1
|
Ardinger CE, Morningstar MD, Lapish CC, Linsenbardt DN. Repeated Alcohol Drinking in Mice is Associated with Bidirectional Alterations in Corticostriatal Coherence. Neuropharmacology 2025:110522. [PMID: 40389153 DOI: 10.1016/j.neuropharm.2025.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/12/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Decreased functional connectivity between the striatum and frontal cortex is observed in individuals with alcohol use disorder (AUD), and predicts the probability of relapse in abstinent individuals with AUD. To further our understanding of how repeated alcohol consumption impacts the corticostriatal circuit, extracellular electrophysiological recordings (local field potentials; LFPs) were gathered from the nucleus accumbens (NAc) and prefrontal cortex (PFC) of C57BL/6J mice voluntarily consuming alcohol or water using the 2-hour access 'drinking-in-the-dark' (DID) procedure. Following a three-day acclimation period wherein only water access was provided during DID, mice were given 14 consecutive days of access to alcohol. Electrophysiology data was collected throughout the entirety of the final day of acclimation (i.e. water baseline) and the first and final days of alcohol access. We evaluated power and coherence at five frequency bands during bouts of drinking. Surprisingly, we only detected significant changes in power in the NAc; no differences were observed in power in the PFC. Increases in NAc power were detected at the Theta, Beta, and Gamma frequencies. At each of these frequencies, increases were identified on the final alcohol session compared to water baseline. Only at the Theta frequency were increases also detected compared to the first alcohol session. Furthermore, significant increases in Delta coherence were observed on the final alcohol session compared to water baseline, whereas significant decreases in Theta and Beta coherence were identified on both alcohol sessions compared to water baseline. These results provide additional support for alterations in the functional coupling of corticostriatal circuits associated with alcohol consumption and suggest the Theta frequency may be uniquely susceptible to these alterations.
Collapse
Affiliation(s)
- Cherish E Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202
| | - Mitchell D Morningstar
- Department of Neurosciences School of Medicine and Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, 87131
| | - Christopher C Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202; Indiana University School of Medicine Stark Neuroscience Institute, Indianapolis, Indiana, 46202
| | - David N Linsenbardt
- Department of Neurosciences School of Medicine and Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, 87131
| |
Collapse
|
2
|
Zabik NL, Blackford JU. Insights into Overlapping Brain Networks for Anxiety and Alcohol Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 40366598 DOI: 10.1007/7854_2025_592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Alcohol use disorder (AUD) is a debilitating condition affecting over 30 million Americans. AUD commonly co-occurs with other disorders, like other substance use disorders, trauma-related disorders, and anxiety disorders. Of the numerous co-occurring disorders, anxiety disorders are the most pervasive: anxiety disorders serve as a risk factor for developing AUD, emerge as co-occurring disorders that maintain alcohol drinking, and impede the effectiveness of treatments for AUD. Anxiety, therefore, shapes the development, course, and treatment of AUDs. AUDs can also increase anxiety, suggesting a complex, bidirectional relation between alcohol use and anxiety. The intersection of AUDs and anxiety is also supported by their overlapping neural circuits, specifically neural circuits involved in stress responding, reward processing, and cognitive control. The current review highlights findings from several decades of research on how anxiety impacts the brain and treatment outcomes in AUDs. We also provide important considerations for future research, with the goal of reducing the shame and burden of alcohol use for individuals with AUD and their families.
Collapse
Affiliation(s)
- Nicole L Zabik
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Grodin EN. Considerations for understanding the neurobiology of pathological alcohol choice preference: Commentary on Perini, Karlsson, McIntyre, Heilig-"Neural correlates of choosing alcohol over palatable food reward in humans". ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:957-959. [PMID: 40091156 PMCID: PMC12097924 DOI: 10.1111/acer.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Montagud-Romero S, González-Portilla M, Mellado S, Grandes P, de Fonseca FR, Pascual M, Rodríguez-Arias M. Oleoylethanolamide effects on stress-induced ethanol consumption: A lipid at the crossroads between stress, reward and neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111365. [PMID: 40250786 DOI: 10.1016/j.pnpbp.2025.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/19/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
The endocannabinoid system is involved in multiple drug-related behaviors and the transient increase in endogenous cannabinoids and endocannabinoid-like molecules contributes to healthy adaptation to stress exposure. Oleoylethanolamide (OEA) belongs to the N-acylethanolamines and interacts with the endocannabinoid system. In this study, we investigated the effect of systemic OEA treatment (10 mg/kg), before or after social defeat (SD), on ethanol self-administration (SA). Mice were divided into non-stressed (EXP) and stressed (SD) groups and randomly assigned to a treatment condition (control-CTRL, OEA or 10OEA). The EXP/SD-OEA group of mice received four doses of OEA before each SD encounter, while mice in the EXP/SD-10OEA group received a daily dose for 10 consecutive days following stress exposure. Three weeks after SD, mice were trained to self-administer a 20 % (vol/vol) ethanol solution. Upon extinction, a cue-induced reinstatement test was performed. Our results showed that both OEA treatments effectively prevented the stress-induced increase in ethanol consumption observed in defeated mice. No significant effects of OEA on relapse-like behavior were observed. Additionally, we found that animals exposed to OEA during SD encounters showed reduced nuclear factor kappa B (NF-κB) levels, suggesting an anti-inflammatory effect of OEA, while tumor necrosis factor (TNFα) gene expression decreased in defeated animals. In summary, these findings suggest that exogenously increasing OEA levels counteracts the adverse effects of stress on ethanol drinking while having some impact on inflammatory patterns.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Macarena González-Portilla
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain
| | - Susana Mellado
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain. Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010 Málaga, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain
| | - María Pascual
- Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Avda. Blasco Ibáñez 21, 46010, Valencia, Spain; Atención primaria, cronicidad y promoción de la salud, Red de investigación en atención primaria de adicciones (RIAPAD) Rd21/0009/0005, Spain.
| |
Collapse
|
5
|
Fujimoto Y, Fujino J, Matsuyoshi D, Jitoku D, Kobayashi N, Qian C, Okuzumi S, Tei S, Tamura T, Ueno T, Yamada M, Takahashi H. Effects of gaming content from social media on individuals with internet gaming disorder: an fMRI study. Cereb Cortex 2025; 35:bhaf096. [PMID: 40304550 DOI: 10.1093/cercor/bhaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/05/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Internet gaming disorder is an increasing public health problem due to the widespread availability of online gaming. Social media platforms drive this trend by enabling gameplay sharing and increasing user engagement, potentially reinforcing addictive gaming behaviors. Understanding how gaming content exposure on social media affects brain activity in individuals with internet gaming disorder is crucial. This study aimed to investigate gaming content neural responses on social media in individuals with internet gaming disorder using functional magnetic resonance imaging. We aimed to determine differences in activation patterns that contribute to understanding the neurobiological underpinnings of internet gaming disorder by examining brain activity in these individuals and comparing it to healthy controls. Additionally, we investigated the association of brain activity with clinical characteristics (internet gaming disorder severity and illness duration). The participants with internet gaming disorder demonstrated increased bilateral orbitofrontal cortex, bilateral hippocampus, left precuneus, and right superior temporal gyrus activation in response to gaming-related cues on social media compared to healthy controls. Additionally, internet gaming disorder severity and illness duration correlated with left hippocampus activation levels. These results improve our understanding of how gaming-related content on social media affects individuals with internet gaming disorder. Our findings provide valuable information into the neurobiological features of internet gaming disorder and help develop effective treatment interventions.
Collapse
Affiliation(s)
- Yuka Fujimoto
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Department of Psychiatry, Nara Medical University, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Daisuke Matsuyoshi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Daisuke Jitoku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Joint Research Department of Cyberpsychiatry, Institute of New Industry Incubation, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nanase Kobayashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Joint Research Department of Cyberpsychiatry, Institute of New Industry Incubation, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Chenyu Qian
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shoko Okuzumi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shisei Tei
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
- Institute of Applied Brain Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
- School of Human and Social Sciences, Tokyo International University, 2509 Matoba, Kawagoe, Saitama, 350-1198, Japan
| | - Takehiro Tamura
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari, Kanzaki, Saga, 842-0192, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Center for Brain Integration Research, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
6
|
Hurzeler T, Logge W, Watt J, McGregor IS, Suraev A, Haber PS, Morley KC. Cannabidiol attenuates precuneus activation during appetitive cue exposure in individuals with alcohol use disorder. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-01983-4. [PMID: 40102270 DOI: 10.1007/s00406-025-01983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025]
Abstract
Alcohol use disorder (AUD) is a prevalent psychiatric condition characterised by problematic alcohol consumption and craving, necessitating the exploration of novel therapeutic interventions. Cannabidiol (CBD), a non-psychoactive component of cannabis, has shown potential in modulating neural processes associated with substance use disorders including AUD. This study aimed to investigate the effect of CBD on alcohol cue-induced activation of neurocircuitry associated with alcohol craving, and impact on mood, craving, and cognitive functioning in individuals with AUD. In a cross-over, double-blind, randomized trial, 22 non-treatment seeking individuals (M = 29 years) diagnosed with AUD (DSM-V) received either 800 mg of CBD or a matched placebo, completing two respective fMRI sessions. The primary outcome was neural activation in response to alcohol versus control visual cues, measured using a functional magnetic resonance imaging (fMRI) alcohol cue reactivity task. Secondary outcomes included assessments of mood, craving, and cognitive functioning. Region of interest analyses showed no differences in alcohol cue-elicited activation between the CBD and placebo conditions. However, exploratory whole-brain analysis indicated a significant treatment effect of CBD in the precuneus which was independent of cue specificity. There were no significant treatment effects of CBD compared to placebo on acute craving, mood, or cognitive functioning. In non treatment seeking individuals with AUD, CBD modulates precuneus activity during alcohol cue exposure. Further studies examining the effect of CBD on treatment-seeking AUD individuals are warranted.
Collapse
Affiliation(s)
- Tristan Hurzeler
- Specialty of Addiction Medicine, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Edith Collins Centre for Translational Research (Alcohol, Drugs & Toxicology), Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Warren Logge
- Specialty of Addiction Medicine, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Edith Collins Centre for Translational Research (Alcohol, Drugs & Toxicology), Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Joshua Watt
- Specialty of Addiction Medicine, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Edith Collins Centre for Translational Research (Alcohol, Drugs & Toxicology), Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - I S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Anastasia Suraev
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Paul S Haber
- Specialty of Addiction Medicine, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Edith Collins Centre for Translational Research (Alcohol, Drugs & Toxicology), Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Kirsten C Morley
- Specialty of Addiction Medicine, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Edith Collins Centre for Translational Research (Alcohol, Drugs & Toxicology), Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Yoon HJ, Doyle MA, Altemus ME, Bethi R, Lago SH, Winder DG, Calipari ES. Operant ethanol self-administration behaviors do not predict sex differences in continuous access home cage drinking. Alcohol 2025; 123:87-99. [PMID: 39218047 PMCID: PMC12034132 DOI: 10.1016/j.alcohol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Understanding sex differences in disease prevalence is critical to public health, particularly in the context of alcohol use disorder (AUD). The goal of this study was to understand sex differences in ethanol drinking behavior and define the precise conditions under which sex differences emerge. Consistent with prior work, C57BL/6J females drank more than males under continuous access two-bottle choice conditions. However, using ethanol self-administration - where an operant response results in access to an ethanol sipper for a fixed time period - we found no sex differences in operant response rates or ethanol consumption (volume per body weight consumed, as well as lick behavior). This remained true across a wide range of parameters including acquisition, when the ethanol sipper access period was manipulated, and when the concentration of the ethanol available was scaled. The only sex differences observed were in total ethanol consumption, which was explained by differences in body weight between males and females, rather than by sex differences in motivation to drink. Using dimensionality reduction approaches, we found that drinking behavior in the operant context did not cluster by sex, but rather clustered by high and low drinking phenotypes. Interestingly, these high and low drinking phenotypes in the operant context showed no correlation with those same categorizations in the home cage context within the same animals. These data underscore the complexity of sex differences in ethanol consumption, highlighting the important role that drinking conditions/context plays in the expression of these differences.
Collapse
Affiliation(s)
- Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Megan E Altemus
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Sofia H Lago
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Ortelli OA, Weiner JL. Evaluating the impact of concurrent sucrose availability on operant ethanol self-administration in male and female Long Evans rats. ADDICTION NEUROSCIENCE 2025; 14:100196. [PMID: 40161352 PMCID: PMC11951412 DOI: 10.1016/j.addicn.2025.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Investigating how environmental factors, such as the availability of non-ethanol alternative reinforcers, influences ethanol self-administration is critical for understanding the pathology of alcohol use disorder (AUD). Here we established the first operant choice paradigm that leverages the strengths of the sipper tube self-administration model to investigate how concurrent access to sucrose altered ethanol self-administration in male and female Long Evans rats. Choice behavior was examined using two distinct paradigms, including a novel adaptation of the response requirement paradigm. Under both a fixed-ratio or response requirement paradigm, we observed that concurrent availability of an alternative reinforcer significantly reduced appetitive and consummatory ethanol drinking-related behaviors. Furthermore, we assessed the sensitivity of the response requirement choice paradigm by administering the pharmacological stressor yohimbine and by altering the taste of the ethanol solution. Yohimbine administration non-selectively increased ethanol and sucrose intake, but not seeking, while taste adulteration decreased ethanol seeking and intake. These experiments demonstrate the utility of two concurrent choice paradigms that can more accurately capture AUD-like phenotypes, such as ethanol-directed choice in the face of alternative reinforcers. Future studies should investigate how models of vulnerability and dependence alter ethanol choice behavior under these paradigms.
