1
|
Ahmadpour M, Modaberi S, Haghparast A, Fayazmilani R. Forced wheel running pre-conditioning diminishes reward learning induced by methamphetamine: Involvement of orexin 1 receptor in the hippocampus. Physiol Behav 2025; 295:114892. [PMID: 40154671 DOI: 10.1016/j.physbeh.2025.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Methamphetamine (METH) is a highly addictive drug that leads to neurobehavioral changes related to the brain's reward circuit. Orexin and orexinergic receptors, found in crucial brain areas involved in reward processing, may play a significant role in reward mechanisms and addiction. Studies have shown that physical exercise can be an effective non-pharmacological approach to controlling drug use but limited research explores its role as pre-conditioning to prevent dependency on narcotics. In this study, 48 male Wistar rats were assigned into six groups: exercise training+saline (EX-SA), exercise training+METH 1mg/kg (EX-METH1), exercise training + METH 2 mg/kg (EX-METH2), control+saline (CON), control+METH 1 mg/kg (CON-METH1), control+METH 2 mg/kg (CON-METH2). The pre-conditioning groups underwent forced wheel-running training (five days a week, at 65 % Vmax) for eight weeks. Following pre-conditioning with exercise training, the METH groups received intraperitoneal (IP) METH injections using the conditioned place preference (CPP) model. After the post-test, the animals were dissected, and hippocampal tissue was collected to measure orexin receptor1 (OXR1) expression levels. The results showed that long-term, moderate-intensity forced exercise pre-conditioning prevented METH-induced CPP. However, CPP was observed only in the EX-METH2 group, receiving a double dose of the drug. Molecular analysis also revealed a significant increase in OXR1 expression in the hippocampus following METH injections, while physical exercise caused suppression in OXR1 increment. Seemingly, prior exercise influences this pathway and effectively prevents conditioning to METH, probably through OXR1, indicating an adaptation in the mesolimbic reward pathway that helps protect against METH addiction.
Collapse
Affiliation(s)
- Mansoureh Ahmadpour
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Shaghayegh Modaberi
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, Washington, 99164, USA
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, , Iran
| | - Rana Fayazmilani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Wood EK, Huang E, Sano ER, Loftis JM. Greater fatigue, disturbed sleep, persistent memory problems, and reduced CD4 + T cell and B cell percentages in adults with a history of methamphetamine dependence. J Neuroimmunol 2025; 402:578567. [PMID: 40088605 PMCID: PMC11974374 DOI: 10.1016/j.jneuroim.2025.578567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/31/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
Methamphetamine (MA) dependence is associated with immunotoxicity and high rates of neuropsychiatric impairments that persist into remission. Although there are currently no FDA-approved pharmacotherapies for MA use disorders, preclinical and clinical studies are beginning to test interventions that directly impact immune signaling. This study was conducted to investigate the relative contribution of immune cell function to the neuropsychiatric sequelae associated with MA dependence and remission. Participants were enrolled into the following study groups: i) control (CTL) group (n = 62): adults with no lifetime history of dependence on any substance other than nicotine or caffeine; and ii) MA group (n = 98) [MA-remission group (n = 55): adults in remission ≥1 month and ≤ 6 months and MA-active group (n = 43): adults actively using MA and meeting criteria for MA dependence]. Participants completed a clinical interview, urine drug analysis, blood sample collection, and questionnaires. Peripheral blood mononuclear cells were analyzed by flow cytometry. Results suggest that early remission from MA dependence is associated with increased fatigue and persistent sleep and prospective and retrospective memory problems, along with reduced B and CD4+ T cell percentages, compared to the CTL group. Preliminary findings support the hypothesis that the immune system modulates the sleep impairments associated with drug actions and provide implications for future research studies and treatment approaches.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Center for Mental Health Innovation, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Elaine Huang
- Cell, Developmental and Cancer Biology Department, Oregon Health & Science University, 3181 Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Emily R Sano
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA.
| | - Jennifer M Loftis
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Bahceci D, Siefried K, Steele M, Harrod M, Bell G, Barratt MJ, Nicholas CR, Rodgers A, Hendricks PS, Stauffer CS, Liknaitzky P, Brett J. Exploring psychedelic experiences among people who regularly use methamphetamine: Findings from an international survey. Drug Alcohol Depend 2025; 272:112699. [PMID: 40382852 DOI: 10.1016/j.drugalcdep.2025.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVE Methamphetamine use disorder, associated with significant morbidity and mortality, has limited effective treatments. Psychedelic-assisted psychotherapy shows promise, but data on its safety and efficacy in this population are limited. This exploratory study describes the demographic, substance use, and mental health characteristics of people who used methamphetamine and psychedelics and the context and outcomes of their psychedelic experiences. METHODS A retrospective survey collected data on demographics, substance use patterns, mental health, and psychedelic use. Binomial logistic regression explored associations of post-psychedelic positive mood and social functioning ('increased'/'not increased') and substance use ('reduced'/'not reduced') with demographics, psychosocial factors, mental health, substance use patterns, and psychedelic use context. RESULTS Among 268 participants, 48.5 % had a diagnosed mental illness, 45.1 % were at risk of suicide, 61.2 % reported psychotic symptoms, 45.1 % had high-risk methamphetamine use, and 82.1 % had taken substances other than methamphetamine and psychedelics. Most psychedelic experiences were unplanned (52.6 %), recreationally motivated (73 %), and combined with other drugs (52.6 %). Post-experience, participants reported improved mood (59.3 %) and social functioning (49.6 %), and reduced use of methamphetamine (34.0 %) and other substances (35.1 %). Forward planning and less challenging experiences were linked to improved mood (aOR 1.84, p = 0.048; aOR 2.21, p = 0.012) and reduced substance use (aOR 2.27, p = 0.008; aOR 3.58, p < 0.001). DISCUSSION Psychedelic use among people who use methamphetamine may improve mood and social function, and reduce substance use. The complex findings highlight the potential importance of psychosocial and environmental factors ("set and setting") in determining outcomes, underscoring the need for controlled clinical trials and tailored harm reduction strategies.
