1
|
Liu M, Meng Y, Ouyang S, Zhai M, Yang L, Yang Y, Wang Y. Neuromodulation technologies improve functional recovery after brain injury: From bench to bedside. Neural Regen Res 2026; 21:506-520. [PMID: 39851132 DOI: 10.4103/nrr.nrr-d-24-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 01/26/2025] Open
Abstract
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine. These techniques utilize electricity, magnetism, sound, and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury. Therefore, this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury. Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury. However, studies report negative findings, potentially due to variations in stimulation protocols, differences in observation periods, and the severity of functional impairments among participants across different clinical trials. Additionally, we observed that different neuromodulation techniques share remarkably similar mechanisms, including promoting neuroplasticity, enhancing neurotrophic factor release, improving cerebral blood flow, suppressing neuroinflammation, and providing neuroprotection. Finally, considering the advantages and disadvantages of various neuromodulation techniques, we propose that future development should focus on closed-loop neural circuit stimulation, personalized treatment, interdisciplinary collaboration, and precision stimulation.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yijing Meng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Siguang Ouyang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Meng'ai Zhai
- Department of Neurosurgery, The 904 Hospital of PLA, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yang Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| |
Collapse
|
2
|
Chen D, Zhu L, Liu L, Zhou D, Wu X. Dynamic changes in comorbid conditions following vagus nerve stimulation for epilepsy. ACTA EPILEPTOLOGICA 2025; 7:33. [PMID: 40448234 PMCID: PMC12123979 DOI: 10.1186/s42494-025-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) has been widely used in the clinical treatment of epilepsy, while its effects on comorbidities in epilepsy remain incompletely elucidated. This study aimed to evaluate the impact of VNS on comorbidities and quality of life in adult patients with epilepsy. METHODS A longitudinal, multicenter cohort study was conducted from 2021 to 2024 among adult patients with epilepsy who underwent VNS implantation. We enrolled 128 participants from 83 hospitals. The inclusion criteria were patients over 18 years old, diagnosed with epilepsy according to the 2014 International League Against Epilepsy guidelines, and having complete data from at least two follow-up visits. Standard assessment tools, including diagnosis according to International Classification of Diseases, 10th Edition (ICD-10), Neurological Disorders Depression Inventory for Epilepsy (NDDI-E), Generalized Anxiexy Disorde-7 (GAD-7), Pittsburgh Sleep Quality Index (PSQI), and Quality of Life in Epilepsy-31 (QOLIE-31) were used to evaluate comorbidities and quality of life. Statistical analysis was performed using SPSS 26.0. The major clinical measurements were changes in the scales above before and after VNS implantation during follow-up. Generalized estimation model was applied to illustrate the effect over time an its relation to seizure control. RESULTS A total of 113 participants met the inclusion criteria. Baseline characteristics were comparable between the comorbidity and non-comorbidity groups in terms of gender, seizure onset, age at VNS implantation, seizure types, or the number of antiseizure medications used. Significant improvements were observed from the implantation to the end of follow-up. The PSQI score decreased from 5.43 ± 3.60 to 4.44 ± 3.14 (P < 0.01), indicating better sleep quality. Depressive symptoms (NDDI-E) and anxiety symptoms (GAD-7) decreased significantly, with scores dropping from 6.49 ± 4.67 to 4.83 ± 4.37 (P < 0.01) and from 7.15 ± 5.06 to 4.95 ± 3.69 (P < 0.01), respectively. The QOLIE-31 score increased from 54.40 ± 15.70 to 61.33 ± 16.19 (P < 0.01), suggesting improved quality of life. Further analysis indicated that in the early second postoperative follow-up (1 month after implantation), the scales had already improved significantly (P < 0.001 for PSQI and QOLIE-31, P = 0.006 for NDDI-E and GAD-7). We did not find any statistically significant difference between patients with comorbidity and those without on the efficacy of any scales in this study. The efficacy of VNS on the four scales above was related to follow-up time, with a slightly rebound at the last two follow-ups. The NDDI-E as well as the GAD-7 scores were related to better seizure control according to the GEE model. Higher stimulation currents over 1 mA did not improve the efficacy of VNS on the comorbid conditions. CONCLUSIONS VNS implantation significantly improved sleep quality, mental health, and overall quality of life in adult patients with epilepsy. Such effects could be observed shortly after the implantation and were mostly long-lasting. Further research is needed to validate its long-term effects.
Collapse
Affiliation(s)
- Deng Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lina Zhu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xintong Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Lin D, Ren Q, Ou Y, Li L, Peng D, Yang S. Neuroimaging studies of acupuncture for depressive disorder: a systematic review of published papers from 2014 to 2024. Front Psychiatry 2025; 16:1536660. [PMID: 40443752 PMCID: PMC12120174 DOI: 10.3389/fpsyt.2025.1536660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/14/2025] [Indexed: 06/02/2025] Open
Abstract
Background Several neuroimaging studies have confirmed that acupuncture can elicit alterations in brain networks and regions associated with depressive disorder (DD). This review provides an overview of the methodologies and results of neuroimaging investigations into the efficacy of acupuncture in treating DD, with the intention of guiding future research objectives. Methods Neuroimaging studies of acupuncture for DD being published between February 2, 2014 and February 2, 2024, were gathered from PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure, Chongqing VIP Database, WanFang Database, and Chinese Biomedical Literature Database. The methodological quality of the studies was assessed utilizing the Risk of Bias 2.0 and Risk of Bias in Non-Randomized Studies of Interventions tools. Following a qualitative analysis of the studies, relevant information regarding acupuncture interventions and brain imaging data was extracted. Results A total of 26 studies met the inclusion criteria. These studies featured a combined sample size of 1138 participants. All studies employed magnetic resonance imaging. Our findings indicate that acupuncture can affect neural activity in the cingulate gyrus, precuneus, insula, prefrontal lobe, etc. The neuroimaging results of most DD patients were correlated with the Hamilton Rating Scale for Depression scores. Conclusions The results of the current study indicate that acupuncture treatment may have a regulatory effect on the abnormal functioning of neural regions and networks in individuals diagnosed with DD. These networks are predominantly localized within various brain regions, including the default mode network, limbic system, emotion regulation and cognitive network, reward network, central executive network, salience network, and sensorimotor network. It is essential to conduct additional high-quality and multimodal neuroimaging research to expand upon these findings and elucidate the mechanisms by which acupuncture impacts patients with DD. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023400557.
Collapse
Affiliation(s)
- Dezhi Lin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ren
- Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangxu Ou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Longlong Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dezhong Peng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Zhu Z, Liu L. Exploring the Potential Role of the Cholinergic Anti-Inflammatory Pathway from the Perspective of Sepsis Pathophysiology. J Intensive Care Med 2025; 40:571-580. [PMID: 40223326 DOI: 10.1177/08850666251334342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Sepsis is one of the most prevalent conditions in critical care medicine and is characterized by a high incidence, mortality, and poor prognosis, with no specific treatment currently available. The pathogenesis of sepsis is complex with a dysregulated inflammatory response at its core. If the initial inflammatory response is not promptly controlled, patients often develop multiple organ dysfunction syndrome or die, whereas survivors may experience post-sepsis syndrome. Regulation by the central and autonomic nervous systems is essential for maintaining inflammatory homeostasis. Among these, the cholinergic anti-inflammatory pathway (CAP) has been extensively studied in sepsis owing to its significant role in modulating inflammatory responses. Recent advancements in CAP-related interventions include minimally invasive vagus nerve stimulation, novel α7nAchR-targeting drugs, serum choline acetyltransferase and cholinesterase, acupuncture, and focused ultrasound stimulation therapy. This review primarily discusses the advantages, limitations, and therapeutic prospects of these approaches. Additionally, heart rate variability, which reflects changes in autonomic nervous system function, can serve as an indicator for assessing the functional status of the vagus nerve. In summary, modulation of inflammatory responses through the vagus nerve-mediated CAP represents a potential strategy for achieving precision medicine for sepsis. Future research should focus on conducting high-quality clinical studies on CAP-based therapies in the context of sepsis-induced inflammatory dysregulation. Incorporating indicators to evaluate the autonomic nervous system function may further elucidate the impact of inflammatory dysregulation in the body.
Collapse
Affiliation(s)
- Ziyi Zhu
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lixia Liu
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Agetsuma M, Hatakeyama A, Yamada D, Kuniishi H, Ito C, Takeuchi E, Tsuji S, Tsutsumi M, Ichiki T, Otomo K, Yoshioka T, Kobayashi T, Noritake A, Aoki Y, Nemoto T, Yukawa H, Saitoh A, Nabekura J, Sekiguchi M. Minimally invasive, wide-field two-photon imaging of the brainstem at cellular resolution. CELL REPORTS METHODS 2025; 5:101010. [PMID: 40187350 DOI: 10.1016/j.crmeth.2025.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/01/2025] [Accepted: 02/26/2025] [Indexed: 04/07/2025]
Abstract
Brain-viscera communication is crucial for regulating mental health, with the vagus nerve being a key structure mediating this interaction. Clinically, artificial vagus nerve stimulation (VNS) is used to treat various neuropsychiatric disorders, highlighting the importance of vagal afferent fibers in emotion regulation. The nucleus tractus solitarii (NTS) is a brainstem structure proposed to receive signals from vagal afferents and relay them to brain networks for emotion regulation. However, due to the anatomical complexity and difficulty in accessing the deep-brain NTS region in vivo, its underlying mechanisms remain unclear. Here, we developed a wide-field and deep-brain two-photon imaging method using a double-prism optical interface. This approach enables cellular-resolution imaging to specifically detect NTS neural activity while largely preserving the overlying cerebellum, a region also implicated in emotion regulation. We evaluated NTS neuronal responses to VNS and a gastrointestinal hormone, demonstrating the method's utility for investigating the vagus-NTS pathway in vivo.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| | - Azumi Hatakeyama
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Daisuke Yamada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| | - Hiroshi Kuniishi
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Yoshida-gun 910-1193, Japan
| | - Chihiro Ito
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Eri Takeuchi
- Department of Molecular Therapy, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Shinji Tsuji
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Motosuke Tsutsumi
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, Okazaki 444-8787, Japan
| | - Takako Ichiki
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kohei Otomo
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, Okazaki 444-8787, Japan; Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Toshinori Yoshioka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Tomoko Kobayashi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, Okazaki 444-8787, Japan
| | - Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Akiyoshi Saitoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masayuki Sekiguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan; Department of Molecular Therapy, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| |
Collapse
|
6
|
Hajjeh O, Rajab I, Bdair M, Saife S, Zahran A, Nazzal I, AbuZahra MI, Jallad H, Abukhalil MM, Hallak M, Al-Said OS, Al-Braik R, Sawaftah Z, Milhem F, Almur O, Saife S, Aburemaileh M, Abuhilal A. Enteric nervous system dysfunction as a driver of central nervous system disorders: The Forgotten brain in neurological disease. Neuroscience 2025; 572:232-247. [PMID: 40088964 DOI: 10.1016/j.neuroscience.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The Enteric Nervous System (ENS), often called the "second brain," is a complex network of neurons and glial cells within the gastrointestinal (GI) tract. It functions autonomously while maintaining close communication with the central nervous system (CNS) via the gut-brain axis (GBA). ENS dysfunction plays a crucial role in neurodegenerative and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder. Disruptions such as altered neurotransmission, gut microbiota imbalance, and neuroinflammation contribute to disease pathogenesis. The GBA enables bidirectional communication through the vagus nerve, gut hormones, immune signaling, and microbial metabolites, linking gut health to neurological function. ENS dysregulation is implicated in conditions like irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), influencing systemic and CNS pathology through neuroinflammation and impaired barrier integrity. This review highlights emerging therapeutic strategies targeting ENS dysfunction, including prebiotics, probiotics, fecal microbiota transplantation (FMT), and vagus nerve stimulation, which offer novel ways to modulate gut-brain interactions. Unlike previous perspectives that view the ENS as a passive disease marker, this review repositions it as an active driver of neurological disorders. By integrating advances in ENS biomarkers, therapeutic targets, and GBA modulation, this article presents a paradigm shift-emphasizing ENS dysfunction as a fundamental mechanism in neurodegeneration and neurodevelopmental disorders. This perspective paves the way for innovative diagnostics, personalized gut-targeted therapies, and a deeper understanding of the ENS's role in brain health and disease.