Collapse
Affiliation(s)
- Olivia A. Ortelli
- Wake Forest University School of Medicine, Department of Translational Neuroscience, United States
| | - Jeffrey L. Weiner
- Wake Forest University School of Medicine, Department of Translational Neuroscience, United States
| |
Collapse
|
9
|
Taxier LR, Neira S, Flanigan ME, Haun HL, Eberle MR, Kooyman LS, Markowitz SY, Kash TL. Retrieval of an Ethanol-Conditioned Taste Aversion Promotes GABAergic Plasticity in the Anterior Insular Cortex. J Neurosci 2025; 45:e0525242024. [PMID: 39779373 PMCID: PMC11867018 DOI: 10.1523/jneurosci.0525-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC→BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA). Consistent with this hypothesis, frequency of mIPSCs was increased 1 h following retrieval of an ethanol-CTA across cell layers in aIC→BLA projection neurons. This increase in GABAergic plasticity occurred in a circuit-specific, time-limited, and ethanol-CTA retrieval-dependent manner. Additionally, local inhibitory inputs onto layer 2/3 aIC→BLA projection neurons were greater in number and strength following ethanol-CTA. Finally, DREADD-mediated inhibition of aIC parvalbumin-expressing cells blunted the retrieval of ethanol-CTA in male, but not female, mice. Collectively, this work implicates a circuit-specific and memory retrieval-dependent increase in GABAergic tone following retrieval of an ethanol-CTA, thereby advancing our understanding of how the aversive effects of ethanol are encoded in the brain.
Collapse
Affiliation(s)
- Lisa R Taxier
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Sofia Neira
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Maya R Eberle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Lili S Kooyman
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Sloan Y Markowitz
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Huang A, Wang R, Wen A, Xu L, Li N, Gao Y, Lu W, Guo S, Wang J, Wang L. Clinical value of predicting relapse within 3 months in alcohol-dependent patients using fNIRS in verbal fluency task. Sci Rep 2025; 15:5283. [PMID: 39939394 PMCID: PMC11822120 DOI: 10.1038/s41598-025-89775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
To investigate the hemodynamic differences in various brain regions between alcohol dependence (AlcD) patients and healthy controls during a verbal fluency task (VFT) using functional near-infrared spectroscopy (fNIRS), and to further explore the clinical predictive value of fNIRS before therapy for the outcome of relapse in AlcD patients after 3 months. A retrospective survey was conducted on 123 AlcD patients and 149 healthy controls during the same period. Baseline assessment of fNIRS was performed to analyze the hemodynamic differences between the two groups in different brain regions. During hospitalization, AlcD patients underwent a 3-week benzodiazepine substitution therapy, gradually tapering off the medication to achieve alcohol withdrawal treatment goals. Three months after discharge, we conducted follow-up phone calls to assess the relapse status of the patients. Compared to the control group, the AlcD group had significantly lower integral values in the frontal and bilateral temporal lobes, as well as lower β-values in all channels of the frontal lobe except for Ch13, and in all channels of the bilateral temporal lobes (p < 0.005), with no significant difference in the parietal lobe channel(p > 0.05). ROC (Receiver Operating Characteristic Curve) analysis for predicting relapse within 3 months showed that the area under the curve for all channels was highest (0.951, sensitivity 0.924, specificity 0.886). Patients with AlcD exhibit functional impairments in the frontal and temporal lobes. fNIRS channels in the frontal and parietal lobes based on VFT have good clinical predictive value for relapse within 3 months after pharmacotherapy in AlcD and can be applied in clinical practice.
Collapse
Affiliation(s)
- Anqi Huang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China
| | - Ran Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China
| | - Aiping Wen
- Neurology Department, Leting County Hospital, Tangshan, 063600, China
| | - Lin Xu
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China
| | - Na Li
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China
| | - Yuanyuan Gao
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China
| | - Wenting Lu
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China
| | - Shijie Guo
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China
| | - Jincheng Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China.
| | - Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, 89 Donggang Road, Shijiazhuang, 050031, China.
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
11
|
Bottino M, Bocková N, Poller NW, Smolka MN, Böhmer J, Walter H, Marxen M. Relating Functional Connectivity and Alcohol Use Disorder: A Systematic Review and Derivation of Relevance Maps for Regions and Connections. Hum Brain Mapp 2025; 46:e70156. [PMID: 39917866 PMCID: PMC11803412 DOI: 10.1002/hbm.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Alcohol Use Disorder (AUD), a prevalent and potentially severe psychiatric condition, is one of the leading causes of morbidity and mortality. This systematic review investigates the relationship between AUD and resting-state functional connectivity (rsFC) derived from functional magnetic resonance imaging data. Following the PRISMA guidelines, a comprehensive search yielded 248 papers, and a screening process identified 39 studies with 73 relevant analyses. Using the automated anatomical labeling atlas for whole-brain parcellation, relevance maps were generated to quantify associations between brain regions and their connections with AUD. These outcomes are based on the frequency with which significant findings are reported in the literature, to deal with the challenge of methodological diversity between analyses, including sample sizes, types of independent rsFC features, and AUD measures. The analysis focuses on whole-brain studies to mitigate selection biases associated with seed-based approaches. The most frequently reported regions include the middle and superior frontal gyri, the anterior cingulate cortex, and the insula. The generated relevance maps can serve as a valuable tool for formulating hypotheses and advancing our understanding of AUD's neural correlates in the future. This work also provides a template on how to quantitatively summarize a diverse literature, which could be applied to more specific aspects of AUD, including craving, relapse, binge drinking, or other diseases.
Collapse
Affiliation(s)
- Marco Bottino
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
| | - Natálie Bocková
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
| | - Nico W. Poller
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
| | - Michael N. Smolka
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
| | - Justin Böhmer
- Department of Psychiatry and Psychotherapy CCMCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität Zu Berlin, and Berlin Institute of HealthBerlinGermany
- Institute of Medical PsychologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität Zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCMCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität Zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Michael Marxen
- Department of Psychiatry and PsychotherapyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
12
|
Logge WB, Haber PS, Hurzeler T, Gallagher H, Kranzler H, Morley KC. Neural cue reactivity and intrinsic functional connectivity in individuals with alcohol use disorder following treatment with topiramate or naltrexone. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06745-7. [PMID: 39853353 DOI: 10.1007/s00213-025-06745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
RATIONALE Both topiramate and naltrexone have been shown to affect neural alcohol cue reactivity in alcohol use disorder (AUD). However, their comparative effects on alcohol cue reactivity are unknown. Moreover, while naltrexone has been found to normalize hyperactive localized network connectivity implicated in AUD, no studies have examined the effect of topiramate on intrinsic functional connectivity or compared functional connectivity between these two widely used medications. OBJECTIVE This study compared topiramate versus naltrexone on alcohol cue-elicited brain activation and intrinsic functional connectivity in patients with alcohol use disorder. METHODS Forty-seven participants with alcohol use disorder received daily topiramate (titrating the dose up to 200 mg/day n = 21) or naltrexone (50 mg/day, n = 26) for at least 6 weeks. Using functional magnetic resonance imaging (fMRI), we examined intrinsic functional connectivity during rest and alcohol cue-elicited neural activation during a visual alcohol cue reactivity task 120 min following treatment administration. Functional connectivity and alcohol cue reactivity and percentage of heavy drinking days (% HDD) associations were assessed. RESULTS No differences in either intrinsic functional connectivity or alcohol cue-elicited neural activity were seen between topiramate and naltrexone-treated groups. Overall, participants showed increased alcohol cue-elicited activation in three clusters spanning occipital regions involved in visual recognition of stimuli, and hypoactivation to both alcohol and control cues in three clusters involved in salience attribution and processing of emotional valence of external stimuli. No differences between topiramate versus naltrexone were observed for either functional measure or associations with post-scan % HDD. CONCLUSIONS Topiramate and naltrexone enacted comparable alcohol cue reactivity and intrinsic functional connectivity patterns. Some overall responses of increased brain activation to alcohol cues in visual processing regions coupled with reduced activation to alcohol and control cues were evidenced for both treatments. These activation patterns were in regions expected to show attenuation of brain activity resulting from treatment. Topiramate and naltrexone may thus enact functional effects through similar modulation of functional neural activity in individuals with AUD. TRIAL REGISTRATION ClinicalTrials.gov, NCT03479086 https://www. CLINICALTRIALS gov/study/NCT03479086 .
Collapse
Affiliation(s)
- Warren B Logge
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia.
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Specialty of Addiction Medicine, Lv 6, King George V Building 83-117 Missenden Rd, Camperdown, NSW, 2050, Australia.
| | - Paul S Haber
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
- Drug Health Services, Sydney Local Health District, Sydney, NSW, Australia
| | - Tristan Hurzeler
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hugh Gallagher
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Henry Kranzler
- Center for Studies of Addiction, Perelman School of Medicine, Education, and Clinical Center, University of Pennsylvania and Mental Illness Research, Crescenz VAMC, Philadelphia, PA, USA
| | - Kirsten C Morley
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Sun Y, Wu Q, Tang J, Liao Y. Predicting drug craving among ketamine-dependent users through machine learning based on brain structural measures. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111216. [PMID: 39662724 DOI: 10.1016/j.pnpbp.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Craving is a core factor driving drug-seeking and -taking, representing a significant risk factor for relapse. This study aims to identify neuroanatomical biomarkers for quantifying and predicting craving. METHODS The study enrolled 94 ketamine-dependent users and 103 healthy controls (HC). Utilizing support vector regression (SVR) with 10-fold cross-validated framework, we developed a neuroanatomical craving model based on measures of regional cortical thickness (CT), surface area (SA), and subcortical volume (SV) derived from T1 images. The generalizability of neuroanatomical craving model was examined in an independent set. Spatial correlation analysis was employed to assess the relationship between the regional contribution to craving and density maps of receptors/transporters from previous molecular imaging studies. RESULTS The neuroanatomical craving model identified neuroanatomical biomarkers that predicted self-report craving (r = 0.635). The most importance of predictors of craving included the SA of the left medial orbitofrontal cortex and the left supramarginal gyrus, CT in the left caudal anterior cingulate, the left cuneus, the right lateral occipital cortex and the right lingual gyrus, as well as the left amygdala GMV. Importantly, these predictors were generalized to an independent sample. Moreover, nodal contribution to predicted craving scores were associated with DA2, 5-HTa, 5-HTb receptor and serotonin reuptake transporter densities. CONCLUSION The results offer a key perspective on craving prediction among ketamine-dependent users, and identify neuroanatomical areas associated with craving in the frontal and parietal regions. Additionally, the underlying neuroanatomical structures involved in the craving process may be linked to the dopaminergic and serotonergic systems.
Collapse
Affiliation(s)
- Yunkai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Qiuxia Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
14
|
Logge WB, Haber PS, Hurzeler TP, Towers EE, Morley KC. The effects of N-acetyl cysteine on intrinsic functional connectivity and neural alcohol cue reactivity in treatment-seeking individuals with alcohol use disorder: a preliminary study. Psychopharmacology (Berl) 2025; 242:149-160. [PMID: 39102049 PMCID: PMC11742866 DOI: 10.1007/s00213-024-06656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
N-acetyl cysteine (NAC) is a potential pharmacotherapy for alcohol use disorder (AUD), but it is not known whether it modulates neural activation to alcohol cues or intrinsic functional connectivity. We investigated whether NAC attenuates (i) alcohol cue-elicited activation, and (ii) intrinsic functional connectivity compared to placebo in patients with AUD. In this preliminary study, twenty-three individuals (7 females) with moderate-severe AUD received daily NAC (2400 mg/day, n = 9), or a placebo (n = 14) for at least 2 weeks. Participants completed a pre-treatment functional magnetic resonance imaging session (T0) and a post-treatment session (T1) comprising resting-state and visual alcohol cue reactivity task acquisitions. Activation differences between sessions, treatment, and session-by-treatment interaction were assessed. Resting-state functional connectivity examined using 377 node ROI-to-ROIs evaluated whether NAC reduced intrinsic functional connectivity after treatment. There were no differences in alcohol cue reactivity for brain activation or subjective craving between NAC and placebo during treatment or across sessions, or significant interaction. A significant treatment-by-time interaction, with reduced intrinsic connectivity was observed after treatment (T1) for NAC-treated compared to placebo-treated patients in the posterior cingulate node (9, left hemisphere) of the dorsal attentional network and connections to salience, ventral-attentional, somatosensory, and visual-peripheral networks implicated in AUD. NAC reduced intrinsic functional connectivity in patients with moderate-severe AUD after treatment compared to placebo, but did not attenuate alcohol cue-elicited activation. However, the absence of cue reactivity findings may result from low power, rather than the absence of cue reactivity findings associated with NAC. These results provide preliminary evidence that NAC treatment may modulate intrinsic functional connectivity brain activation in patients with alcohol use disorder, but replication in larger studies are required to determine the strength of this effect and any associations with clinical outcomes. Clinical Trials Registration: ClinicalTrials.gov Identifier: NCT03879759.
