokine Ligand 2 (CCL2), also referred to as monocyte chemoattractant protein 1 (MCP1), which is responsible for macrophage recruitment. Moreover, NF-κB was required for HMGA1-mediated CCL2 expression. Pharmacological or genetic inhibition of NF-κB largely blocked CCL2 levels in HMGA1-overexpressing HCC cells. Conclusions This study reveals HMGA1 as a crucial regulator of macrophage recruitment by activating NF-κB-CCL2 signaling, proves that HMGA1-induced HCC aggressiveness dependents on the macrophage, and provide an attractive target for therapeutic interventions in HCC.
Collapse
|
13
|
Bianco G, Coto-Llerena M, Gallon J, Kancherla V, Taha-Mehlitz S, Marinucci M, Konantz M, Srivatsa S, Montazeri H, Panebianco F, Tirunagaru VG, De Menna M, Paradiso V, Ercan C, Dahmani A, Montaudon E, Beerenwinkel N, Kruithof-de Julio M, Terracciano LM, Lengerke C, Jeselsohn RM, Doebele RC, Bidard FC, Marangoni E, Ng CKY, Piscuoglio S. GATA3 and MDM2 are synthetic lethal in estrogen receptor-positive breast cancers. Commun Biol 2022; 5:373. [PMID: 35440675 PMCID: PMC9018745 DOI: 10.1038/s42003-022-03296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Synthetic lethal interactions, where the simultaneous but not individual inactivation of two genes is lethal to the cell, have been successfully exploited to treat cancer. GATA3 is frequently mutated in estrogen receptor (ER)-positive breast cancers and its deficiency defines a subset of patients with poor response to hormonal therapy and poor prognosis. However, GATA3 is not yet targetable. Here we show that GATA3 and MDM2 are synthetically lethal in ER-positive breast cancer. Depletion and pharmacological inhibition of MDM2 significantly impaired tumor growth in GATA3-deficient models in vitro, in vivo and in patient-derived organoids/xenograft (PDOs/PDX) harboring GATA3 somatic mutations. The synthetic lethality requires p53 and acts via the PI3K/Akt/mTOR pathway. Our results present MDM2 as a therapeutic target in the substantial cohort of ER-positive, GATA3-mutant breast cancer patients. With MDM2 inhibitors widely available, our findings can be rapidly translated into clinical trials to evaluate in-patient efficacy.
Collapse
Affiliation(s)
- Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Venkatesh Kancherla
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hesam Montazeri
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Federica Panebianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Marta De Menna
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland
| | - Viola Paradiso
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Rinath M Jeselsohn
- Division of Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Charlotte K Y Ng
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Lu YJ, Yang Y, Hu TH, Duan WM. Identification of key genes and pathways at the downstream of S100PBP in pancreatic cancer cells by integrated bioinformatical analysis. Transl Cancer Res 2022; 10:806-816. [PMID: 35116411 PMCID: PMC8799081 DOI: 10.21037/tcr-20-2531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Background The aim of the present study was to identify key genes and pathways downstream of S100PPBP in pancreatic cancer cells. Methods The microarray datasets GSE35196 (S100PBP knockdown) and GSE35198 (S100PBP overexpression) were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were obtained separately from GEO2R, and heatmaps showing clustering analysis of DEGs were generated using R software. Gene Ontology and pathway enrichment analyses were performed for identified DEGs using the Database for Annotation, Visualization, and Integrated Discovery and Kyoto Encyclopedia of Genes and Genomes, respectively. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes and Cytoscape software. Relevant expression datasets of key identified genes were downloaded from The Cancer Genome Atlas, and overall survival (OS) analysis was performed with R software. Finally, Gene Expression Profiling Interactive Analysis was used to evaluate the expression of key DEGs in pancreatic cancer tissues. Results A total of 34 DEGs (11 upregulated and 23 downregulated) were screened out from the two datasets. Gene Ontology enrichment analysis revealed that the identified DEGs were mainly functionally enriched in ATPase activity, production of siRNA involved in RNA interference, and production of miRNAs involved in gene silencing by miRNA. The pathway enrichment analysis of the identified DEGs showed enrichment mainly in apoptosis, non-homologous end-joining, and miRNA pathways in cancer. The protein–protein interaction network was composed of 21 nodes and 30 edges. After survival analysis and gene expression analysis, 4 genes associated with poor prognosis were selected, including LMNB1, PRKRA, SEPT2, and XRCC5. Conclusions LMNB1, PRKRA, SEPT2, and XRCC5 could be key downstream genes of the S100PBP gene in the inhibition of pancreatic cancer cell adhesion.
Collapse
Affiliation(s)
- Yu-Jie Lu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting-Hui Hu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-Ming Duan
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Wei YG, Yang CK, Wei ZL, Liao XW, He YF, Zhou X, Huang HS, Lan CL, Han CY, Peng T. High-Mobility Group AT-Hook 1 Served as a Prognosis Biomarker and Associated with Immune Infiltrate in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:609-621. [PMID: 35058711 PMCID: PMC8765458 DOI: 10.2147/ijgm.s344858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The protein high-mobility group AT-hook 1 (HMGA1) has been demonstrated that modulated cellular proliferation, invasion, and apoptosis with a poor prognosis in miscellaneous carcinomas. However, the mechanism of circumstantial carcinogenesis and association with the immune microenvironment of HMGA1 in hepatocellular carcinoma (HCC) had not been extensively explored. METHODS The gene expression, clinicopathological correlation, and prognosis analysis were performed in the data obtained from TCGA. The results were further validated by ICGC and GEO database and external validation cohort from Guangxi. The HMGA1 protein expression was further examined in the HPA database. Biological function analyses were conducted by GSEA, STRING database, and Coexpedia online tool. Using TIMER and CIBERSORT method, the relationship between immune infiltrate and HMGA1 was investigated. RESULTS In HCC, HMGA1 had much higher transcriptional and proteomic expression than in corresponding paraneoplastic tissue. Patients with high HMGA1 expression had a poor prognosis and unpromising clinicopathological features. High HMGA1 expression was closely related to the cell cycle, tumorigenesis, substance metabolism, and immune processes by regulating complex signaling pathways. Notably, HMGA1 may be associated with TP53 mutational carcinogenesis. Moreover, increased HMGA1 expression may lead to an increase in immune infiltration and a decrease in tumor purity in HCC. CIBERSORT analysis elucidated that the amount of B cell naive, B cell memory, T cells gamma delta, macrophages M2, and mast cell resting decreased when HMGA1 expression was high, whereas T cells follicular helper, macrophages M0, and Dendritic cells resting increased. CONCLUSION In conclusions, HMGA1 is a potent prognostic biomarker and a sign of immune infiltration in HCC, which may be a potential immunotherapy target for HCC.