Collapse
Affiliation(s)
- Orabi Hajjeh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Islam Rajab
- Internal Medicine Department, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503, USA
| | - Mohammad Bdair
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sarah Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anwar Zahran
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Iyad Nazzal
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Ibrahem AbuZahra
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Hammam Jallad
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Maram M Abukhalil
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Osama S Al-Said
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rama Al-Braik
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Sawaftah
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Fathi Milhem
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Omar Almur
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sakeena Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Aburemaileh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anfal Abuhilal
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| |
Collapse
|
7
|
Liu Y, Zhang Q, Zhang H, Xiang Y, Wang H. Research hotspots and frontiers of neuromodulation technology in the last decade: a visualization analysis based on the Web of Science database. Front Hum Neurosci 2025; 19:1574721. [PMID: 40292332 PMCID: PMC12021822 DOI: 10.3389/fnhum.2025.1574721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background Since the 1990s, neuromodulation technology has experienced rapid advancements, providing new therapeutic approaches for clinical rehabilitation in neurological disorders. The objective of this study is to utilize CiteSpace and VOSviewer to investigate the current research status, key topics, and future trends in the field of neuromodulation technology over the past decade. Methods Relevant literature in the field of neuromodulation technology published in Web of Science database from January 1, 2014 to June 18, 2024 were retrieved, and imported into CiteSpace and VOSviewer for visualization. VOSviewer was used for counties, institutions, authors and keywords analyses. CiteSpace was used for presentation visualization analysis of co-cited references, keywords clusters and bursts. Results This study encompasses a total of 1,348 relevant publications, with the number of publications showing an increasing trend year by year. The most significant growth was observed between 2020 and 2021. The United States, China and the United Kingdom are the three leading countries with high output in this regard. The top three institutions in terms of the publication volume are Harvard Medical School, the University of Toronto and Stanford University. Keyword co-occurrence and cluster analysis identified that deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are the most widely used central nerve stimulation techniques in neuromodulation. The treatment of intractable chronic pain also emerged as a key focus within neuromodulation techniques. The recent keywords bursts included terms such as recovery, movement, nucleus, modeling and plasticity, suggesting that the future research trend will be centered on these areas. Conclusion In conclusion, neuromodulation technology is garnering increasing attention from researchers and is currently widely used in brain diseases. Future research is expected to delve deeper, particularly into exploring deep brain structure stimulation targets and restoring motor function based on neuroplasticity theory.
Collapse
Affiliation(s)
- Yanpei Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Qian Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Haoran Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yun Xiang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
- Bao’an District Konghai Hospital, Shenzhen, Guangdong, China
| | - Hui Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Marano G, Rossi S, Sfratta G, Traversi G, Lisci FM, Anesini MB, Pola R, Gasbarrini A, Gaetani E, Mazza M. Gut Microbiota: A New Challenge in Mood Disorder Research. Life (Basel) 2025; 15:593. [PMID: 40283148 PMCID: PMC12028401 DOI: 10.3390/life15040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The gut microbiome has emerged as a novel and intriguing focus in mood disorder research. Emerging evidence demonstrates the significant role of the gut microbiome in influencing mental health, suggesting a bidirectional communication between the gut and the brain. This review examines the latest findings on the gut-microbiota-brain axis and elucidates how alterations in gut microbiota composition can influence this axis, leading to changes in brain function and behavior. Although dietary interventions, prebiotics, probiotics, and fecal microbiota transplantation have yielded encouraging results, significant advances are needed to establish next-generation approaches that precisely target the neurobiological mechanisms of mood disorders. Future research must focus on developing personalized treatments, facilitated by innovative therapies and technological progress, which account for individual variables such as age, sex, drug history, and lifestyle. Highlighting the potential therapeutic implications of targeting the gut microbiota, this review emphasizes the importance of integrating microbiota research into psychiatric studies to develop more effective and personalized treatment strategies for mood disorders.
Collapse
Affiliation(s)
- Giuseppe Marano
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Rossi
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Greta Sfratta
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Ospedale Isola Tiberina-Gemelli Isola, 00186 Rome, Italy
| | - Francesco Maria Lisci
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Benedetta Anesini
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Internal Medicine, Fondazione Poli-Clinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unit of Internal Medicine, Cristo Re Hospital, 00167 Rome, Italy
| | - Marianna Mazza
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
9
|
Li M, Yalcin N, Weiss DL, Hill LAT, Shah M, Garcia KA, Vale Diaz FL, Rueda Carrillo LG, Smith H, Moore‐Hill DT. NORSE secondary to anti-GAD65 antibody-positive encephalitis treated with novel adjunctive rapid titration VNS protocol. Epilepsia Open 2025; 10:581-586. [PMID: 39801479 PMCID: PMC12014908 DOI: 10.1002/epi4.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 04/24/2025] Open
Abstract
New Onset Refractory Status Epilepticus (NORSE) is a rare and severe condition characterized by refractory seizures in individuals without a prior history of epilepsy. This case report describes a 37-year-old woman diagnosed with anti-glutamic acid decarboxylase 65 (anti-GAD65) antibody-positive encephalitis-related NORSE. Her seizures were refractory to multiple interventions, including anti-seizure medications, anesthetics, immunotherapies, a ketogenic diet, and electroconvulsive therapy. Seizures recurred twice during the tapering of anesthetic medications. However, after 32 days of treatment, the seizures were successfully controlled. To maintain seizure control and facilitate the weaning of anesthetics, a Vagus Nerve Stimulator (VNS) was implanted using a novel rapid titration protocol. This allowed for the successful tapering of anesthetics by day 50, with no recurrence of seizures. At her 9-month follow-up, the patient remained seizure-free and had an improved quality of life. This case highlights that early initiation of immunosuppressive treatment may lead to a favorable prognosis. The novel application of VNS therapy assisted seizure control in NORSE, thus encouraging further research investigating the potential role of VNS in this condition. PLAIN LANGUAGE SUMMARY: New Onset Refractory Status Epilepticus (NORSE) is a rare and severe condition characterized by relentless seizures in individuals without a prior epilepsy history. This report shares the case of a 37-year-old woman with NORSE, associated with a high anti-glutamic acid decarboxylase 65 antibody titer. Her seizures were super-refractory, requiring multiple anti-seizure medications, anesthetics, immunotherapies, a ketogenic diet, and electroconvulsive therapy. Seizures recurred twice during the tapering of anesthetic medications. However, by hospital day 32, the seizures were successfully controlled with these interventions. To further stabilize seizure control and enable the successful discontinuation of anesthetics, a Vagus Nerve Stimulator (VNS) was implanted. The patient had no further seizures and gradually recovered back to her pre-disease baseline. This case suggests that a novel rapid VNS titration protocol could be a promising treatment option for NORSE, warranting further investigation.
Collapse
Affiliation(s)
- Mingyu Li
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| | - Nilufer Yalcin
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| | - Danielle L. Weiss
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| | - Leila A. T. Hill
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| | - Manan Shah
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| | | | - Fernando L. Vale Diaz
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| | | | - Hunter Smith
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| | - Debra T. Moore‐Hill
- Neurology DepartmentWellstar MCG Health at the Medical College of GeorgiaAugustaGeorgia
| |
Collapse
|
10
|
Zhong C, Yang K, Wang N, Yang L, Yang Z, Xu L, Wang J, Zhang L. Advancements in Surgical Therapies for Drug-Resistant Epilepsy: A Paradigm Shift towards Precision Care. Neurol Ther 2025; 14:467-490. [PMID: 39928287 PMCID: PMC11906941 DOI: 10.1007/s40120-025-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Epilepsy, a prevalent neurological disorder characterized by recurrent seizures, affects millions worldwide, with a significant proportion resistant to pharmacological treatments. Surgical interventions have emerged as pivotal in managing drug-resistant epilepsy (DRE), aiming to reduce seizure frequency or achieve seizure freedom. Traditional resective surgeries have evolved with technological advances, enhancing precision and safety. Neurostimulation techniques, such as responsive neurostimulation (RNS) and deep brain stimulation (DBS), now provide personalized, real-time seizure management, offering alternatives to traditional surgery. Minimally invasive ablative methods, such as laser interstitial thermal therapy (LITT) and Magnetic Resonance-guided Focused Ultrasound (MRgFUS), allow for targeted destruction of epileptogenic tissue with reduced risks and faster recovery times. The use of stereo-electroencephalography (SEEG) and robotic assistance has further refined surgical precision, enhancing outcomes. These advancements mark a paradigm shift towards precision medicine in epilepsy care, promising improved seizure management and quality of life for patients globally. This review outlines the latest innovations in epilepsy surgery, emphasizing their mechanisms and clinical implications to improve outcomes for patients with DRE.