Collapse
Affiliation(s)
- Warren B Logge
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia.
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
- Discipline of Addiction Medicine, Lv 6, King George V Building 83-117 Missenden Rd, Camperdown, NSW, 2050, Australia.
| | - Paul S Haber
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Drug Health Services, Sydney Local Health District, Camperdown, NSW, Australia
| | - Tristan P Hurzeler
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Ellen E Towers
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Kirsten C Morley
- Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Cao HL, Wei W, Meng YJ, Tao YJ, Yang X, Li T, Guo WJ. Association of altered cortical gyrification and working memory in male early abstinent alcohol-dependent individuals. Brain Res Bull 2025; 220:111166. [PMID: 39667504 DOI: 10.1016/j.brainresbull.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Alcohol dependence (AD) is an addictive disorder with multifaceted neurobiological features. Recent research on the pathophysiological mechanisms of AD has emphasized the important role of dysconnectivity. Cortical gyrification is known to be a reliable marker of neural connectivity. This study aimed to explore cortical gyrification using the local gyrification index (LGI) between alcohol-dependent patients and controls. METHODS Magnetic resonance images were collected from 60 early abstinent patients with AD (5-12 days after stopping alcohol consumption) and 59 controls and preprocessed using FreeSurfer, followed by surface-based morphometry (SBM) analysis to compare the LGI between the two groups. Cognitive performance was assessed using the Spatial Working Memory (SWM) test in the Cambridge Neuropsychological Test Automated Battery (CANTAB). The relationship between LGI, cognitive performance, and clinical variables was also explored in the patient group. RESULTS Compared with controls, patients with AD exhibited significantly decreased LGI in several regions, including the postcentral gyrus, precentral gyrus, middle frontal, superior temporal, middle temporal, insula, superior parietal, and inferior parietal cortex. AD patients did worse than controls in several SWM measures. Furthermore, decreased LGI in the left postcentral was negatively correlated with working memory performance after multiple comparison corrections in the patient group. CONCLUSION Alcohol-dependent individuals exhibit abnormal patterns of cortical gyrification, which may be underlying neurobiological markers of AD. Our findings further indicate that working memory deficits may be related to abnormalities in cortical gyrification in alcohol addiction.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-Jie Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wan-Jun Guo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
16
|
Radoman M, McGowan C, Heilner E, Lacadie C, Sinha R. Neural responses to stress and alcohol cues in individuals with pain with and without alcohol use disorder. Addict Biol 2024; 29:e70010. [PMID: 39660770 PMCID: PMC11632857 DOI: 10.1111/adb.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Pain and alcohol use disorder (AUD) frequently co-occur, but the underlying neurobiology is not well-understood. Although many studies have reported disruptions in stress and reward cue-elicited neural reactivity and heightened alcohol craving in individuals with AUD, little is known about these constructs among patients who experience pain. Here, individuals with pain (Pain+, n = 31) and without pain (Pain-, n = 37) completed a well-validated functional magnetic resonance imaging (fMRI) paradigm involving stress (S), alcohol (A) and neutral (N) cue exposure with repeated alcohol craving assessments. Using whole-brain, voxel-based analyses (p < 0.001, whole-brain cluster correction at α < .05), the Pain+ versus Pain- group evidenced greater dorsal anterior cingulate cortex and left amygdala hyperactivation during N, but hypoactivation during the S-N contrast. Additionally, Pain+ exhibited blunted right anterior insular cortex (AIC) during S-N and blunted anteromedial thalamus and left AIC with hyperactive orbitofrontal cortex (OFC) during A-N. Exploratory analyses further revealed that individuals with pain and AUD (n = 17) relative to pain alone (n = 14) showed hyperactive bilateral AIC and hypoactive right dorsal caudate during A-N. Alcohol cue-induced craving, significantly higher in Pain+ (p = 0.03), correlated with blunted right AIC and OFC responses during A-N. In sum, these results provide first evidence of heightened alcohol cue-elicited craving and disrupted stress- and alcohol cue-reactivity within corticostriatal-limbic regions implicated in negative affect and preoccupation/anticipation stages of AUD in those with pain and with comorbid pain and AUD. Future investigations of pain-AUD interaction are needed that include systematic pain assessment and longitudinal designs with larger sample sizes.
Collapse
Affiliation(s)
- Milena Radoman
- Yale Stress Center, Department of PsychiatryYale University School of Medicine, Yale Stress CenterNew HavenConnecticutUSA
- Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenConnecticutUSA
| | - Colleen McGowan
- Yale Stress Center, Department of PsychiatryYale University School of Medicine, Yale Stress CenterNew HavenConnecticutUSA
| | - Emily Heilner
- Yale Stress Center, Department of PsychiatryYale University School of Medicine, Yale Stress CenterNew HavenConnecticutUSA
| | - Cheryl Lacadie
- Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenConnecticutUSA
| | - Rajita Sinha
- Yale Stress Center, Department of PsychiatryYale University School of Medicine, Yale Stress CenterNew HavenConnecticutUSA
| |
Collapse
|
17
|
Morales AM, Jones SA, Carlson B, Kliamovich D, Dehoney J, Simpson BL, Dominguez-Savage KA, Hernandez KO, Lopez DA, Baker FC, Clark DB, Goldston DB, Luna B, Nooner KB, Muller-Oehring EM, Tapert SF, Thompson WK, Nagel BJ. Associations between mesolimbic connectivity, and alcohol use from adolescence to adulthood. Dev Cogn Neurosci 2024; 70:101478. [PMID: 39577156 PMCID: PMC11617707 DOI: 10.1016/j.dcn.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to limbic regions play a key role in the initiation and maintenance of substance use; however, the relationship between mesolimbic resting-state functional connectivity (RSFC) and alcohol use during development remains unclear. We examined the associations between alcohol use and VTA RSFC to subcortical structures in 796 participants (12-21 years old at baseline, 51 % female) across 9 waves of longitudinal data from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Linear mixed effects models included interactions between age, sex, and alcohol use, and best fitting models were selected using log-likelihood ratio tests. Results demonstrated a positive association between alcohol use and VTA RSFC to the nucleus accumbens. Age was associated with VTA RSFC to the amygdala and hippocampus, and an age-by-alcohol use interaction on VTA-globus pallidus connectivity was driven by a positive association between alcohol and VTA-globus pallidus RSFC in adolescence, but not adulthood. On average, male participants exhibited greater VTA RSFC to the amygdala, nucleus accumbens, caudate, hippocampus, globus pallidus, and thalamus. Differences in VTA RSFC related to age, sex, and alcohol, may inform our understanding of neurobiological risk and resilience for alcohol use and other psychiatric disorders.
Collapse
Affiliation(s)
- Angelica M Morales
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.
| | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Birgitta Carlson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Dakota Kliamovich
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Joseph Dehoney
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Brooke L Simpson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | | | - Kristina O Hernandez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Daniel A Lopez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David B Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Eva M Muller-Oehring
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, CA, United States
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
18
|
Maulitz L, Nehls S, Stickeler E, Ignatov A, Kupec T, Henn AT, Chechko N, Tchaikovski SN. Psychological characteristics and structural brain changes in women with endometriosis and endometriosis-independent chronic pelvic pain. Hum Reprod 2024; 39:2473-2484. [PMID: 39241806 DOI: 10.1093/humrep/deae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
STUDY QUESTION Are there neurobiological changes induced by endometriosis? SUMMARY ANSWER Women with endometriosis demonstrate specific neurobiological changes distinct from those in patients with chronic pelvic pain (CPP) in the absence of endometriosis. WHAT IS KNOWN ALREADY Endometriosis is a chronic disease affecting women of reproductive age that presents with pain and infertility often accompanied by comorbid mental disorders. Only one study with a number of limitations has investigated changes in gray matter volumes and functional connectivity in a small group of patients with endometriosis. STUDY DESIGN, SIZE, DURATION This prospective study recruited 53 women undergoing a laparoscopy due to suspicion of symptomatic endometriosis and 25 healthy, pain-free women. Clinical and psychological characteristics, thermal pain perception, and voxel- and surface-based morphology were assessed in all study participants. Thereafter, the patients underwent a laparoscopy, where endometriosis was either histologically confirmed and removed, or ruled out. Correspondingly, patients were assigned into the group with endometriosis (n = 27) or with endometriosis-independent CPP (n = 26) and compared to the pain-free controls. PARTICIPANTS/MATERIALS, SETTING, METHODS The study groups were generally representative for the population of women with endometriosis. Sociodemographic, medical, clinical, and psychological characteristics were collected using various questionnaires and a structured clinical interview. Thermal pain perception and voxel- and surface-based morphometry were assessed using thermode and MRI, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Despite comparable pain intensity and burden of mental disorders, both patient groups demonstrated distinct neurobiological patterns. Women with endometriosis exhibited increased gray matter volume (GMV) in the left cerebellum, lingual gyrus and calcarine gyrus, compared to those with endometriosis-independent CPP. Patients with CPP had decreased GMV in the right cerebellum as compared to controls. Dysmenorrhoea severity correlated positively with GMV in the left inferior parietal lobule, whereas depressive symptoms were associated with decreased GMV in the right superior medial gyrus across patient groups. Dyspareunia correlated negatively with cortical thickness in the left inferior temporal gyrus and left middle temporal gyrus. LIMITATIONS, REASONS FOR CAUTION The study groups differed in a few baseline-characteristics, including educational levels, smoking and BMI. While measuring pain perception thresholds, we did not attempt to mimic CPP by placement of the thermode on the abdominal wall. WIDER IMPLICATIONS OF THE FINDINGS Changes in gray matter volume associated with endometriosis differ from those observed in women with endometriosis-independent CPP. Our results underline an involvement of the cerebellum in pain perception and the pathogenesis of pain associated with endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the START Program of the Faculty of Medicine, RWTH Aachen, Germany, and supported by the International Research Training Group (IRTG 2150) of the German Research Foundation (DFG)-269953372/GRK2150, Germany. S.T. was supported by postdoctoral fellowship of the Faculty of Medicine, RWTH Aachen, Germany. There are no conflicts of interest. TRIAL REGISTRATION NUMBER DRKS00021236.
Collapse
Affiliation(s)
- L Maulitz
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- Department for Medical Education, University Clinic Bonn, Bonn, Germany
| | - S Nehls
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - E Stickeler
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A Ignatov
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - T Kupec
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - A T Henn
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
| | - N Chechko
- Department for Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - S N Tchaikovski
- University Clinic for Gynaecology and Obstetrics, RWTH Aachen, Aachen, Germany
- University Clinic for Gynaecology, Obstetrics and Reproductive Medicine, Otto-von-Guericke University, Magdeburg, Germany
- University Clinic for Gynaecology and Obstetrics, Brandenburg Medical School, Brandenburg, Germany
| |
Collapse
|
19
|
Hurzeler TP, Logge W, Watt J, DeMayo MM, Suraev A, McGregor IS, Haber PS, Morley KC. The neurobehavioural effects of cannabidiol in alcohol use disorder: Study protocol for a double-blind, randomised, cross over, placebo-controlled trial. Contemp Clin Trials Commun 2024; 41:101341. [PMID: 39252861 PMCID: PMC11382041 DOI: 10.1016/j.conctc.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
Current treatments for alcohol use disorders (AUD) have limited efficacy. Recently, Cannabidiol (CBD) has been examined in a multitude of clinical settings. Preclinical and clinical results suggest that CBD might be particularly well suited for the treatment of AUD and may reduce alcohol cue and stress-induced craving and alcohol seeking. This study aims to investigate this new pharmacotherapy with a particular focus on neurobiological and physiological indicators of craving. Methods: In this double-blind, within-subject, randomised, placebo-controlled, cross-over study, non-treatment seekers will be randomly allocated to three days of four 200 mg CBD gel capsules (800 mg/day) or placebo, with an 18-day washout period. Cognitive, clinical, and neuroimaging assessments will be completed during these three days. The CBD and placebo assessments will be compared. The primary outcomes are i) BOLD signal as a proxy for regional activity during a cue reactivity and a fear response task measured with functional magnetic resonance imaging (fMRI), ii) heart rate variability and skin conductance levels as a proxy for psychophysiological responses to alcohol stimuli. The secondary outcomes are: i) neurometabolite levels (γ-Aminobutyric acid, ethanol, glutathione, and glutamate + glutamine (combined signal)) using magnetic resonance spectroscopy (MRS); ii) functional connectivity using resting state fMRI (rsfMRI); iii) executive functioning task results; iv) clinical outcomes such as craving, anxiety, and sleep. Discussion: This study will improve the understanding of the mechanisms of action of CBD and provide early signals of efficacy regarding the therapeutic potential of CBD in the treatment of alcohol use disorder. ClinicalTrials.gov Identifier: NCT05387148.