Collapse
Affiliation(s)
- Dilara Bahceci
- The George Institute for Global Health, University of New South Wales, Sydney, NSW 2042, Australia; University of New South Wales, Sydney, NSW 2052, Australia.
| | - Krista Siefried
- St. Vincent's Hospital, 390 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maureen Steele
- St. Vincent's Hospital, 390 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Mary Harrod
- NSW Users and AIDS Association, 345 Crown Street, Surry Hills, Sydney, NSW 2010, Australia.
| | - Georgina Bell
- NSW Users and AIDS Association, 345 Crown Street, Surry Hills, Sydney, NSW 2010, Australia.
| | - Monica J Barratt
- Social Equity Research Centre and Digital Ethnography Research Centre, RMIT University, Melbourne, VIC 3000, Australia; National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Christopher R Nicholas
- Department of Family Medicine and Community Health, University of Wisconsin-Madison, School of Medicine and Public Health, 1100 Delaplaine Court, Madison, WI 53715, USA.
| | - Anthony Rodgers
- The George Institute for Global Health, University of New South Wales, Sydney, NSW 2042, Australia; University of New South Wales, Sydney, NSW 2052, Australia.
| | - Peter S Hendricks
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL 35294, USA.
| | - Christopher S Stauffer
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Department of Mental Health, VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA.
| | - Paul Liknaitzky
- Monash University, Wellington Road, Clayton, Melbourne, VIC 3800, Australia.
| | - Jonathan Brett
- St. Vincent's Hospital, 390 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Jiang L, Wang D, Tian Y, Chen J, Qu M, Chen H, Huang R, Jia L, Fu F, Tang S, Wang X, Zhang XY. Interactive effects of ARRB2 and CHRNA5 genetic polymorphisms on cognitive function in Chinese male methamphetamine use disorder patients. Am J Addict 2025; 34:289-296. [PMID: 39545854 DOI: 10.1111/ajad.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Both β-arrestin2 and nicotinic acetylcholine receptor (nAChR) have been implicated in cognitive processes, particularly in relation to psychiatric disorders, including addiction. Previous studies have suggested that nAChR may be regulated by β-arrestin2. However, no study has investigated the interaction of β-arrestin2 and nAChR on cognition. We aimed to examine the main and interactive effects of their respective encoding genes, ARRB2 and CHRNA5, on cognitive function in MUD patients. METHODS We recruited 559 patients with methamphetamine use disorder (MUD) and 459 healthy controls, assessed their cognitive functioning using the Chinese version of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and genotyped ARRB2 rs1045280 and CHRNA5 rs3829787 polymorphisms in MUD patients. RESULTS Compared to healthy controls, MUD patients scored significantly lower on all RBANS indexes. Neither ARRB2 rs1045280 nor CHRNA5 rs3829787 had main effects on cognitive function in MUD patients, but there were significant interactive effects between the two single nucleotide polymorphisms (SNPs) on multiple RBANS indexes, including immediate memory, visuospatial/constructional, delayed memory, and total score. In detail, among carriers of CHRNA5 rs3829787 T allele, ARRB2 rs1045280 TT carriers had higher RBANS scores than the C allele carriers, whereas among carriers of CHRNA5 rs3829787 CC genotype, ARRB2 rs1045280 TT carriers performed worse in RBANS. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE Our study identified for the first time an interactive effect between ARRB2 and CHRNA5 on cognitive function in MUD patients, which would enlarge our knowledge of genetic interaction on cognitive function.
Collapse
Affiliation(s)
- Linjun Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Tian
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiajing Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengqian Qu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Han Chen
- Mian Yang Teachers' College, Sichuan, China
| | - Ren Huang
- Mian Yang Teachers' College, Sichuan, China
| | - Lianglun Jia
- Xin Hua Drug Rehabilitation Center, Sichuan, China
| | - Fabing Fu
- Xin Hua Drug Rehabilitation Center, Sichuan, China
| | | | - Xiaotao Wang
- Xin Hua Drug Rehabilitation Center, Sichuan, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Gujar VV, Daiwile AP, Palande V, Cadet JL. RNA sequencing analysis identifies sex differences in transcriptional signatures in the dorsal striatum of female and male rats after withdrawal from methamphetamine self-administration. Neurochem Int 2025; 187:105980. [PMID: 40280491 DOI: 10.1016/j.neuint.2025.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Significant methamphetamine (METH)-induced behavioral differences exist between the two sexes of humans and other animals. These dissimilarities may be related to sexual dimorphism in baseline molecular and biochemical mechanisms in brain reward neuroanatomical pathways. As a first step towards identifying sex-based differences in methamphetamine-induced transcriptional signatures, we used RNA sequencing analysis to measure genome-wide changes in gene expression in the dorsal striatum of rats that had self-administered METH. We trained rats to self-administer METH (0.1 mg/kg/infusion, i.v.) using two 3-hr daily sessions (with 30 min time out between sessions) for 20 days. Control rats self-administered saline under similar conditions. This was followed by drug seeking tests on withdrawal days 3 (WD3) and 30 (WD30). Behavioral results show that male rats took more METH than female rats. In both male and female rats, some animals escalated (high-takers) whereas others did not escalate (low-takers) their METH intake during the behavioral experiment. Rats were euthanized 24 h after the second drug seeking test. RNA was extracted from the dorsal striatum (dSTR) and used in RNA sequencing analysis. The data identified substantial baseline differences in gene expression between female and male control rats. In addition, METH use and withdrawal were associated with significant sex-related differences in changes in striatal gene expression, with minimal overlaps of altered mRNAs. Thus, the present results provide further supporting evidence for sexually dimorphic responses to METH exposure. These observations support the notion of sex-specific approaches to the treatment of patients who suffer from METH use disorder.
