1
|
Chai M, Palenciano AF, Mill R, Cole MW, Braem S. It's Hard to Prepare for Task Novelty: Cueing the Novelty of Upcoming Tasks Does Not Facilitate Task Performance. J Cogn 2025; 8:17. [PMID: 39830226 PMCID: PMC11740709 DOI: 10.5334/joc.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Rapidly learning new tasks, such as using new technology or playing a new game, is ubiquitous in our daily lives. Previous studies suggest that our brain relies on different networks for rapid task learning versus retrieving known tasks from memory, and behavioral studies have shown that novel versus practiced tasks may rely on different task configuration processes. Here, we investigated whether explicitly informing about the novelty of an incoming task would help participants prepare for different task configuration processes, such as pre-adjusting working memory gating functions. We hypothesized that if different task configuration processes can be prepared for, a pre-cue informing about the novelty of the upcoming task should lead to better task performance. Across four experiments, participants were first trained on a subset of tasks, followed by a test session in which pre-cues were provided in some blocks but not others. After comparing task performance between cued and uncued blocks, our results provided no evidence supporting the benefit of cueing for both practiced and novel tasks, suggesting that people cannot prepare for different task configuration processes in the absence of concrete task information.
Collapse
Affiliation(s)
- Mengqiao Chai
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Ana F. Palenciano
- Mind, Brain, and Behavior Research Center, University of Granada, 18011, Granada, Spain
| | - Ravi Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA
| | - Senne Braem
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Zhang Z. Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity. Brain Topogr 2025; 38:19. [PMID: 39755830 DOI: 10.1007/s10548-024-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases. A total of 24 studies were identified as eligible for inclusion in the present meta-analysis. These studies included 269 foci observed in 58 contrasts (558 patients with ischemic stroke; 526 healthy controls; 38.84% female). The results showed: (1) within-network hypoconnectivity in the sensorimotor network (SMN), default mode network (DMN), frontoparietal network (FPN), and salience network (SN), respectively; (2) across-network hypoconnectivity between the SMN and both of the SN and visual network, and between the FPN and both of the SN and DMN; and (3) across-network hyperconnectivity between the SMN and both of the DMN and FPN, and between the SN and both of the DMN and FPN. Meta-regression showed that hypoconnectivity between the DMN and the FPN became less pronounced as the ischemic stroke phase progressed from the acute to the subacute and chronic phases. This study provides the first meta-analytic evidence of large-scale rsFC dysfunction in ischemic stroke. These dysfunctional biomarkers could help identify patients with ischemic stroke at risk for cognitive, sensory, motor, and emotional impairments and further provide potential insight into developing diagnostic models and therapeutic interventions for rehabilitation and recovery.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Murray S, Amaya S. The strategic allocation theory of vigilance. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1693. [PMID: 39295156 DOI: 10.1002/wcs.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 09/21/2024]
Abstract
Despite its importance in different occupational and everyday contexts, vigilance, typically defined as the capacity to sustain attention over time, is remarkably limited. What explains these limits? Two theories have been proposed. The Overload Theory states that being vigilant consumes limited information-processing resources; when depleted, task performance degrades. The Underload Theory states that motivation to perform vigilance tasks declines over time, thereby prompting attentional shifts and hindering performance. We highlight some conceptual and empirical problems for both theories and propose an alternative: the Strategic Allocation Theory. For the Strategic Allocation Theory, performance on vigilance tasks optimizes as a function of intrinsic and extrinsic motivations, including metacognitive factors such as the expected value of effort and the expected value of planning. Limited capacities must be deployed across task sets to maximize expected reward. The observed limits of vigilance reflect changes in the perceived value of, among other things, sustaining attention to a task rather than attending to something else. Drawing from recent computational theories of cognitive control and meta-reasoning, we argue that the Strategic Allocation Theory explains more phenomena related to vigilance behavior than other theories, including self-report data. Finally, we outline some of the testable predictions the theory makes across several experimental paradigms. This article is categorized under: Philosophy > Foundations of Cognitive Science Psychology > Attention.
Collapse
Affiliation(s)
- Samuel Murray
- Laboratorio de Juicios y Emociones Morales, Universidad de Los Andes, Bogotá, Colombia
- Department of Philosophy, Providence College, Providence, Rhode Island, USA
- Neuroscience Program, Providence College, Providence, Rhode Island, USA
| | - Santiago Amaya
- Laboratorio de Juicios y Emociones Morales, Universidad de Los Andes, Bogotá, Colombia
- Departamento de Filosofía, Universidad de los Andes, Bogota, Colombia
| |
Collapse
|
4
|
Kiyonaga A, Miller JA, D'Esposito M. Lateral prefrontal cortex controls interplay between working memory and actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613601. [PMID: 39345454 PMCID: PMC11429898 DOI: 10.1101/2024.09.17.613601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Humans must often keep multiple task goals in mind, at different levels of priority and immediacy, while also interacting with the environment. We might need to remember information for an upcoming task while engaged in more immediate actions. Consequently, actively maintained working memory (WM) content may bleed into ongoing but unrelated motor behavior. Here, we experimentally test the impact of WM maintenance on action execution, and we transcranially stimulate lateral prefrontal cortex (PFC) to parse its functional contributions to WM-motor interactions. We first created a task scenario wherein human participants (both sexes) executed cued hand movements during WM maintenance. We manipulated the compatibility between WM and movement goals at the trial level and the statistical likelihood that the two would be compatible at the block level. We found that remembering directional words (e.g., 'left', 'down') biased the trajectory and speed of hand movements that occurred during the WM delay, but the bias was dampened in blocks when WM content predictably conflicted with movement goals. Then we targeted left lateral PFC with two different transcranial magnetic stimulation (TMS) protocols before participants completed the task. We found that an intermittent theta-burst protocol, which is thought to be excitatory, dampened sensitivity to block-level control demands (i.e., proactive control), while a continuous theta-burst protocol, which is thought to be inhibitory, dampened adaptation to trial-by-trial conflict (i.e., reactive control). Therefore, lateral PFC is involved in controlling the interplay between WM content and manual action, but different PFC mechanisms may support different time-scales of adaptive control.
Collapse
|
5
|
Yeon J, Larson AS, Rahnev D, D’Esposito M. Task learning is subserved by a domain-general brain network. Cereb Cortex 2024; 34:bhae013. [PMID: 38282457 PMCID: PMC11486685 DOI: 10.1093/cercor/bhae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/30/2024] Open
Abstract
One of the most important human faculties is the ability to acquire not just new memories but the capacity to perform entirely new tasks. However, little is known about the brain mechanisms underlying the learning of novel tasks. Specifically, it is unclear to what extent learning of different tasks depends on domain-general and/or domain-specific brain mechanisms. Here human subjects (n = 45) learned to perform 6 new tasks while undergoing functional MRI. The different tasks required the engagement of perceptual, motor, and various cognitive processes related to attention, expectation, speed-accuracy tradeoff, and metacognition. We found that a bilateral frontoparietal network was more active during the initial compared with the later stages of task learning, and that this effect was stronger for task variants requiring more new learning. Critically, the same frontoparietal network was engaged by all 6 tasks, demonstrating its domain generality. Finally, although task learning decreased the overall activity in the frontoparietal network, it increased the connectivity strength between the different nodes of that network. These results demonstrate the existence of a domain-general brain network whose activity and connectivity reflect learning for a variety of new tasks, and thus may underlie the human capacity for acquiring new abilities.