Collapse
Affiliation(s)
- Yong-Guang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhong-Liu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yong-Fei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hua-Sheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chen-Lu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
16
|
Shi M, Lv X, Zhu M, Dong Y, Hu L, Qian Y, Fan C, Tian N. HMGA1 promotes hepatocellular carcinoma proliferation, migration, and regulates cell cycle via miR-195-5p. Anticancer Drugs 2022; 33:e273-e285. [PMID: 34407055 DOI: 10.1097/cad.0000000000001201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
HMGA1 has been reported to be aberrantly expressed and correlate with the poor prognosis of many carcinomas. This study aimed to investigate the clinical significance and molecular mechanism of HMGA1 as a tumor-suppressing gene in hepatocellular carcinoma (HCC). Analysis of TCGA dataset by TANRIC website and R2 platform, we found that HMGA1 expression was significantly higher in HCC tissues compared to that in normal liver tissues and was associated with Edmondson grade. Patients with highly expressed HMGA1 had worse overall survival. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis showed the potential relationships between HMGA1 and other genes in HCC. We also demonstrated that the downregulation of HMGA1 dramatically suppressed the proliferation and migration of HCC cells. Furthermore, ectopic expression of HMGA1 blocked G0/G1 to S transition. Subsequent investigation characterized HMGA1 as a direct target of miR-195-5p, and miR-195-5p downregulation abrogated the effect of HMGA1 on HCC proliferation, migration, and cell cycle arrest. In addition, we also demonstrated that miR-195-5p downregulation abrogated the effect of HMGA1 on HCC growth in vivo. Taken together, our data provide strong evidence that HMGA1 promotes HCC and is negatively regulated by the tumor-suppressor, miR-195-5p.
Collapse
Affiliation(s)
- Minyang Shi
- Department of Cell Biology, Institute of Molecular Medicine, Life Science College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gao R, Kalathur RKR, Coto‐Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G, Tang F. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 2021; 13:e14351. [PMID: 34664408 PMCID: PMC8649869 DOI: 10.15252/emmm.202114351] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In this study, a combination of shRNA-mediated synthetic lethality screening and transcriptomic analysis revealed the transcription factors YAP/TAZ as key drivers of Sorafenib resistance in hepatocellular carcinoma (HCC) by repressing Sorafenib-induced ferroptosis. Mechanistically, in a TEAD-dependent manner, YAP/TAZ induce the expression of SLC7A11, a key transporter maintaining intracellular glutathione homeostasis, thus enabling HCC cells to overcome Sorafenib-induced ferroptosis. At the same time, YAP/TAZ sustain the protein stability, nuclear localization, and transcriptional activity of ATF4 which in turn cooperates to induce SLC7A11 expression. Our study uncovers a critical role of YAP/TAZ in the repression of ferroptosis and thus in the establishment of Sorafenib resistance in HCC, highlighting YAP/TAZ-based rewiring strategies as potential approaches to overcome HCC therapy resistance.
Collapse
Affiliation(s)
- Ruize Gao
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | | | - Caner Ercan
- Institute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - David Buechel
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Song Shuang
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Michael T Dill
- Stem Cell ProgramBoston Children's HospitalBostonMAUSA
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
| | - Fernando D Camargo
- Stem Cell ProgramBoston Children's HospitalBostonMAUSA
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMAUSA
| | | | - Fengyuan Tang
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
18
|
Montazeri H, Coto-Llerena M, Bianco G, Zangene E, Taha-Mehlitz S, Paradiso V, Srivatsa S, de Weck A, Roma G, Lanzafame M, Bolli M, Beerenwinkel N, von Flüe M, Terracciano L, Piscuoglio S, Ng CKY. Systematic identification of novel cancer genes through analysis of deep shRNA perturbation screens. Nucleic Acids Res 2021; 49:8488-8504. [PMID: 34313788 PMCID: PMC8421231 DOI: 10.1093/nar/gkab627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/β-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes.
Collapse
Affiliation(s)
- Hesam Montazeri
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gaia Bianco
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Stephanie Taha-Mehlitz
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Viola Paradiso
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Antoine de Weck
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Markus von Flüe
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Luigi M Terracciano
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Visceral Surgery and Precision Medicine Research laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
19
|
Tian Z, Liu Z, Fang X, Cao K, Zhang B, Wu R, Wen X, Wen Q, Shi H, Wang R. ANP32A promotes the proliferation, migration and invasion of hepatocellular carcinoma by modulating the HMGA1/STAT3 pathway. Carcinogenesis 2021; 42:493-506. [PMID: 33332531 DOI: 10.1093/carcin/bgaa138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) has been reported to play an essential role in the development and progression of various human cancers. However, its expression pattern and possible mechanism in human hepatocellular carcinoma (HCC) remain to be elucidated. In this study, we used western blot and immunohistochemical staining to detect protein expression. The effects of ANP32A on the proliferation, migration and invasion of HCC cells were examined using 5-ethynyl-20-deoxyuridine (EdU), colony formation, CCK-8, and transwell assays. RT-qPCR was performed to detect mRNA expression. The interaction between ANP32A and the high mobility group A1 (HMGA1) mRNA was assessed using RNA immunoprecipitation (RIP). The tumorigenicity of ANP32A was assessed by establishing a xenograft tumor model in Balb/c nude mice. We found that the ANP32A protein was expressed at high levels in patients with HCC, which was associated with a poor prognosis. Functional experiments revealed that the silencing of ANP32A inhibited the proliferation, migration, and invasion of HCC cells, whereas overexpression of ANP32A promoted these processes. Further investigations indicated that ANP32A bound the HMGA1 mRNA and maintained its stability to promote the expression of HMGA1, thereby increasing the expression and activation of STAT3. Finally, a xenograft tumor model of Balb/c nude mice confirmed the tumorigenicity of ANP32A. This study found that ANP32A is up-regulated in patients with HCC and may accelerate the proliferation, migration and invasion of HCC cells by modulating the HMGA1/STAT3 pathway.