Collapse
Affiliation(s)
- Vaibhav V Gujar
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA
| | - Vikrant Palande
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA-IRP, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
6
|
Ghorbani F, Osatd-Rahimi N, Mansouritorghabeh F, Ebrahimzadeh-bideskan A, Saburi E, Rajabian A, Hosseini M. Methamphetamine exposure during gestation and lactation periods impairs the learning and memory of offspring mice, which is reversed by melatonin: the role of oxidative stress and acetylcholinesterase. Res Pharm Sci 2025; 20:218-229. [PMID: 40444166 PMCID: PMC12118776 DOI: 10.4103/rps.rps_187_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/18/2023] [Accepted: 04/27/2024] [Indexed: 05/03/2025] Open
Abstract
Background and purpose Melatonin is a product of the pineal gland, which regulates the circadian cycle. Neurotoxicity is the most important side effect of methamphetamine (Met) abuse during pregnancy. This study aimed to explore the effect of Met exposure during gestation and lactation periods on the learning and memory of offspring mice. The protective effect of melatonin and the role of oxidative stress and acetylcholinesterase were also investigated. Experimental approach The pregnant mice were randomly divided into 2 groups. Saline or Met (5 mg/kg) was injected daily during pregnancy and lactation. After the lactation period, the offspring mice of each group were divided into 2 subgroups, and saline or melatonin (10 mg/kg) was orally (gavage) administered to the offspring mice from the post-delivery (PD) day 21 up to PD Day 60. The offspring mice were examined in the passive avoidance (PA) test. Finally, oxidative stress markers and acetylcholinesterase (AchE) activity were measured in the brains. Findings/Results As a result, Met decreased delay and light time while increasing the frequency of entry and time in the dark region of PA. However, melatonin alleviated the impairing effect of Met on PA performance. Meanwhile, the administration of Met increased malondialdehyde while decreasing superoxide dismutase and thiol content. Furthermore, AchE activity was significantly increased in Met-treated mice. Melatonin reversed the levels of antioxidants, lipid peroxidation, and AchE activity in the brain. Conclusion and implications Together, these results suggested that melatonin may be a potential therapeutic agent for alleviating Met-induced memory impairment by restoring redox hemostasis and AchE.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Negar Osatd-Rahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Fatemeh Mansouritorghabeh
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Alireza Ebrahimzadeh-bideskan
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
- Department of Neuroscience, School of Medicine, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| |
Collapse
|
7
|
Qiu H, Zhang M, Chen C, Wang H, Yue X. Decreasing β-Catenin Leads to Altered Endothelial Morphology, Increased Barrier Permeability and Cognitive Impairment During Chronic Methamphetamine Exposure. Int J Mol Sci 2025; 26:1514. [PMID: 40003980 PMCID: PMC11854931 DOI: 10.3390/ijms26041514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Cognitive impairment induced by chronic methamphetamine (METH) exposure exhibits similarities to neurodegenerative disorders and is associated with blood-brain barrier (BBB) dysfunction. However, the potential involvement of β-catenin in maintaining BBB integrity during METH exposure remains unexplored. In this study, Y-maze and novel object recognition tests were conducted to assess cognitive impairment in mice exposed chronically to methamphetamine for 2 and 4 weeks. Gd-DTPA and Evans blue leakage tests revealed disruption of the BBB in the hippocampus, while chronic METH exposure for 2 and 4 weeks significantly decreased β-catenin levels along with its transcriptionally regulated protein, claudin5. Additionally, various neural injury-related proteins, such as APP, Aβ1-42, p-tau (Thr181) and p-tau (Ser396), as well as neuroinflammation-related proteins, such as IL-6, IL-1β, and TNF-α, exhibited increased levels following chronic METH exposure. Furthermore, plasma analysis indicated elevated levels of p-Tau (total), neurofilament light chain, and GFAP. In vitro experiments demonstrated that exposure to METH resulted in dose-dependent and time-dependent reductions in cellular activity and connectivity of bEnd.3 and hcmec/D3 cells. Furthermore, β-catenin exhibited decreased levels and altered subcellular localization, transitioning from the cell membrane to the cytoplasm and nucleus upon METH exposure. Overexpression of β-catenin was found to alleviate endothelial toxicity and attenuate junctional weakening induced by METH. The aforementioned findings underscore the crucial involvement of β-catenin in endothelial cells during chronic METH exposure-induced disruption of the BBB, thereby presenting a potential novel target for addressing METH-associated cerebrovascular dysfunction and cognitive impairment.
Collapse
Affiliation(s)
| | | | | | - Huijun Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.Z.); (C.C.)
| |
Collapse
|
8
|
Armenta-Resendiz M, Carter JS, Hunter Z, Taniguchi M, Reichel CM, Lavin A. Sex differences in behavior, cognitive, and physiological recovery following methamphetamine administration. Psychopharmacology (Berl) 2024; 241:2331-2345. [PMID: 38953940 PMCID: PMC11513735 DOI: 10.1007/s00213-024-06638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
Intact executive functions are required for proper performance of cognitive tasks and relies on balance of excitatory and inhibitory (E/I) transmission in the medial prefrontal cortex (mPFC). Hypofrontality is a state of decreased activity in the mPFC and is seen in several neuropsychiatric conditions, including substance use disorders. People who chronically use methamphetamine (meth) develop hypofrontality and concurrent changes in cognitive processing across several domains. Despite the fact that there are sex difference in substance use disorders, few studies have considered sex as a biological variable regarding meth-mediated hypoactivity in mPFC and concurrent cognitive deficits. Hypofrontality along with changes in cognition are emulated in rodent models following repeated meth administration. Here, we used a meth sensitization regimen to study sex differences in a Temporal Order Memory (TOM) task following short (7 days) or prolonged (28 days) periods of abstinence. GABAergic transmission, GABAA receptor (GABAAR) and GABA Transporter (GAT) mRNA expression in the mPFC were evaluated with patch-clamp recordings and RT-qPCR, respectively. Both sexes sensitized to the locomotor activating effects of meth, with the effect persisting in females. After short abstinence, males and females had impaired TOM and increased GABAergic transmission. Female rats recovered from these changes after prolonged abstinence, whereas male rats showed enduring changes. In general, meth appears to elicit an overall decrease in GABAAR expression after short abstinence; whereas GABA transporters are decreased in meth female rats after prolonged abstinence. These results show sex differences in the long-term effects of repeated meth exposure and suggest that females have neuroprotective mechanisms that alleviate some of the meth-mediated cognitive deficits.
Collapse
Affiliation(s)
| | - Jordan S Carter
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Zachariah Hunter
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA
| | - Antonieta Lavin
- Department of Neuroscience, MUSC, 173 Ashley Ave 403BSB, Charleston, SC, 29425, USA.
| |
Collapse
|
9
|
Shahrvini T, Gaither TW, Vincent NW, Williams KC, Piqueiras E, Siapno AE, Russell MM, Litwin MS. The Impact of Pleasure and Pain on Frequent Substance Use During Receptive Anal Intercourse. JOURNAL OF SEX RESEARCH 2024:1-7. [PMID: 39373647 DOI: 10.1080/00224499.2024.2408648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Sexualized drug use (SDU) describes use of any psychoactive substance before or during planned sexual activity to facilitate, intensify, or prolong intercourse. The impact of pain, pleasure, and other mediators on SDU is not well characterized. This study aimed to distinguish the motivations behind different classes and frequencies of substance use during receptive anal intercourse (RAI). Data were from an internet-based survey conducted between July 2022-January 2023. We measured the frequency of SDU for five substances: poppers, alcohol, marijuana, methamphetamine, and nicotine. Satisfaction with pleasurable sensations during RAI and any type of pain bother during RAI were assessed on a 5-point scale. Multivariable logistic regression was performed for 1,119 respondents. Our results showed a strong association between bothersome pain during RAI and frequent alcohol (aOR 2.1), marijuana (aOR 2.4), nicotine (aOR 3.1), and meth (aOR 5.9) use. None of the five substance classes studied was correlated with dissatisfaction with pleasure during RAI. Frequent popper use was associated with increasing lifetime RAI experience and number of sexual partners. The mechanism behind SDU during RAI is substance-specific and multifactorial. Bothersome pain during RAI is highly associated with frequent SDU. Inquiring about pain during RAI may offer avenues for intervention.