Collapse
Affiliation(s)
- Chen Zhong
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Kang Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Nianhua Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Liang Yang
- Department of Neurosurgery, The 3rd Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhuanyi Yang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lixin Xu
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Jun Wang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), 818 Renmin Street, Wuling District, Changde, 415003, Hunan, China.
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
11
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2025; 42:341-360. [PMID: 39655451 DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Significance: Hydrogen sulfide (H2S), a ubiquitous small gaseous signaling molecule, plays a critical role in various diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), ischemic stroke, and myocardial infarction (MI) via reducing inflammation, inhibiting oxidative stress, and cell apoptosis. Recent Advances: Uncontrolled inflammation is closely related to pathological process of ischemic stroke, RA, MI, and IBD. Solid evidence has revealed the axes between gut and other organs like joint, brain, and heart, and indicated that H2S-mediated anti-inflammatory effect against IBD, RA, MI, and ischemic stroke might be related to regulating the functions of axes between gut and other organs. Critical Issues: We reviewed endogenous H2S biogenesis and the H2S-releasing donors, and revealed the anti-inflammatory effects of H2S in IBD, ischemic stroke, RA, and MI. Importantly, this review outlined the potential role of H2S in the gut-joint axis, gut-brain axis, and gut-heart axis as a gasotransmitter. Future Direction: The rate, location, and timing of H2S release from its donors determine its potential success or failure as a useful therapeutic agent and should be focused on in the future research. Therefore, there is still a need to explore internal and external sources monitoring and controlling H2S concentration. Moreover, more efficient H2S-releasing compounds are needed; a better understanding of their chemistry and properties should be further developed. Antioxid. Redox Signal. 42, 341-360.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2025; 480:1343-1357. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
13
|
Pervaz I, Thurn L, Vezzani C, Kaluza L, Kühnel A, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation alter pupil dilation? A living Bayesian meta-analysis. Brain Stimul 2025; 18:148-157. [PMID: 39884386 DOI: 10.1016/j.brs.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Transcutaneous vagus nerve stimulation (tVNS) has emerged as a promising technique to modulate autonomic functions, and pupil dilation has been recognized as a promising biomarker for tVNS-induced monoaminergic release. Nevertheless, studies on the effectiveness of various tVNS protocols have produced heterogeneous results on pupil dilation to date. METHODS Here, we synthesize the existing evidence and compare conventional ("continuous") and pulsed stimulation protocols using a Bayesian meta-analysis. To maintain a living version, we developed a Shiny App with the possibility to incorporate newly published studies in the future. Based on a systematic review, we included 18 studies (N = 771) applying either conventional or pulsed stimulation protocols. RESULTS Across studies, we found anecdotal evidence for the null hypothesis, showing that taVNS does not increase pupil size (g = 0.15, 95 % CI = [0.03, 0.27], BF01 = 1.0). Separating studies according to conventional vs. pulsed protocols revealed that studies using pulsed taVNS provide strong evidence for the alternative hypothesis(g = 0.36, 95 % CI = [0.19, 0.53], BF10 = 50.8) while conventional taVNS studies provide strong evidence for the null hypothesis (g = 0.002, CI = [-0.14, 0.14], BF01 = 21.9). CONCLUSION Our meta-analysis highlights differential effects of conventional and pulsed taVNS protocols on pupil dilation. These findings underscore the relevance of taVNS protocols in optimizing its use for specific applications that may require modulation of tonic vs. phasic monoaminergic responses and might also help to gain mechanistic insights into potential therapeutic effects.
Collapse
Affiliation(s)
- Ipek Pervaz
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lilly Thurn
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Cecilia Vezzani
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Luisa Kaluza
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anne Kühnel
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Germany.
| |
Collapse
|
14
|
Bai J, Yue Y, Zhang Z, Wang K, Jin Y, Wang J, Zou L. Effects of vagus nerve stimulation on microglia inhibit heroin-induced conditional place preference. Brain Behav Immun 2025; 127:45-56. [PMID: 40032204 DOI: 10.1016/j.bbi.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Heroin addiction remains a significant global health challenge with limited effective treatments. Vagus nerve stimulation (VNS) has shown promise in treating various neurological disorders, but its potential in addiction treatment is unexplored. OBJECTIVE To investigate the effects of VNS on heroin-induced conditioned place preference (CPP) and elucidate the underlying neurobiological mechanisms. METHODS We employed bilateral subphrenic vagotomy and VNS models in mice. Heroin-induced CPP was assessed following transcervical (nVNS) or transcutaneous auricular (taVNS) stimulation. Microglial activation in the nucleus accumbens (NAc) was evaluated using immunofluorescence and ELISA. The role of α7 nicotinic acetylcholine receptors (α7nAChRs) was investigated using the antagonist methyllycaconitine. RESULTS Both nVNS and taVNS significantly attenuated heroin-induced CPP. VNS reversed heroin-induced microglial activation in the NAc, reducing pro-inflammatory markers and cytokines while increasing anti-inflammatory markers. These effects were mediated by α7nAChRs, as antagonist administration abolished VNS efficacy. Notably, subphrenic vagotomy did not affect VNS efficacy, suggesting a primarily central mechanism of action. CONCLUSION VNS inhibits heroin-induced CPP, likely through modulation of NAc microglia via α7nAChRs. taVNS, while less effective than nVNS, offers a promising non-invasive approach to addiction treatment. These findings provide a rationale for further clinical investigation of VNS, particularly taVNS, as an adjunct therapy for heroin addiction. BRIEF ABSTRACT Vagus nerve stimulation (VNS) attenuates heroin-induced conditioned place preference in mice by modulating microglial activation in the nucleus accumbens via α7 nicotinic acetylcholine receptors. Both invasive and non-invasive VNS show efficacy, with the latter offering potential as a novel addiction treatment approach. These findings warrant further investigation of VNS in clinical settings for heroin addiction management.
Collapse
Affiliation(s)
- Jianhua Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yingbiao Yue
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zunyue Zhang
- Yunnan Province Drug Dependence Treatment Technology Innovation Center, Yunnan University, Kunming, Yunnan, China
| | - Kunhua Wang
- Yunnan Province Drug Dependence Treatment Technology Innovation Center, Yunnan University, Kunming, Yunnan, China
| | - Yun Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junfeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lei Zou
- Department of Hepatobiliary and Pancreatic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Lai J, Liu J, Zhang L, Cao J, Hong Y, Zhang L, Fang J, Wang X. Effect of transcutaneous vagus nerve stimulation with electrical stimulation on generalized anxiety disorder: Study protocol for an assessor-participant blinded, randomized sham-controlled trial. Heliyon 2025; 11:e42469. [PMID: 40041000 PMCID: PMC11876880 DOI: 10.1016/j.heliyon.2025.e42469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Background Generalized anxiety disorder (GAD) is the most common type of anxiety disorder and can cause severe damage to patients and increase medical and social burdens. Vagus nerve stimulation (VNS) has been used for treating mental disorders, but the involvement of surgery, perioperative risks, and potentially significant side effects have limited this treatment. Anatomical studies have shown that the ear is the only area where the afferent vagus nerve is distributed on the skin. Recently, the safety and efficacy of transcutaneous auricular vagus nerve stimulation (t-VNS) with electrical stimulation for depression and epilepsy have been objectively evaluated. This trial is trying to evaluate the efficacy of t-VNS with electrical stimulation for the treatment of GAD and explore the potential underlying neural mechanism using fMRI. Methods An assessor-participant blinded, randomized sham-controlled trial will be performed. Sixty participants with GAD will be randomly assigned to the t-VNS group or sham t-VNS group. The treatment will last for 8 weeks, once every 30 min and twice a day. Four clinical assessments will be conducted: before treatment, at 2 weeks, at 4 weeks, and posttreatment. The primary outcome parameter is the categorical classification of treatment response in the Hamilton Anxiety Rating Scale (HAMA) score. Functional magnetic resonance imaging (fMRI) scans will be applied, and the alterations in Amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) on resting-state fMRI will be compared between the two groups before and after treatment. Moreover, the correlation between the changes in clinical symptoms and the changes in the altered ALFF and FC in the two groups will be analyzed. Discussion This high-level evidence-based medical research is expected to evaluate the value of t-VNS in treating GAD and provide a preliminary explanation of its mechanism of action in brain functional imaging. In addition, the use of t-VNS devices has substantially decreased time and financial costs, potentially providing a promising option for complementary alternative medicine in the treatment of GAD, thereby advancing treatment decisions for this condition. Trial registration International Traditional Medicine Clinical Trial Registry, ITMCTR2022000099. Registered on June 30, 2022.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiuDong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiLiang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoLing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Jerman I, Škafar M, Pihir J, Senica M. Evaluating PEMF vagus nerve stimulation through neck application: A randomized placebo study with volunteers. Electromagn Biol Med 2025; 44:173-186. [PMID: 39972609 DOI: 10.1080/15368378.2025.2462649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
This study investigates the effects of pulsed electromagnetic field (PEMF) therapy on vagus nerve stimulation through non-invasive neck applications. Exploring the efficacy of PEMF across different frequencies (6 hz, 16 hz, and 32 hz), this double-blind placebo-controlled trial included 485 volunteers to assess its impact on autonomic nervous system functions, particularly targeting sleep disturbances and anxiety. Results demonstrated significant improvements in sleep quality and reduction in anxiety levels, especially notable at 16 hz. These findings suggest that PEMF therapy, by modulating autonomic activity, offers a beneficial non-pharmacological treatment option for related disorders.