Collapse
Affiliation(s)
- Zilu Tian
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyi Liu
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaokang Fang
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bin Zhang
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rui Wu
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Quan Wen
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renhao Wang
- Institute of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Shen YJ, Mishima Y, Shi J, Sklavenitis-Pistofidis R, Redd RA, Moschetta M, Manier S, Roccaro AM, Sacco A, Tai YT, Mercier F, Kawano Y, Su NK, Berrios B, Doench JG, Root DE, Michor F, Scadden DT, Ghobrial IM. Progression signature underlies clonal evolution and dissemination of multiple myeloma. Blood 2021; 137:2360-2372. [PMID: 33150374 PMCID: PMC8085483 DOI: 10.1182/blood.2020005885] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023] Open
Abstract
Clonal evolution drives tumor progression, dissemination, and relapse in multiple myeloma (MM), with most patients dying of relapsed disease. This multistage process requires tumor cells to enter the circulation, extravasate, and colonize distant bone marrow (BM) sites. Here, we developed a fluorescent or DNA-barcode clone-tracking system on MM PrEDiCT (progression through evolution and dissemination of clonal tumor cells) xenograft mouse model to study clonal behavior within the BM microenvironment. We showed that only the few clones that successfully adapt to the BM microenvironment can enter the circulation and colonize distant BM sites. RNA sequencing of primary and distant-site MM tumor cells revealed a progression signature sequentially activated along human MM progression and significantly associated with overall survival when evaluated against patient data sets. A total of 28 genes were then computationally predicted to be master regulators (MRs) of MM progression. HMGA1 and PA2G4 were validated in vivo using CRISPR-Cas9 in the PrEDiCT model and were shown to be significantly depleted in distant BM sites, indicating their role in MM progression and dissemination. Loss of HMGA1 and PA2G4 also compromised the proliferation, migration, and adhesion abilities of MM cells in vitro. Overall, our model successfully recapitulates key characteristics of human MM disease progression and identified potential new therapeutic targets for MM.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Marrow/metabolism
- Bone Marrow/pathology
- CRISPR-Cas Systems
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Clonal Evolution
- Disease Models, Animal
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- HMGA1a Protein/antagonists & inhibitors
- HMGA1a Protein/genetics
- HMGA1a Protein/metabolism
- Humans
- Mice
- Mice, SCID
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yu Jia Shen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology (SIBCB), University of Chinese Academy of Sciences, Beijing, China
| | - Romanos Sklavenitis-Pistofidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Robert A Redd
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Aldo M Roccaro
- ASST Spedali Civili di Brescia, Clinical Research Development and Phase I Unit, CREA Laboratory, Brescia, Italy
| | - Antonio Sacco
- ASST Spedali Civili di Brescia, Clinical Research Development and Phase I Unit, CREA Laboratory, Brescia, Italy
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Francois Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nang Kham Su
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Brianna Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - John G Doench
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA; and
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| |
Collapse
|
21
|
Ciomborowska-Basheer J, Staszak K, Kubiak MR, Makałowska I. Not So Dead Genes-Retrocopies as Regulators of Their Disease-Related Progenitors and Hosts. Cells 2021; 10:cells10040912. [PMID: 33921034 PMCID: PMC8071448 DOI: 10.3390/cells10040912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Retroposition is RNA-based gene duplication leading to the creation of single exon nonfunctional copies. Nevertheless, over time, many of these duplicates acquire transcriptional capabilities. In human in most cases, these so-called retrogenes do not code for proteins but function as regulatory long noncoding RNAs (lncRNAs). The mechanisms by which they can regulate other genes include microRNA sponging, modulation of alternative splicing, epigenetic regulation and competition for stabilizing factors, among others. Here, we summarize recent findings related to lncRNAs originating from retrocopies that are involved in human diseases such as cancer and neurodegenerative, mental or cardiovascular disorders. Special attention is given to retrocopies that regulate their progenitors or host genes. Presented evidence from the literature and our bioinformatics analyses demonstrates that these retrocopies, often described as unimportant pseudogenes, are significant players in the cell’s molecular machinery.
Collapse
|
22
|
Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y, Zhang Z. HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:86. [PMID: 33648560 PMCID: PMC7923631 DOI: 10.1186/s13046-021-01890-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023]
Abstract
Background Cholangiocarcinoma is a highly malignant cancer with very dismal prognosis. Perihilar cholangiocarcinoma(pCCA) accounts for more than 50% of all cholangiocarcinoma and is well-characterized for its low rate of radical resection. Effects of radiotherapy and chemotherapy of pCCA are very limited. Methods Here we screened potential biomarkers of pCCA with transcriptome sequencing and evaluated the prognostic significance of HMGA1 in a large cohort pCCA consisting of 106 patients. With bioinformatics and in vitro/vivo experiments, we showed that HMGA1 induced tumor cell stemness and epithelial-mesenchymal-transition (EMT), and thus facilitated proliferation, migration and invasion by promoting TRIP13 transcription. Moreover, TRIP13 was also an unfavorable prognostic biomarker of pCCA, and double high expression of HMGA1/TRIP13 could predict prognosis more sensitively. TRIP13 promoted pCCA progression by suppressing FBXW7 transcription and stabilizing c-Myc. c-Myc in turn induced the transcription and expression of both HMGA1 and TRIP13, indicating that HMGA-TRIP13 axis facilitated pCCA stemness and EMT in a positive feedback pathway. Conclusions HMGA1 and TRIP13 were unfavorable prognostic biomarkers of pCCA. HMGA1 enhanced pCCA proliferation, migration, invasion, stemness and EMT, by inducing TRIP13 expression, suppressing FBXW7 expression and stabilizing c-Myc. Moreover, c-Myc can induce the transcription of HMGA1 and TRIP13, suggesting that HMGA-TRIP13 axis promoted EMT and stemness in a positive feedback pathway dependent on c-Myc. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01890-1.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.,Department of General Surgery, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Rongqi Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