Collapse
Affiliation(s)
- Jiwon Yeon
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
- Department of Psychology, Stanford University, Stanford, CA, 94305, United States
| | - Alina Sue Larson
- Department of Psychology, University of California, Santa Cruz, CA 90564, United States
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Department of Psychology, University of California, Berkeley, CA, 94720, United States
| |
Collapse
|
6
|
Deck BL, Kelkar A, Erickson B, Erani F, McConathey E, Sacchetti D, Faseyitan O, Hamilton R, Medaglia JD. Individual-level functional connectivity predicts cognitive control efficiency. Neuroimage 2023; 283:120386. [PMID: 37820860 DOI: 10.1016/j.neuroimage.2023.120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cognitive control (CC) is essential for problem-solving in everyday life, and CC-related deficits occur alongside costly and debilitating disorders. The tri-partite model suggests that CC comprises multiple behaviors, including switching, inhibiting, and updating. Activity within the fronto-parietal control network B (FPCN-B), the dorsal attention network (DAN), the cingulo-opercular network (CON), and the lateral default-mode network (L-DMN) is related to switching and inhibiting behaviors. However, our understanding of how these brain regions interact to bring about cognitive switching and inhibiting in individuals is unclear. In the current study, subjects performed two in-scanner tasks that required switching and inhibiting. We used support vector regression (SVR) models containing individually-estimated functional connectivity between the FPCN-B, DAN, CON and L-DMN to predict switching and inhibiting behaviors. We observed that: inter-network connectivity can predict inhibiting and switching behaviors in individuals, and the L-DMN plays a role in switching and inhibiting behaviors. Therefore, individually estimated inter-network connections are markers of CC behaviors, and CC behaviors may arise due to interactions between a set of networks.
Collapse
Affiliation(s)
- Benjamin L Deck
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Apoorva Kelkar
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Brian Erickson
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Fareshte Erani
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Eric McConathey
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Daniela Sacchetti
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Olufunsho Faseyitan
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Roy Hamilton
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA; Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA.
| |
Collapse
|
7
|
Schmaderer LF, Meyer M, Reer R, Schumacher N. What happens in the prefrontal cortex? Cognitive processing of novel and familiar stimuli in soccer: An exploratory fNIRS study. Eur J Sport Sci 2023; 23:2389-2399. [PMID: 37535067 DOI: 10.1080/17461391.2023.2238699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The importance of both general and sport-specific perceptual-cognitive abilities in soccer players has been investigated in several studies. Although these perceptual-cognitive skills could contribute significantly to soccer players' expertise, the underlying cortical mechanisms have not been clarified yet. Examining activity changes in the prefrontal cortex under different cognitive demands may help to better understand the underlying mechanisms of sports expertise. The aim of this study was to analyse the prefrontal activity of soccer experts during general and sport-specific cognitive tasks. For this purpose, 39 semi-professional soccer players performed four perceptual-cognitive tests, two of which assessed general cognition, the other two assessed sport-specific cognition. Since soccer is a movement-intensive sport, two tests were performed in motion. While performing cognitive tests, prefrontal activity was recorded using functional near-infrared spectroscopy (fNIRS) (NIRSport, NIRx Medical Technologies, USA). Differences of prefrontal activity in general and sport-specific cognitive tasks were analysed using paired t-tests. The results showed significant increases in prefrontal activity during general cognitive tests (novel stimuli) compared to sport-specific tests (familiar stimuli). The comparatively lower prefrontal activity change during sport-specific cognition might be due to learned automatisms of experts in this field. These results seem in line with previous findings on novel and automated cognition, "repetition suppression theory" and "neural efficiency theory". Furthermore, the different cortical processes could be caused by altered prefrontal structures of experts and might represent a decisive factor for expertise in team sports. However, further research is needed to clarify the prefrontal involvement on expertise in general and sport-specific cognition.
Collapse
Affiliation(s)
- Lena F Schmaderer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Mathilda Meyer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Rüdiger Reer
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| | - Nils Schumacher
- Institute of Human Movement Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Uehara K, Yasuhara M, Koguchi J, Oku T, Shiotani S, Morise M, Furuya S. Brain network flexibility as a predictor of skilled musical performance. Cereb Cortex 2023; 33:10492-10503. [PMID: 37566918 DOI: 10.1093/cercor/bhad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Interactions between the body and the environment are dynamically modulated by upcoming sensory information and motor execution. To adapt to this behavioral state-shift, brain activity must also be flexible and possess a large repertoire of brain networks so as to switch them flexibly. Recently, flexible internal brain communications, i.e. brain network flexibility, have come to be recognized as playing a vital role in integrating various sensorimotor information. Therefore, brain network flexibility is one of the key factors that define sensorimotor skill. However, little is known about how flexible communications within the brain characterize the interindividual variation of sensorimotor skill and trial-by-trial variability within individuals. To address this, we recruited skilled musical performers and used a novel approach that combined multichannel-scalp electroencephalography, behavioral measurements of musical performance, and mathematical approaches to extract brain network flexibility. We found that brain network flexibility immediately before initiating the musical performance predicted interindividual differences in the precision of tone timbre when required for feedback control, but not for feedforward control. Furthermore, brain network flexibility in broad cortical regions predicted skilled musical performance. Our results provide novel evidence that brain network flexibility plays an important role in building skilled sensorimotor performance.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
| | - Masaki Yasuhara
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Neural Engineering Laboratory, Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Junya Koguchi
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan
| | | | | | - Masanori Morise
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- NeuroPiano Institute, Kyoto 6008086, Japan
| |
Collapse
|
9
|
Ren X, Libertus ME. Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain. J Cogn Neurosci 2023; 35:1212-1228. [PMID: 37172121 DOI: 10.1162/jocn_a_02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
Collapse
|
10
|
Baumann AW, Schäfer TAJ, Ruge H. Instructional load induces functional connectivity changes linked to task automaticity and mnemonic preference. Neuroimage 2023:120262. [PMID: 37394046 DOI: 10.1016/j.neuroimage.2023.120262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023] Open
Abstract
Learning new rules rapidly and effectively via instructions is ubiquitous in our daily lives, yet the underlying cognitive and neural mechanisms are complex. Using functional magnetic resonance imaging we examined the effects of different instructional load conditions (4 vs. 10 stimulus-response rules) on functional couplings during rule implementation (always 4 rules). Focusing on connections of lateral prefrontal cortex (LPFC) regions, the results emphasized an opposing trend of load-related changes in LPFC-seeded couplings. On the one hand, during the low-load condition LPFC regions were more strongly coupled with cortical areas mostly assigned to networks such as the fronto-parietal network and the dorsal attention network. On the other hand, during the high-load condition, the same LPFC areas were more strongly coupled with default mode network areas. These results suggest differences in automated processing evoked by features of the instruction and an enduring response conflict mediated by lingering episodic long-term memory traces when instructional load exceeds working memory capacity limits. The ventrolateral prefrontal cortex (VLPFC) exhibited hemispherical differences regarding whole-brain coupling and practice-related dynamics. Left VLPFC connections showed a persistent load-related effect independent of practice and were associated with 'objective' learning success in overt behavioral performance, consistent with a role in mediating the enduring influence of the initially instructed task rules. Right VLPFC's connections, in turn, were more susceptible to practice-related effects, suggesting a more flexible role possibly related to ongoing rule updating processes throughout rule implementation.
Collapse
Affiliation(s)
| | - Theo A J Schäfer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Hannes Ruge
- Faculty of Psychology, Technische Universität Dresden, Germany
| |
Collapse
|
11
|
Schultz DH, Ito T, Cole MW. Global connectivity fingerprints predict the domain generality of multiple-demand regions. Cereb Cortex 2022; 32:4464-4479. [PMID: 35076709 PMCID: PMC9574240 DOI: 10.1093/cercor/bhab495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/26/2023] Open
Abstract
A set of distributed cognitive control networks are known to contribute to diverse cognitive demands, yet it is unclear how these networks gain this domain-general capacity. We hypothesized that this capacity is largely due to the particular organization of the human brain's intrinsic network architecture. Specifically, we tested the possibility that each brain region's domain generality is reflected in its level of global (hub-like) intrinsic connectivity as well as its particular global connectivity pattern ("connectivity fingerprint"). Consistent with prior work, we found that cognitive control networks exhibited domain generality as they represented diverse task context information covering sensory, motor response, and logic rule domains. Supporting our hypothesis, we found that the level of global intrinsic connectivity (estimated with resting-state functional magnetic resonance imaging [fMRI]) was correlated with domain generality during tasks. Further, using a novel information fingerprint mapping approach, we found that each cognitive control region's unique rule response profile("information fingerprint") could be predicted based on its unique intrinsic connectivity fingerprint and the information content in regions outside cognitive control networks. Together, these results suggest that the human brain's intrinsic network architecture supports its ability to represent diverse cognitive task information largely via the location of multiple-demand regions within the brain's global network organization.