Collapse
Affiliation(s)
- I Jerman
- BION Institute, Ljubljana, Slovenia
| | - M Škafar
- BION Institute, Ljubljana, Slovenia
| | - J Pihir
- BION Institute, Ljubljana, Slovenia
| | - M Senica
- BION Institute, Ljubljana, Slovenia
| |
Collapse
|
17
|
Wang Q, Yang M, Sun R, Liu W, Li W, Xu B, Yang S, Chen K, Xiao J, Chen X, Meng X, Feng J, Yu C, Luo Z. A biodegradable capacitive-coupling neurostimulator for wireless electroceutical treatment of inflammatory bowel diseases. SCIENCE ADVANCES 2025; 11:eadu5887. [PMID: 39951521 PMCID: PMC11827631 DOI: 10.1126/sciadv.adu5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Electroceuticals based on peripheral nerve stimulation offer promising treatment for refractory inflammatory diseases such as inflammatory bowel diseases (IBDs). For pediatric IBD (PIBD) patients, wireless, biodegradable miniaturized bioelectronic devices are crucial to prevent neural damage and support neural development during and after therapy. Here we demonstrate a battery-free, miniaturized neurostimulator based on biodegradable materials and capacitive-coupling wireless power transfer. The biodegradable capacitive-coupling (BCC) neurostimulator consists of molybdenum (Mo) electronic components and self-healing biodegradable polyurethane elastomer (SBPUE) encapsulations. The self-healing property of SBPUE enables a stable neural interface. Capacitive coupling wirelessly transfers high-frequency electric fields through a single capacitor between wearable transmitters and implanted BCC neurostimulators. Programmed electrical stimulation of the vagus nerve alleviates PIBD symptoms by restoring CD4+ T cell balance, enhancing anti-inflammatory effects and suppressing pro-inflammatory effects in the intestines.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ming Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Renyuan Sun
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenliang Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenlong Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Baochun Xu
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Shiming Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Cunjiang Yu
- Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, and Department of Bioengineering, Beckman Institute for Advanced Science and Technology, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiqiang Luo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Chen Z, Liu K. Mechanism and Applications of Vagus Nerve Stimulation. Curr Issues Mol Biol 2025; 47:122. [PMID: 39996843 PMCID: PMC11854789 DOI: 10.3390/cimb47020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past three decades, vagus nerve stimulation (VNS) has emerged as a promising rehabilitation therapy for a diverse range of conditions, demonstrating substantial clinical potential. This review summarizes the in vivo biological mechanisms activated by VNS and their corresponding clinical applications. Furthermore, it outlines the selection of parameters and equipment for VNS implementation. VNS exhibits anti-inflammatory effects, modulates neurotransmitter release, enhances neural plasticity, inhibits apoptosis and autophagy, maintains blood-brain barrier integrity, and promotes angiogenesis. Clinically, VNS has been utilized in the treatment of epilepsy, depression, headache, stroke, and obesity. Its potential applications extend to anti-inflammatory treatment and the management of cardiovascular and cerebrovascular diseases and various brain disorders. However, further experiments are required to definitively establish the efficacy of VNS's various mechanisms. Additionally, there is a need to explore and identify optimal rehabilitation treatment parameters for different diseases.
Collapse
Affiliation(s)
| | - Kezhou Liu
- Department of Biomedical Engineering, School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China;
| |
Collapse
|
19
|
Han Z, Zhang C, Cheng K, Chen Y, Tang Z, Chen L, Ni J, Wang Z. Clinical application of respiratory-gated auricular vagal afferent nerve stimulation. Neuroscience 2025; 565:117-123. [PMID: 39615649 DOI: 10.1016/j.neuroscience.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. Similar to conventional Vagus Nerve Stimulation (VNS), RAVANS may mitigate brain injury through three primary pathways: reducing neuronal apoptosis, modulating neurotransmitter release, and influencing inflammatory factor pathways. In this paper, we emphasize how RAVANS enhances the activation of nucleus of the solitary tract (NTS)and the locus coeruleus by regulating the monoaminergic and GABA systems through respiratory control. Additionally, it leverages the beneficial effects of respiration on the central nervous system. In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.
Collapse
Affiliation(s)
- Zhiyuan Han
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Cuicui Zhang
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Keling Cheng
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yunfang Chen
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zhiqin Tang
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Lewen Chen
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Jun Ni
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Zhiyong Wang
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
20
|
Gargus M, Ben-Azu B, Landwehr A, Dunn J, Errico JP, Tremblay MÈ. Mechanisms of vagus nerve stimulation for the treatment of neurodevelopmental disorders: a focus on microglia and neuroinflammation. Front Neurosci 2025; 18:1527842. [PMID: 39881804 PMCID: PMC11774973 DOI: 10.3389/fnins.2024.1527842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy. While the mechanistic understanding linking the VN, microglia, and neurodevelopmental disorders remains incomplete, vagus nerve stimulation (VNS) may provide a better understanding of the VN's mechanisms and act as a possible treatment modality. In this review we examine the VN's important role in modulating the immune system through the inflammatory reflex, which involves the cholinergic anti-inflammatory pathway, which releases acetylcholine. Within the central nervous system (CNS), the direct release of acetylcholine can also be triggered by VNS. Homeostatic balance in the CNS is notably maintained by microglia. Microglia facilitate neurogenesis, oligodendrogenesis, and astrogenesis, and promote neuronal survival via trophic factor release. These cells also monitor the CNS microenvironment through a complex sensome, including groups of receptors and proteins enabling microglia to modify neuroimmune health and CNS neurochemistry. Given the limitations of pharmacological interventions for the treatment of neurodevelopmental disorders, this review seeks to explore the application of VNS as an intervention for neurodevelopmental conditions. Accordingly, we review the established mechanisms of VNS action, e.g., modulation of microglia and various neurotransmitter pathways, as well as emerging preclinical and clinical evidence supporting VNS's impact on symptoms associated with neurodevelopmental disorders, such as those related to CNS inflammation induced by infections. We also discuss the potential of adapting non-invasive VNS for the prevention and treatment of these conditions. Overall, this review is intended to increase the understanding of VN's potential for alleviating microglial dysfunction involved in schizophrenia, ADHD, ASD, and epilepsy. Additionally, we aim to reveal new concepts in the field of CNS inflammation and microglia, which could serve to understand the mechanisms of VNS in the development of new therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Jaclyn Dunn
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Zhang Q, Dou J, Ao H, Guo D, Yang X, Li M. Effect of transcutaneous vagus nerve stimulation in hemodialysis patients: A randomized controlled trial. Ther Apher Dial 2025. [PMID: 39754453 DOI: 10.1111/1744-9987.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
INTRODUCTION Transcutaneous auricular vagus nerve stimulation (tVNS) has shown potential in neurological, autoimmune, and cardiovascular disorders, but its effects on HD patients remain unclear. This study aimed to evaluate the efficacy and safety of tVNS in HD patients. METHODS We conducted a randomized controlled clinical trial on patients receiving HD ≥6 months. The tVNS group received stimulation for 1 h during the first 2 h of HD sessions, three times weekly for 8 weeks, while the control group received standard care. The primary outcomes were dialysis efficiency (Single-pool Kt/V, Sp Kt/V) and dialysis-related symptoms (Dialysis Symptom Index, DSI), assessed every 4 weeks. Secondary outcomes included pain and fatigue scores, physical performance, Hemodialysis Comfort Scale, hemoglobin levels, Mini-Mental State Examination, and anxiety and depression scores, measured at baseline and 8 weeks after intervention. RESULTS A total of 63 patients were enrolled in the study, with 32 patients assigned to the tVNS group and 31 patients to the control group. At 8 weeks, the tVNS group showed significant improvements in Sp Kt/V (1.31 ± 0.11 vs. 1.25 ± 0.10, p = 0.02), and DSI (12.09 ± 5.84 vs. 16.26 ± 5.27, p = 0.004), as well as reductions in pain and fatigue, and increases in physical function, comfort, and hemoglobin. However, there were no statistically significant changes observed in cognitive function, anxiety, or depression. CONCLUSIONS tVNS could improve dialysis efficiency, symptoms, and physical function in HD patients, indicating it may have a role as a complementary therapy.
Collapse
Affiliation(s)
- Qiuling Zhang
- Department of Nephrology, The Third Clinical Medical College of China Three Gorges University, Sinopharm Gezhouba Central Hospital, Yichang, China
| | - Jun Dou
- Department of Nephrology, The Third Clinical Medical College of China Three Gorges University, Sinopharm Gezhouba Central Hospital, Yichang, China
| | - Hua Ao
- Department of Nephrology, The Third Clinical Medical College of China Three Gorges University, Sinopharm Gezhouba Central Hospital, Yichang, China
| | - Dongmei Guo
- Department of Nephrology, The Third Clinical Medical College of China Three Gorges University, Sinopharm Gezhouba Central Hospital, Yichang, China
| | - Xi Yang
- Department of Nephrology, The Third Clinical Medical College of China Three Gorges University, Sinopharm Gezhouba Central Hospital, Yichang, China
| | - Ming Li
- Department of Nephrology, The Third Clinical Medical College of China Three Gorges University, Sinopharm Gezhouba Central Hospital, Yichang, China
| |
Collapse
|
22
|
Yun YJ, Myong Y, Oh BM, Song JJ, Kim CK, Seo HG. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Adults. Neuromodulation 2025; 28:115-122. [PMID: 38878053 DOI: 10.1016/j.neurom.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) has recently been reported to exert additional benefits for functional recovery in patients with brain injury. However, the mechanisms underlying these effects have not yet been elucidated. This study examined the effects of transcutaneous auricular VNS (taVNS) on cortical excitability in healthy adults. MATERIALS AND METHODS We recorded subthreshold and suprathreshold single- and paired-pulse motor-evoked potentials (MEPs) in the right-hand muscles of 16 healthy adults by stimulating the left primary motor cortex. Interstimulus intervals were set at 2 milliseconds and 3 milliseconds for intracortical inhibition (ICI), and 10 milliseconds and 15 milliseconds for intracortical facilitation (ICF). taVNS was applied to the cymba conchae of both ears for 30 minutes. The intensity of taVNS was set to a maximum tolerable level of 1.95 mA. MEPs were measured before stimulation, 20 minutes after the beginning of the stimulation, and 10 minutes after the cessation of stimulation. RESULTS The participants' age was 33.25 ± 7.08 years, and nine of 16 were male. No statistically significant changes were observed in the mean values of the single-pulse MEPs before, during, or after stimulation. Although the ICF showed an increasing trend after stimulation, the changes in ICI and ICF were not significant, primarily because of the substantial interindividual variability. CONCLUSIONS The effect of taVNS on cortical excitability varied in healthy adults. An increase in ICF was observed after taVNS, although the difference was not statistically significant. Our findings contribute to the understanding of the mechanisms by which taVNS is effective in patients with brain disorders.
Collapse
Affiliation(s)
- Yeo Joon Yun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Youho Myong
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea; Institute on Aging, Seoul National University, Seoul, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Korea; Neurive Co, Ltd, Gimhae, Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital and College of Medicine, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
23
|
Subtirelu R, Writer M, Teichner E, Patil S, Indrakanti D, Werner TJ, Alavi A. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies. PET Clin 2025; 20:25-37. [PMID: 39482217 DOI: 10.1016/j.cpet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a characteristically heterogeneous disorder, as multiple neurodevelopmental disorders are characterized by similar symptomology and behavior. Research has shown that individuals with ASD benefit from early intervention; neuroimaging data may reveal information that cannot be obtained from traditional behavioral analysis. This review discusses the use of structural MR imaging, functional MR imaging (fMR imaging), and PET in the detection of ASD. Larger datasets, standardized methods of collection and analysis, and more robust meta-analyses are required to implement the observed biomarkers and improve the lives of patients living with AUD.