23
|
Wu Y, Li X, Chen M, Liu Z, Zhang X, Zheng S, Xu X. Phosphorylation of PED/PEA-15 at Ser116 and phosphorylation of p27 at Thr187 indicates a poor prognosis in hepatocellular carcinoma. Oncol Lett 2021; 21:177. [PMID: 33574916 PMCID: PMC7816284 DOI: 10.3892/ol.2021.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a deadly cancer with a high rate of recurrence and metastasis. Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 (PED/PEA-15) is a protein involved in the metabolism of glucose that regulates numerous cellular processes, including cell division, apoptosis and migration in numerous types of cancer. However, PED/PEA-15 may act as a tumor-promotor or a tumor-suppressor depending on its phosphorylation status. In the present study, the association between the phosphorylation of PED/PEA-15 at Ser116 [PED/PEA-15(S116)], the phosphorylation of P27 at Thr187 [P-p27(T187)] and the clinicopathological features and prognosis of patients with HCC was assessed. The levels of PED/PEA-15(S116) and P-p27(T187) were determined using immunohistochemistry and western blotting analysis in resected liver tumor tissues and adjacent non-cancerous tissues obtained from 60 patients with HCC as well as normal liver tissues from 12 patients with benign lesions. The association between the expression levels of these two markers and the clinicopathological features of patients with HCC was explored. Using the Kaplan-Meier method, the prognostic value of PED/PEA-15(S116) and P-p27(T187) expression levels was determined. The results demonstrated that the levels of PED/PEA-15(S116) and P-p27(T187) proteins were remarkably higher in the HCC group compared with those in the adjacent and normal tissue groups (both P<0.05). In addition, a moderate positive correlation was observed between the levels of PED/PEA-15(S116) and P-p27(T187) (r=0.434; P<0.05). The levels of these two proteins were associated with the Edmondson grade, Tumor-Node-Metastasis (TNM) stage, vascular invasion and tumor multiplicity (all P<0.05). Furthermore, the Kaplan-Meier analysis results demonstrated that patients with HCC that presented with positive expression of PED/PEA-15(S116) and P-p27(T187) exhibited a dismal prognosis compared with that in patients with negative expression regarding the overall survival (OS), as well as disease-free survival (both P<0.05). Multivariate Cox analysis revealed that the TNM stage (P<0.05), vascular invasion (P<0.05), PED/PEA-15(S116) levels (P<0.001) and P-p27(T187) levels (P<0.05) were independent prognostic factors for OS in patients with HCC. In conclusion the results of the present study demonstrated that PED/PEA-15(S116) and P-p27(T187) levels were upregulated in HCC tissues compared with those in the adjacent and normal tissues; PED/PEA-15(S116) and P-p27(T187) expression may serve as an indicator of a poor prognosis in patients with HCC, suggesting that these proteins may be prospective therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yifeng Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China.,Division of Hepatobiliary and Pancreatic Surgery, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xianpeng Li
- Division of Hepatobiliary and Pancreatic Surgery, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Mingliang Chen
- Division of Hepatobiliary and Pancreatic Surgery, Yinzhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| | - Xuanyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
24
|
Yang Z, Wang Y, Zhang L, Zhao C, Wang D. Phosphorylated form of pyruvate dehydrogenase α1 mediates tumor necrosis factor α-induced glioma cell migration. Oncol Lett 2021; 21:176. [PMID: 33574915 PMCID: PMC7816412 DOI: 10.3892/ol.2021.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration is an important factor influencing the treatment outcomes of high-grade glioma (World Health Organization grades III–IV). Using immunohistochemical staining, the present study demonstrated that the protein levels of phosphorylated pyruvate dehydrogenase α1 (p-PDHA1) were increased according to the grade of glioma. Moreover, p-PDHA1 mediated tumor necrosis factor-α (TNF-α)-induced cell migration in glioma cells. Phalloidin staining and western blot analysis were used to detect the protein level of p-PDHA1 in U251 glioma cells stimulated by TNF-α at different time points. Phalloidin staining was used to observe the cytoskeletal structure. The effects on the expression of specific migration markers and on the cytoskeletal structure were also detected. Dichloroacetic acid is an inhibitor of PDK. These results indicated that p-PDHA1 served an important role in the migration of glioma cells, and consequently in the development of glioma.
Collapse
Affiliation(s)
- Zijun Yang
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Yidan Wang
- Center for Health Management, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Li Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Chenjin Zhao
- Department of Cerebral Surgery, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Donglin Wang
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| |
Collapse
|
25
|
Xia Q, Shu Z, Ye T, Zhang M. Identification and Analysis of the Blood lncRNA Signature for Liver Cirrhosis and Hepatocellular Carcinoma. Front Genet 2020; 11:595699. [PMID: 33365048 PMCID: PMC7750531 DOI: 10.3389/fgene.2020.595699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
As one of the most common malignant tumors, hepatocellular carcinoma (HCC) is the fifth major cause of cancer-associated mortality worldwide. In 90% of cases, HCC develops in the context of liver cirrhosis and chronic hepatitis B virus (HBV) infection is an important etiology for cirrhosis and HCC, accounting for 53% of all HCC cases. To understand the underlying mechanisms of the dynamic chain reactions from normal to HBV infection, from HBV infection to liver cirrhosis, from liver cirrhosis to HCC, we analyzed the blood lncRNA expression profiles from 38 healthy control samples, 45 chronic hepatitis B patients, 46 liver cirrhosis patients, and 46 HCC patients. Advanced machine-learning methods including Monte Carlo feature selection, incremental feature selection (IFS), and support vector machine (SVM) were applied to discover the signature associated with HCC progression and construct the prediction model. One hundred seventy-one key HCC progression-associated lncRNAs were identified and their overall accuracy was 0.823 as evaluated with leave-one-out cross validation (LOOCV). The accuracies of the lncRNA signature for healthy control, chronic hepatitis B, liver cirrhosis, and HCC were 0.895, 0.711, 0.870, and 0.826, respectively. The 171-lncRNA signature is not only useful for early detection and intervention of HCC, but also helpful for understanding the multistage tumorigenic processes of HCC.