Collapse
Affiliation(s)
- Douglas H Schultz
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.,Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ 07102, USA
| |
Collapse
|
12
|
Baek S, Jaffe-Dax S, Bejjanki VR, Emberson L. Temporal Predictability Modulates Cortical Activity and Functional Connectivity in the Frontoparietal Network in 6-Month-Old Infants. J Cogn Neurosci 2022; 34:766-775. [PMID: 35139200 DOI: 10.1162/jocn_a_01828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite the abundance of behavioral evidence showing the interaction between attention and prediction in infants, the neural underpinnings of this interaction are not yet well-understood. The endogenous attentional function in adults have been largely localized to the frontoparietal network. However, resting-state and neuroanatomical investigations have found that this frontoparietal network exhibits a protracted developmental trajectory and involves weak and unmyelinated long-range connections early in infancy. Can this developmentally nascent network still be modulated by predictions? Here, we conducted the first investigation of infant frontoparietal network engagement as a function of the predictability of visual events. Using functional near-infrared spectroscopy, the hemodynamic response in the frontal, parietal, and occipital lobes was analyzed as infants watched videos of temporally predictable or unpredictable sequences. We replicated previous findings of cortical signal attenuation in the frontal and sensory cortices in response to predictable sequences and extended these findings to the parietal lobe. We also estimated background functional connectivity (i.e., by regressing out task-evoked responses) to reveal that frontoparietal functional connectivity was significantly greater during predictable sequences compared to unpredictable sequences, suggesting that this frontoparietal network may underlie how the infant brain communicates predictions. Taken together, our results illustrate that temporal predictability modulates the activation and connectivity of the frontoparietal network early in infancy, supporting the notion that this network may be functionally available early in life despite its protracted developmental trajectory.
Collapse
Affiliation(s)
| | | | | | - Lauren Emberson
- Princeton University, NJ.,University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Ito T, Yang GR, Laurent P, Schultz DH, Cole MW. Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior. Nat Commun 2022; 13:673. [PMID: 35115530 PMCID: PMC8814166 DOI: 10.1038/s41467-022-28323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
The human ability to adaptively implement a wide variety of tasks is thought to emerge from the dynamic transformation of cognitive information. We hypothesized that these transformations are implemented via conjunctive activations in "conjunction hubs"-brain regions that selectively integrate sensory, cognitive, and motor activations. We used recent advances in using functional connectivity to map the flow of activity between brain regions to construct a task-performing neural network model from fMRI data during a cognitive control task. We verified the importance of conjunction hubs in cognitive computations by simulating neural activity flow over this empirically-estimated functional connectivity model. These empirically-specified simulations produced above-chance task performance (motor responses) by integrating sensory and task rule activations in conjunction hubs. These findings reveal the role of conjunction hubs in supporting flexible cognitive computations, while demonstrating the feasibility of using empirically-estimated neural network models to gain insight into cognitive computations in the human brain.
Collapse
Affiliation(s)
- Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
- Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, NJ, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Guangyu Robert Yang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | | | - Douglas H Schultz
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
14
|
Kang W, Pineda Hernández S, Wang J, Malvaso A. Instruction-based learning: A review. Neuropsychologia 2022; 166:108142. [PMID: 34999133 DOI: 10.1016/j.neuropsychologia.2022.108142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Humans are able to learn to implement novel rules from instructions rapidly, which is termed "instruction-based learning" (IBL). This remarkable ability is very important in our daily life in both learning individually or working as a team, and almost every psychology experiment starts with instructing participants. Many recent progresses have been made in IBL research both psychologically and neuroscientifically. In this review, we discuss the role of language in IBL, the importance of the first trial performance in IBL, why IBL should be considered as a goal-directed behavior, intelligence and IBL, cognitive flexibility and IBL, how behaviorally relevant information is processed in the lateral prefrontal cortex (LPFC), how the lateral frontal cortex (LFC) networks work as a functional hierarchy during IBL, and the cortical and subcortical contributions to IBL. Finally, we develop a neural working model for IBL and provide some sensible directions for future research.
Collapse
Affiliation(s)
- Weixi Kang
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| | | | - Junxin Wang
- School of Nursing, Beijing University of Chinese Medicine, China
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Jones JS, The Calm Team, Astle DE. A transdiagnostic data-driven study of children's behaviour and the functional connectome. Dev Cogn Neurosci 2021; 52:101027. [PMID: 34700195 PMCID: PMC8551598 DOI: 10.1016/j.dcn.2021.101027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 10/24/2022] Open
Abstract
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child's profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome.
Collapse
Affiliation(s)
- Jonathan S Jones
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK.
| | - The Calm Team
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| |
Collapse
|
16
|
Exploring the Link between Novel Task Proceduralization and Motor Simulation. J Cogn 2021; 4:57. [PMID: 34693200 PMCID: PMC8485871 DOI: 10.5334/joc.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Our ability to generate efficient behavior from novel instructions is critical for our adaptation to changing environments. Despite the absence of previous experience, novel instructed content is quickly encoded into an action-based or procedural format, facilitating automatic task processing. In the current work, we investigated the link between proceduralization and motor simulation, specifically, whether the covert activation of the task-relevant responses is used during the assembly of action-based instructions representations. Across three online experiments, we used a concurrent finger-tapping task to block motor simulation during the encoding of novel stimulus-response (S-R) associations. The overlap between the mappings and the motor task at the response level was manipulated. We predicted a greater impairment at mapping implementation in the overlapping condition, where the mappings' relevant response representations were already loaded by the motor demands, and thus, could not be used in the upcoming task simulation. This hypothesis was robustly supported by the three datasets. Nonetheless, the overlapping effect was not modulated by further manipulations of proceduralization-related variables (preparation demands in Exp.2, mapping novelty in Exp.3). Importantly, a fourth control experiment ruled out that our results were driven by alternative accounts as fatigue or negative priming. Overall, we provided strong evidence towards the involvement of motor simulation during anticipatory task reconfiguration. However, this involvement was rather general, and not restricted to novelty scenarios. Finally, these findings can be also integrated into broader models of anticipatory task control, stressing the role of the motor system during preparation.
Collapse
|
17
|
Reimer CB, Chen Z, Verbruggen F. Benefits and costs of self-paced preparation of novel task instructions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210762. [PMID: 34754496 PMCID: PMC8493201 DOI: 10.1098/rsos.210762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Rapidly executing novel instructions is a critical ability. However, it remains unclear whether longer preparation of novel instructions improves performance, and if so, whether this link is modulated by performance benefits and costs of preparation. Regarding the first question, we reanalysed previous data on novel instruction implementation and ran Experiment 1. Experiment 1 consisted of multiple mini-blocks, in which participants prepared four novel stimulus-response (S-R) mappings in a self-paced instruction phase. After participants indicated they were ready, one of the four stimuli was presented and they responded. The reanalysis and Experiment 1 showed that longer preparation indeed led to better performance. To examine if preparation was modulated when the benefits of preparation were reduced, we presented the correct response with the stimulus on some trials in Experiments 2 and 3. Preparation was shorter when the probability that the correct response was presented with the stimulus increased. In Experiment 4, we manipulated the costs of preparation by changing the S-R mappings between the instruction and execution phases on some trials. This had only limited effects on preparation time. In conclusion, self-paced preparation of novel instructions comes with performance benefits and costs, and participants adjust their preparation strategy to the task context.