Collapse
Affiliation(s)
- Robert Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Milo Writer
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Eric Teichner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Shiv Patil
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Deepak Indrakanti
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Hu Y, Xiong R, Pan S, Huang K. A narrative review of vagus nerve stimulation in stroke. J Cent Nerv Syst Dis 2024; 16:11795735241303069. [PMID: 39677973 PMCID: PMC11645777 DOI: 10.1177/11795735241303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Stroke is a significant health concern impacting society and the health care system. Reperfusion therapy for acute ischemic stroke and standard rehabilitative therapies may not always be effective at improving post-stroke neurological function, and developing alternative strategies is particularly important. Vagus nerve stimulation (VNS) is a treatment option currently approved by the Food and Drug Administration (FDA) for intractable epilepsy, refractory depression, primary headache disorders, obesity, and moderate to severe upper-limb motor dysfunction in chronic ischemic stroke patients. Moreover, VNS has demonstrated potential efficacy in various conditions, including autoimmune diseases, disorders of consciousness, Alzheimer's disease, Parkinson's disease, traumatic brain injury, stroke, and other diseases. Although the popularity and application of VNS continue to increase rapidly, the field generally lacks a consensus on the optimal stimulation parameters. The stimulation parameters for VNS are directly related to the clinical outcome, and determining the optimal stimulation conditions for VNS has become an essential concern in its clinical application. This review summarizes the current evidence on VNS for stroke in preclinical models and clinical trials in humans, paying attention to the current types and stimulation parameters of VNS, highlighting the mechanistic pathways involved in the beneficial effects of VNS, critically evaluating clinical implementation challenges and proposing some suggestions for its future research directions. Achieving safe and effective clinical transformation of VNS requires further animal and clinical studies to determine the optimal stimulation parameters and therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanhong Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqi Xiong
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
26
|
Liu M, Liu M, Zhang B, Fang M, Chen K, Zhang Y, Wang Q, Tian C, Wu L, Li Z. Research hotspots and frontiers of vagus nerve stimulation in stroke: a bibliometric analysis. Front Neurosci 2024; 18:1510658. [PMID: 39723424 PMCID: PMC11668697 DOI: 10.3389/fnins.2024.1510658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Vagus nerve stimulation (VNS) has emerged as a promising therapeutic approach for stroke treatment, drawing significant attention due to its potential benefits. However, despite this growing interest, a systematic bibliometric analysis of the research landscape is yet to be conducted. Methods We performed a comprehensive search of the Web of Science Core Collection (WoSCC) database for literature published between January 1, 2005, and August 31, 2024. CiteSpace and the Bibliometrix package in R software were used to generate knowledge maps and conduct a bibliometric analysis. This analysis focused on publication output, geographic distribution, institutional involvement, author and co-cited author networks, journal and co-cited journal relationships, co-cited references, and keyword trends. Results During the study period, 316 publications on VNS in stroke were identified, authored by 1,631 researchers from 1,124 institutions across 172 countries or regions. The number of publications showed steady growth, with the United States of America (USA) leading as the primary contributor. The University of Texas System emerged as the most active research institution. Frontiers in Neuroscience published the highest number of articles, while Stroke had the most citations. Professor Michael P. Kilgard authored the largest number of papers and was also the most frequently cited researcher. The main research trends focus on investigating VNS mechanisms via animal models and exploring its application in improving post-stroke sensorimotor function in the upper limbs. Moreover, VNS is showing promise in enhancing non-motor functions, such as swallowing, speech, and cognition, while addressing complications like post-stroke insomnia, depression, and disruptions in gut microbiota. Conclusion This bibliometric study offers a comprehensive overview of the research landscape and emerging trends in VNS for stroke rehabilitation, providing a solid foundation and reference point for future research directions in this field.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Zhang
- School of Nursing, Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mingzhu Fang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Chen
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yishen Zhang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunyan Tian
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Rehabilitation Clinical Medicine Research Center, Zhengzhou, China
| |
Collapse
|
27
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Yang S, Yang S, Li P, Gou S, Cheng Y, Jia Q, Du Z. Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications. Front Bioeng Biotechnol 2024; 12:1476447. [PMID: 39574462 PMCID: PMC11579925 DOI: 10.3389/fbioe.2024.1476447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Based on electrophysiological activity, neuroprostheses can effectively monitor and control neural activity. Currently, electrophysiological neuroprostheses are widely utilized in treating neurological disorders, particularly in restoring motor, visual, auditory, and somatosensory functions after nervous system injuries. They also help alleviate inflammation, regulate blood pressure, provide analgesia, and treat conditions such as epilepsy and Alzheimer's disease, offering significant research, economic, and social value. Enhancing the targeting capabilities of neuroprostheses remains a key objective for researchers. Modeling and simulation techniques facilitate the theoretical analysis of interactions between neuroprostheses and the nervous system, allowing for quantitative assessments of targeting efficiency. Throughout the development of neuroprostheses, these modeling and simulation methods can save time, materials, and labor costs, thereby accelerating the rapid development of highly targeted neuroprostheses. This article introduces the fundamental principles of neuroprosthesis simulation technology and reviews how various simulation techniques assist in the design and performance enhancement of neuroprostheses. Finally, it discusses the limitations of modeling and simulation and outlines future directions for utilizing these approaches to guide neuroprosthesis design.
Collapse
Affiliation(s)
- Shu Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuchun Gou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Cheng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinggang Jia
- Institute of Applied Physics and Computational Mathematics, Beijing, China
| | - Zhanhong Du
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Cai S, Wang Y, Zhao B, Li X, He H, Yuan K, Zhao Q, Huang Q, Yang B, Ji G. Effectiveness and possible brain mechanisms of cervical invasive vagus nerve stimulation (iVNS) intervention for avoidant/restrictive food intake disorder: a case report. PSYCHORADIOLOGY 2024; 4:kkae016. [PMID: 39539529 PMCID: PMC11560375 DOI: 10.1093/psyrad/kkae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Background We reported a case of cervical invasive vagus nerve stimulation (iVNS) treatment for avoidant/restrictive food intake disorder (ARFID) in a patient with severe anxiety and depression. This patient was even given a critical illness notice during his hospitalization and all treatment efforts were failed. Objective We aimed to verfiy the effectiveness of iVNS in a patient with ARFID. Methods We first attempted to perform cervical iVNS in this case and then observed the changes in clinical scores. We also analyzed the alterations in brain magnetic resonance imaging characteristics before and after iVNS using multi-modal neuroimagings. Results After 18 days of iVNS (from 1 to 19 July 2023), the patient's clinical symptoms improved significantly and he rapidly gained 5 kg in weight. The brain functional characteristics of this patient tended toward those of the normal group. Functional connectivities of the medial of orbitalis prefrontal cortex returned to the normal range after iVNS. Conclusion This is a precedent for performing cervical iVNS in an ARFID patient. Brain neural activity can be modulated through iVNS. The observed improvements in clinical scores and positive changes in brain function validated the effectiveness of iVNS. This case study provides evidence that this intervention technique could be used to reduce the burden on more similar ARFID patients.
Collapse
Affiliation(s)
- Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yihan Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Bofeng Zhao
- Xi'an International Medical Center Hospital, Northwest University, Xi'an, Shaanxi 710100, PR China
| | - Xiaoliang Li
- Xi'an International Medical Center Hospital, Northwest University, Xi'an, Shaanxi 710100, PR China
| | - Huan He
- Xi'an International Medical Center Hospital, Northwest University, Xi'an, Shaanxi 710100, PR China
| | - Kai Yuan
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Qingchuan Zhao
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Qinxian Huang
- Xi'an International Medical Center Hospital, Northwest University, Xi'an, Shaanxi 710100, PR China
| | - Bin Yang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Gang Ji
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| |
Collapse
|
30
|
Olivieri F, Biscetti L, Pimpini L, Pelliccioni G, Sabbatinelli J, Giunta S. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res Rev 2024; 101:102521. [PMID: 39341508 DOI: 10.1016/j.arr.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The most cutting-edge issue in the research on aging is the quest for biomarkers that transcend molecular and cellular domains to encompass organismal-level implications. We recently hypothesized the role of Autonomic Nervous System (ANS) imbalance in this context. Studies on ANS functions during aging highlighted an imbalance towards heightened sympathetic nervous system (SNS) activity, instigating a proinflammatory milieu, and attenuated parasympathetic nervous system (PNS) function, which exerts anti-inflammatory effects via the cholinergic anti-inflammatory pathway (CAP) and suppression of the hypothalamic-pituitary-adrenal (HPA) axis. This scenario strongly suggests that ANS imbalance can fuel inflammaging, now recognized as one of the most relevant risk factors for age-related disease development. Recent recommendations have increasingly highlighted the need for actionable strategies to improve the quality of life for older adults by identifying biomarkers that can be easily measured, even in asymptomatic individuals. We advocate for considering ANS imbalance as a biomarker of aging and inflammaging. Measures of ANS imbalance, such as heart rate variability (HRV), are relatively affordable, non-invasive, and cost-effective, making this hallmark easily diagnosable. HRV gains renewed significance within the aging research landscape, offering a tangible link between pathophysiological perturbations and age-related health outcomes.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | | | | | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili (Gruppo Garofalo GHC), Castiglione dei Pepoli, Bologna, Italy
| |
Collapse
|
31
|
Mulvihill E, Hoesni S. Management of a vagus nerve stimulator in a patient undergoing an emergency caesarean delivery: a case report. Int J Obstet Anesth 2024; 60:104244. [PMID: 39232860 DOI: 10.1016/j.ijoa.2024.104244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
|
32
|
Cheng W, Fang K, Ouyang X, Jin L, Song Y, Yu B. Vagus nerve stimulation with a small total charge transfer improves motor behavior and reduces neuroinflammation in a mouse model of Parkinson's disease. Neurochem Int 2024; 180:105871. [PMID: 39362497 DOI: 10.1016/j.neuint.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Conventional treatments are ineffective in reversing disease progression. Recently, the therapeutic and rehabilitation potential of vagus nerve stimulation (VNS) in PD has been explored. However, the underlying mechanisms remain largely unknown. In this study, we investigated the neuroprotective effects of VNS in a lateral lesioned mice model of PD. Excluding controls, experimental mice received cuff electrode implantation on the left vagus nerve and 6-hydroxydopamine administration into the bilateral striatum. After ten days, electrical stimulation was delivered for 11 consecutive days onto PD animals. Behavioral tests were performed after stimulation. The expression of TH, Iba-1, GFAP, adrenergic receptors and cytokines in the SN and striatum was detected by immunofluorescence or western blotting. The activity of noradrenergic neurons in the locus coeruleus (LC) was also measured. Our results suggest that VNS improved behavioral performance in rod rotation, open field tests and pole-climbing tests in PD mice, accompanied by a decrease in the loss of dopaminergic neurons in the SN and increased TH expression in the striatum. Neuroinflammation-related factors, such as GFAP, Iba-1, TNF-α and IL-1β were also suppressed in PD mice after VNS compared to those without treatment. Furthermore, the proportion of c-Fos-positive noradrenergic neurons in the LC increased when animals received VNS. Additionally, the expression of the adrenergic receptor of α1BR was also upregulated after VNS compared to PD mice. In conclusion, VNS has potential as a novel PD therapy for neuroprotective effects, and indicate that activation of norepinephric neurons in LC may plays an important role in VNS treatment for PD.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Kexin Fang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Xiaorong Ouyang
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Bin Yu
- Department of Anesthesiology, Yangzhi Rehabilitation Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
33
|
Chen L, Gao H, Wang Z, Gu B, Zhou W, Pang M, Zhang K, Liu X, Ming D. Vagus nerve electrical stimulation in the recovery of upper limb motor functional impairment after ischemic stroke. Cogn Neurodyn 2024; 18:3107-3124. [PMID: 39555282 PMCID: PMC11564590 DOI: 10.1007/s11571-024-10143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed. The Food and Drug Administration (FDA) has approved invasive vagus nerve stimulation (iVNS) for the improvement of refractory epilepsy, treatment-resistant depression, obesity, and moderate to severe upper limb motor impairment following chronic ischemic stroke. Additionally, the FDA has approved transcutaneous vagus nerve stimulation (tVNS) for the improvement of cluster headaches and acute migraines. Recent studies have demonstrated that vagus nerve stimulation (VNS) has neuroprotective effects in both transient and permanent cerebral ischemia animal models, significantly improving upper limb motor impairments, auditory deficits, and swallowing difficulties. Firstly, this article reviews two potential neuronal death pathways following IS, including autophagy and inflammatory responses. Then delves into the current status of preclinical and clinical research on the functional recovery following IS with VNS, as well as the potential mechanisms mediating its neuroprotective effects. Finally, the optimal parameters and timing of VNS application are summarized, and the future challenges and directions of VNS in the treatment of IS are discussed. The application of VNS in stroke rehabilitation research has reached a critical stage, and determining how to safely and effectively translate this technology into clinical practice is of utmost importance. Further preclinical and clinical studies are needed to elucidate the therapeutic mechanisms of VNS.