Collapse
Affiliation(s)
- Tara Shahrvini
- David Geffen School of Medicine, University of California Los Angeles
| | - Thomas W Gaither
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles
| | | | - Kristen C Williams
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles
| | - Eduardo Piqueiras
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles
| | - Allen E Siapno
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles
| | - Marcia M Russell
- Department of Surgery, Section of Colorectal Surgery, David Geffen School of Medicine, University of California Los Angeles
- Surgical and Perioperative Careline, VA Greater Los Angeles Healthcare System
| | - Mark S Litwin
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles
- Department of Health Policy and Management, Fielding School of Public Health, University of California
- School of Nursing, University of California Los Angeles
| |
Collapse
|
10
|
Rashidi SK, Khodagholi F, Rafie S, Kashipazha D, Safarian H, Khoshnam SE, Dezfouli MA. Methamphetamine and the brain: Emerging molecular targets and signaling pathways involved in neurotoxicity. TOXIN REV 2024; 43:553-571. [DOI: 10.1080/15569543.2024.2360425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/21/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Davood Kashipazha
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Haleh Safarian
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Miao L, Wang H, Li Y, Huang J, Wang C, Teng H, Xu L, Yang X, Tian Y, Yang G, Li J, Zeng X. Mechanisms and treatments of methamphetamine and HIV-1 co-induced neurotoxicity: a systematic review. Front Immunol 2024; 15:1423263. [PMID: 39224601 PMCID: PMC11366655 DOI: 10.3389/fimmu.2024.1423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.
Collapse
Affiliation(s)
- Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lisha Xu
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Xu C, Zhang Z, Hou D, Wang G, Li C, Ma X, Wang K, Luo H, Zhu M. Effects of exercise interventions on negative emotions, cognitive performance and drug craving in methamphetamine addiction. Front Psychiatry 2024; 15:1402533. [PMID: 38827441 PMCID: PMC11140390 DOI: 10.3389/fpsyt.2024.1402533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Methamphetamine is currently one of the most commonly used addictive substances with strong addiction and a high relapse rate. This systematic review aims to examine the effectiveness of physical activity in improving negative emotions, cognitive impairment, and drug craving in people with methamphetamine use disorder (MUD). Methods A total of 17 studies out of 133 found from Embase and PubMed were identified, reporting results from 1836 participants from MUD populations. Original research using clearly described physical activity as interventions and reporting quantifiable outcomes of negative mood, cognitive function and drug craving level in people with MUD were eligible for inclusion. We included prospective studies, randomized controlled trials, or intervention studies, focusing on the neurological effects of physical activity on MUD. Results Taken together, the available clinical evidence showed that physical activity-based interventions may be effective in managing MUD-related withdrawal symptoms. Discussion Physical exercise may improve drug rehabilitation efficiency by improving negative emotions, cognitive behaviors, and drug cravings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024530359.
Collapse
Affiliation(s)
- Conghui Xu
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Zunyue Zhang
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Dezhi Hou
- School of Medicine, Yunnan University, Kunming, China
- Department of General Surgery I, First People’s Hospital of Yunnan Province, Kunming, China
| | - Guangqing Wang
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Congbin Li
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Xingfeng Ma
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Kunhua Wang
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Huayou Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Ghaderi S, Amani Rad J, Hemami M, Khosrowabadi R. Dysfunctional feedback processing in male methamphetamine abusers: Evidence from neurophysiological and computational approaches. Neuropsychologia 2024; 197:108847. [PMID: 38460774 DOI: 10.1016/j.neuropsychologia.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/24/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Methamphetamine use disorder (MUD) as a major public health risk is associated with dysfunctional neural feedback processing. Although dysfunctional feedback processing in people who are substance dependent has been explored in several behavioral, computational, and electrocortical studies, this mechanism in MUDs requires to be well understood. Furthermore, the current understanding of latent components of their behavior such as learning speed and exploration-exploitation dilemma is still limited. In addition, the association between the latent cognitive components and the related neural mechanisms also needs to be explored. Therefore, in this study, the underlying neurocognitive mechanisms of feedback processing of such impairment, and age/gender-matched healthy controls are evaluated within a probabilistic learning task with rewards and punishments. Mathematical modeling results based on the Q-learning paradigm suggested that MUDs show less sensitivity in distinguishing optimal options. Additionally, it may be worth noting that MUDs exhibited a slight decrease in their ability to learn from negative feedback compared to healthy controls. Also through the lens of underlying neural mechanisms, MUDs showed lower theta power at the medial-frontal areas while responding to negative feedback. However, other EEG measures of reinforcement learning including feedback-related negativity, parietal-P300, and activity flow from the medial frontal to lateral prefrontal regions, remained intact in MUDs. On the other hand, the elimination of the linkage between value sensitivity and medial-frontal theta activity in MUDs was observed. The observed dysfunction could be due to the adverse effects of methamphetamine on the cortico-striatal dopamine circuit, which is reflected in the anterior cingulate cortex activity as the most likely region responsible for efficient behavior adjustment. These findings could help us to pave the way toward tailored therapeutic approaches.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Jamal Amani Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Hemami
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
14
|
Alqarni H, Aldghim A, Alkahtani R, Alshahrani N, Altoman MS, Alfaifi MA, Helmi M, Alzaid AA. Crystal methamphetamine and its effects on mental and oral health: A narrative review. Saudi Dent J 2024; 36:665-673. [PMID: 38766295 PMCID: PMC11096620 DOI: 10.1016/j.sdentj.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/22/2024] Open
Abstract
The purpose of this comprehensive literature review is to present the available evidence on the effects of methamphetamine on mental and oral health, as well as provide an overview of the most widely used medical and dental care strategies in the management of meth mouth. For this purpose, PubMed and Google Scholar electronic databases were searched for relevant articles, yielding 115 search results, which were further scrutinized for their relevance, leaving 55 for a detailed review. The analysis of the gathered data indicates that a comprehensive patient-centered approach that takes into consideration the physical, mental, and social aspects is crucial for mitigating the detrimental effects of increasing methamphetamine use.