Collapse
Affiliation(s)
- Tristan P Hurzeler
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Warren Logge
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Joshua Watt
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Marilena M DeMayo
- Department of Radiology and Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Anastasia Suraev
- University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia
- University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia
| | - Iain S McGregor
- University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, NSW, Australia
- University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia
| | - Paul S Haber
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
- Edith Collins Centre for Translational Research, Royal Prince Alfred Hospital, NSW, Australia
| | - Kirsten C Morley
- University of Sydney, Faculty of Medicine and Health, Sydney Medical School, NSW, Australia
| |
Collapse
|
20
|
Mellick W, McTeague L, Hix S, Anton R, Prisciandaro JJ. Blunted reward-related activation to food scenes distinguishes individuals with alcohol use disorder in a pilot case-control fMRI pilot study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1866-1875. [PMID: 39312084 PMCID: PMC11492229 DOI: 10.1111/acer.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is thought to bias the neurocircuitry underlying reward processing and motivation to preferentially attend to conditioned alcohol cues over natural rewards. The present case-control pilot study evaluated this hypothesis using novel natural reward paradigms. METHODS Twenty-eight participants (AUD, n = 14, light drinkers, n = 14) were recruited-AUD participants reported 44.0% heavy drinking days (%HDD) and 4.67 drinks/day over the preceding 90 days. Functional magnetic resonance imaging (fMRI) data were acquired during the administration of three separate picture-viewing paradigms of alcohol cues, food scenes, and social reward, respectively. Independent samples t-tests were performed to compare groups' fMRI data and exploratory correlation analyses were performed to examine associations with clinical characteristics of AUD. RESULTS Food scenes elicited abnormally low reward-related activation, within the superior frontal gyrus and caudate bilaterally, among AUD participants. Lower activation to food scenes within the superior frontal gyrus was, in turn, associated with higher levels of past-month %HDD among AUD participants, specifically, along with craving and alcohol dependence severity when examined across the full sample. Contrasting reward types (e.g., alcohol cues vs. food scenes) did not reveal "preferential" activation to differentiate groups. CONCLUSIONS Heavy drinking appears associated with reduced responsivity to natural rewards, specifically food rather than social cues. Neural mechanisms underlying the high prevalence of malnutrition among individuals with AUD may involve some combination of blunted approach-related affect and reduced craving-related motivation to eat when food is present, resulting in limited engagement of cortico-striato-thalamic motor circuitry supporting food acquisition. However, given the preliminary nature of this pilot study, such formulations remain tentative until larger follow-up studies can be conducted. From a potential translational standpoint, the ability of promising therapeutics to demonstrate increased responsivity to natural rewards, specifically nutritive reward may serve as a valuable complementary efficacy indicator for future clinical neuroimaging trials in AUD.
Collapse
Affiliation(s)
- William Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lisa McTeague
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Sara Hix
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond Anton
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James J. Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
21
|
Muehlhan M, Spindler C, Nowaczynski S, Buchner C, Fascher M, Trautmann S. Where alcohol use disorder meets interoception: A meta-analytic view on structural and functional neuroimaging data. J Neurochem 2024; 168:2515-2531. [PMID: 38528368 DOI: 10.1111/jnc.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Alcohol use disorder (AUD) has been associated with changes in the processing of internal body signals, known as interoception. Changes in brain structure, particularly in the insula, are thought to underlie impaired interoception. As studies specifically investigating this association are largely lacking, this analysis takes an approach that compares meta-analytic results on interoception with recently published meta-analytic results on gray matter reduction in AUD. A systematic literature search identified 25 eligible interoception studies. Activation likelihood estimation (ALE) was used to test for spatial convergence of study results. Overlap between interoception and AUD clusters was tested using conjunction analysis. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity were used to identify the functional network of interoception and to test where this network overlapped with AUD meta-analytic clusters. The results were characterized using behavioral domain analysis. The interoception ALE identified a cluster in the left middle insula. There was no overlap with clusters of reduced gray matter in AUD. MACM analysis of the interoception cluster revealed a large network located in the insulae, thalami, basal nuclei, cingulate and medial frontal cortices, and pre- and postcentral gyri. Resting state analysis confirmed this result, showing the strongest connections to nodes of the salience- and somatomotor network. Five of the eight clusters that showed a structural reduction in AUD were located within these networks. The behavioral profiles of these clusters were suggestive of higher-level processes such as salience control, somatomotor functions, and skin sensations. The results suggest an altered salience mapping of interoceptive signals in AUD, consistent with current models. Connections to the somatomotor network may be related to action control and integration of skin sensations. Mindfulness-based interventions, pleasurable touch, and (deep) transcranial magnetic stimulation may be targeted interventions that reduce interoceptive deficits in AUD and thus contribute to drug use reduction and relapse prevention.
Collapse
Affiliation(s)
- Markus Muehlhan
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute of Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Carolin Spindler
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Sandra Nowaczynski
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute of Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
- Department of Addiction Medicine, Carl-Friedrich-Flemming-Clinic, Helios Medical Center Schwerin, Schwerin, Germany
| | - Claudius Buchner
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Maximilian Fascher
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute of Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Sebastian Trautmann
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
- ICPP Institute of Clinical Psychology and Psychotherapy, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Green R, Kirkland AE, Browning BD, Ferguson PL, Gray KM, Squeglia LM. Effect of N-acetylcysteine on neural alcohol cue reactivity and craving in adolescents who drink heavily: A preliminary randomized clinical trial. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1772-1783. [PMID: 38960894 PMCID: PMC11576246 DOI: 10.1111/acer.15402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Alcohol craving is related to problematic alcohol use; therefore, pharmacotherapies that modulate alcohol craving are of interest. N-acetylcysteine, an over-the-counter antioxidant, is a candidate pharmacotherapy for adolescent alcohol use with the potential to impact craving. Cue-reactivity paradigms using functional magnetic resonance imaging (fMRI) can identify neural regions implicated in craving and serve as a screening tool for novel pharmacotherapy options. METHODS This preliminary study examined the effect of N-acetylcysteine on neural reactivity to alcohol cues and subjective craving among 31 non-treatment-seeking adolescents (17.6-19.9 years old, 55% female) who use alcohol heavily. In a randomized cross-over design, participants completed three fMRI sessions: baseline and after a 10-day course of N-acetylcysteine (1200 mg twice daily) and matched placebo. The primary outcome was neural response to alcohol versus non-alcohol beverage cues after N-acetylcysteine versus placebo, with a secondary outcome of self-reported subjective craving. RESULTS In the full sample (n = 31), there was no effect of N-acetylcysteine versus placebo on neural alcohol reactivity (ps ≥ 0.49;η p 2 s = 0.00-0.07) or self-reported acute alcohol craving (p = 0.18,η p 2 = 0.06). However, N-acetylcysteine did reduce self-reported generalized alcohol craving (p = 0.03,η p 2 = 0.15). In a subsample of youth who met criteria for past-year alcohol use disorder (n = 19), results remained unchanged. CONCLUSIONS N-acetylcysteine may not alter neural reactivity to alcohol cues or acute craving; however, it may reduce general subjective alcohol craving among adolescents who consume alcohol heavily.
Collapse
Affiliation(s)
- ReJoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pamela L Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kevin M Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
23
|
Li X, Kass G, Wiers CE, Shi Z. The Brain Salience Network at the Intersection of Pain and Substance use Disorders: Insights from Functional Neuroimaging Research. CURRENT ADDICTION REPORTS 2024; 11:797-808. [PMID: 39156196 PMCID: PMC11329602 DOI: 10.1007/s40429-024-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Purpose of Review The brain's salience network (SN), primarily comprising the anterior insula and anterior cingulate cortex, plays a key role in detecting salient stimuli and processing physical and socioemotional pain (e.g., social rejection). Mounting evidence underscores an altered SN in the etiology and maintenance of substance use disorders (SUDs). This paper aims to synthesize recent functional neuroimaging research emphasizing the SN's involvement in SUDs and physical/socioemotional pain and explore the therapeutic prospects of targeting the SN for SUD treatment. Recent Findings The SN is repeatedly activated during the experience of both physical and socioemotional pain. Altered activation within the SN is associated with both SUDs and chronic pain conditions, characterized by aberrant activity and connectivity patterns as well as structural changes. Among individuals with SUDs, functional and structural alterations in the SN have been linked to abnormal salience attribution (e.g., heightened responsiveness to drug-related cues), impaired cognitive control (e.g., impulsivity), and compromised decision-making processes. The high prevalence of physical and socioemotional pain in the SUD population may further exacerbate SN alterations, thus contributing to hindered recovery progress and treatment failure. Interventions targeting the restoration of SN functioning, such as real-time functional MRI feedback, neuromodulation, and psychotherapeutic approaches, hold promise as innovative SUD treatments. Summary The review highlights the significance of alterations in the structure and function of the SN as potential mechanisms underlying the co-occurrence of SUDs and physical/socioemotional pain. Future work that integrates neuroimaging with other research methodologies will provide novel insights into the mechanistic role of the SN in SUDs and inform the development of next-generation treatment modalities.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Gabriel Kass
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Corinde E. Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
24
|
Fujimoto Y, Fujino J, Matsuyoshi D, Jitoku D, Kobayashi N, Qian C, Okuzumi S, Tei S, Tamura T, Ueno T, Yamada M, Takahashi H. Neural responses to gaming content on social media in young adults. Behav Brain Res 2024; 467:115004. [PMID: 38631660 DOI: 10.1016/j.bbr.2024.115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Excessive gaming can impair both mental and physical health, drawing widespread public and clinical attention, especially among young generations. People are now more exposed to gaming-related content on social media than before, and this exposure may have a significant impact on their behavior. However, the neural mechanisms underlying this effect remain unexplored. Using functional magnetic resonance imaging (fMRI), this study aimed to investigate the neural activity induced by gaming-related content on social media among young adults casually playing online games. While being assessed by fMRI, the participants watched gaming-related videos and neutral (nongaming) videos on social media. The gaming-related cues significantly activated several brain areas, including the medial prefrontal cortex, posterior cingulate cortex, hippocampus, thalamus, superior/middle temporal gyrus, precuneus and occipital regions, compared with the neutral cues. Additionally, the participants' gaming desire levels positively correlated with a gaming-related cue-induced activation in the left orbitofrontal cortex and the right superior temporal gyrus. These findings extend previous studies on gaming cues and provide useful information to elucidate the effects of gaming-related content on social media in young adults. Continued research using real-world gaming cues may help improve our understanding of promoting gaming habits and provide support to individuals vulnerable to gaming addiction.
Collapse
Affiliation(s)
- Yuka Fujimoto
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
| | - Daisuke Matsuyoshi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Daisuke Jitoku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nanase Kobayashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chenyu Qian
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoko Okuzumi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shisei Tei
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan; Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute of Applied Brain Sciences, Waseda University, Saitama, Japan; School of Human and Social Sciences, Tokyo International University, Saitama, Japan
| | - Takehiro Tamura
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takefumi Ueno
- Division of Clinical Research, National Hospital Organization, Hizen Psychiatric Medical Center, Saga, Japan
| | - Makiko Yamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
25
|
Amlung M, Marsden E, Hargreaves T, Sweet LH, Murphy JG, MacKillop J. Neural correlates of increased alcohol demand following alcohol cue exposure in adult heavy drinkers. Psychiatry Res Neuroimaging 2024; 340:111809. [PMID: 38547596 DOI: 10.1016/j.pscychresns.2024.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Alcohol use disorder is associated with overvaluation of alcohol relative to other rewards, in part due to dynamic increases in value in response to alcohol-related cues. In a neuroeconomic framework, alcohol cues increase behavioral economic demand for alcohol, but the neural correlates these cue effects are unknown. This functional magnetic resonance imaging study combined a neuroeconomic alcohol purchase task with an alcohol cue exposure in 72 heavy drinkers with established sensitivity to alcohol cues (51 % female; mean age=33.74). Participants reported how many drinks they would consume from $0-$80/drink following exposure to neutral and alcohol images in a fixed order. Participants purchased significantly more drinks in the alcohol compared to the neutral condition, which was also evident for demand indices (i.e., intensity, breakpoint, Omax, elasticity; ps<0.001; ds=0.46-0.92). Alcohol purchase decisions were associated with activation in rostral middle and medial frontal gyri, anterior insula, posterior parietal cortex, and dorsal striatum, among other regions. Activation was lower across regions in the alcohol relative to neutral cue condition, potentially due to greater automaticity of choices in the presence of alcohol cues or attenuation of responses due to fixed cue order. These results contribute to growing literature using neuroeconomics to understand alcohol misuse and provide a foundation for future research investigating decision-making effects of environmental alcohol triggers.