Collapse
Affiliation(s)
| | - Zhang Chen
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
18
|
Amir I, Peleg L, Meiran N. Automatic effects of instructions: a tale of two paradigms. PSYCHOLOGICAL RESEARCH 2021; 86:1467-1486. [PMID: 34581856 PMCID: PMC8477365 DOI: 10.1007/s00426-021-01596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
When examining rapid instructed task learning behaviorally, one out of two paradigms is usually used, the Inducer-Diagnostic (I-D) and the NEXT paradigm. Even though both paradigms are supposed to examine the same phenomenon of Automatic Effect of Instructions (AEI), there are some meaningful differences between them, notably in the size of the AEI. In the current work, we examined, in two pre-registered studies, the potential reasons for these differences in AEI size. Study 1 examined the influence of the data-analytic approach by comparing two existing relatively large data-sets, one from each paradigm (Braem et al., in Mem Cogn 47:1582–1591, 2019; Meiran et al., in Neuropsychologia 90:180–189, 2016). Study 2 focused on the influence of instruction type (concrete, as in NEXT, and abstract, as in I-D) and choice complexity of the task in which AEI-interference is assessed. We did that while using variants of the NEXT paradigm, some with modifications that approximated it to the I-D paradigm. Results from Study 1 indicate that the data-analytic approach partially explains the differences between the paradigms in terms of AEI size. Still, the paradigms remained different with respect to individual differences and with respect to AEI size in the first step following the instructions. Results from Study 2 indicate that Instruction type and the choice complexity in the phase in which AEI is assessed do not influence AEI size, or at least not in the expected direction. Theoretical and study-design implications are discussed.
Collapse
Affiliation(s)
- Inbar Amir
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Liran Peleg
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nachshon Meiran
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
19
|
Learning the Abstract General Task Structure in a Rapidly Changing Task Content. J Cogn 2021; 4:31. [PMID: 34278208 PMCID: PMC8269791 DOI: 10.5334/joc.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
The ability to learn abstract generalized structures of tasks is crucial for humans to adapt to changing environments and novel tasks. In a series of five experiments, we investigated this ability using a Rapid Instructed Task Learning paradigm (RITL) comprising short miniblocks, each involving two novel stimulus-response rules. Each miniblock included (a) instructions for the novel stimulus-response rules, (b) a NEXT phase involving a constant (familiar) intervening task (0–5 trials), (c) execution of the newly instructed rules (2 trials). The results show that including a NEXT phase (and hence, a prospective memory demand) led to relatively more robust abstract learning as indicated by increasingly faster responses with experiment progress. Multilevel modeling suggests that the prospective memory demand was just another aspect of the abstract task structure which has been learned.
Collapse
|
20
|
Oathes DJ, Balderston NL, Kording KP, DeLuisi JA, Perez GM, Medaglia JD, Fan Y, Duprat RJ, Satterthwaite TD, Sheline YI, Linn KA. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 12:e1553. [PMID: 33470055 DOI: 10.1002/wcs.1553] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Combining transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging offers an unprecedented tool for studying how brain networks interact in vivo and how repetitive trains of TMS modulate those networks among patients diagnosed with affective disorders. TMS compliments neuroimaging by allowing the interrogation of causal control among brain circuits. Together with TMS, neuroimaging can provide valuable insight into the mechanisms underlying treatment effects and downstream circuit communication. Here we provide a background of the method, review relevant study designs, consider methodological and equipment options, and provide statistical recommendations. We conclude by describing emerging approaches that will extend these tools into exciting new applications. This article is categorized under: Psychology > Emotion and Motivation Psychology > Theory and Methods Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A DeLuisi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gianna M Perez
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Romain J Duprat
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kristin A Linn
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Sheffield JM, Mohr H, Ruge H, Barch DM. Disrupted Salience and Cingulo-Opercular Network Connectivity During Impaired Rapid Instructed Task Learning in Schizophrenia. Clin Psychol Sci 2021; 9:210-221. [PMID: 37771650 PMCID: PMC10538093 DOI: 10.1177/2167702620959341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Rapid instructed task learning (RITL) is the uniquely human ability to transform task information into goal-directed behavior without relying on trial-and-error learning. RITL is a core cognitive process supported by functional brain networks. In patients with schizophrenia, RITL ability is impaired, but the role of functional network connectivity in these RITL deficits is unknown. We investigated task-based connectivity of eight a priori network pairs in participants with schizophrenia (n = 29) and control participants (n = 31) during the performance of an RITL task. Multivariate pattern analysis was used to determine which network connectivity patterns predicted diagnostic group. Of all network pairs, only the connectivity between the cingulo-opercular network (CON) and salience network (SAN) during learning classified patients and control participants with significant accuracy (80%). CON-SAN connectivity during learning was significantly associated with task performance in participants with schizophrenia. These findings suggest that impaired interactions between identification of salient stimuli and maintenance of task goals contributes to RITL deficits in participants with schizophrenia.
Collapse
Affiliation(s)
- Julia M. Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center
| | - Holger Mohr
- Department of Psychology, Technische Universität Dresden
| | - Hannes Ruge
- Department of Psychology, Technische Universität Dresden
| | - Deanna M. Barch
- Department of Psychological & Brain Science, Washington University in St. Louis
- Department of Psychiatry, Washington University in St. Louis
| |
Collapse
|
22
|
Waris O, Jylkkä J, Fellman D, Laine M. Spontaneous strategy use during a working memory updating task. Acta Psychol (Amst) 2021; 212:103211. [PMID: 33220613 DOI: 10.1016/j.actpsy.2020.103211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
Cognitive skill learning postulates strategy generation and implementation when people learn to perform new tasks. Here we followed self-reported strategy use and objective performance in a working memory (WM) updating task to reveal strategy development that should take place when faced with this novel task. In two pre-registered online experiments with healthy adults, we examined short-term strategy acquisition in a ca 20-30-minute adaptive n-back WM task with 15 task blocks by collecting participants' strategy reports after each block. Experiment 1 showed that (a) about half of the participants reported using a strategy already during the very first task block, (b) changes in selected strategy were most common during the initial task blocks, and (c) more elaborated strategy descriptions predicted better task performance. Experiment 2 mostly replicated these findings, and it additionally showed that compared to open-ended questions, the use of repeated list-based strategy queries influenced subsequent strategy use and task performance, and also indicated higher rates of strategy implementation and strategy change during the task. Strategy use was also a significant predictor of n-back performance, albeit some of the variance it explained was shared with verbal productivity that was measured with a picture description task. The present results concur with the cognitive skill learning perspective and highlight the dynamics of carrying out a demanding cognitive task.
Collapse
|
23
|
Flexible Coordinator and Switcher Hubs for Adaptive Task Control. J Neurosci 2020; 40:6949-6968. [PMID: 32732324 PMCID: PMC7470914 DOI: 10.1523/jneurosci.2559-19.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
Functional connectivity (FC) studies have identified at least two large-scale neural systems that constitute cognitive control networks, the frontoparietal network (FPN) and cingulo-opercular network (CON). Control networks are thought to support goal-directed cognition and behavior. It was previously shown that the FPN flexibly shifts its global connectivity pattern according to task goal, consistent with a "flexible hub" mechanism for cognitive control. Our aim was to build on this finding to develop a functional cartography (a multimetric profile) of control networks in terms of dynamic network properties. We quantified network properties in (male and female) humans using a high-control-demand cognitive paradigm involving switching among 64 task sets. We hypothesized that cognitive control is enacted by the FPN and CON via distinct but complementary roles reflected in network dynamics. Consistent with a flexible "coordinator" mechanism, FPN connections were varied across tasks, while maintaining within-network connectivity to aid cross-region coordination. Consistent with a flexible "switcher" mechanism, CON regions switched to other networks in a task-dependent manner, driven primarily by reduced within-network connections to other CON regions. This pattern of results suggests FPN acts as a dynamic, global coordinator of goal-relevant information, while CON transiently disbands to lend processing resources to other goal-relevant networks. This cartography of network dynamics reveals a dissociation between two prominent cognitive control networks, suggesting complementary mechanisms underlying goal-directed cognition.SIGNIFICANCE STATEMENT Cognitive control supports a variety of behaviors requiring flexible cognition, such as rapidly switching between tasks. Furthermore, cognitive control is negatively impacted in a variety of mental illnesses. We used tools from network science to characterize the implementation of cognitive control by large-scale brain systems. This revealed that two systems, the frontoparietal (FPN) and cingulo-opercular (CON) networks, have distinct but complementary roles in controlling global network reconfigurations. The FPN exhibited properties of a flexible coordinator (orchestrating task changes), while CON acted as a flexible switcher (switching specific regions to other systems to lend processing resources). These findings reveal an underlying distinction in cognitive processes that may be applicable to clinical, educational, and machine learning work targeting cognitive flexibility.