Collapse
Affiliation(s)
- Hatem Alqarni
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Adhwaa Aldghim
- Dental Intern, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Rose Alkahtani
- Dental Intern, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nasser Alshahrani
- Dental Intern, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majed S. Altoman
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Alfaifi
- Department of Prosthetic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Helmi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alzaid
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Bellot M, Soria F, López-Arnau R, Gómez-Canela C, Barata C. Daphnia magna an emerging environmental model of neuro and cardiotoxicity of illicit drugs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123355. [PMID: 38228265 DOI: 10.1016/j.envpol.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Cocaine, methamphetamine, ectasy (3,4-methylenedioxy amphetamine (MDMA)) and ketamine are among the most consumed drugs worldwide causing cognitive, oxidative stress and cardiovascular problems in humans. Residue levels of these drugs and their transformation products may still enter the aquatic environment, where concentrations up to hundreds of ng/L have been measured. In the present work we tested the hypothesis that psychotropic effects and the mode of action of these drugs in D. magna cognitive, oxidative stress and cardiovascular responses are equivalent to those reported in humans and other vertebrate models. Accordingly we expose D. magna juveniles to pharmacological and environmental relevant concentrations. The study was complemented with the measurement of the main neurotransmitters involved in the known mechanisms of action of these drugs in mammals and physiological relevant amino acids. Behavioural cognitive patters clearly differentiate the 3 psychostimulant drugs (methamphetamine, cocaine, MDMA) from the dissociative one ketamine. Psychostimulant drugs at pharmacological doses (10-200 μM), increased basal locomotion activities and responses to light, and decreased habituation to it. Ketamine only increased habituation to light. The four drugs enhanced the production of reactive oxygen species in a concentration related manner, and at moderate concentrations (10-60 μM) increased heartbeats, diminishing them at high doses (200 μM). In chronic exposures to environmental low concentrations (10-1000 ng/L) the four drugs did not affect any of the behavioural responses measured but methamphetamine and cocaine inhibited reproduction at 10 ng/L. Observed effects on neurotransmitters and related metabolites were in concern with reported responses in mammalian and other vertebrate models: cocaine and MDMA enhanced dopamine and serotonin levels, respectively, methamphetamine and MDMA decreased dopamine and octopamine, and all but MDMA decreased 3 MT levels. Drug effects on the concentration of up to 10 amino acids evidence disruptive effects on neurotransmitter synthesis, the urea cycle, lipid metabolism and cardiac function.
Collapse
Affiliation(s)
- Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Fernando Soria
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Institut de Biomedicina IBUB, University of Barcelona, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
17
|
Munetomo-Aoki S, Kaizaki-Mitsumoto A, Nakano R, Numazawa S. Paternal methamphetamine exposure differentially affects first and second generations in mice. J Toxicol Sci 2024; 49:9-26. [PMID: 38191192 DOI: 10.2131/jts.49.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Amphetamine-type stimulants are abused worldwide, and methamphetamine (METH) accounts for a large majority of seized abused drug cases. Recently, the paternal origin of health and disease theory has been proposed as a concept wherein paternal factors influence descendants. Although METH abuse is more common among males, its effects on their descendants were not examined. Therefore, we investigated the effects of paternal METH exposure on F1 and F2 levels in a mouse model. Sires were administered METH for 21 days and mated with female mice to obtain F1 mice. Growth evaluations (number of births, survival rate, body weight, righting reflex, cliff avoidance tests, and wire-hanging maneuver) were performed on F1 mice. Upon reaching six weeks of age, the mice were subjected to spontaneous locomotion, elevated plus-maze, acute METH treatment, and passive avoidance tests. Additionally, RNA-seq was performed on the striatum of male mice. Male F1 mice were mated with female mice to obtain F2 mice. They were subjected to the same tests as the F1 mice. Paternal METH exposure resulted in delayed growth and decreased memory function in F1 mice, overweight in F2 mice, decreased METH sensitivity, and reduced anxiety-related behaviors in female F2 mice. Enrichment analysis revealed significant enrichment of terms related to behavior in F1 and protein folding in F2. These results indicated that the effects of paternal METH exposure vary across generations. The effects of paternal factors need to be examined not only in F1, but also in F2 and beyond.
Collapse
Affiliation(s)
| | | | - Ryota Nakano
- Department of Physiology, Showa University Graduate School of Pharmacy
| | - Satoshi Numazawa
- Department of Toxicology, Showa University Graduate School of Pharmacy
| |
Collapse
|
18
|
Li X, Cong J, Liu K, Wang P, Sun M, Wei B. Aberrant intrinsic functional brain topology in methamphetamine-dependent individuals after six-months of abstinence. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:19565-19583. [PMID: 38052615 DOI: 10.3934/mbe.2023867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Our aim was to explore the aberrant intrinsic functional topology in methamphetamine-dependent individuals after six months of abstinence using resting-state functional magnetic imaging (rs-fMRI). Eleven methamphetamines (MA) abstainers who have abstained for six months and eleven healthy controls (HC) were recruited for rs-fMRI examination. The graph theory and functional connectivity (FC) analysis were employed to investigate the aberrant intrinsic functional brain topology between the two groups at multiple levels. Compared with the HC group, the characteristic shortest path length ($ {L}_{p} $) showed a significant decrease at the global level, while the global efficiency ($ {E}_{glob} $) and local efficiency ($ {E}_{loc} $) showed an increase considerably. After FDR correction, we found significant group differences in nodal degree and nodal efficiency at the regional level in the ventral attentional network (VAN), dorsal attentional network (DAN), somatosensory network (SMN), visual network (VN) and default mode network (DMN). In addition, the NBS method presented the aberrations in edge-based FC, including frontoparietal network (FPN), subcortical network (SCN), VAN, DAN, SMN, VN and DMN. Moreover, the FC of large-scale functional brain networks revealed a decrease within the VN and SCN and between the networks. These findings suggest that some functions, e.g., visual processing skills, object recognition and memory, may not fully recover after six months of withdrawal. This leads to the possibility of relapse behavior when confronted with MA-related cues, which may contribute to explaining the relapse mechanism. We also provide an imaging basis for revealing the neural mechanism of MA-dependency after six months of abstinence.