Collapse
Affiliation(s)
- Michael Amlung
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, USA; Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, USA.
| | - Emma Marsden
- Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, Canada
| | - Tegan Hargreaves
- Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, Canada
| | - Lawrence H Sweet
- Department of Psychology, University of Memphis, Memphis, TN, USA
| | - James G Murphy
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Cofresí RU, Upton S, Brown AA, Piasecki TM, Bartholow BD, Froeliger B. Mesocorticolimbic system reactivity to alcohol use-related visual cues as a function of alcohol sensitivity phenotype: A pilot fMRI study. ADDICTION NEUROSCIENCE 2024; 11:100156. [PMID: 38938269 PMCID: PMC11209874 DOI: 10.1016/j.addicn.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Low sensitivity (LS) to alcohol is a risk factor for alcohol use disorder (AUD). Compared to peers with high sensitivity (HS), LS individuals drink more, report more problems, and exhibit potentiated alcohol cue reactivity (ACR). Heightened ACR suggests LS confers AUD risk via incentive sensitization, which is thought to take place in the mesocorticolimbic system. This study examined neural ACR in LS and HS individuals. Young adults (N = 32, M age=20.3) were recruited based on the Alcohol Sensitivity Questionnaire (HS: n = 16; LS: n = 16; 9 females/group). Participants completed an event-related fMRI ACR task. Group LS had higher ACR in left ventrolateral prefrontal cortex than group HS. In group LS, ACR in left caudomedial orbitofrontal cortex or left putamen was low at low alcohol use levels and high at heavier or more problematic alcohol use levels, whereas the opposite was true in group HS. Alcohol use level also was associated with the level of ACR in left substantia nigra among males in group LS. Taken together, results suggest elevated mesocorticolimbic ACR among LS individuals, especially those using alcohol at hazardous levels. Future studies with larger samples are warranted to determine the neurobiological loci underlying LS-based amplified ACR and AUD risk.
Collapse
Affiliation(s)
- Roberto U. Cofresí
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Spencer Upton
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Alexander A. Brown
- Department of Psychological Sciences, University of Missouri - Columbia, USA
| | - Thomas M. Piasecki
- Center for Tobacco Research and Intervention and Department of Medicine, University of Wisconsin - Madison, USA
| | | | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri - Columbia, USA
- Department of Psychiatry, University of Missouri - Columbia, USA
| |
Collapse
|
27
|
Tap S, van Stipriaan E, Goudriaan AE, Kaag AM. Sex-Dependent Differences in the Neural Correlates of Cocaine and Emotional Cue-Reactivity in Regular Cocaine Users and Non-Drug-Using Controls: Understanding the Role of Duration and Severity of Use. Eur Addict Res 2024; 30:163-180. [PMID: 38710170 DOI: 10.1159/000538599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION The development of cocaine use disorder in females is suggested to be more strongly related to neural mechanisms underlying stress-reactivity, whereas in males it is suggested to be more strongly related to neural mechanisms underlying drug cue-reactivity. Existing evidence, however, is based on neuroimaging studies that either lack a control group and/or have very small sample sizes that do not allow to investigate sex differences. METHODS The main objective of the current study was to investigate sex differences in the neural correlates of cocaine and negative emotional cue-reactivity within high-risk intranasal cocaine users (CUs: 31 males and 26 females) and non-cocaine-using controls (non-CUs: 28 males and 26 females). A region of interest (ROI) analysis was applied to test for the main and interaction effects of group, sex, and stimulus type (cocaine cues vs. neutral cocaine cues and negative emotional cues vs. neutral emotional cues) on activity in the dorsal striatum, ventral striatum (VS), amygdala, and dorsal anterior cingulate cortex (dACC). RESULTS There were no significant sex or group differences in cocaine cue-reactivity in any of the ROIs. Results did reveal significant emotional cue-reactivity in the amygdala and VS, but these effects were not moderated by group or sex. Exploratory analyses demonstrated that emotional cue-induced activation of the dACC and VS was negatively associated with years of regular cocaine use in female CUs, while this relationship was absent in male CUs. CONCLUSIONS While speculative, the sex-specific associations between years of regular use and emotional cue-reactivity in the dACC and VS suggest that, with longer years of use, female CUs become less sensitive to aversive stimuli, including the negative consequences of cocaine use, which could account for the observed "telescoping effect" in female CUs.
Collapse
Affiliation(s)
- Stephan Tap
- Department of Clinical, Neuro and Developmental Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, University Medical Centre Groningen, Groningen, The Netherlands
| | - Eila van Stipriaan
- Department of Clinical, Neuro and Developmental Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Sleep and Cognition Lab, The Netherlands Institute of Neuroscience, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Arkin Mental Health and Jellinek, Amsterdam, The Netherlands
- Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands
| | - Anne Marije Kaag
- Department of Clinical, Neuro and Developmental Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands
- Institute for Brain and Behavior Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Fede SJ, Kisner MA, Dean SF, Buckler E, Chholak R, Momenan R. Alcohol attention bias modulates neural engagement during moral processing. Soc Neurosci 2024; 19:106-123. [PMID: 39038485 PMCID: PMC11382621 DOI: 10.1080/17470919.2024.2377666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/18/2024] [Indexed: 07/24/2024]
Abstract
The neurobiology of typical moral cognition involves the interaction of frontal, limbic, and temporoparietal networks. There is still much to be understood mechanistically about how moral processing is disrupted; such understanding is key to combating antisociality. Neuroscientific models suggest a key role for attention mechanisms in atypical moral processing. We hypothesized that attention-bias toward alcohol cues in alcohol use disorder (AUD) leads to a failure to properly engage with morally relevant stimuli, reducing moral processing. We recruited patients with AUD (n = 30) and controls (n = 30). During functional magnetic resonance imaging, participants viewed pairs of images consisting of a moral or neutral cue and an alcohol or neutral distractor. When viewing moral cues paired with alcohol distractors, individuals with AUD had lower medial prefrontal cortex engagement; this pattern was also seen for left amygdala in younger iAUDs. Across groups, individuals had less engagement of middle/superior temporal gyri. These findings provide initial support for AUD-related attention bias interference in sociomoral processing. If supported in future longitudinal and causal study designs, this finding carries potential societal and clinical benefits by suggesting a novel, leverageable mechanism and in providing a cognitive explanation that may help combat persistent stigma.
Collapse
Affiliation(s)
- Samantha J Fede
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Mallory A Kisner
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Dean
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Emma Buckler
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robin Chholak
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Taxier LR, Flanigan ME, Haun HL, Kash TL. Retrieval of an ethanol-conditioned taste aversion promotes GABAergic plasticity in the insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585950. [PMID: 38562680 PMCID: PMC10983921 DOI: 10.1101/2024.03.20.585950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic activity onto IC-BLA projections would be facilitated following the retrieval of an ethanol-conditioned taste aversion (CTA). Consistent with this hypothesis, frequency of mIPSCs was increased following retrieval of an ethanol-CTA across cell layers in IC-BLA projection neurons. This increase in GABAergic plasticity occurred in both a circuit-specific and learning-dependent manner. Additionally, local inhibitory inputs onto layer 2/3 IC-BLA projection neurons were greater in number and strength following ethanol-CTA. Finally, DREADD-mediated inhibition of IC parvalbumin-expressing cells blunted the retrieval of ethanol-CTA in male, but not female, mice. Collectively, this work implicates a circuit-specific and learning-dependent increase in GABAergic tone following retrieval of an ethanol-CTA, thereby advancing our understanding of how the aversive effects of ethanol are encoded in the brain.
Collapse
Affiliation(s)
- Lisa R Taxier
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Meghan E Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Harold L Haun
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA, 27599
| |
Collapse
|
30
|
Kirsch DE, Ray LA, Wassum KM, Grodin EN. Anterior cingulate and medial prefrontal cortex alcohol cue reactivity varies as a function of drink preference in alcohol use disorder. Drug Alcohol Depend 2024; 256:111123. [PMID: 38367535 DOI: 10.1016/j.drugalcdep.2024.111123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Functional MRI visual cue reactivity studies have not considered that brain responses to various alcohol-containing beverage types may vary as a function of an individual's drinking patterns and preferences. This study tested whether the brain's reward system responds differently to visual cues associated with an individuals' most commonly consumed ("preferred") alcohol beverage compared with less commonly consumed ("non-preferred") alcohol beverages in individuals with alcohol use disorder (AUD). METHODS Participants (N=70) with current AUD completed a standard visual alcohol cue reactivity procedure during fMRI and reported recent alcohol use through the Timeline Followback interview. Alcohol use patterns were used to infer drink preference. Repeated measure ANCOVAs were used to evaluate differences in subjective craving (alcohol urge) and neural reactivity to cues of individual's "preferred" versus "non-preferred" alcohol beverages. RESULTS Fifty-four (77%) participants were determined to have a "preferred" alcohol beverage, as defined by their pattern of alcohol use. These participants reported greater subjective alcohol urge (p=0.02) and activation in the anterior cingulate cortex (ACC) (p=0.005) and medial prefrontal cortex (mPFC) (p=0.001)) in response to visual cues associated with their "preferred" versus "non-preferred" alcohol beverage. Individuals with an alcohol preference did not differ from those with no alcohol preference on subjective or neural responses to their "preferred" and "non-preferred" alcohol cues. DISCUSSION Results suggest alcohol cue-elicited subjective and neural responses vary as a function of alcohol beverage preference in individuals with AUD and a behaviorally defined alcohol preference. Stronger ACC and mPFC activation may reflect greater subjective value of an individual's "preferred" alcohol beverage cue.
Collapse
Affiliation(s)
- Dylan E Kirsch
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
31
|
Pagni BA, Petridis PD, Podrebarac SK, Grinband J, Claus ED, Bogenschutz MP. Psilocybin-induced changes in neural reactivity to alcohol and emotional cues in patients with alcohol use disorder: an fMRI pilot study. Sci Rep 2024; 14:3159. [PMID: 38326432 PMCID: PMC10850478 DOI: 10.1038/s41598-024-52967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
This pilot study investigated psilocybin-induced changes in neural reactivity to alcohol and emotional cues in patients with alcohol use disorder (AUD). Participants were recruited from a phase II, randomized, double-blind, placebo-controlled clinical trial investigating psilocybin-assisted therapy (PAT) for the treatment of AUD (NCT02061293). Eleven adult patients completed task-based blood oxygen dependent functional magnetic resonance imaging (fMRI) approximately 3 days before and 2 days after receiving 25 mg of psilocybin (n = 5) or 50 mg of diphenhydramine (n = 6). Visual alcohol and emotionally valanced (positive, negative, or neutral) stimuli were presented in block design. Across both alcohol and emotional cues, psilocybin increased activity in the medial and lateral prefrontal cortex (PFC) and left caudate, and decreased activity in the insular, motor, temporal, parietal, and occipital cortices, and cerebellum. Unique to negative cues, psilocybin increased supramarginal gyrus activity; unique to positive cues, psilocybin increased right hippocampus activity and decreased left hippocampus activity. Greater PFC and caudate engagement and concomitant insula, motor, and cerebellar disengagement suggests enhanced goal-directed action, improved emotional regulation, and diminished craving. The robust changes in brain activity observed in this pilot study warrant larger neuroimaging studies to elucidate neural mechanisms of PAT.Trial registration: NCT02061293.
Collapse
Affiliation(s)
- B A Pagni
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - P D Petridis
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - S K Podrebarac
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - J Grinband
- Departments of Psychiatry and Radiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - E D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - M P Bogenschutz
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Naqvi NH, Srivastava AB, Sanchez-Peña J, Lee JK, Drysdale AT, Mariani JJ, Ochsner KN, Morgenstern J, Patel GH, Levin FR. Neural correlates of drinking reduction during a clinical trial of cognitive behavioral therapy for alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:260-272. [PMID: 38225187 PMCID: PMC11015435 DOI: 10.1111/acer.15259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Cognitive behavioral therapy (CBT) is an effective treatment for alcohol use disorder (AUD). We hypothesized that the dorsolateral prefrontal cortex (DLPFC), a region implicated in cognitive control and goal-directed behavior, plays a role in behavior change during CBT by facilitating the regulation of craving (ROC). METHODS Treatment-seeking participants with AUD (N = 22) underwent functional magnetic resonance imaging (fMRI) scanning both before and after a 12-week, single-arm trial of CBT, using an ROC task that was previously shown to engage the DLPFC. RESULTS We found that both the percentage of heavy drinking days (PHDD) and the overall self-reported alcohol craving measured during the ROC task were significantly reduced from pre- to post-CBT. However, we did not find significant changes over time in either the ability to regulate craving or regulation-related activity in any brain region. We found a significant 3-way interaction between the effects of cue-induced craving, cue-induced brain activity and timepoint of assessment (pre- or post-CBT) on PHDD in the left DLPFC. Follow-up analysis showed that cue-induced craving was associated with cue-induced activity in the left DLPFC among participants who ceased heavy drinking during CBT, both at pre-CBT and post-CBT timepoints. No such associations were present at either timepoint among participants who continued to drink heavily. CONCLUSIONS These results suggest that patients in whom DLPFC functioning is more strongly related to cue-induced craving may preferentially respond to CBT.