Collapse
Affiliation(s)
- Qi Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Zhejiang University, Hangzhou, China
| | - Zheyue Shu
- Zhejiang University, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Ting Ye
- Zhejiang University, Hangzhou, China
| | - Min Zhang
- Zhejiang University, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| |
Collapse
|
26
|
Haak F, Obrecht I, Tosti N, Weixler B, Mechera R, Däster S, von Strauss M, Delko T, Spagnoli GC, Terracciano L, Sconocchia G, von Flüe M, Kraljević M, Droeser RA. Tumor Infiltration by OX40+ Cells Enhances the Prognostic Significance of CD16+ Cell Infiltration in Colorectal Cancer. Cancer Control 2020; 27:1073274820903383. [PMID: 32107932 PMCID: PMC7053789 DOI: 10.1177/1073274820903383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objectives: Analysis of tumor immune infiltration has been suggested to outperform tumor,
node, metastasis staging in predicting clinical course of colorectal cancer
(CRC). Infiltration by cells expressing OX40, a member of the tumor necrosis
factor receptor family, or CD16, expressed by natural killer cells,
monocytes, and dendritic cells, has been associated with favorable prognosis
in patients with CRC. We hypothesized that assessment of CRC infiltration by
both OX40+ and CD16+ cells might result in enhanced prognostic
significance. Methods: Colorectal cancer infiltration by OX40 and CD16 expressing cells was
investigated in 441 primary CRCs using tissue microarrays and specific
antibodies, by immunohistochemistry. Patients’ survival was evaluated by
Kaplan-Meier and log-rank tests. Multivariate Cox regression analysis,
hazard ratios, and 95% confidence intervals were also used to evaluate
prognostic significance of OX40+ and CD16+ cell infiltration. Results: Colorectal cancer infiltration by OX40+ and CD16+ cells was subclassified
into 4 groups with high or low infiltration levels in all possible
combinations. High levels of infiltration by both OX40+ and CD16+ cells were
associated with lower pT stage, absence of peritumoral lymphocytic (PTL)
inflammation, and a positive prognostic impact. Patients bearing tumors with
high infiltration by CD16+ and OX40+ cells were also characterized by
significantly longer overall survival, as compared with the other groups.
These results were confirmed by analyzing an independent validation
cohort. Conclusions: Combined infiltration by OX40+ and CD16+ immune cells is an independent
favorable prognostic marker in CRC. The prognostic value of CD16+ immune
cell infiltration is significantly improved by the combined analysis with
OX40+ cell infiltration.
Collapse
Affiliation(s)
- Fabian Haak
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Isabelle Obrecht
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Nadia Tosti
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Benjamin Weixler
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.,Department of General, Visceral and Vascular Surgery, Charite Campus Benjamin Franklin, Berlin, Germany
| | - Robert Mechera
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Silvio Däster
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Marco von Strauss
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Tarik Delko
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Giulio C Spagnoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Markus von Flüe
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Marko Kraljević
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Raoul A Droeser
- Department of Abdominal Surgery, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
27
|
Liu M, Liu X, Liu S, Xiao F, Guo E, Qin X, Wu L, Liang Q, Liang Z, Li K, Zhang D, Yang Y, Luo X, Lei L, Tan JHJ, Yin F, Zeng X. Big Data-Based Identification of Multi-Gene Prognostic Signatures in Liver Cancer. Front Oncol 2020; 10:847. [PMID: 32547951 PMCID: PMC7270198 DOI: 10.3389/fonc.2020.00847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Simultaneous identification of multiple single genes and multi-gene prognostic signatures with higher efficacy in liver cancer has rarely been reported. Here, 1,173 genes potentially related to the liver cancer prognosis were mined with Coremine, and the gene expression and survival data in 370 samples for overall survival (OS) and 319 samples for disease-free survival (DFS) were retrieved from The Cancer Genome Atlas. Numerous survival analyses results revealed that 39 genes and 28 genes significantly associated with DFS and OS in liver cancer, including 18 and 12 novel genes that have not been systematically reported in relation to the liver cancer prognosis, respectively. Next, totally 9,139 three-gene combinations (including 816 constructed by 18 novel genes) for predicting DFS and 3,276 three-gene combinations (including 220 constructed by 12 novel genes) for predicting OS were constructed based on the above genes, and the top 15 of these four parts three-gene combinations were selected and shown. Moreover, a huge difference between high and low expression group of these three-gene combination was detected, with median survival difference of DFS up to 65.01 months, and of OS up to 83.57 months. The high or low expression group of these three-gene combinations can predict the longest prognosis of DFS and OS is 71.91 months and 102.66 months, and the shortest is 6.24 months and 13.96 months. Quantitative real-time polymerase chain reaction and immunohistochemistry reconfirmed that three genes F2, GOT2, and TRPV1 contained in one of the above combinations, are significantly dysregulated in liver cancer tissues, low expression of F2, GOT2, and TRPV1 is associated with poor prognosis in liver cancer. Overall, we discovered a few novel single genes and multi-gene combinations biomarkers that are closely related to the long-term prognosis of liver cancer, and they can be potential therapeutic targets for liver cancer.
Collapse
Affiliation(s)
- Meiliang Liu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Shun Liu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States
| | - Erna Guo
- School of Public Health, Guangxi Medical University, Nanning, China.,School of International Education, Guangxi Medical University, Nanning, China
| | - Xiaoling Qin
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Liuyu Wu
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiuli Liang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Zerui Liang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Kehua Li
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Di Zhang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yu Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xingxi Luo
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Lei Lei
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Jennifer Hui Juan Tan
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Xiaoyun Zeng
- School of Public Health, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
28
|
Khan A, Thatcher TH, Woeller CF, Sime PJ, Phipps RP, Hopke PK, Utell MJ, Krahl PL, Mallon TM, Thakar J. Machine Learning Approach for Predicting Past Environmental Exposures From Molecular Profiling of Post-Exposure Human Serum Samples. J Occup Environ Med 2019; 61 Suppl 12:S55-S64. [PMID: 31800451 PMCID: PMC6897314 DOI: 10.1097/jom.0000000000001692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To develop an approach for a retrospective analysis of post-exposure serum samples using diverse molecular profiles. METHODS The 236 molecular profiles from 800 de-identified human serum samples from the Department of Defense Serum Repository were classified as smokers or non-smokers based on direct measurement of serum cotinine levels. A machine-learning pipeline was used to classify smokers and non-smokers from their molecular profiles. RESULTS The refined supervised support vector machines with recursive feature elimination predicted smokers and non-smokers with 78% accuracy on the independent held-out set. Several of the identified classifiers of smoking status have previously been reported and four additional miRNAs were validated with experimental tobacco smoke exposure in mice, supporting the computational approach. CONCLUSIONS We developed and validated a pipeline that shows retrospective analysis of post-exposure serum samples can identify environmental exposures.