Collapse
Affiliation(s)
- Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Huixin Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Bin Gu
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Wanqi Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| |
Collapse
|
34
|
Kim KJ, Hwang J, Lee KW, Kim J, Han Y, Namgung U. Neuron-Microglia Interaction is Involved in Anti-inflammatory Response by Vagus Nerve Stimulation in the Prefrontal Cortex of Rats Injected with Polyinosinic:Polycytidylic Acid. Mol Neurobiol 2024; 61:7403-7418. [PMID: 38383920 DOI: 10.1007/s12035-024-04054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Injection of polyinosinic:polycytidylic acid (poly(I:C)) into experimental animals induces neuroimmunological responses and thus has been used for the study of neurological disorders such as anxiety, depression, and chronic fatigue. Here, we investigated the effects of vagus nerve stimulation (VNS) on poly(I:C)-induced neuroinflammation and associated behavioral consequences in rats. The microglia in the prefrontal cortex (PFC) displayed the activated form of morphology in poly(I:C)-injected rats and changed to a normal shape after acute VNS (aVNS). Production of phospho-NF-κB, phospho-IκB, IL-1β, and cleaved caspase 3 was elevated by poly(I:C) and downregulated by aVNS. In contrast, phospho-Akt levels were decreased by poly(I:C) and increased by aVNS. Neuronal production of fractalkine (CX3CL1) in the PFC was markedly reduced by poly(I:C), but recovered by aVNS. Fractalkine interaction with its receptor CX3CR1 was highly elevated by VNS. We further demonstrated that the pharmacological blockade of CX3CR1 activity counteracted the production of IL-1β, phospho-Akt, and cleaved form of caspase 3 that was modulated by VNS, suggesting the anti-inflammatory effects of fractalkine-CX3CR1 signaling as a mediator of neuron-microglia interaction. Behavioral assessments of pain and temperature sensations by von Frey and hot/cold plate tests showed significant improvement by chronic VNS (cVNS) and forced swimming and marble burying tests revealed that the depressive-like behaviors caused by poly(I:C) injection were rescued by cVNS. We also found that the recognition memory which was impaired by poly(I:C) administration was improved by cVNS. This study suggests that VNS may play a role in regulating neuroinflammation and somatosensory and cognitive functions in poly(I:C)-injected animals.
Collapse
Affiliation(s)
- Ki-Joong Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jinyeon Hwang
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Kang-Woo Lee
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jieun Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Yunha Han
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Uk Namgung
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea.
| |
Collapse
|
35
|
Mathias K, Machado RS, Tiscoski ADB, Dos Santos D, Lippert FW, Costa MA, Gonçalves CL, Generoso JS, Prophiro JS, Giustina AD, Petronilho F. IL-33 in Ischemic Stroke: Brain vs. Periphery. Inflammation 2024:10.1007/s10753-024-02148-6. [PMID: 39294293 DOI: 10.1007/s10753-024-02148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Cerebrovascular disease is the second-leading cause of death and disability worldwide, with stroke being the most common cause. In ischemic stroke, several processes combine to produce immunosuppression, leaving the post-stroke body susceptible to infection, which in turn affects neuroinflammation. Interleukin-33 (IL-33), a member of the interleukin-1 family (IL-1), functions as a modulator of immune responses and inflammation, playing a crucial role in the establishment of immunologic responses. IL-33 has been shown to have a protective effect on brain injury and represents a potential target by modulating inflammatory cytokines and stimulating immune regulatory cells. With an emphasis on preclinical and clinical studies, this review covers the impact of IL-33 on immune system mechanisms following ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricio Weinheimer Lippert
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Maiara Aguiar Costa
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Jaqueline Silva Generoso
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, ON, Canada
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
36
|
Nezu T, Eto F, Hironaka A, Aoki S, Neshige S, Tasaka S, Kirimoto H, Maruyama H. Vagus nerve size determined via ultrasonography is associated with white matter lesions in patients with vascular risk factors. J Ultrasound 2024; 27:723-732. [PMID: 39073732 PMCID: PMC11333691 DOI: 10.1007/s40477-024-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
PURPOSE The cross-sectional area (CSA) of the cervical vagus nerve (VN), as assessed through ultrasonography, might be linked to autonomic nervous system dysfunction. Hypertension is the primary factor associated with cerebral white matter lesions (WMLs), but there is also evidence of a connection with autonomic nervous system dysfunction. However, the associations between WMLs and VN size are unclear. Our objective was to investigate the associations between WMLs and VN size in patients with vascular risk factors. METHODS The CSA of the VN was evaluated using carotid ultrasonography in patients with a history of stroke (acute or chronic) and comorbidities (n = 196, 70.2 ± 12.7 years). Common carotid artery (CCA) intima-media thickness and interadventitial diameter (IAD) were also measured. The severity of the WMLs was assessed by the Fazekas classification and Scheltens' scale. RESULTS The CSA of the right VN (2.08 ± 0.65 mm2) was significantly greater than that of the CSA of the left VN (1.56 ± 0.44 mm2) (P < 0.001). Multiple linear regression analyses revealed that older age, hypertension, increased right CCA IAD, and decreased CSA of the right VN (standardized partial regression coefficient [β] - 0.226; P < 0.001) were independently associated with the severity of WMLs (Scheltens' scale). A decreased CSA of the left VN was also associated with the severity of WMLs (β = - 0.239; P < 0.001). CONCLUSION VN size determined via ultrasonography was associated with the severity of WMLs. While these findings do not establish a causal relationship, they suggest that autonomic nervous system dysfunction is involved in the progression of WMLs.
Collapse
Affiliation(s)
- Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Futoshi Eto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Akemi Hironaka
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shuichiro Neshige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Saki Tasaka
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
37
|
Zhong YJ, Liu LL, Zhao Y, Feng Z, Liu Y. Elucidating the molecular mechanisms behind the therapeutic impact of median nerve stimulation on cognitive dysfunction post-traumatic brain injury. Exp Gerontol 2024; 194:112500. [PMID: 38901771 DOI: 10.1016/j.exger.2024.112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Ferroptosis represents a form of regulated cellular death dependent upon iron and lipid peroxidation derivatives, holding considerable implications for cerebral and neurologic pathologies. In the present study, we endeavored to elucidate the molecular mechanisms governing ferroptosis and appraise the therapeutic value of electrical stimulation of median nerve in addressing cognitive impairments following traumatic brain injury (TBI), employing a rodent model. METHODS In this study, we established a rat model to investigate the cognitive impairments resulting from TBI, followed by the application of median nerve stimulation (MNS). Initially, rats received an intraperitoneal injection of Erastin (2 mg/kg) prior to undergoing MNS. After 24 h of MNS treatment, the rats were subjected to an open field test to evaluate their cognitive and motor functions. Subsequently, we conducted biochemical assays to measure the serum levels of GSH, MDA and SOD. The structural integrity and cellular morphology of hippocampal tissue were examined through H&E staining, Nissl staining and transmission electron microscopy. Additionally, we assessed the expression levels of proteins crucial for neuronal health and function in the hippocampus, including VEGF, SLC7A11, GPX4, Nrf2, α-syn, NEUN and PSD95. RESULTS Compared to the control group, rats in the stimulation group demonstrated enhanced mobility, reduced levels of tissue damage, a decrease in MDA concentration, and increased levels of GSH and SOD. Additionally, there was a significant upregulation in the expression of proteins critical for cellular defense and neuronal health, including GPX4, SLC7A11, Nrf2, VEGF, α-syn, NEUN, and PSD95 proteins. Conversely, rats in the Erastin group demonstrated decreased mobility, exacerbated pathological tissue damage, elevated MDA concentration, and decreased levels of GSH and SOD. There was also a notable decrease in the expression of GPX4, SLC7CA11, Nrf2, and VEGF proteins. The expression levels of α-syn, NEUN, and PSD95 were similarly diminished in the Erastin group. Each of these findings was statistically significant, indicating that MNS exerts neuroprotective effect in the hippocampal tissue of rats with TBI by inhibiting the ferroptosis pathway. CONCLUSION (1) MNS may enhance the cognitive and behavioral performance of rats after TBI; (2) MNS can play a neuroprotective role by promoting the expression of nerve injury-related proteins, alleviating oxidative stress and ferroptosis process; (3) MNS may inhibit ferroptosis of neuronal cells by activating Nrf2/ GPX4 signaling pathway, thereby improving cognitive impairment in TBI rats.