Collapse
|
24
|
Adolescents at clinical high risk for psychosis show qualitatively altered patterns of activation during rule learning. NEUROIMAGE-CLINICAL 2020; 27:102286. [PMID: 32512402 PMCID: PMC7281799 DOI: 10.1016/j.nicl.2020.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/05/2022]
Abstract
Novel investigation of novel rule learning in psychosis risk. Failed to replicate previous study comparing novel and practiced rule learning. No significant group differences, but effect size comparison revealed differences. Results suggest that psychosis risk group may rely on different rule retrieval strategies.
Background The ability to flexibly apply rules to novel situations is a critical aspect of adaptive human behavior. While executive function deficits are known to appear early in the course of psychosis, it is unclear which specific facets are affected. Identifying whether rule learning is impacted at the early stages of psychosis is necessary for truly understanding the etiology of psychosis and may be critical for designing novel treatments. Therefore, we examined rule learning in healthy adolescents and those meeting criteria for clinical high risk (CHR) for psychosis. Methods 24 control and 22 CHR adolescents underwent rapid, high-resolution fMRI while performing a paradigm which required them to apply novel or practiced task rules. Results Previous work has suggested that practiced rules rely on rostrolateral prefrontal cortex (RLPFC) during rule encoding and dorsolateral prefrontal cortex (DLPFC) during task performance, while novel rules show the opposite pattern. We failed to replicate this finding, with greater activity for novel rules during performance. Comparing the HC and CHR group, there were no statistically significant effects, but an effect size analysis found that the CHR group showed less activation during encoding and greater activation during performance. This suggests the CHR group may use less efficient reactive control to retrieve task rules at the time of task performance, rather than proactively during rule encoding. Conclusions These findings suggest that flexibility is qualitatively altered in the clinical high risk state, however, more data is needed to determine whether these deficits predict disease progression.
Collapse
|
25
|
Melnikoff DE, Lambert R, Bargh JA. Attitudes as prepared reflexes. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2020. [DOI: 10.1016/j.jesp.2019.103950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Allegra M, Seyed-Allaei S, Schuck NW, Amati D, Laio A, Reverberi C. Brain network dynamics during spontaneous strategy shifts and incremental task optimization. Neuroimage 2020; 217:116854. [PMID: 32334091 DOI: 10.1016/j.neuroimage.2020.116854] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023] Open
Abstract
With practice, humans improve their performance in a task by either optimizing a known strategy or discovering a novel, potentially more fruitful strategy. We investigated the neural processes underlying these two fundamental abilities by applying fMRI in a task with two possible alternative strategies. For analysis we combined time-resolved network analysis with Coherence Density Peak Clustering (Allegra et al., 2017), univariate GLM, and multivariate pattern classification. Converging evidence showed that the posterior portion of the default network, i.e. the precuneus and the angular gyrus bilaterally, has a central role in the optimization of the current strategy. These regions encoded the relevant spatial information, increased the strength of local connectivity as well as the long-distance connectivity with other relevant regions in the brain (e.g., visual cortex, dorsal attention network). The connectivity increase was proportional to performance optimization. By contrast, the anterior portion of the default network (i.e. medial prefrontal cortex) and the rostral portion of the fronto-parietal network were associated with new strategy discovery: an early increase of local and long-range connectivity centered on these regions was only observed in the subjects who would later shift to a new strategy. Overall, our findings shed light on the dynamic interactions between regions related to attention and with cognitive control, underlying the balance between strategy exploration and exploitation. Results suggest that the default network, far from being "shut-down" during task performance, has a pivotal role in the background exploration and monitoring of potential alternative courses of action.
Collapse
Affiliation(s)
- Michele Allegra
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, 34136, Trieste, Italy; Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, 13005, Marseille, France.
| | - Shima Seyed-Allaei
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Daniele Amati
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, 34136, Trieste, Italy
| | - Alessandro Laio
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, 34136, Trieste, Italy; International Centre for Theoretical Physics, 34100, Trieste, Italy
| | - Carlo Reverberi
- Department of Psychology, Università Milano - Bicocca, Milan, Italy; NeuroMI - Milan Center for Neuroscience, Milan, Italy.
| |
Collapse
|
27
|
Pereg M, Meiran N. Power of instructions for task implementation: superiority of explicitly instructed over inferred rules. PSYCHOLOGICAL RESEARCH 2020; 85:1047-1065. [PMID: 32002616 DOI: 10.1007/s00426-020-01293-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/14/2020] [Indexed: 11/26/2022]
Abstract
"Power of instructions" originally referred to automatic response activation associated with instructed rules, but previous examination of the power of instructed rules in actual task implementation has been limited. Typical tasks involve both explicit aspects (e.g., instructed stimulus-response mapping rules) and implied, yet easily inferred aspects (e.g., be ready, attend to error beeps) and it is unknown if inferred aspects also become readily executable like their explicitly instructed counterparts. In each mini-block of our paradigm we introduced a novel two-choice task. In the instructions phase, one stimulus was explicitly mapped to a response; whereas the other stimulus' response mapping had to be inferred. Results show that, in most cases, explicitly instructed rules were implemented more efficiently than inferred rules, but this advantage was observed only in the first trial following instructions (though not in the first implementation of the rules), which suggests that the entire task set was implemented in the first trial. Theoretical implications are discussed.
Collapse
Affiliation(s)
- Maayan Pereg
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Nachshon Meiran
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| |
Collapse
|
28
|
Ruge H, Schäfer TA, Zwosta K, Mohr H, Wolfensteller U. Neural representation of newly instructed rule identities during early implementation trials. eLife 2019; 8:48293. [PMID: 31738167 PMCID: PMC6884394 DOI: 10.7554/elife.48293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/16/2019] [Indexed: 01/06/2023] Open
Abstract
By following explicit instructions, humans instantaneously get the hang of tasks they have never performed before. We used a specially calibrated multivariate analysis technique to uncover the elusive representational states during the first few implementations of arbitrary rules such as ‘for coffee, press red button’ following their first-time instruction. Distributed activity patterns within the ventrolateral prefrontal cortex (VLPFC) indicated the presence of neural representations specific of individual stimulus-response (S-R) rule identities, preferentially for conditions requiring the memorization of instructed S-R rules for correct performance. Identity-specific representations were detectable starting from the first implementation trial and continued to be present across early implementation trials. The increasingly fluent application of novel rule representations was channelled through increasing cooperation between VLPFC and anterior striatum. These findings inform representational theories on how the prefrontal cortex supports behavioral flexibility specifically by enabling the ad-hoc coding of newly instructed individual rule identities during their first-time implementation.