Collapse
Affiliation(s)
- Xiang Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Kunmeng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Pingping Wang
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Min Sun
- Shandong Detoxification Monitoring and Treatment Institute, Zibo 255311, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| |
Collapse
|
19
|
Cheng YJ, Deng YZ, Deng D, Wu MQ, Chai JR, Wang YJ, Liu JG, Zhao M. Prelimbic cortex dynorphin/κ opioid receptor system modulates methamphetamine-induced cognitive impairment. Addict Biol 2023; 28:e13323. [PMID: 37644896 DOI: 10.1111/adb.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Chronic exposure to methamphetamine (METH) causes severe and persistent cognitive impairment. The present study aimed to investigate the role of dynorphin/κ opioid receptor (KOR) system in the development of METH-induced cognitive impairment. We found that mice showed significant cognitive impairment in the novel object recognition test (NOR) following daily injections of METH (10 mg/kg) for seven consecutive days. Systemic blockade of KOR prevented METH-induced cognitive impairment by pretreatment of the selective KOR antagonist norBNI (10 mg/kg, i.p.) or KOR deletion. Then, significant increased dynorphin and KOR mRNA were observed exclusively in prelimbic cortex (PL) other than infralimbic cortex. Finally, microinjection with norBNI into PL also improved cognitive memory in METH-treated mice using NOR and spontaneous alternation behaviour test. Our results demonstrated that dynorphin/KOR system activation in PL may be a possible mechanism for METH-induced cognitive impairment and shed light on KOR antagonists as a potential neuroprotective agent against the cognitive deficits induced by drug abuse.
Collapse
Affiliation(s)
- Ying-Jie Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Zhi Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Qing Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Rui Chai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Morinaka H, Kaizaki-Mitsumoto A, Morohoshi H, Uchida N, Numazawa S. Urinary profiles of methoxyphenamine and its metabolite after inhalation of methoxyphenamine smoke in humans: aiming to distinguish between active and passive exposure. Forensic Toxicol 2023; 41:230-240. [PMID: 36607477 PMCID: PMC10310607 DOI: 10.1007/s11419-022-00658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Methamphetamine (METH) is commonly abused through smoking. However, the lack of evidence regarding differences in urinary METH excretion after its active and passive inhalation has resulted in complications where the accused claims passive exposure. This study aimed to determine the differences in urinary excretion after active and passive inhalation of the drug, using methoxyphenamine (MPA) as a model for METH. METHODS Body temperature and locomotor activity were measured in mice as indicators of central nervous system toxicity. Six healthy adult male subjects were exposed to passive or active inhalation of MPA smoke in a small room, and urine samples were taken. MPA concentrations were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS There were no signs of toxicity in mice exposed to MPA smoke, ensuring the safety of the clinical study. Urinary MPA concentrations were significantly lower with passive inhalation compared with those of active inhalation. The maximum urinary MPA concentration in passive inhalation was 13.4 ng/mL, which was 1/60 of active inhalation with 800 ng/mL. The urinary excretion in passive inhalation until 24 h was 8.21 μg, which was 1/76 of active inhalation with 625 μg. CONCLUSIONS Since METH and MPA are expected to be excreted similarly, urinary METH concentrations in passively exposed persons are expected to be lower than the cutoff value of the screening kit. If the urine screening test is positive, the suspect should be considered a METH user. TRIAL REGISTRATION NUMBER jRCTs031210604, registration date: Feb. 9, 2022.
Collapse
Affiliation(s)
- Haruka Morinaka
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Asuka Kaizaki-Mitsumoto
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Hokuto Morohoshi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Hygiene, Public Health and Preventive Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Naoki Uchida
- Department of Pharmacology (Clinical Pharmacology), Showa University School of Medicine, 6-11-11 Kitakarasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
21
|
Zhang Y, Xu B, Wang Z, Yang R, Zhu L, He W, Zhou G, Li J, Li J, Han Z, Hong Y, Wang S. Surface-enhanced Raman imaging through sprayed probes for the application in chemical visualization of methamphetamine within fingerprints. Anal Bioanal Chem 2023:10.1007/s00216-023-04757-w. [PMID: 37258691 DOI: 10.1007/s00216-023-04757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
For fingerprint-involved forensic investigations, cyanoacrylates and inorganic nanophosphors are mostly used for fingerprint visualization. However, methods to simultaneously report fingerprint images and the corresponding specific chemical information have yet to be realized. In this work, chemical visualization of the analytes in fingerprints is achieved through surface-enhanced Raman spectroscopy (SERS) measurements with the aid of spray-dispersed gold nanorods (AuNRs). The optimal coverage of AuNRs was studied by theoretical simulations and experimental operations. A rapid sampling of fingerprints with the chemical of interest was developed by tuning the spray parameters. In particular, the SERS imaging of methamphetamine in fingerprint latent was attempted by addressing the SERS spectral features of methamphetamine. This chemical visualization method reflects both the graphical and chemical characteristics of fingerprints in a single batch measurement, in which methamphetamine can be detected and mapped at the concentration of 10-5 M. The data processing approach was also modified by employing relevant logical judgments. The improved SERS images with sharpened patterns of fingerprints were obtained by involving the scored multi-peak judgments.
Collapse
Affiliation(s)
- Yating Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, 610041, People's Republic of China
| | - Zehua Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Rongji Yang
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, 610041, People's Republic of China
| | - Leixia Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Wei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Guoyun Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jiujuan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Jianhui Li
- Suining Ruijiexing Technology Co., Ltd., Suining, 629001, People's Republic of China
| | - Zhiwei Han
- Bomin Electronics Co., Ltd., Meizhou, 514000, People's Republic of China
| | - Yan Hong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Shouxu Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
22
|
Zhu Z, Liu H, Ding P, Fu Y, Cao H, Xu W, He Q, Cheng J. Direct Active Site at the Van der Waals Heterostructure Interface with Synthetic Drug Analogue N-Methylphenethylimine Ultrasensitivity. ACS Sens 2023; 8:1318-1327. [PMID: 36795762 DOI: 10.1021/acssensors.2c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CNT/organic probe-based chemiresistive sensors suffer from the problem of low sensitivity and poor stability due to the unstable and unfavorable CNT/organic probe interface. A new designing strategy of a one-dimensional van der Waals heterostructure was developed for ultrasensitive vapor sensing. By modifying the perylene diimide molecule at the bay region with phenoxyl and further Boc-NH- phenoxy side chains, a highly stable 1D VDW heterostructure SWCNT-probe molecule system was formed with ultrasensitivity and specificity. Interfacial recognition sites consisting of SWCNT and the probe molecule are responsible for the synergistical and excellent sensing response to MPEA molecules, which was proved by Raman, XPS, and FTIR characterizations together with dynamic simulation. Based on such a sensitive and stable VDW heterostructure system, the measured detection limit reached as low as 3.6 ppt for the synthetic drug analogue N-methylphenethylimine (MPEA) in the vapor phase, and the sensor showed almost no performance degradation even after 10 days. Furthermore, a miniaturized detector was developed for real-time monitoring of drug vapor detection.