Collapse
Affiliation(s)
- Ying-Jun Zhong
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Ling-Ling Liu
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yue Zhao
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| | - Yuan Liu
- Department of Orthopedics, The 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
38
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
39
|
Zhang W, Mou Z, Zhong Q, Liu X, Yan L, Gou L, Chen Z, So KF, Zhang L. Transcutaneous auricular vagus nerve stimulation improves social deficits through the inhibition of IL-17a signaling in a mouse model of autism. Front Psychiatry 2024; 15:1393549. [PMID: 38993386 PMCID: PMC11237520 DOI: 10.3389/fpsyt.2024.1393549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Background Maternal exposure to inflammation is one of the causes of autism spectrum disorder (ASD). Electrical stimulation of the vagus nerve exerts a neuroprotective effect via its anti-inflammatory action. We thus investigated whether transcutaneous auricular vagus nerve stimulation (taVNS) can enhance social abilities in a mouse model of ASD induced by maternal immune activation (MIA). Methods ASD mouse model were constructed by intraperitoneal injection of polyinosinic:polycytidylic acid (poly (I:C)). TaVNS with different parameters were tested in ASD mouse model and in C57BL/6 mice, then various behavioral tests and biochemical analyses related to autism were conducted. ASD model mice were injected with an interleukin (IL)-17a antibody into the brain, followed by behavioral testing and biochemical analyses. Results TaVNS reduced anxiety, improved social function, decreased the number of microglia, and inhibited M1 polarization of microglia. Additionally, taVNS attenuated the expression of the IL-17a protein in the prefrontal cortex and blood of ASD model mice. To examine the possible involvement of IL-17a in taVNS-induced neuroprotection, we injected an IL-17a antibody into the prefrontal cortex of ASD model mice and found that neutralizing IL-17a decreased the number of microglia and inhibited M1 polarization. Furthermore, neutralizing IL-17a improved social function in autism model mice. Conclusion Our study revealed that reduced neuroinflammation is an important mechanism of taVNS-mediated social improvement and neuroprotection against autism. This effect of taVNS could be attributed to the inhibition of the IL-17a pathway.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiwei Mou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Qi Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaocao Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Lan Yan
- Key Laboratory of Central Nervous System (CNS) Regeneration (Ministry of Education), Guangdong–Hong Kong–Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China
| | - Lei Gou
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of Central Nervous System (CNS) Regeneration (Ministry of Education), Guangdong–Hong Kong–Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China
| | - Li Zhang
- Key Laboratory of Central Nervous System (CNS) Regeneration (Ministry of Education), Guangdong–Hong Kong–Macau Institute of Central Nervous System (CNS) Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Zhang H, Zhao Y, Qu Y, Du J, Peng Y. Transcutaneous Cervical Vagus Nerve Magnetic Stimulation in Patients With Traumatic Brain Injury: A Feasibility Study. Neuromodulation 2024; 27:672-680. [PMID: 37865889 DOI: 10.1016/j.neurom.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Transcutaneous vagus nerve stimulation has shown promising results in improving cognitive and motor function after stroke. However, to our knowledge, there have been no studies in the modulation of the cervical vagus nerve using repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury (TBI) with cognitive dysfunction. Thus, we conducted a single-arm feasibility trial to assess the safety and effectiveness of rTMS of the vagus nerve in patients with TBI. MATERIALS AND METHODS We enrolled ten patients with TBI and administered half-hour vagus nerve magnetic stimulation (VNMS) sessions for ten days to evaluate the feasibility of the treatment. The Montreal cognitive assessment-Beijing (MoCA-B), the Digit Span Test, and the Auditory Verbal Learning Test (AVLT) were used to measure cognitive function before and after the VNMS treatment. Physiological parameters of all subjects were assessed by electrocardiogram. RESULTS The findings showed that daily half-hour VNMS for ten days was feasible in patients with TBI, with minimal side effects and no clinically significant effects on physiological parameters. Eight patients showed improvement in MoCA-B, and five patients showed improvement in immediate memory as measured by AVLT. CONCLUSIONS We conclude that VNMS is a safe and feasible treatment option for patients with TBI with cognitive dysfunction. However, further controlled studies are necessary to establish the efficacy of VNMS in promoting cognitive recovery after TBI. SIGNIFICANCE This study is, to our knowledge, the first study to investigate the feasibility of VNMS for cognitive dysfunction in patients with TBI. Our findings offer the possibility of rTMS applied to the vagus nerve in clinical practice.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China; College of Sports Medicine and Rehabilitation, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Juan Du
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yi Peng
- Department of Rehabilitation Medicine, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| |
Collapse
|
41
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
42
|
Mac CH, Tai HM, Huang SM, Peng HH, Sharma AK, Nguyen GLT, Chang PJ, Wang JT, Chang Y, Lin YJ, Sung HW. Orally Ingested Self-Powered Stimulators for Targeted Gut-Brain Axis Electrostimulation to Treat Obesity and Metabolic Disorders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310351. [PMID: 38591658 DOI: 10.1002/adma.202310351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO3 (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve. Upon ingestion by diet-induced obese (DIO) mice, the BTO@Cap particles specifically target and bind to Cap-sensitive sensory nerve endings in the gastric mucosa. In response to stomach peristalsis, these particles generate electrical signals. The signals travel via the gut-brain axis, ultimately influencing the hypothalamus. By enhancing satiety signals in the brain, this neuromodulatory intervention reduces food intake, promotes energy metabolism, and demonstrates minimal toxicity. Over a 3-week period of daily treatments, DIO mice treated with BTO@Cap particles show a significant reduction in body weight compared to control mice, while maintaining their general locomotor activity. Furthermore, this BTO@Cap particle-based treatment mitigates various metabolic alterations associated with obesity. Importantly, this noninvasive and easy-to-administer intervention holds potential for addressing other intracerebral neurological diseases.
Collapse
Affiliation(s)
- Cam-Hoa Mac
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsien-Meng Tai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 350401, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Giang Le Thi Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ju Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
43
|
Alvarez MR, Alkaissi H, Rieger AM, Esber GR, Acosta ME, Stephenson SI, Maurice AV, Valencia LMR, Roman CA, Alarcon JM. The immunomodulatory effect of oral NaHCO 3 is mediated by the splenic nerve: multivariate impact revealed by artificial neural networks. J Neuroinflammation 2024; 21:79. [PMID: 38549144 PMCID: PMC10976719 DOI: 10.1186/s12974-024-03067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy for treating systemic inflammatory disorders. Recent studies suggest oral sodium bicarbonate (NaHCO3) as a potential activator of the IR, offering a safe and cost-effective treatment approach. However, the mechanisms underlying NaHCO3-induced anti-inflammatory effects remain unclear. We investigated whether oral NaHCO3's immunomodulatory effects are mediated by the splenic nerve. Female rats received NaHCO3 or water (H2O) for four days, and splenic immune markers were assessed using flow cytometry. NaHCO3 led to a significant increase (p < 0.05, and/or partial eta squared > 0.06) in anti-inflammatory markers, including CD11bc + CD206 + (M2-like) macrophages, CD3 + CD4 + FoxP3 + cells (Tregs), and Tregs/M1-like ratio. Conversely, proinflammatory markers, such as CD11bc + CD38 + TNFα + (M1-like) macrophages, M1-like/M2-like ratio, and SSChigh/SSClow ratio of FSChighCD11bc + cells, decreased in the spleen following NaHCO3 administration. These effects were abolished in spleen-denervated rats, suggesting the necessity of the splenic nerve in mediating NaHCO3-induced immunomodulation. Artificial neural networks accurately classified NaHCO3 and H2O treatment in sham rats but failed in spleen-denervated rats, highlighting the splenic nerve's critical role. Additionally, spleen denervation independently influenced Tregs, M2-like macrophages, Tregs/M1-like ratio, and CD11bc + CD38 + cells, indicating distinct effects from both surgery and treatment. Principal component analysis (PCA) further supported the separate effects. Our findings suggest that the splenic nerve transmits oral NaHCO3-induced immunomodulatory changes to the spleen, emphasizing NaHCO3's potential as an IR activator with therapeutic implications for a wide spectrum of systemic inflammatory conditions.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- School of Graduate Studies & Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Rheumatology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| | - Hussam Alkaissi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, NIH/NIDDK, Bethesda, MD, USA
| | - Aja M Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - Guillem R Esber
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| | - Manuel E Acosta
- Mathematics and Computer Sciences Department, Barry University, Miami, FL, USA
| | - Stacy I Stephenson
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allison V Maurice
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Christopher A Roman
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Juan Marcos Alarcon
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
44
|
Morais A, Chung JY, Wu L, Ayata C, Simon B, Whalen MJ. Non-Invasive Vagal Nerve Stimulation Pre-Treatment Reduces Neurological Dysfunction After Closed Head Injury in Mice. Neurotrauma Rep 2024; 5:150-158. [PMID: 38435077 PMCID: PMC10908330 DOI: 10.1089/neur.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Non-invasive vagus nerve stimulation (nVNS) has recently been suggested as a potential therapy for traumatic brain injury (TBI). We previously demonstrated that nVNS inhibits cortical spreading depolarization, the electrophysiological event underlying migraine aura, and is relevant to TBI. Our past work also suggests a role for interleukin-1 beta (IL-1β) in cognitive deficits after closed head injury (CHI) in mice. We show that nVNS pre-treatment suppresses CHI-associated spatial learning and memory impairment and prevents IL-1β activation in injured neurons, but not endothelial cells. In contrast, nVNS administered 10 min after CHI was ineffective. These data suggest that nVNS prophylaxis might ameliorate neuronal dysfunction associated with CHI in populations at high risk for concussive TBI.