Collapse
Affiliation(s)
- Hannes Ruge
- Technische Universität Dresden, Dresden, Germany
| | - Theo Aj Schäfer
- Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Holger Mohr
- Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
29
|
Palenciano AF, González-García C, Arco JE, Pessoa L, Ruz M. Representational Organization of Novel Task Sets during Proactive Encoding. J Neurosci 2019; 39:8386-8397. [PMID: 31427394 PMCID: PMC6794921 DOI: 10.1523/jneurosci.0725-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 11/21/2022] Open
Abstract
Recent multivariate analyses of brain data have boosted our understanding of the organizational principles that shape neural coding. However, most of this progress has focused on perceptual visual regions (Connolly et al., 2012), whereas far less is known about the organization of more abstract, action-oriented representations. In this study, we focused on humans' remarkable ability to turn novel instructions into actions. While previous research shows that instruction encoding is tightly linked to proactive activations in frontoparietal brain regions, little is known about the structure that orchestrates such anticipatory representation. We collected fMRI data while participants (both males and females) followed novel complex verbal rules that varied across control-related variables (integrating within/across stimuli dimensions, response complexity, target category) and reward expectations. Using representational similarity analysis (Kriegeskorte et al., 2008), we explored where in the brain these variables explained the organization of novel task encoding, and whether motivation modulated these representational spaces. Instruction representations in the lateral PFC were structured by the three control-related variables, whereas intraparietal sulcus encoded response complexity and the fusiform gyrus and precuneus organized its activity according to the relevant stimulus category. Reward exerted a general effect, increasing the representational similarity among different instructions, which was robustly correlated with behavioral improvements. Overall, our results highlight the flexibility of proactive task encoding, governed by distinct representational organizations in specific brain regions. They also stress the variability of motivation-control interactions, which appear to be highly dependent on task attributes, such as complexity or novelty.SIGNIFICANCE STATEMENT In comparison with other primates, humans display a remarkable success in novel task contexts thanks to our ability to transform instructions into effective actions. This skill is associated with proactive task-set reconfigurations in frontoparietal cortices. It remains yet unknown, however, how the brain encodes in anticipation the flexible, rich repertoire of novel tasks that we can achieve. Here we explored cognitive control and motivation-related variables that might orchestrate the representational space for novel instructions. Our results showed that different dimensions become relevant for task prospective encoding, depending on the brain region, and that the lateral PFC simultaneously organized task representations following different control-related variables. Motivation exerted a general modulation upon this process, diminishing rather than increasing distances among instruction representations.
Collapse
Affiliation(s)
- Ana F Palenciano
- Mind, Brain, and Behavior Research Center, University of Granada, 18011, Granada, Spain
| | | | - Juan E Arco
- Mind, Brain, and Behavior Research Center, University of Granada, 18011, Granada, Spain
| | - Luiz Pessoa
- Psychology Department, University of Maryland 20742
| | - María Ruz
- Mind, Brain, and Behavior Research Center, University of Granada, 18011, Granada, Spain,
| |
Collapse
|
30
|
Bugmann G, Goslin J, Thill S. Probing the early phase of rapid instructed rule encoding. Biosystems 2019; 184:103993. [PMID: 31514074 DOI: 10.1016/j.biosystems.2019.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Humans can rapidly convert instructions about a rule into functional neural structures used to apply the rule. The early stages of this encoding process are poorly understood. We designed a stimulus-response (SR) task in which participants were first shown a SR rule on a screen for 200 ms, and then had to apply it to a test stimulus T, which either matched the S in the rule (SR trial) or not (catch trial). To investigate the early stages of rule encoding, the delay between the end of rule display and the onset of the test stimulus was manipulated and chosen between values of 50 ms to 1300 ms. Participants conducted three sessions of 288 trials each, separated by a median of 9 h. Random sequences of 20 rules were used. We then analysed the reaction times and the types of errors made by participants in the different conditions. The analysis of practice effects in session 1 suggests that the neural networks that process SR and catch trials are at least partially distinct, and improve separately during the practice of respectively SR and catch trials. The rule-encoding process, however, is common to both tasks and improves with the number of trials, irrespective of the trial type. Rule encoding shows interesting dynamic properties that last for 500 ms after the end of the stimulus presentation. The encoding process increases the response time in a non-stochastic way, simply adding a reaction time cost to all responses. The rule-retrieval system is functional before the encoding has stabilized, as early as 50 ms after the end of SR rule presentation, with low response errors. It is sensitive to masking however, producing errors with brief (100 ms) test stimulus presentations. Once encoding has stabilized, the sensitivity to masking disappears. It is suggested that participants do encode rules as a parametrized function, using the same neural encoding structure for each trial, rather than reconfiguring their brain anew for each new SR rule. This structure would have been implemented from instructions received prior to the experiment, by using a library of neural functions available in the brain. The observed errors are consistent with this view.
Collapse
Affiliation(s)
- Guido Bugmann
- Centre for Robotics and Neural Systems, Plymouth University, UK.
| | | | - Serge Thill
- Centre for Robotics and Neural Systems, Plymouth University, UK; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Netherlands.
| |
Collapse
|
31
|
Abstract
Most biological and artificial neural systems are capable of completing multiple tasks. However, the neural mechanism by which multiple tasks are accomplished within the same system is largely unclear. We start by discussing how different tasks can be related, and methods to generate large sets of inter-related tasks to study how neural networks and animals perform multiple tasks. We then argue that there are mechanisms that emphasize either specialization or flexibility. We will review two such neural mechanisms underlying multiple tasks at the neuronal level (modularity and mixed selectivity), and discuss how different mechanisms can emerge depending on training methods in neural networks.
Collapse
|
32
|
Pereg M, Meiran N. Rapid instructed task learning (but not automatic effects of instructions) is influenced by working memory load. PLoS One 2019; 14:e0217681. [PMID: 31170202 PMCID: PMC6553735 DOI: 10.1371/journal.pone.0217681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
The ability to efficiently perform actions immediately following instructions and without prior practice has previously been termed Rapid Instructed Task Learning (RITL). In addition, it was found that instructions are so powerful that they can produce automatic effects, reflected in activation of the instructions in an inappropriate task context. RITL is hypothesized to rely on limited working memory (WM) resources for holding not-yet implemented task rules. Similarly, automatic effects of instructions presumably reflect the operation of task rules kept in WM. Therefore, both were predicted to be influenced by WM load. However, while the involvement of WM in RITL is implicated from prior studies, evidence regarding WM involvement in instructions-based automaticity is mixed. In the current study, we manipulated WM load by increasing the number of novel task rules to be held in WM towards performance in the NEXT paradigm. In this task, participants performed a series of novel tasks presented in mini-blocks, each comprising a) instructions of novel task rules; b) a NEXT phase measuring the automatic activation of these instructed rules, in which participants advance the screen using a key-press; and c) a GO phase in which the new rules are first implemented and RITL is measured. In three experiments, we show a dissociation: While RITL (rule implementation) was impaired by increased WM load, the automatic effects of instructions were not robustly influenced by WM load. Theoretical implications are discussed.
Collapse
Affiliation(s)
- Maayan Pereg
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| | - Nachshon Meiran
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
33
|
Abstract
Instructions are so effective that they can sometimes affect performance beyond the instructed context. Such 'automatic' effects of instructions (AEI) have received much interest recently. It has been argued that AEI are restricted to relatively simple and specific S-R tasks or action plans. The present study put this idea further to the test. In a series of experiments based on the NEXT paradigm (Meiran, Pereg, Kessler, Cole, & Braver, 2015a) we investigated the specificity of AEI. In Experiment 1, we presented category-response instructions instead of S-R instructions. Nevertheless, we observed AEI for novel stimuli from the instructed category (Experiment 1a), and abstractness of the category did not modulate the size of the NEXT effect (Experiment 1b). However, Experiment 2 revealed specificity at the response level: AEI were much smaller in conditions where the instructed GO response is semantically related to, but procedurally different from the required NEXT response, compared to a condition where the NEXT and GO responses were the same. Combined, these findings indicate that AEI can occur when S(C)-R instructions are abstract at the stimulus level, arguing against previous proposals. However, AEI does seem to require specificity at the response level. We discuss implications for recent theories of instruction-based learning and AEI.