Collapse
Affiliation(s)
- Nasir H. Naqvi
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| | - A. Benjamin Srivastava
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| | - Juan Sanchez-Peña
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| | - Jessica K. Lee
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| | - Andrew T. Drysdale
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| | - John J. Mariani
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| | - Kevin N. Ochsner
- Department of Psychology, Columbia University, New York, New York, USA
| | - Jon Morgenstern
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra University/Northwell Health, Hempstead, New York, USA
| | - Gaurav H. Patel
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| | - Frances R. Levin
- Department of Psychiatry, Columbia University Irving Medical Center/New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
33
|
Bach P, Zaiser J, Zimmermann S, Gessner T, Hoffmann S, Gerhardt S, Berhe O, Bekier NK, Abel M, Radler P, Langejürgen J, Tost H, Lenz B, Vollstädt-Klein S, Stallkamp J, Kirschbaum C, Kiefer F. Stress-Induced Sensitization of Insula Activation Predicts Alcohol Craving and Alcohol Use in Alcohol Use Disorder. Biol Psychiatry 2024; 95:245-255. [PMID: 37678541 DOI: 10.1016/j.biopsych.2023.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Stress and alcohol cues trigger alcohol consumption and relapse in alcohol use disorder. However, the neurobiological processes underlying their interaction are not well understood. Thus, we conducted a randomized, controlled neuroimaging study to investigate the effects of psychosocial stress on neural cue reactivity and addictive behaviors. METHODS Neural alcohol cue reactivity was assessed in 91 individuals with alcohol use disorder using a validated functional magnetic resonance imaging (fMRI) task. Activation patterns were measured twice, at baseline and during a second fMRI session, prior to which participants were assigned to psychosocial stress (experimental condition) or a matched control condition or physical exercise (control conditions). Together with fMRI data, alcohol craving and cortisol levels were assessed, and alcohol use data were collected during a 12-month follow-up. Analyses tested the effects of psychosocial stress on neural cue reactivity and associations with cortisol levels, craving, and alcohol use. RESULTS Compared with both control conditions, psychosocial stress elicited higher alcohol cue-induced activation in the left anterior insula (familywise error-corrected p < .05) and a stress- and cue-specific dynamic increase in insula activation over time (F22,968 = 2.143, p = .007), which was predicted by higher cortisol levels during the experimental intervention (r = 0.310, false discovery rate-corrected p = .016). Cue-induced insula activation was positively correlated with alcohol craving during fMRI (r = 0.262, false discovery rate-corrected p = .032) and alcohol use during follow-up (r = 0.218, false discovery rate-corrected p = .046). CONCLUSIONS Results indicate a stress-induced sensitization of cue-induced activation in the left insula as a neurobiological correlate of the effects of psychosocial stress on alcohol craving and alcohol use in alcohol use disorder, which likely reflects changes in salience attribution and goal-directed behavior.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany; Feuerlein Center on Translational Addiction Medicine, University of Heidelberg, Heidelberg, Germany.
| | - Judith Zaiser
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany
| | - Sina Zimmermann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany
| | - Tatjana Gessner
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany; Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Gerhardt
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Nina Kim Bekier
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany
| | - Martin Abel
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany
| | - Philipp Radler
- Fraunhofer Institute for Manufacturing Engineering and Automation Institute for Production Technology and Automation, Mannheim, Germany
| | - Jens Langejürgen
- Fraunhofer Institute for Manufacturing Engineering and Automation Institute for Production Technology and Automation, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Bernd Lenz
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jan Stallkamp
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Clemens Kirschbaum
- Department of Psychology, Technical University Dresden, Dresden, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim. Heidelberg University, Heidelberg, Germany; Feuerlein Center on Translational Addiction Medicine, University of Heidelberg, Heidelberg, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
34
|
Yang X, Song Y, Zou Y, Li Y, Zeng J. Neural correlates of prediction error in patients with schizophrenia: evidence from an fMRI meta-analysis. Cereb Cortex 2024; 34:bhad471. [PMID: 38061699 DOI: 10.1093/cercor/bhad471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal processes of learning from prediction errors, i.e. the discrepancies between expectations and outcomes, are thought to underlie motivational impairments in schizophrenia. Although dopaminergic abnormalities in the mesocorticolimbic reward circuit have been found in patients with schizophrenia, the pathway through which prediction error signals are processed in schizophrenia has yet to be elucidated. To determine the neural correlates of prediction error processing in schizophrenia, we conducted a meta-analysis of whole-brain neuroimaging studies that investigated prediction error signal processing in schizophrenia patients and healthy controls. A total of 14 studies (324 schizophrenia patients and 348 healthy controls) using the reinforcement learning paradigm were included. Our meta-analysis showed that, relative to healthy controls, schizophrenia patients showed increased activity in the precentral gyrus and middle frontal gyrus and reduced activity in the mesolimbic circuit, including the striatum, thalamus, amygdala, hippocampus, anterior cingulate cortex, insula, superior temporal gyrus, and cerebellum, when processing prediction errors. We also found hyperactivity in frontal areas and hypoactivity in mesolimbic areas when encoding prediction error signals in schizophrenia patients, potentially indicating abnormal dopamine signaling of reward prediction error and suggesting failure to represent the value of alternative responses during prediction error learning and decision making.
Collapse
Affiliation(s)
- Xun Yang
- School of Public Policy and Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yuan Song
- School of Public Policy and Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yuhan Zou
- School of Economics and Business Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| | - Yilin Li
- Psychology and Neuroscience Department, University of St Andrews, Forbes 1 DRA, Buchanan Garden, St Andrews, Fife, United Kingdom
| | - Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing, China
| |
Collapse
|
35
|
Blaine SK, Ridner C, Campbell B, Crone L, Macatee R, Ansell EB, Robinson JL, Claus ED. People who binge drink show neuroendocrine tolerance to alcohol cues that is associated with immediate and future drinking- results from a randomized clinical experiment. Neuropsychopharmacology 2023; 48:1968-1974. [PMID: 37717082 PMCID: PMC10584838 DOI: 10.1038/s41386-023-01735-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
Neuroendocrine tolerance to alcohol, i.e., a blunted cortisol response to alcohol, has been linked to Ventromedial Prefrontal Cortex (VmPFC) alcohol cue reactivity and relapse risk in severe Alcohol Use Disorders (AUDs), but its role in the development of AUDs is not clear. Recent work suggests that blunted cortisol responses to alcohol cues in individuals who engage in binge drinking (BD) may play a role in motivation to consume larger amounts of alcohol, but the link between this dysregulated endocrine response and BD's neural responses to alcohol cues remains unclear. To examine this, two groups of participants were recruited based on their recent drinking history. Thirty-three BD and 31 non-binging, social drinkers (SD) were exposed to alcohol cues and water cues in two separate 7 T functional magnetic resonance imaging (fMRI) scans. Each scan was followed by the Alcohol Taste Test (ATT) of implicit motivation for alcohol and a post-experiment, one-month prospective measurement of their "real world" drinking behavior. During each scan session, blood plasma was collected repeatedly to examine the separate effects of alcohol cues and alcohol consumption on cortisol levels. Relative to water cues and SD, BD demonstrated blunted cortisol cue reactivity that was negatively associated with VmPFC cue reactivity. In BD, both blunted cortisol and greater VmPFC cue reactivity were related to immediate and future alcohol consumption in the month following the scans. Thus, neuroendocrine tolerance in BD may be associated with increased incentive salience of cues and contribute mechanistically to increased alcohol consumption seen in the development of AUDs.
Collapse
Affiliation(s)
- Sara K Blaine
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA.
| | - Clayton Ridner
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Benjamin Campbell
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Lily Crone
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Richard Macatee
- Department of Psychological Sciences, Auburn University, Auburn, AL, USA
| | - Emily B Ansell
- Department of Biobehavioral Health, Penn State University, State College, PA, USA
| | | | - Eric D Claus
- Department of Biobehavioral Health, Penn State University, State College, PA, USA
| |
Collapse
|
36
|
Abstract
Alcohol-related liver disease (ALD) is a major cause of liver-related morbidity and mortality. Epidemiological trends indicate recent and predicted increases in the burden of disease. Disease progression is driven by continued alcohol exposure on a background of genetic predisposition together with environmental cofactors. Most individuals present with advanced disease despite a long history of excessive alcohol consumption and multiple missed opportunities to intervene. Increasing evidence supports the use of non-invasive tests to screen for and identify disease at earlier stages. There is a definite role for public health measures to reduce the overall burden of disease. At an individual level, however, the ability to influence subsequent disease course by modifying alcohol consumption or the underlying pathogenic mechanisms remains limited due to a comparative lack of effective, disease-modifying medical interventions. Abstinence from alcohol is the key determinant of outcome in established ALD and the cornerstone of clinical management. In those with decompensated ALD, liver transplant has a clear role. There is consensus that abstinence from alcohol for an arbitrary period should not be the sole determinant in a decision to transplant. An increasing understanding of the mechanisms by which alcohol causes liver disease in susceptible individuals offers the prospect of new therapeutic targets for disease-modifying drugs. Successful translation will require significant public and private investment in a disease area which has traditionally been underfunded when compared to its overall prevalence.
Collapse
Affiliation(s)
- Mark Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
37
|
Larsen JK, Hollands GJ, Garland EL, Evers AWM, Wiers RW. Be more mindful: Targeting addictive responses by integrating mindfulness with cognitive bias modification or cue exposure interventions. Neurosci Biobehav Rev 2023; 153:105408. [PMID: 37758008 DOI: 10.1016/j.neubiorev.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
This review provides an overview of the most prominent neurocognitive effects of cognitive bias modification (CBM), cue-exposure therapy and mindfulness interventions for targeting addictive responses. It highlights the key insights that have stemmed from cognitive neuroscience and brain imaging research and combines these with insights from behavioural science in building a conceptual model integrating mindfulness with response-focused CBM or cue-exposure interventions. This furthers our understanding of whether and how mindfulness strategies may i) facilitate or add to the induced response-focused effects decreasing cue-induced craving, and ii) further weaken the link between craving and addictive responses. Specifically, awareness/monitoring may facilitate, and decentering may add to, response-focused effects. Combined awareness acceptance strategies may also diminish the craving-addiction link. The conceptual model presented in this review provides a specific theoretical framework to deepen our understanding of how mindfulness strategies and CBM or cue-exposure interventions can be combined to greatest effect. This is important in both suggesting a roadmap for future research, and for the further development of clinical interventions.
Collapse
Affiliation(s)
- Junilla K Larsen
- Behavioural Science Institute, Radboud University, PO Box 9104, 6500 HE Nijmegen, the Netherlands.
| | - Gareth J Hollands
- EPPI Centre, UCL Social Research Institute, University College London, UK
| | - Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, USA
| | - Andrea W M Evers
- Health, Medical and Neuropsychology Unit, Leiden University, NL, and Medical Delta, Leiden University, TU Delft and Erasmus University, UK
| | - Reinout W Wiers
- Addiction Development and Psychopathology (ADAPT)-lab, Department of Psychology, University of Amsterdam and Centre for Urban Mental Health, University of Amsterdam, the Netherlands
| |
Collapse
|
38
|
Kuhns L, Mies G, Kroon E, Willuhn I, Lesscher H, Cousijn J. Alcohol cue reactivity in the brain: Age-related differences in the role of social processes in addiction in male drinkers. J Neurosci Res 2023; 101:1521-1537. [PMID: 37401734 PMCID: PMC10538438 DOI: 10.1002/jnr.25206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/05/2023]
Abstract
Social attunement (SA)-the tendency to harmonize behavior with the social environment-has been proposed to drive the escalation of alcohol use in adolescence, while reducing use in adulthood. Little is known about how heightened social sensitivity in adolescence may interact with neural alcohol cue reactivity-a marker of alcohol use disorder-and its relationship to alcohol use severity over time. The aims of this study were to test whether (1) adolescents and adults differ in social alcohol cue reactivity in the nucleus accumbens, anterior cingulate cortex, and right medial prefrontal cortex (mPFC), and (2) age moderates the relationship between social alcohol cue reactivity and social attunement, measures of drinking at baseline, and changes in drinking over time. A sample of male adolescents (16-18 years) and adults (29-35 years) completed an fMRI social alcohol cue-exposure task at baseline and an online follow-up two to three years later. No main effects of age or drinking measures were observed in social alcohol cue reactivity. However, age significantly moderated associations of social alcohol cue reactivity in the mPFC and additional regions from exploratory whole-brain analyses with SA, with a positive association in adolescents and negative association in adults. Significant age interactions emerged only for SA in predicting drinking over time. Adolescents with higher SA scores escalated drinking, while adults with higher SA scores reduced drinking. These findings warrant further research on SA as a risk and protective factor and suggest that social processes influence cue reactivity differentially in male adolescents and adults.