Collapse
Affiliation(s)
- Atif Khan
- Departments of Microbiology and Immunology and Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Thomas H. Thatcher
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Collynn F. Woeller
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Patricia J. Sime
- Departments of Medicine, Environmental Medicine, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - Richard P. Phipps
- Departments of Medicine, Environmental Medicine, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699
| | - Mark J. Utell
- Departments of Medicine and Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Pamela L. Krahl
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Timothy M. Mallon
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Juilee Thakar
- Departments of Microbiology and Immunology and Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
29
|
Clinical Implications of Extracellular HMGA1 in Breast Cancer. Int J Mol Sci 2019; 20:ijms20235950. [PMID: 31779212 PMCID: PMC6928815 DOI: 10.3390/ijms20235950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The unconventional secretion of proteins is generally caused by cellular stress. During the tumorigenesis, tumor cells experience high levels of stress, and the secretion of some theoretically intracellular proteins is activated. Once in the extracellular space, these proteins play different paracrine and autocrine roles and could represent a vulnerability of cancer. One of these proteins is the high mobility group A1 (HMGA1), which is frequently overexpressed in tumors and presents a low expression in normal adult tissues. We have recently described that HMGA1 establishes an autocrine loop in invasive triple-negative breast cancer (TNBC) cells. The secretion of HMGA1 and its binding to the receptor for advanced glycation end products (RAGE) mediates the migration, invasion, and metastasis of TNBC cells and predicts the onset of metastasis in these patients. In this review, we summarized different strategies to exploit the novel tumorigenic phenotype mediated by extracellular HMGA1. We envisioned future clinical applications where the association between its change in subcellular localization and breast cancer progression could be used to predict tumor aggressiveness and guide treatment decisions. Furthermore, we proposed that targeting extracellular HMGA1 as monotherapy using monoclonal antibodies, or in combination with chemotherapy and other targeted therapies, could bring new therapeutic options for TNBC patients.
Collapse
|
30
|
KIFC1 is activated by TCF-4 and promotes hepatocellular carcinoma pathogenesis by regulating HMGA1 transcriptional activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:329. [PMID: 31340839 PMCID: PMC6657086 DOI: 10.1186/s13046-019-1331-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Background Kinesins play important roles in the development and progression of many human cancers. The functions and underlying mechanisms of kinesin family member C1 (KIFC1), a member of the kinesin-14 family, in the pathogenesis of hepatocellular carcinoma (HCC) have not been fully elucidated. Methods In this study, 168 HCC samples were first analyzed to examine the association between KIFC1 expression and patient clinicopathological features and prognosis. The role of KIFC1 in HCC cell proliferation and metastasis was investigated both in vivo and in vitro. The upstream regulation and downstream targets of KIFC1 were studied by qRT-PCR, western blotting, coimmunoprecipitation, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Results KIFC1 was highly expressed in HCC tissues and positively associated with advanced stages and poor prognosis. KIFC1 knockdown suppressed HCC cell proliferation and invasion both in vitro and in vivo. Furthermore, KIFC1 knockdown decreased invadopodia formation and reduced epithelial-mesenchymal transition (EMT). HMGA1, an architectural transcriptional factor, was identified to interact with KIFC1. HMGA1 could bind to the promoters of Stat3, MMP2 and EMT-related genes and promote gene transcription. KIFC1 enhanced HMGA1 transcriptional activity and facilitated HCC proliferation and invasion. Moreover, KIFC1 was activated by TCF-4, and KIFC1 inhibition enhanced HCC cell sensitivity to paclitaxel. Conclusions Our findings suggest that KIFC1, activated by TCF-4, functions as an oncogene and promotes HCC pathogenesis through regulating HMGA1 transcriptional activity and that KIFC1 is a potential therapeutic target to enhance the paclitaxel sensitivity of HCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1331-8) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
HMGA1 promoting gastric cancer oncogenic and glycolytic phenotypes by regulating c-myc expression. Biochem Biophys Res Commun 2019; 516:457-465. [PMID: 31229266 DOI: 10.1016/j.bbrc.2019.06.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
The high mobility group A1 (HMGA1) protein, an architectural transcription factor, is profoundly implicated in the pathogenesis and progression of multiple malignant tumors. Reprogrammed energy metabolism is a hallmark of diverse types of cancer cells. However, little is known about the regulatory role of HMGA1 in aerobic glycolysis. In this study, we found that HMGA1 was highly expressed in many types of human cancers including gastric cancer and predicted a poor prognosis. However, high HMGA1 expression was not correlated with TNM stages. Gene set enrichment analysis result suggested a link between HMGA1 expression and glycolytic phenotype in gastric cancer. Genetic silencing of HMGA1 significantly inhibited gastric cancer glycolytic activity as revealed by reduced glucose uptake, lactate release, and extracellular acidification ratio. In addition, cell proliferation and invasive capacity of gastric cancer cells were also suppressed by HMGA1 knockdown. Mechanistically, the key glycolysis regulator c-Myc was identified as a downstream target of HMGA1. In gastric cancer patients, HMGA1 and c-Myc expression were closely associated with the glycolysis gene signature. Taken together, our findings identify a novel function of HMGA1 in regulating aerobic glycolysis in gastric cancer.