Collapse
Affiliation(s)
- Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joon Yong Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bruce Simon
- ElectroCore, Inc., Basking Ridge, New Jersey, USA
| | - Michael J. Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
45
|
Long JY, Li B, Ding P, Mei H, Li Y. Correlations between multimodal neuroimaging and peripheral inflammation in different subtypes and mood states of bipolar disorder: a systematic review. Int J Bipolar Disord 2024; 12:5. [PMID: 38388844 PMCID: PMC10884387 DOI: 10.1186/s40345-024-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Systemic inflammation-immune dysregulation and brain abnormalities are believed to contribute to the pathogenesis of bipolar disorder (BD). However, the connections between peripheral inflammation and the brain, especially the interactions between different BD subtypes and episodes, remain to be elucidated. Therefore, we conducted the present study to provide a comprehensive understanding of the complex association between peripheral inflammation and neuroimaging findings in patients with bipolar spectrum disorders. METHODS This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42023447044) and conducted according to the Population, Intervention, Comparison, Outcomes, and Study Design (PICOS) framework. Online literature databases (PubMed, Web of Science, Scopus, EMBASE, MEDLINE, PsycINFO, and the Cochrane Library) were searched for studies that simultaneously investigated both peripheral inflammation-related factors and magnetic resonance neurography of BD patients up to July 01, 2023. Then, we analysed the correlations between peripheral inflammation and neuroimaging, as well as the variation trends and the shared and specific patterns of these correlations according to different clinical dimensions. RESULTS In total, 34 publications ultimately met the inclusion criteria for this systematic review, with 2993 subjects included. Among all patterns of interaction between peripheral inflammation and neuroimaging, the most common pattern was a positive relationship between elevated inflammation levels and decreased neuroimaging measurements. The brain regions most susceptible to inflammatory activation were the anterior cingulate cortex, amygdala, prefrontal cortex, striatum, hippocampus, orbitofrontal cortex, parahippocampal gyrus, postcentral gyrus, and posterior cingulate cortex. LIMITATIONS The small sample size, insufficiently explicit categorization of BD subtypes and episodes, and heterogeneity of the research methods limited further implementation of quantitative data synthesis. CONCLUSIONS Disturbed interactions between peripheral inflammation and the brain play a critical role in BD, and these interactions exhibit certain commonalities and differences across various clinical dimensions of BD. Our study further confirmed that the fronto-limbic-striatal system may be the central neural substrate in BD patients.
Collapse
Affiliation(s)
- Jing-Yi Long
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- School of Public Administration, China University of Geosciences, Wuhan, 430074, China
| | - Pei Ding
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hao Mei
- Zhongnan Hospital of Wuhan University, No. 169, East Lake Rd., Wuchang District, Wuhan, 430062, Hubei Province, China.
| | - Yi Li
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China.
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
46
|
Aranberri Ruiz A. Transcutaneous Auricular Vagus Nerve Stimulation to Improve Emotional State. Biomedicines 2024; 12:407. [PMID: 38398009 PMCID: PMC10886536 DOI: 10.3390/biomedicines12020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Emotional experiences are a part of our lives. The maladaptive functioning of an individual's emotional field can lead to emotional disturbances of various kinds, such as anxiety and depression. Currently, there is an increasing prevalence of emotional disorders that cause great human suffering and high socioeconomic costs. Emotional processing has a biological basis. The major neuroscientific theories of emotion are based on biological functioning, and all of them take into account the anatomy and function of the tenth cranial nerve: the vagus nerve. The vagus nerve connects the subdiaphragmatic and supradiaphragmatic areas and modulates emotional processing as the basis of interoceptive functioning. Auricular vagus nerve stimulation is a new and innovative neuromodulation technique based on the function of the vagus nerve. Several interventions have shown that this new neurostimulation technique is a very promising resource for treating emotional disorders. In this paper, we summarise three neuroscientific theories of emotion, explain what transcutaneous auricular nerve stimulation is, and present arguments for its use and continued research.
Collapse
Affiliation(s)
- Ainara Aranberri Ruiz
- Department of Basic Psychological Process and Development, University of the Basque Country, 20018 San Sebastian, Spain
| |
Collapse
|
47
|
Seifert O, Baerwald C. Stimulation of the vagus nerve as a therapeutic principle. Z Rheumatol 2024; 83:1-7. [PMID: 37597013 DOI: 10.1007/s00393-023-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/21/2023]
Abstract
Modulation of the parasympathetic tone leads to extensive physiological reactions at several levels, including the decreased production of proinflammatory cytokines. Many studies have demonstrated that chronic inflammatory diseases are associated with reduced parasympathetic and increased sympathetic activities. Moreover, it was demonstrated that a low parasympathetic and a high sympathetic activity in patients with rheumatoid arthritis (RA) predicts a poor therapeutic response to anti-tumor necrosis factor (TNF) treatment compared to RA patients with a more balanced autonomic nervous system. The autonomic equilibrium could be restored by electrical stimulation of the vagus nerve. Considering the patients who do not sufficiently respond to the available drugs, patients for whom the effectiveness of the drugs wanes over time, or have drug-related adverse events, a nonpharmacological approach such as bioelectronics might be a useful supplement as an instrument in the successful extension of the therapeutic armamentarium for rheumatic diseases; however, there is a great need for further studies and the development of novel therapeutic strategies in the field of neuroimmunology.
Collapse
Affiliation(s)
- O Seifert
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| | - C Baerwald
- MK II Rheumatologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| |
Collapse
|
48
|
Sun L, Ma S, Yu Y, Li X, Wei Q, Min L, Rong P. Transcutaneous auricular vagus nerve stimulation ameliorates adolescent depressive- and anxiety-like behaviors via hippocampus glycolysis and inflammation response. CNS Neurosci Ther 2024; 30:e14614. [PMID: 38358062 PMCID: PMC10867795 DOI: 10.1111/cns.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) is a crucial neuromodulation therapy for depression, yet its molecular mechanism remains unclear. Here, we aim to unveil the underlying mechanisms of antidepression by systematically evaluating the change of gene expression in different brain regions (i.e., hippocampus, anterior cingulate cortex, and medial prefrontal cortex). METHODS The adolescent depression rat model was established by chronic unpredictable mild stress (CUMS), followed by the taVNS treatment for 3 weeks. The open field test (OFT), forced swimming test (FST), elevated plus maze test (EPM), and new object recognition (NOR) test were used to evaluate depressive- and anxiety-like behaviors. Gene expression analysis of three brain regions was conducted by RNA sequencing (RNA-seq) and further bioinformatics methods. RESULTS The depressive- and anxiety-like behaviors in CUMS-exposed rats were manifested by decreased spontaneous locomotor activity of OFT, increased immobility time of FST, increased entries and time in the closed arms of EPM, and decreased new object index of NOR. Furthermore, CUMS exposure also led to alterations in gene expression within the hippocampus (HIP), anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC), suggesting a potential link between adolescent stress and pathological changes within these brain regions. TaVNS could significantly ameliorate depressive- and anxiety-like behaviors. Its effects on these three brain regions were found related to regulation of the metabolism, and there were some brain region-specific findings. Compared with ACC and mPFC, taVNS has a more concrete effect on HIP by regulating the inflammation response and glycolysis. CONCLUSION taVNS is capable of ameliorating adolescent depressive- and anxiety-like behaviors by regulating plenty of genes in the three brain regions. Suppressed level of inflammatory response and enhanced glycolysis manifests the dominant role of taVNS in HIP, which provides a theoretical foundation and data support for the molecular mechanism of antidepression by taVNS.
Collapse
Affiliation(s)
- Lan Sun
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
| | - Shixiang Ma
- Department of Retroperitoneal Tumor SurgeryPeking University International HospitalBeijingChina
| | - Yun Yu
- School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xiangji Li
- State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Department of GastroenterologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Qianwen Wei
- School of Acupuncture‐Moxibustion and TuinaBeijing University of Chinese MedicineBeijingChina
| | - Li Min
- State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Diseases, Department of GastroenterologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
49
|
Liu G, Chi B. Technological Modalities in the Assessment and Treatment of Disorders of Consciousness. Phys Med Rehabil Clin N Am 2024; 35:109-126. [PMID: 37993182 DOI: 10.1016/j.pmr.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Over the last 10 years, there have been rapid advances made in technologies that can be utilized in the diagnosis and treatment of patients with a disorder of consciousness (DoC). This article provides a comprehensive review of these modalities including the evidence supporting their potential use in DoC. This review specifically addresses diagnostic, non-invasive therapeutic, and invasive therapeutic technological modalities except for neuroimaging, which is discussed in another article. While technologic advances appear promising for both assessment and treatment of patients with a DoC, high-quality evidence supporting widespread clinical adoption remains limited.
Collapse
Affiliation(s)
- Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No 12 Wulumuqi Middle Road, Shanghai 200040, China
| | - Bradley Chi
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Kang K, Shi K, Liu J, Li N, Wu J, Zhao X. Autonomic dysfunction and treatment strategies in intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14544. [PMID: 38372446 PMCID: PMC10875714 DOI: 10.1111/cns.14544] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024] Open
Abstract
AIMS Autonomic dysfunction with central autonomic network (CAN) damage occurs frequently after intracerebral hemorrhage (ICH) and contributes to a series of adverse outcomes. This review aims to provide insight and convenience for future clinical practice and research on autonomic dysfunction in ICH patients. DISCUSSION We summarize the autonomic dysfunction in ICH from the aspects of potential mechanisms, clinical significance, assessment, and treatment strategies. The CAN structures mainly include insular cortex, anterior cingulate cortex, amygdala, hypothalamus, nucleus of the solitary tract, ventrolateral medulla, dorsal motor nucleus of the vagus, nucleus ambiguus, parabrachial nucleus, and periaqueductal gray. Autonomic dysfunction after ICH is closely associated with neurological functional outcomes, cardiac complications, blood pressure fluctuation, immunosuppression and infection, thermoregulatory dysfunction, hyperglycemia, digestive dysfunction, and urogenital disturbances. Heart rate variability, baroreflex sensitivity, skin sympathetic nerve activity, sympathetic skin response, and plasma catecholamine concentration can be used to assess the autonomic functional activities after ICH. Risk stratification of patients according to autonomic functional activities, and development of intervention approaches based on the restoration of sympathetic-parasympathetic balance, would potentially improve clinical outcomes in ICH patients. CONCLUSION The review systematically summarizes the evidence of autonomic dysfunction and its association with clinical outcomes in ICH patients, proposing that targeting autonomic dysfunction could be potentially investigated to improve the clinical outcomes.
Collapse
Affiliation(s)
- Kaijiang Kang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Kaibin Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jiexin Liu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Na Li
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jianwei Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|