Collapse
Affiliation(s)
- Lauren Kuhns
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Gabry Mies
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Karakter, Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| | - Emese Kroon
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ingo Willuhn
- The Amsterdam Brain and Cognition Center (ABC), University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands, Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Heidi Lesscher
- Department of Population Health Sciences, unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Janna Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, The Netherlands
| |
Collapse
|
39
|
Lungwitz EA, Dzemidzic M, Shen YI, Plawecki MH, Oberlin BG. Brain response in heavy drinkers during cross-commodity alcohol and money discounting with potentially real rewards: A preliminary study. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 8:100175. [PMID: 37753349 PMCID: PMC10518510 DOI: 10.1016/j.dadr.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 09/28/2023]
Abstract
Background Alcohol use disorder (AUD) is associated with exaggerated preference for immediate rewards, a candidate endophenotype for use disorders. Addiction symptomology is often well-described by the preference for immediate intoxication over other delayed prosocial rewards. We measured brain activation in AUD-implicated regions during a cross-commodity delay discounting (CCD) task with choices for immediate alcohol and delayed money. Methods Heavy drinkers (n=24) experienced a brief intravenous alcohol infusion prime, regained sobriety, then chose between 'One Shot' and delayed money in an adjusting delay CCD task (sober and intoxicated); also during fMRI (sober). Participants also performed a behavioral sensation seeking task and completed self-report inventories of other risk factors. We assessed brain activation to choices representing immediate intoxication versus delayed money rewards in a priori regions of interest defined within the framework of Addictions NeuroImaging Assessment. Results Activation to CCD choice versus control trials activated paralimbic and ventral frontal cortical regions, including orbital and medial prefrontal cortex, posterior cingulate/retrosplenial cortex, angular and superior frontal gyri. We detected no differences between immediate or delayed choices. Left medial orbitofrontal cortex activation correlated with alcohol-induced wanting for alcohol; females showed greater activation than males. Behavioral sensation seeking correlated with right nucleus accumbens task engagement. Conclusions Alcohol decision-making elicited activation in regions governing reward, introspection, and executive decision-making in heavy drinkers, demonstrating the utility of laboratory tasks designed to better model real-world choice. Our findings suggest that the brain processes subserving immediate and delayed choices are mostly overlapping, even with varied commodities.
Collapse
Affiliation(s)
- Elizabeth A. Lungwitz
- Department of Psychiatry, Indiana University School of Medicine (IUSM); 355 W 16th St, Ste 4800; Indianapolis, IN 46202, USA
| | - Mario Dzemidzic
- Department of Neurology, IUSM; 355 W 16th St, Ste 4600; Indianapolis, IN 46202, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, IUSM; 355 W 16th St, Ste 4100; Indianapolis, IN 46202, USA
| | - Yitong I. Shen
- Department of Psychiatry, Indiana University School of Medicine (IUSM); 355 W 16th St, Ste 4800; Indianapolis, IN 46202, USA
| | - Martin H. Plawecki
- Department of Psychiatry, Indiana University School of Medicine (IUSM); 355 W 16th St, Ste 4800; Indianapolis, IN 46202, USA
| | - Brandon G. Oberlin
- Department of Psychiatry, Indiana University School of Medicine (IUSM); 355 W 16th St, Ste 4800; Indianapolis, IN 46202, USA
- Department of Neurology, IUSM; 355 W 16th St, Ste 4600; Indianapolis, IN 46202, USA
- Department of Psychology, Indiana University Purdue University Indianapolis; 402 N Blackford St, LD124; Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, IUSM; 320 W 15th St, Ste 414; Indianapolis, IN 46202 USA
| |
Collapse
|
40
|
Chen Y, Li CSR. Appetitive and aversive cue reactivities differentiate neural subtypes of alcohol drinkers. ADDICTION NEUROSCIENCE 2023; 7:100089. [PMID: 37483686 PMCID: PMC10358306 DOI: 10.1016/j.addicn.2023.100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Craving reflects the subjective urge to use drugs and can be triggered by both positive and negative emotional states. No studies have systematically investigated the relative roles of these mechanisms in the pathophysiology of substance misuse. Here, we performed meta-analyses of drug cue-elicited reactivity and win and loss processing in the monetary incentive delay task to identify distinct neural correlates of appetitive and aversive responses to drug cues. We then characterized the appetitive and aversive cue responses in seventy-six alcohol drinkers performing a cue craving task during fMRI. Imaging data were processed according to published routines. The appetitive circuit involved medial cortical regions and the ventral striatum, and the aversive circuit involved the insula, caudate and mid-cingulate cortex. We observed a significant correlation of cue-elicited activity (β estimates) of the appetitive and aversive circuit. However, individuals varied in appetitive and aversive cue responses. From the regression of appetitive (y) vs. aversive (x) β, we identified participants in the top 1/3 each of those with positive and negative residuals as "approach" (n = 15) and "avoidance" (n = 11) and the others as the "mixed" (n = 50) subtype. In clinical characteristics, the avoidance subtype showed higher sensitivity to punishment and, in contrast, the approach subtype showed higher levels of sensation seeking and alcohol expectancy for social and physical pressure. The findings highlighted distinct neural underpinnings of appetitive and aversive components of cue-elicited reactivity and provided evidence for potential subtypes of alcohol drinkers.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
41
|
Campbell EM, Singh G, Claus ED, Witkiewitz K, Costa VD, Hogeveen J, Cavanagh JF. Electrophysiological Markers of Aberrant Cue-Specific Exploration in Hazardous Drinkers. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2023; 7:47-59. [PMID: 38774639 PMCID: PMC11104413 DOI: 10.5334/cpsy.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/28/2023] [Indexed: 05/24/2024]
Abstract
Background Hazardous drinking is associated with maladaptive alcohol-related decision-making. Existing studies have often focused on how participants learn to exploit familiar cues based on prior reinforcement, but little is known about the mechanisms that drive hazardous drinkers to explore novel alcohol cues when their value is not known. Methods We investigated exploration of novel alcohol and non-alcohol cues in hazardous drinkers (N = 27) and control participants (N = 26) during electroencephalography (EEG). A normative computational model with two free parameters was fit to estimate participants' weighting of the future value of exploration and immediate value of exploitation. Results Hazardous drinkers demonstrated increased exploration of novel alcohol cues, and conversely, increased probability of exploiting familiar alternatives instead of exploring novel non-alcohol cues. The motivation to explore novel alcohol stimuli in hazardous drinkers was driven by an elevated relative future valuation of uncertain alcohol cues. P3a predicted more exploratory decision policies driven by an enhanced relative future valuation of novel alcohol cues. P3b did not predict choice behavior, but computational parameter estimates suggested that hazardous drinkers with enhanced P3b to alcohol cues were likely to learn to exploit their immediate expected value. Conclusions Hazardous drinkers did not display atypical choice behavior, different P3a/P3b amplitudes, or computational estimates to novel non-alcohol cues-diverging from previous studies in addiction showing atypical generalized explore-exploit decisions with non-drug-related cues. These findings reveal that cue-specific neural computations may drive aberrant alcohol-related decision-making in hazardous drinkers-highlighting the importance of drug-relevant cues in studies of decision-making in addiction.
Collapse
Affiliation(s)
- Ethan M. Campbell
- Department of Psychology & Psychology Clinical Neuroscience Center, University of New Mexico, US
| | - Garima Singh
- Department of Psychology & Psychology Clinical Neuroscience Center, University of New Mexico, US
| | - Eric D. Claus
- Department of Biobehavioral Health, Pennsylvania State University, US
| | - Katie Witkiewitz
- Department of Psychology & Psychology Clinical Neuroscience Center, University of New Mexico, US
| | - Vincent D. Costa
- Division of Neuroscience, Oregon National Primate Research Center, US
| | - Jeremy Hogeveen
- Department of Psychology & Psychology Clinical Neuroscience Center, University of New Mexico, US
| | - James F. Cavanagh
- Department of Psychology & Psychology Clinical Neuroscience Center, University of New Mexico, US
| |
Collapse
|
42
|
Pollard AA, Hauson AO, Lackey NS, Zhang E, Khayat S, Carson B, Fortea L, Radua J, Grant I. Functional neuroanatomy of craving in heroin use disorder: voxel-based meta-analysis of functional magnetic resonance imaging (fMRI) drug cue reactivity studies. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:418-430. [PMID: 36880845 DOI: 10.1080/00952990.2023.2172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 03/08/2023]
Abstract
Background: The neuroanatomy of craving, typically investigated using the functional magnetic resonance imaging (fMRI) drug cue reactivity (FDCR) paradigm, has been shown to involve the mesocorticolimbic, nigrostriatal, and corticocerebellar systems in several substances. However, the neuroanatomy of craving in heroin use disorder is still unclear.Objective: The current meta-analysis examines previous research on the neuroanatomy of craving in abstinent individuals with opioid use disorder (OUD).Method: Seven databases were searched for studies comparing abstinent OUD versus healthy controls on drug > neutral contrast interaction at the whole-brain level. Voxel-based meta-analysis was performed using seed-based d mapping with permuted subject images (SDM-PSI). Thresholds were set at a family-wise error rate of less than 5% with the default pre-processing parameters of SDM-PSI.Results: A total of 10 studies were included (296 OUD and 187 controls). Four hyperactivated clusters were identified with Hedges' g of peaks that ranged from 0.51 to 0.82. These peaks and their associated clusters correspond to the three systems identified in the previous literature: a) mesocorticolimbic, b) nigrostriatal, and c) corticocerebellar. There were also newly revealed hyperactivation regions including the bilateral cingulate, precuneus, fusiform gyrus, pons, lingual gyrus, and inferior occipital gyrus. The meta-analysis did not reveal areas of hypoactivation.Conclusion: Recommendations based on the functional neuroanatomical findings of this meta-analysis include pharmacological interventions such as buprenorphine/naloxone and cognitive-behavioral treatments such as cue-exposure combined with HRV biofeedback. In addition, research should utilize FDCR as pre- and post-measurement to determine the effectiveness and mechanism of action of such interventions.
Collapse
Affiliation(s)
- Anna A Pollard
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
- Department of Psychiatry, University of San Diego, La Jolla, CA, USA
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Emily Zhang
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology PhD Program, San Diego, CA, USA
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINS.org), San Diego, CA, USA
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Igor Grant
- Department of Psychiatry, University of San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Chaudhary S, Chen Y, Zhornitsky S, Le TM, Zhang S, Chao HH, Dominguez JC, Li CSR. The effects of age on the severity of problem drinking: Mediating effects of positive alcohol expectancy and neural correlates. Addict Biol 2023; 28:e13278. [PMID: 37252876 DOI: 10.1111/adb.13278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 06/01/2023]
Abstract
Aging is associated with reduction in the severity of alcohol misuse. However, the psychological and neural mechanisms underlying the age-related changes remain unclear. Here, we tested the hypothesis that age-related diminution of positive alcohol expectancy (AE) mediated the effects of age on problem drinking and investigated the neural correlates of the mediating effects. Ninety-six drinkers 21-85 years of age, including social drinkers and those with mild/moderate alcohol use disorder (AUD), were assessed for global positive (GP) AE and problem drinking, each with the Alcohol Expectancy Questionnaire and Alcohol Use Disorders Identification Test (AUDIT), and with brain imaging during alcohol cue exposure. We processed imaging data with published routines; identified the correlates shared between whole-brain regression against age, GP and AUDIT scores; and performed mediation and path analyses to explore the interrelationships between the clinical and neural variables. The results showed that age was negatively correlated with both GP and AUDIT scores, with GP score completely mediating the correlation between age and AUDIT score. Lower age and higher GP correlated with shared cue responses in bilateral parahippocampal gyrus and left middle occipital cortex (PHG/OC). Further, higher GP and AUDIT scores were associated with shared cue responses in bilateral rostral anterior cingulate cortex and caudate head (ACC/caudate). Path analyses demonstrated models with significant statistical fit and PHG/OC and ACC/caudate each interrelating age to GP and GP to AUDIT scores. These findings confirmed change in positive AE as a psychological mechanism mitigating alcohol misuse as individuals age and highlighted the neural processes of cue-reactivity interrelating age and alcohol use severity.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
44
|
Grodin EN, Meredith LR, Burnette EM, Miotto K, Irwin MR, Ray LA. Baseline C-reactive protein levels are predictive of treatment response to a neuroimmune modulator in individuals with an alcohol use disorder: a preliminary study. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:333-344. [PMID: 36282988 PMCID: PMC10840759 DOI: 10.1080/00952990.2022.2124918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
Background: Inflammation is implicated in alcohol use disorder (AUD). Ibudilast, a neuroimmune modulator, shows promise for the treatment of AUD. Elevated inflammation, indicated by high levels of C-reactive protein (CRP), represents a possible subtype of AUD, which may be associated with treatment response to ibudilast.Objectives: The current study evaluated CRP as a predictor of treatment response to ibudilast; hypothesizing that ibudilast would be more effective at reducing drinking and alcohol cue-reactivity in individuals with higher CRP levels.Methods: This is a secondary analysis of a clinical trial of ibudilast for AUD, which found that ibudilast reduced heavy drinking in individuals with AUD. Fifty-one individuals were randomized to receive ibudilast (n = 24 [16 M/8F]) or placebo (n = 27 [18 M/9F]) for two weeks. Participants provided blood samples at baseline to assess CRP levels, completed daily assessments of alcohol use, and an fMRI alcohol cue-reactivity task at study mid-point. Models tested the effects of medication, CRP levels, and their interaction on drinks per drinking day and alcohol cue-reactivity.Results: There was a significant interaction between medication and CRP (F = 3.80, p = .03), such that the ibudilast high CRP group had fewer drinks per drinking day compared to the ibudilast low CRP group. CRP moderated the effect of medication on brain activation in a cluster extending from the left inferior frontal gyrus to the right-dorsal striatum (Z = 4.55, p < .001). This interaction was driven by attenuated cue-reactivity in the ibudilast high CRP group relative to the ibudilast low CRP and placebo high CRP groups.Conclusions: This study serves as an initial investigation into predictors of clinical response to ibudilast treatment and suggests that a baseline proinflammatory profile may enhance clinical efficacy.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Lindsay R. Meredith
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
| | - Elizabeth M. Burnette
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA
| | - Karen Miotto
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
| | - Michael R. Irwin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
- Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA
| | - Lara A. Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA
- Brain Research Institute, University of California, Los Angeles, CA
| |
Collapse
|
45
|
Zeng J, You L, Sheng H, Luo Y, Yang X. The differential neural substrates for reward choice under gain-loss contexts and risk in alcohol use disorder: Evidence from a voxel-based meta-analysis. Drug Alcohol Depend 2023; 248:109912. [PMID: 37182355 DOI: 10.1016/j.drugalcdep.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/15/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Making a risky decision is a complex process that involves the evaluation of both the values of the options and the associated risk level; this process is distinct from reward processing in gain versus loss contexts. Although disrupted reward processing in mesolimbic dopamine circuitry is suggested to underlie pathological incentive processing in patients with alcohol use disorder (AUD), the differential neural processes subserving these motivational tendencies for risk situations or gain/loss choices in decision-making have not been identified. METHODS To examine the common or distinct neural mechanisms in the evaluation of risk versus outcomes for AUD, we conducted two separate coordinate-based meta-analyses of functional neuroimaging studies by using Seed-Based d Mapping software to evaluate 13 studies investigating gain and loss processing and 10 studies investigating risky decision-making. RESULTS During gain and loss processing, relative to healthy controls, AUD patients showed reduced activation in the mesocortical-limbic circuit, including the orbital prefrontal cortex (OFC), dorsal striatum, insula, hippocampus, cerebellum, cuneus cortex and superior temporal gyrus, but hyperactivation in the inferior temporal gyrus and paracentral lobule (extending to the middle cingulate cortex (MCC) and precuneus). During decision-making under risk, AUD patients exhibited hypoactivity of the prefrontal and cingulate cortices, including the posterior cingulate cortex (extending to the MCC), middle frontal gyrus, medial prefrontal cortex, dorsolateral prefrontal cortex, OFC and anterior cingulate cortex. CONCLUSIONS Our results extend existing neurological evidence by showing that a reduced response in the mesocortical-limbic circuit is found in gain versus loss processing, with decreased responsivity in cortical regions in risk decision-making. Our results implicate dissociable neural circuit responses for gain-loss processing and risk decision-making, which contribute to a better understanding of the pathophysiological mechanism underlying nondrug incentive and risk processing in individuals with AUD.