Collapse
|
34
|
Abstract
The human brain is organized into specialized functional brain networks. Some networks are dedicated to early sensory processing, and others to generating motor outputs. Yet, the bulk of the human brain's functional networks is actually dedicated to control processes. The two control networks most important for the impressive repertoire of control-related behaviors that humans are able to instantiate and maintain are the frontoparietal and cinguloopercular networks. We provide evidence that these two control networks largely contribute to nonoverlapping domains of control. These networks largely have been studied using fMRI, which is sensitive only to infraslow activity. Complementary electrophysiological techniques have provided evidence that these networks manifest at substantially faster frequencies (delta-alpha band), supporting their role in coordination of whole-brain functional network activity. Both the frontoparietal and cinguloopercular networks demonstrate protracted development, supporting increases in control-related performance. Recent studies from our lab indicate these control networks exhibit measurable individual specificity, highlighting the importance of individualized paradigms in neuroimaging studies to advance our understanding of typical and atypical control network function throughout the life span.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
35
|
Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 30250390 PMCID: PMC6136121 DOI: 10.31887/dcns.2018.20.2/smarek] [Citation(s) in RCA: 464] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The frontoparietal network is critical for our ability to coordinate behavior in a rapid, accurate, and flexible goal-driven manner. In this review, we outline support for the framing of the frontoparietal network as a distinct control network, in part functioning to flexibly interact with and alter other functional brain networks. This network coordination likely occurs in a 4 Hz to 73 Hz θ/α rhythm, both during resting state and task state. Precision mapping of individual human brains has revealed that the functional topography of the frontoparietal network is variable between individuals, underscoring the notion that group-average studies of the frontoparietal network may be obscuring important typical and atypical features. Many forms of psychopathology implicate the frontoparietal network, such as schizophrenia and attention-deficit/hyperactivity disorder. Given the interindividual variability in frontoparietal network organization, clinical studies will likely benefit greatly from acquiring more individual subject data to accurately characterize resting-state networks compromised in psychopathology.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Program in Occupational Therapy, Washington University School of Medicine, St Louis, Missouri, USA; Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
36
|
Deterministic response strategies in a trial-and-error learning task. PLoS Comput Biol 2018; 14:e1006621. [PMID: 30496285 PMCID: PMC6289466 DOI: 10.1371/journal.pcbi.1006621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/11/2018] [Accepted: 11/02/2018] [Indexed: 01/22/2023] Open
Abstract
Trial-and-error learning is a universal strategy for establishing which actions are beneficial or harmful in new environments. However, learning stimulus-response associations solely via trial-and-error is often suboptimal, as in many settings dependencies among stimuli and responses can be exploited to increase learning efficiency. Previous studies have shown that in settings featuring such dependencies, humans typically engage high-level cognitive processes and employ advanced learning strategies to improve their learning efficiency. Here we analyze in detail the initial learning phase of a sample of human subjects (N = 85) performing a trial-and-error learning task with deterministic feedback and hidden stimulus-response dependencies. Using computational modeling, we find that the standard Q-learning model cannot sufficiently explain human learning strategies in this setting. Instead, newly introduced deterministic response models, which are theoretically optimal and transform stimulus sequences unambiguously into response sequences, provide the best explanation for 50.6% of the subjects. Most of the remaining subjects either show a tendency towards generic optimal learning (21.2%) or at least partially exploit stimulus-response dependencies (22.3%), while a few subjects (5.9%) show no clear preference for any of the employed models. After the initial learning phase, asymptotic learning performance during the subsequent practice phase is best explained by the standard Q-learning model. Our results show that human learning strategies in the presented trial-and-error learning task go beyond merely associating stimuli and responses via incremental reinforcement. Specifically during initial learning, high-level cognitive processes support sophisticated learning strategies that increase learning efficiency while keeping memory demands and computational efforts bounded. The good asymptotic fit of the Q-learning model indicates that these cognitive processes are successively replaced by the formation of stimulus-response associations over the course of learning.
Collapse
|
37
|
Pereg M, Shahar N, Meiran N. Can we learn to learn? The influence of procedural working-memory training on rapid instructed-task-learning. PSYCHOLOGICAL RESEARCH 2018; 83:132-146. [PMID: 30478608 DOI: 10.1007/s00426-018-1122-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022]
Abstract
Humans have the unique ability to efficiently execute instructions that were never practiced beforehand. In this Rapid Instructed-Task-Learning, not-yet-executed novel rules are presumably held in procedural working-memory (WM), which is assumed to hold stimulus-to-response bindings. In this study, we employed a computerized-cognitive training protocol targeting procedural WM to test this assumption and to examine whether the ability to rapidly learn novel rules can itself be learned. 175 participants were randomly assigned to one of three groups: procedural WM training (involving task-switching and N-back elements, all with novel rules; Shahar and Meiran in PLoS One 10(3):e0119992, 2015), active-control training (adaptive visual-search task), and no-contact control. We examined participants' rapid instructed-task-learning abilities before and after training, by administrating 55 novel choice tasks, and measuring their performance in the first two trials (where participants had no practice). While all participants showed shorter reaction-times in post vs. pretest, only participants in the procedural WM training group did not demonstrate an increased error rate at posttest. Evidence accumulation modelling suggested that this result stems from a reduction in decision threshold (the amount of evidence that needs to be gathered to reach a decision), which was more pronounced in the control groups; possibly accompanied by an increased drift-rate (the rate of evidence accumulation) only for the training group. Implication are discussed.
Collapse
Affiliation(s)
- Maayan Pereg
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Nitzan Shahar
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Nachshon Meiran
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| |
Collapse
|
38
|
Palenciano AF, González-García C, Arco JE, Ruz M. Transient and Sustained Control Mechanisms Supporting Novel Instructed Behavior. Cereb Cortex 2018; 29:3948-3960. [DOI: 10.1093/cercor/bhy273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/30/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
The success of humans in novel environments is partially supported by our ability to implement new task procedures via instructions. This complex skill has been associated with the activity of control-related brain areas. Current models link fronto-parietal and cingulo-opercular networks with transient and sustained modes of cognitive control, based on observations during repetitive task settings or rest. The current study extends this dual model to novel instructed tasks. We employed a mixed design and an instruction-following task to extract phasic and tonic brain signals associated with the encoding and implementation of novel verbal rules. We also performed a representation similarity analysis to capture consistency in task-set encoding within trial epochs. Our findings show that both networks are involved while following novel instructions: transiently, during the implementation of the instruction, and in a sustained fashion, across novel trials blocks. Moreover, the multivariate results showed that task representations in the cingulo-opercular network were more stable than in the fronto-parietal one. Our data extend the dual model of cognitive control to novel demanding situations, highlighting the high flexibility of control-related regions in adopting different temporal profiles.
Collapse
Affiliation(s)
- Ana F Palenciano
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | | | - Juan E Arco
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - María Ruz
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
39
|
Whitehead PS, Egner T. Frequency of prospective use modulates instructed task-set interference. J Exp Psychol Hum Percept Perform 2018; 44:1970-1980. [PMID: 30265022 DOI: 10.1037/xhp0000586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that keeping an instructed task set in working memory (WM) for prospective use can interfere with behavior on an intervening task that employs shared stimuli-the prospective task-set-interference effect. One open question is whether people have strategic control over prospective task-set interference based on their expectations of whether task instructions will have to be implemented or recalled. To answer this question, we conducted two experiments that varied the likelihood with which a set of prospective task instructions would have to be implemented or recalled. Based on the hypothesis that participants are able to strategically modulate the manner in which a prospective task set is encoded in WM, we predicted that, as the frequency of implementing task instructions increased, so too would the magnitude of the prospective task-set-interference effect. We found that task instructions held in WM caused significant task-set interference, even in mostly recall conditions, but-crucially-that this interference effect scaled positively with the likelihood of having to implement the prospective set. These data suggest that task instructions are obligatorily encoded as a procedural task set, but that the degree to which this set impinges on ongoing stimulus processing is subject to some strategic control, possibly via modulation of the associations between declarative and procedural WM contents. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
40
|
Verbruggen F, McLaren R, Pereg M, Meiran N. Structure and Implementation of Novel Task Rules: A Cross-Sectional Developmental Study. Psychol Sci 2018; 29:1113-1125. [PMID: 29746205 PMCID: PMC6247441 DOI: 10.1177/0956797618755322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022] Open
Abstract
Rule-based performance improves remarkably throughout childhood. The present study examined how children and adolescents structured tasks and implemented rules when novel task instructions were presented in a child-friendly version of a novel instruction-learning paradigm. Each miniblock started with the presentation of new stimulus-response mappings for a go task. Before this mapping could be implemented, subjects had to make responses in order to advance through screens during a preparatory (" next") phase. Children (4-11 years old) and late adolescents (17-19 years old) responded more slowly during the next phase when the next response was incompatible with the instructed stimulus-response mapping. This instruction-based interference effect was more pronounced in young children than in older children. We argue that these findings are most consistent with age-related differences in rule structuring. We discuss the implications of our findings for theories of rule-based performance, instruction-based learning, and development.