Collapse
|
32
|
Wu Y, Chen X, Zhao Y, Wang Y, Li Y, Xiang C. Genome-wide DNA methylation and hydroxymethylation analysis reveal human menstrual blood-derived stem cells inhibit hepatocellular carcinoma growth through oncogenic pathway suppression via regulating 5-hmC in enhancer elements. Stem Cell Res Ther 2019; 10:151. [PMID: 31151404 PMCID: PMC6544940 DOI: 10.1186/s13287-019-1243-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epigenetic alteration is an important indicator of crosstalk between cancer cells and surrounding microenvironment components including mesenchymal stem cells (MSC). Human menstrual blood-derived stem cells (MenSCs) are novel source of MSCs which exert suppressive effects on cancers via multiple components of microenvironmental paracrine signaling. However, whether MenSCs play a crucial role in the epigenetic regulation of cancer cells remains unknown. METHODS Epigenetic alterations of hepatocellular carcinoma (HCC) mediated by MenSCs were examined by immunofluorescence, ELISA, and RT-PCR assays. The suppressive impact of MenSCs on HCC was investigated in vitro using CCK8, apoptosis, wound healing, and invasion assays and in vivo using a xenograft mice model. MeDIP-seq, hMeDIP-seq, and RNA-seq were used to identify the genome-wide pattern of DNA methylation and hydroxymethylation in HCC cells after MenSC therapy. RESULTS We show that HCC cells display distinct genome-wide alterations in DNA hydroxymethylation and methylation after MenSC therapy. MenSCs exert an inhibitory effect on HCC growth via regulating 5-hmC and 5-mC abundance in the regulatory regions of oncogenic pathways including PI3K/AKT and MAPK signaling, especially in enhancers and promoters. FOXO3 expression is rescued via reversal of 5-hmC and 5-mC levels in its enhancers and contributes to the activation of downstream apoptosis. Inactivation of the MAPK pathway further disrupts c-myc-mediated epithelial-mesenchymal transitions (EMT). Additionally, chemotherapy resistance-associated genes including ID4 and HMGA1 are suppressed via amending 5-hmC and 5-mC abundance at their regulatory regions. HMGA1 and BYSL might be potential targets for gene-modified MSC therapy. CONCLUSIONS Our results confirm that MSCs could regulate the epigenetic mechanism of HCC cells and provide a novel concept for a modified MSC strategy or combination therapy with chemotherapeutics based on epigenetics.
Collapse
Affiliation(s)
- Yichen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjia Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanling Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: Cancer classification by location. J Cell Mol Med 2019; 23:2293-2302. [PMID: 30614613 PMCID: PMC6433663 DOI: 10.1111/jcmm.14082] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The high mobility group A1 (HMGA1) gene plays an important role in numerous malignant cancers. HMGA1 is an oncofoetal gene, and we have a certain understanding of the biological function of HMGA1 based on its activities in various neoplasms. As an architectural transcription factor, HMGA1 remodels the chromatin structure and promotes the interaction between transcriptional regulatory proteins and DNA in different cancers. Through analysis of the molecular mechanism of HMGA1 and clinical studies, emerging evidence indicates that HMGA1 promotes the occurrence and metastasis of cancer. Within a similar location or the same genetic background, the function and role of HMGA1 may have certain similarities. In this paper, to characterize HMGA1 comprehensively, research on various types of tumours is discussed to further understanding of the function and mechanism of HMGA1. The findings provide a more reliable basis for classifying HMGA1 function according to the tumour location. In this review, we summarize recent studies related to HMGA1, including its structure and oncogenic properties, its major functions in each cancer, its upstream and downstream regulation associated with the tumourigenesis and metastasis of cancer, and its potential as a biomarker for clinical diagnosis of cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yushuang Zheng
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| | - Lingchuan Guo
- The First Affiliated Hospital of Soochow University Department of Pathology, Suzhou, Jiangsu, China
| |
Collapse
|
34
|
Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181006. [PMID: 30662724 PMCID: PMC6304123 DOI: 10.1098/rsos.181006] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/08/2018] [Indexed: 05/03/2023]
Abstract
Background: Potential prognostic biomarker candidates for hepatocellular carcinoma (HCC) are abundant, but their generalizability is unexplored. We cross-validated markers of overall survival (OS) and vascular invasion in independent datasets. Methods: The literature search yielded 318 genes related to survival and 52 related to vascular invasion. Validation was performed in three datasets (RNA-seq, n = 371; Affymetrix arrays, n = 91; Illumina gene chips, n = 135) by uni- and multivariate Cox regression and Mann-Whitney U-test, separately for Asian and Caucasian patients. Results: One hundred and eighty biomarkers remained significant in Asian and 128 in Caucasian subjects at p < 0.05. After multiple testing correction BIRC5 (p = 1.9 × 10-10), CDC20 (p = 2.5 × 10-9) and PLK1 (p = 3 × 10-9) endured as best performing genes in Asian patients; however, none remained significant in the Caucasian cohort. In a multivariate analysis, significance was reached by stage (p = 0.0018) and expression of CENPH (p = 0.0038) and CDK4 (p = 0.038). KIF18A was the only gene predicting vascular invasion in the Affymetrix and Illumina cohorts (p = 0.003 and p = 0.025, respectively). Conclusion: Overall, about half of biomarker candidates failed to retain prognostic value and none were better than stage predicting OS. Impact: Our results help to eliminate biomarkers with limited capability to predict OS and/or vascular invasion.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Ádám Nagy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Author for correspondence: Balázs Győrffy e-mail:
| |
Collapse
|
35
|
High expression of HOXA13 correlates with poorly differentiated hepatocellular carcinomas and modulates sorafenib response in in vitro models. J Transl Med 2018; 98:95-105. [PMID: 29035381 DOI: 10.1038/labinvest.2017.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the fifth and ninth cause of mortality among male and female cancer patients, respectively and typically arises on a background of a cirrhotic liver. HCC develops in a multi-step process, often encompassing chronic liver injury, steatosis and cirrhosis eventually leading to the malignant transformation of hepatocytes. Aberrant expression of the class I homeobox gene family (HOX), a group of genes crucial in embryogenesis, has been reported in a variety of malignancies including solid tumors. Among HOX genes, HOXA13 is most overexpressed in HCC and is known to be directly regulated by the long non-coding RNA HOTTIP. In this study, taking advantage of a tissue microarray containing 305 tissue specimens, we found that HOXA13 protein expression increased monotonically from normal liver to cirrhotic liver to HCC and that HOXA13-positive HCCs were preferentially poorly differentiated and had fewer E-cadherin-positive cells. In two independent cohorts, patients with HOXA13-positive HCC had worse overall survival than those with HOXA13-negative HCC. Using HOXA13 immunohistochemistry and HOTTIP RNA in situ hybridization on consecutive sections of 16 resected HCCs, we demonstrated that HOXA13 and HOTTIP were expressed in the same neoplastic hepatocyte populations. Stable overexpression of HOXA13 in liver cancer cell lines resulted in increased colony formation on soft agar and migration potential as well as reduced sensitivity to sorafenib in vitro. Our results provide compelling evidence of a role for HOXA13 in HCC development and highlight for the first time its ability to modulate response to sorafenib.