Collapse
Affiliation(s)
- Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, Chongqing, China
| | - Lantao You
- School of Economics and Business Administration, Chongqing University, Chongqing, China
| | - Haoxuan Sheng
- School of Public Policy and Administration, Chongqing University, Chongqing, China
| | - Ya Luo
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Yang
- School of Public Policy and Administration, Chongqing University, Chongqing, China.
| |
Collapse
|
46
|
Xie L, Rungratanawanich W, Yang Q, Tong G, Fu E, Lu S, Liu Y, Akbar M, Song BJ, Wang X. Therapeutic strategies of small molecules in the microbiota-gut-brain axis for alcohol use disorder. Drug Discov Today 2023; 28:103552. [PMID: 36907319 PMCID: PMC10298843 DOI: 10.1016/j.drudis.2023.103552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The microbiota-gut-brain axis (MGBA) is important in maintaining the structure and function of the central nervous system (CNS) and is regulated by the CNS environment and signals from the peripheral tissues. However, the mechanism and function of the MGBA in alcohol use disorder (AUD) are still not completely understood. In this review, we investigate the underlying mechanisms involved in the onset of AUD and/or associated neuronal deficits and create a foundation for better treatment (and prevention) strategies. We summarize recent reports focusing on the alteration of the MGBA in AUD. Importantly, we highlight the properties of small-molecule short-chain fatty acids (SCFAs), neurotransmitters, hormones, and peptides in the MGBA and discusses their usage as therapeutic agents against AUD.
Collapse
Affiliation(s)
- Lushuang Xie
- Departments of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Guoqiang Tong
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Eric Fu
- Departments of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shiguang Lu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei 435100, China
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA.
| | - Xin Wang
- Departments of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Zeng J, You L, Yang F, Luo Y, Yu S, Yan J, Liu M, Yang X. A meta-analysis of the neural substrates of monetary reward anticipation and outcome in alcohol use disorder. Hum Brain Mapp 2023; 44:2841-2861. [PMID: 36852619 PMCID: PMC10089105 DOI: 10.1002/hbm.26249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
The capacity to anticipate and detect rewarding outcomes is fundamental for the development of adaptive decision-making and goal-oriented behavior. Delineating the neural correlates of different stages of reward processing is imperative for understanding the neurobiological mechanism underlying alcohol use disorder (AUD). To examine the neural correlates of monetary anticipation and outcome in AUD patients, we performed two separate voxel-wise meta-analyses of functional neuroimaging studies, including 12 studies investigating reward anticipation and 7 studies investigating reward outcome using the monetary incentive delay task. During the anticipation stage, AUD patients displayed decreased activation in response to monetary cues in mesocortical-limbic circuits and sensory areas, including the ventral striatum (VS), insula, hippocampus, inferior occipital gyrus, supramarginal gyrus, lingual gyrus and fusiform gyrus. During the outcome stage, AUD patients exhibited reduced activation in the dorsal striatum, VS and insula, and increased activation in the orbital frontal cortex and medial temporal area. Our findings suggest that different activation patterns are associated with nondrug rewards during different reward processing stages, potentially reflecting a changed sensitivity to monetary reward in AUD.
Collapse
Affiliation(s)
- Jianguang Zeng
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Lantao You
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Fan Yang
- Department of Ultrasonography, West China Second University HospitalSichuan UniversityChengduChina
- Chengdu Chenghua District Maternal and Child Health HospitalSichuan UniversityChengduChina
| | - Ya Luo
- Department of Psychiatry, State Key Lab of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Shuxian Yu
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Jiangnan Yan
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Mengqi Liu
- Department of RadiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xun Yang
- School of Public AffairsChongqing UniversityChongqingChina
| |
Collapse
|
48
|
Wu F, Dong P, Wu G, Deng J, Gao X, Song X, Yuan J, Sun H. The disruption of white matter integrity of systemic striatal circuits in alcohol-dependent males with physiological cue reactivity. Addict Biol 2023; 28:e13273. [PMID: 37016754 DOI: 10.1111/adb.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 04/06/2023]
Abstract
Alcohol dependence (AD) is a chronic and relapsing disorder. Conditioned cues associated with the rewarding properties of drugs could trigger motivational/physiological reactions and render subjects vulnerable to relapse. Striatal circuit dysfunction has been implicated in alcohol addiction behaviours. However, little is known about the striatal tracts structural connectivity changes underlying cue induced reactivity in AD. In our present study, we recruited 51 patients with AD; 31 individuals had physiological response. We used seed-based classification by probabilistic tractography with nine target masks to explore the white matter integrity of striatal circuits in physiological responders (N = 31), non-responders (N = 20), and healthy controls (N = 27). Compared with healthy controls, physiological responders showed lower fractional anisotropy (FA) and/or higher mean diffusivity in the striatum-dorsolateral prefrontal cortex (dlPFC), striatum-ventral lateral prefrontal cortex, striatum-supplementary motor area (SMA), and striatum-insular. Considering age and smoking are potential nuisances to diffusion parameters, an analysis of covariance also was conducted and similar results were found. We also found the cue-induced physiological response was negatively associated with the FA of the striatum-SMA (r = -0.287; p = 0.045) and left striatum-dlPFC (r = -0.253; p = 0.079) in AD. In our study, we found abnormal integrity of striatal circuit structural connectivity in AD with physiological cue reactivity, especially trajectory from prefrontal cortex and insular. We also found the FA of striatal tracks was negatively associated with the degree of cue reactivity. Our findings provide further evidence for reduced white matter integrity of striatal circuits for cue reactivity in male individuals with AD.
Collapse
Affiliation(s)
- Fei Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Ping Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Junliang Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| |
Collapse
|
49
|
Cousijn J, Mies G, Runia N, Derksen M, Willuhn I, Lesscher H. The impact of age on olfactory alcohol cue-reactivity: A functional magnetic resonance imaging study in adolescent and adult male drinkers. Alcohol Clin Exp Res 2023; 47:668-677. [PMID: 36855285 DOI: 10.1111/acer.15037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Adolescence is marked not only by rapid surges in the prevalence of alcohol use disorders (AUDs) but also by remarkable recovery rates, as most adolescent-onset AUDs naturally resolve over time. Little is known about the differential vulnerability of adolescents and adults. Therefore, this study aimed to unravel the moderating role of age by comparing neural alcohol cue-reactivity, an important AUD biomarker, between low-to-high beer-drinking adolescent (n = 50, 16 to 18 years), and adult (n = 51, 30 to 35 years) males matched on drinking severity. METHODS Associations between beer odor-induced brain activity and AUD diagnosis, severity of alcohol use-related problems, recent alcohol use, binge-drinking frequency, and task-induced craving were investigated across and between age groups in regions of interest thought to be central in alcohol cue-reactivity: the medial prefrontal cortex, anterior cingulate cortex, and striatal subregions (nucleus accumbens and caudate putamen). These analyses were complemented by exploratory whole-brain analyses. RESULTS Pre-task beer craving increased pre-to-post task in adolescents only. Individual differences in alcohol use, binge drinking, and craving did not relate to beer odor-induced activity. Although region-of-interest analyses did not reach significance, whole-brain analyses showed that adolescents with AUD, compared with adolescents without AUD and adults with AUD, had higher beer odor-induced activity in a large mesocorticolimbic cluster encompassing the right caudate, nucleus accumbens, orbitofrontal cortex, and the olfactory sulcus. Activity in the right caudate and putamen was positively associated with the severity of alcohol use-related problems in adolescents but negatively associated in adults. CONCLUSION These findings suggest a differential role of alcohol cue-reactivity in adolescents compared with adults with AUD and highlight the need for further studies investigating the role of age in the fundamental processes underlying the development of and recovery from of AUD.
Collapse
Affiliation(s)
- Janna Cousijn
- Neuroscience of Addiction (NofA) Lab, Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Gabry Mies
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.,Karakter Child and Adolescent Psychiatry Center, Nijmegen, The Netherlands
| | - Nora Runia
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Maik Derksen
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ingo Willuhn
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Heidi Lesscher
- Unit Animals in Science and Society, Division of Behavioural Neuroscience, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Naqvi NH, Srivastava AB, Sanchez-Peña J, Lee J, Mariani JJ, Patel GH, Levin FR. Neural correlates of drinking reduction during cognitive behavioral therapy for alcohol use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527703. [PMID: 36798260 PMCID: PMC9934652 DOI: 10.1101/2023.02.08.527703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cognitive behavioral therapy (CBT) is an effective treatment for alcohol use disorder (AUD). We hypothesized that the dorsolateral prefrontal cortex (DLPFC), a brain region implicated in cognitive control and goal-directed behavior, plays a role behavior change during CBT by facilitating regulation of craving. To examine this, treatment-seeking participants with AUD (N=22) underwent functional MRI scanning both before and after a 12-week single-arm trial of CBT, using a regulation of craving (ROC) fMRI task designed to measure an individual's ability to control alcohol craving and previously shown to engage the DLPFC. We found that both the number of heavy drinking days (NHDD, the primary clinical outcome) and the self-reported alcohol craving measured during the ROC paradigm were significantly reduced from pre- to post-CBT [NHDD: t=15.69, p<0.0001; alcohol craving: (F(1,21)=16.16; p=0.0006)]. Contrary to our hypothesis, there was no change in regulation effects on self-reported craving over time (F(1,21)=0.072; p=0.79), nor was there was a significant change in regulation effects over time on activity in any parcel. Searching the whole brain for neural correlates of reductions in drinking and craving after CBT, we found a significant 3-way interaction between the effects of cue-induced alcohol craving, cue-induced brain activity and timepoint of assessment (pre- or post-CBT) on NHDD in a parcel corresponding to area 46 of the right DLPFC (ß=-0.37, p=0.046, FDR corrected). Follow-up analyses showed that reductions in cue-induced alcohol craving from pre- to post-CBT were linearly related to reductions in alcohol cue-induced activity in area 46 only among participants who ceased heavy drinking during CBT (r=0.81, p=0.005) but not among those who continued to drink heavily (r=0.28, p=0.38). These results are consistent with a model in which CBT impacts heavy drinking by increasing the engagement of the DLPFC during cue-induced craving.
Collapse
|