Collapse
Affiliation(s)
- Zhen Zhu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Huan Liu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Pengfei Ding
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Huimin Cao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Wei Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Qingguo He
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| |
Collapse
|
23
|
Zhao X, Lu J, Zhang C, Chen C, Zhang M, Zhang J, Du Q, Wang H. Methamphetamine induces cardiomyopathy through GATA4/NF-κB/SASP axis-mediated cellular senescence. Toxicol Appl Pharmacol 2023; 466:116457. [PMID: 36914120 DOI: 10.1016/j.taap.2023.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
With the world pandemic of methamphetamine (METH), METH-associated cardiomyopathy (MAC) has become a widespread epidemic and is also recognized as a cause of heart failure in young people. The mechanism of occurrence and development of MAC is not clear. In this study, firstly, the animal model was evaluated by echocardiography and myocardial pathological staining. The results revealed that the animal model exhibited cardiac injury consistent with clinical alterations of MAC, and the mice developed cardiac hypertrophy and fibrosis remodeling, which led to systolic dysfunction and left ventricular ejection fraction (%LVEF) < 40%. The expression of cellular senescence marker proteins (p16 and p21) and senescence-associated secretory phenotype (SASP) was significantly increased in mouse myocardial tissue. Secondly, mRNA sequencing analysis of cardiac tissues revealed the key molecule GATA4, and Western blot, qPCR and immunofluorescence results showed that the expression level of GATA4 was significantly increased after METH exposure. Finally, knockdown of GATA4 expression in H9C2 cells in vitro significantly attenuated METH-induced cardiomyocyte senescence. Consequently, METH causes cardiomyopathy through cellular senescence mediated by the GATA4/NF-κB/SASP axis, which is a feasible target for the treatment of MAC.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cui Zhang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
24
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
25
|
Young JW, Kenton JA, Milienne-Petiot M, Deben D, Achim C, Geyer MA, Perry W, Grant IE, Minassian A. Chronic methamphetamine exposure exerts few effects on the iTat mouse model of HIV, but blocks Tat expression-induced slowed reward retrieval. Behav Brain Res 2023; 437:114109. [PMID: 36108778 PMCID: PMC10878174 DOI: 10.1016/j.bbr.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Human immunodeficiency virus (HIV) continues to infect millions worldwide, negatively impacting neurobehavioral function. Further understanding of the combined effects of HIV and methamphetamine use is crucial, as methamphetamine use is prevalent in people with HIV. The HIV-associated protein Tat may contribute to cognitive dysfunction, modeled preclinically in mice using doxycycline (DOX)-inducible Tat expression (iTat). Tat may exert its effects on cognitive function via disruption of the dopamine transporter, similar to the action of methamphetamine. Additionally, Tat and methamphetamine both decrease interneuron populations, including those expressing calbindin. It is important to understand the combined effects of Tat and methamphetamine in preclinical models of HIV infection. Here, we used iTat transgenic mice and a chronic binge regimen of methamphetamine exposure to determine their combined impact on reward learning and motivation. We also measured calbindin expression in behavior-relevant brain regions. Before induction with DOX, iTat mice exhibited no differences in behavior. Chronic methamphetamine exposure before Tat induction impaired initial reward learning but did not affect motivation. Furthermore, DOX-induced Tat expression did not alter behavior, but slowed latencies to retrieve rewards. This effect of Tat, however, was not observed in methamphetamine-treated mice, indicative of a potential protective effect. Finally, Tat expression was associated with an increase in calbindin-expressing cells in the VTA, while methamphetamine exposure did not alter calbindin numbers. These findings may indicate a protective role of methamphetamine in HIV neuropathology, which in turn may help in our understanding of why people with HIV use methamphetamine at disproportionately higher rates.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | | | - Debbie Deben
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Igor E Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| |
Collapse
|
26
|
Munoz C, Jayanthi S, Ladenheim B, Cadet JL. Compulsive methamphetamine self-administration in the presence of adverse consequences is associated with increased hippocampal mRNA expression of cellular adhesion molecules. Front Mol Neurosci 2023; 15:1104657. [PMID: 36710935 PMCID: PMC9880890 DOI: 10.3389/fnmol.2022.1104657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Methamphetamine (METH) is a popular but harmful psychostimulant. METH use disorder (MUD) is characterized by compulsive and continued use despite adverse life consequences. METH users experience impairments in learning and memory functions that are thought to be secondary to METH-induced abnormalities in the hippocampus. Recent studies have reported that about 50% of METH users develop MUD, suggesting that there may be differential molecular effects of METH between the brains of individuals who met criteria for addiction and those who did not after being exposed to the drug. The present study aimed at identifying potential transcriptional differences between compulsive and non-compulsive METH self-administering male rats by measuring global gene expression changes in the hippocampus using RNA sequencing. Herein, we used a model of METH self-administration (SA) accompanied by contingent foot-shock punishment. This approach led to the separation of animals into shock-resistant rats (compulsive) that continued to take METH and shock-sensitive rats (non-compulsive) that suppressed their METH intake in the presence of punished METH taking. Rats were euthanized 2 h after the last METH SA plus foot-shock session. Their hippocampi were immediately removed, frozen, and used later for RNA sequencing and qRT-PCR analyses. RNA sequencing analyses revealed differential expression of mRNAs encoding cell adhesion molecules (CAMs) between the two rat phenotypes. qRT-PCR analyses showed significant higher levels of Cdh1, Glycam1, and Mpzl2 mRNAs in the compulsive rats in comparison to non-compulsive rats. The present results implicate altered CAM expression in the hippocampus in the behavioral manifestations of continuous compulsive METH taking in the presence of adverse consequences. Our results raise the novel possibility that altered CAM expression might play a role in compulsive METH taking and the cognitive impairments observed in MUD patients.