Collapse
|
36
|
Quintavalle C, Hindupur SK, Quagliata L, Pallante P, Nigro C, Condorelli G, Andersen JB, Tagscherer KE, Roth W, Beguinot F, Heim MH, Ng CKY, Piscuoglio S, Matter MS. Phosphoprotein enriched in diabetes (PED/PEA15) promotes migration in hepatocellular carcinoma and confers resistance to sorafenib. Cell Death Dis 2017; 8:e3138. [PMID: 29072691 PMCID: PMC5682677 DOI: 10.1038/cddis.2017.512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third-leading cause of cancer-related death with limited treatment options and frequent resistance to sorafenib, the only drug currently approved for first-line therapy. Therefore, better understanding of HCC tumor biology and its resistance to treatment is urgently needed. Here, we analyzed the role of phosphoprotein enriched in diabetes (PED) in HCC. PED has been shown to regulate cell proliferation, apoptosis and migration in several types of cancer. However, its function in HCC has not been addressed yet. Our study revealed that both transcript and protein levels of PED were significantly high in HCC compared with non-tumoral tissue. Clinico-pathological correlation revealed that PEDhigh HCCs showed an enrichment of gene signatures associated with metastasis and poor prognosis. Further, we observed that PED overexpression elevated the migration potential and PED silencing the decreased migration potential in liver cancer cell lines without effecting cell proliferation. Interestingly, we found that PED expression was regulated by a hepatocyte specific nuclear factor, HNF4α. A reduction of HNF4α induced an increase in PED expression and consequently, promoted cell migration in vitro. Finally, PED reduced the antitumoral effect of sorafenib by inhibiting caspase-3/7 activity. In conclusion, our data suggest that PED has a prominent role in HCC biology. It acts particularly on promoting cell migration and confers resistance to sorafenib treatment. PED may be a novel target for HCC therapy and serve as a predictive marker for treatment response against sorafenib.
Collapse
Affiliation(s)
| | | | - Luca Quagliata
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Pierlorenzo Pallante
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland.,Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS), 'G. Salvatore', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Cecilia Nigro
- URT of the Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Council of Research, Naples, Italy.,Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Gerolama Condorelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS), 'G. Salvatore', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli 'Federico II', Naples, Italy
| | - Jesper Bøje Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Francesco Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Council of Research, Naples, Italy.,Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Markus Hermann Heim
- Division of Gastroenterology, University Hospital of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
37
|
Yang YF, Zhang MF, Tian QH, Zhang CZ. TRIM65 triggers β-catenin signaling via ubiquitylation of Axin1 to promote hepatocellular carcinoma. J Cell Sci 2017; 130:3108-3115. [PMID: 28754688 DOI: 10.1242/jcs.206623] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Deregulation of ubiquitin ligases contributes to the malignant progression of human cancers. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase and has been implicated in human diseases, but its role and clinical significance in hepatocellular carcinoma (HCC) remain unknown. Here, we showed that TRIM65 expression was increased in HCC tissues and associated with poor outcome in two independent cohorts containing 888 patients. In vitro and in vivo data demonstrated that overexpression of TRIM65 promoted cell growth and tumor metastasis, whereas knockdown of TRIM65 resulted in opposite phenotypes. Further studies revealed that TRIM65 exerted oncogenic activities via ubiquitylation of Axin1 to activate the β-catenin signaling pathway. TRIM65 directly bound to Axin1 and accelerated its degradation through ubiquitylation. Furthermore, HMGA1 was identified as an upstream regulator of TRIM65 in HCC cells. In clinical samples, TRIM65 expression was positively correlated with the expression of HMGA1 and nuclear β-catenin. Collectively, our data indicate that TRIM65 functions as an oncogene in HCC. The newly identified HMGA1/TRIM65/β-catenin axis serves as a promising prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Yu-Feng Yang
- Department of Pathology, Dongguan Third People's Hospital, Dongguan, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qiu-Hong Tian
- Department of Oncology, First Affiliated Hospital of NanChang University, NanChang, Jiangxi 330006, China
| | - Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
38
|
Mou T, Zhu D, Wei X, Li T, Zheng D, Pu J, Guo Z, Wu Z. Identification and interaction analysis of key genes and microRNAs in hepatocellular carcinoma by bioinformatics analysis. World J Surg Oncol 2017; 15:63. [PMID: 28302149 PMCID: PMC5356276 DOI: 10.1186/s12957-017-1127-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common liver malignancy worldwide. However, present studies of its multiple gene interaction and cellular pathways still could not explain the initiation and development of HCC perfectly. To find the key genes and miRNAs as well as their potential molecular mechanisms in HCC, microarray data GSE22058, GSE25097, and GSE57958 were analyzed. Methods The microarray datasets GSE22058, GSE25097, and GSE57958, including mRNA and miRNA profiles, were downloaded from the GEO database and were analyzed using GEO2R. Functional and pathway enrichment analyses were performed using the DAVID database, and the protein–protein interaction (PPI) network was constructed using the Cytoscape software. Finally, miRDB was applied to predict the targets of the differentially expressed miRNAs (DEMs). Results A total of 115 differentially expressed genes (DEGs) were found in HCC, including 52 up-regulated genes and 63 down-regulated genes. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses from DAVID showed that up-regulated genes were significantly enriched in chromosome segregation and cell division, while the down-regulated genes were mainly involved in complement activation, protein activation cascades, carboxylic acid metabolic processes, oxoacid metabolic processes, and the immune response. From the PPI network, the 18 nodes with the highest degree were screened as hub genes. Among them, ESR1 was found to have close interactions with FOXO1, CXCL12, and GNAO1. In addition, a total of 64 DEMs were identified, which included 58 up-regulated miRNAs and 6 down-regulated miRNAs. ESR1 was potentially targeted by five miRNAs, including hsa-mir-18a and hsa-mir-221. Conclusions The roles of DEMs like hsa-mir-221 in HCC through interactions with DEGs such as ESR1 and CXCL12 may provide new clues for the diagnosis and treatment of HCC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12957-017-1127-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Di Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingting Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Daofeng Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junliang Pu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|