Collapse
Affiliation(s)
- Frederick Verbruggen
- Department of Experimental Psychology, Ghent University
- School of Psychology, University of Exeter
| | | | - Maayan Pereg
- Department of Psychology, Ben-Gurion University of the Negev
| | - Nachshon Meiran
- Department of Psychology, Ben-Gurion University of the Negev
| |
Collapse
|
41
|
Marek S. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. DIALOGUES IN CLINICAL NEUROSCIENCE 2018; 20:133-140. [PMID: 30250390 PMCID: PMC6136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The frontoparietal network is critical for our ability to coordinate behavior in a rapid, accurate, and flexible goal-driven manner. In this review, we outline support for the framing of the frontoparietal network as a distinct control network, in part functioning to flexibly interact with and alter other functional brain networks. This network coordination likely occurs in a 4 Hz to 73 Hz θ/α rhythm, both during resting state and task state. Precision mapping of individual human brains has revealed that the functional topography of the frontoparietal network is variable between individuals, underscoring the notion that group-average studies of the frontoparietal network may be obscuring important typical and atypical features. Many forms of psychopathology implicate the frontoparietal network, such as schizophrenia and attention-deficit/hyperactivity disorder. Given the interindividual variability in frontoparietal network organization, clinical studies will likely benefit greatly from acquiring more individual subject data to accurately characterize resting-state networks compromised in psychopathology.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
42
|
Liefooghe B, Braem S, Meiran N. The implications and applications of learning via instructions. Acta Psychol (Amst) 2018; 184:1-3. [PMID: 29033028 DOI: 10.1016/j.actpsy.2017.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
Whereas psychology knows a long tradition of studies that focused on the role of practice and training in acquiring new skills or knowledge, systematic studies into learning via instructions remain relatively scarce. This is surprising given the tremendous influence instructions have on human behavior and cognition. In recent years, however, a (re)new(ed) interest into learning via instructions resulted in new paradigms and findings that can inspire future research in this understudied domain. We offer a brief overview of the articles in this special issue, which present some of the latest empirical developments dedicated to unraveling the implications and applications of learning via instructions. The special issue offers insights into the dynamics underlying the assimilation of new instructions and highlights the strengths and limitations of what can be achieved on the basis of instructions. Furthermore, the different studies showcase various examples of recent methodological advances in testing the effects of instructions. Finally, this special issue shows how different fields in psychology share similar questions on the role of instructions in human behavior, suggesting that this topic should no longer be considered as a subsidiary of these different fields, but as a research field on its own.
Collapse
|
43
|
A role for proactive control in rapid instructed task learning. Acta Psychol (Amst) 2018; 184:20-30. [PMID: 28651787 DOI: 10.1016/j.actpsy.2017.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 11/22/2022] Open
Abstract
Humans are often remarkably fast at learning novel tasks from instructions. Such rapid instructed task learning (RITL) likely depends upon the formation of new associations between long-term memory representations, which must then be actively maintained to enable successful task implementation. Consequently, we hypothesized that RITL relies more heavily on a proactive mode of cognitive control, in which goal-relevant information is actively maintained in preparation for anticipated high control demands. We tested this hypothesis using a recently developed cognitive paradigm consisting of 60 novel tasks involving RITL and 4 practiced tasks, with identical task rules and stimuli used across both task types. A robust behavioral cost was found in novel relative to practiced task performance, which was present even when the two were randomly inter-mixed, such that task-switching effects were equated. Novelty costs were most prominent under time-limited preparation conditions. In self-paced conditions, increased preparation time was found for novel trials, and was selectively associated with enhanced performance, suggesting greater proactive control for novel tasks. These results suggest a key role for proactive cognitive control in the ability to rapidly learn novel tasks from instructions.
Collapse
|
44
|
Meiran N, Liefooghe B, De Houwer J. Powerful Instructions: Automaticity Without Practice. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2017. [DOI: 10.1177/0963721417711638] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Automaticity is widely assumed to reflect hardwired tendencies or the outcome of prior practice. Recent research on automatic effects of instruction (AEIs), however, indicates that newly instructed tasks can become immediately automatic without ever having been practiced. This research shows that the representations underlying AEIs need not always be directly linked to an overt response but must be highly accessible for future use and involve bidirectional links between stimuli and responses. AEIs were also found to decrease with increasing intellectual abilities among young adults and from childhood to young adulthood, possibly because of improved abstract cognitive control. We argue that AEIs are based on the unintentional retrieval of episodic memories that encode instructions.
Collapse
Affiliation(s)
- Nachshon Meiran
- Department of Psychology, Ben-Gurion University of the Negev
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev
| | - Baptist Liefooghe
- Department of Experimental, Clinical, and Health Psychology, Ghent University
| | - Jan De Houwer
- Department of Experimental, Clinical, and Health Psychology, Ghent University
| |
Collapse
|
45
|
Katzir M, Ori B, Meiran N. “Optimal suppression” as a solution to the paradoxical cost of multitasking: examination of suppression specificity in task switching. PSYCHOLOGICAL RESEARCH 2017; 82:24-39. [DOI: 10.1007/s00426-017-0930-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
46
|
Cole MW, Braver TS, Meiran N. The task novelty paradox: Flexible control of inflexible neural pathways during rapid instructed task learning. Neurosci Biobehav Rev 2017; 81:4-15. [PMID: 28789810 PMCID: PMC5705534 DOI: 10.1016/j.neubiorev.2017.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 11/24/2022]
Abstract
Rapid instructed task learning (RITL) is one of the most remarkable human abilities, when considered from both computational and evolutionary perspectives. A key feature of RITL is that it enables new goals to be immediately pursued (and shared) following formation of task representations. Although RITL is a form of cognitive control that engenders immense flexibility, it also seems to produce inflexible activation of action plans in inappropriate contexts. We argue that this "prepared reflex" effect arises because RITL is implemented in the brain via a "flexible hub" mechanism, in which top-down influences from the frontoparietal control network reroute pathways among procedure-implementing brain areas (e.g., perceptual and motor areas). Specifically, we suggest that RITL-based proactive control - the preparatory biasing of task-relevant functional network routes - results in inflexible associative processing, demanding compensation in the form of increased reactive (in-the-moment) control. Thus, RITL produces a computational trade-off, in which the top-down influences of flexible hubs increase overall cognitive flexibility, but at the cost of temporally localized inflexibility (the prepared reflex effect).
Collapse
Affiliation(s)
- Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave., Newark, NJ, 07102, USA.
| | - Todd S Braver
- Department of Psychology, Washington University, St. Louis, MO, 63130, USA
| | - Nachshon Meiran
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
47
|
De Houwer J, Hughes S, Brass M. Toward a unified framework for research on instructions and other messages: An introduction to the special issue on the power of instructions. Neurosci Biobehav Rev 2017; 81:1-3. [PMID: 28457808 DOI: 10.1016/j.neubiorev.2017.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023]
Abstract
Instructions are known to have a profound impact on human behavior. Nevertheless, research on the effects of instructions is relatively scarce and scattered across different areas of research in psychology and neuroscience. The current issue of this journal contains six papers that review research on instructions in different research areas. In this introduction to the special issue, we provide the outline of a framework that focuses on five components that can be varied in research on this topic (sender, message, receiver, context, and outcome). The framework brings order to the boundless potential variability in research on the effects of messages (i.e., it has heuristic value) and highlights that past research explored only a tiny fraction of what is possible (i.e., it has predictive value). Moreover, it reveals that research in different areas tends to examine different instantiations of the five components. The latter observation implies that much can be gained from closer interactions between researchers from different areas.
Collapse
|