Collapse
|
27
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
28
|
Liang M, Chen G, Xi Z, Qian H, Shang Q, Gao B, An R, Shao G, Wang Z, Wang J, Xiao J, Li T, Liu X. The roles of K +-dependent Na +/Ca 2+ exchanger 2 (NCKX2) in methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Neurosci Lett 2023; 792:136952. [PMID: 36336087 DOI: 10.1016/j.neulet.2022.136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Drug addiction, including methamphetamine (METH) addiction, is a significant public health and social issue. Perturbations in intracellular Ca2+ homeostasis are associated with drug addiction. K+-dependent Na+/Ca2+ exchanger 2 (NCKX2) is located on neuronal cell membranes and constitutes a Ca2+ clearance mechanism, with key roles in synaptic plasticity. NCKX2 is associated with motor learning, memory, and cognitive functions. However, the role of NCKX2 in METH addiction remains unclear. In this study, we investigated the expression levels of NCKX2 in four addiction-related brain regions: the prefrontal cortex (PFc), nucleus accumbens (NAc), dorsal striatum (DS), and hippocampus (Hip) in a C57/BL6 mouse model of METH-induced conditioned place preference (CPP) and behavioral sensitization. Levels of NCKX2 were unchanged in these brain regions in mice with METH-induced CPP but were decreased in the PFc and NAc of mice with METH-induced behavioral sensitization. Adeno-associated virus (AAV)-mediated overexpression of NCKX2 in the PFc attenuated the expression phase of METH-induced behavioral sensitization in mice, whereas AAV-mediated knockdown of NCKX2 enhanced the effects of METH. Collectively, our results suggest that NCKX2 is involved in METH-induced behavioral sensitization but does not affect conditioned reward-related memory, highlighting the potential of NCKX2 as a molecular target for studying the mechanisms underscoring METH addiction.
Collapse
Affiliation(s)
- Min Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Gang Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China; Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.
| | - Zhijia Xi
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Hongyan Qian
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Qing Shang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Baoyao Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Ran An
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Gaojie Shao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Zhirong Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Jing Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Jing Xiao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| | - Xinshe Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, People's Republic of China; Institute of Forensic Injury, Institute of Forensic Bioevidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
29
|
Neuroprotective effect of histamine H3 receptor blockade on methamphetamine-induced cognitive impairment in mice. Pharmacol Biochem Behav 2023; 222:173512. [PMID: 36572112 DOI: 10.1016/j.pbb.2022.173512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Methamphetamine (METH) exposure is commonly believed to result in cognitive impairment. Histamine H3 receptor (H3R) antagonists reportedly have potential applications for treating cognitive impairment accompanied by various neuropsychiatric disorders. The present study aimed to investigate the effect of H3R blockade by Thioperamide (THIO) on METH-induced cognitive impairment and the underlying mechanism. METHODS In Experiment 1, C57BL/6 mice received daily injections of saline or 5 mg/kg METH for 5 consecutive days. The Novel Object Recognition (NOR) and Morris water maze (MWM) tasks were used to assess cognitive functions of mice. H3R protein expression and apoptosis were subsequently measured in the hippocampus. In Experiment 2, HT22 cells were first treated with ddH2O or 3 mM METH. The cell survival rate and H3R protein level were subsequently assessed. In Experiment 3, the animals were first treated with saline or 20 mg/kg THIO for 7 days, followed by co-administration of either saline or 5 mg/kg METH for an additional 5 days. The remaining experiments were carried out in the same manner as Experiment 1. In Experiment 4, HT22 cells were pretreated with either ddH2O or 5 mM THIO for 2 h, followed by ddH2O or 3 mM METH treatment for an additional 12 h. The remaining experiments were carried out in the same manner as Experiment 2. In Experiment 5, the changes in MEK1/2, p-MEK1/2, ERK1/2 and p-ERK1/2 protein levels were examined in the hippocampus of all mice from Experiment 3 and HT22 cells from Experiment 4. RESULTS METH-treated mice showed significantly worsened NOR and MWM performance, along with markably hippocampal apoptosis. A significantly lower cell survival rate was observed in METH-treated HT22 cells. Increased levels of H3R protein were found in both METH-treated mice and HT22 cells. THIO significantly improved METH-induced cognitive impairment in mice and toxicity in HT22 cells. METH significantly increased the level of p-MEK1/2 and p-ERK1/2 proteins in the hippocampus of mice and HT22 cells, which was reversed by THIO pretreatment. CONCLUSION Our findings reveal that H3R blockade by THIO yields a neuroprotective effect against METH-induced cognitive impairment in mice and toxicity in HT22 cells via the raf-MEK-ERK signaling pathway.
Collapse
|
30
|
Oflu S, Erarpat S, Zaman BT, Günkara ÖT, Bakırdere S, Turak F. Combination of quadrupole isotope dilution mass spectrometry with simultaneous derivatization and spray assisted droplet formation-liquid phase microextraction for the determination of methamphetamine in human urine and serum samples by gas chromatography mass spectrometry. J Pharmacol Toxicol Methods 2023; 119:107207. [PMID: 35933004 DOI: 10.1016/j.vascn.2022.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/03/2023]
Abstract
In this study, an analytical method with high accuracy and precision was developed for the determination of methamphetamine in human urine and serum samples by gas chromatography-mass spectrometry (GC-MS). A simultaneous derivatization and spray assisted droplet formation-liquid phase microextraction (SADF-LPME) method was proposed to derivatize and preconcentrate target analyte. Quadruple isotope dilution (ID4) was used to provide high accuracy and precision for methamphetamine determination in the samples. After the optimization studies for the derivatization and microextraction parameters, limit of detection (LOD) and limit of quantitation (LOQ) for the developed SADF-LPME method were found to be 48.0 and 159.9 μg/kg, respectively. Recovery studies were implemented to verify the applicability and accuracy of the developed method for human urine and serum samples. The SADF-LPME method gave low percent recovery results (30.5-61.0%) for the spiked urine and serum samples showing that it failed to minimize or eliminate matrix effects for the analyte. Hence, methamphetamine acetamide-d3 was synthesized and purified in our research laboratory to be used as methamphetamine isotopic analogue in the ID4 method. When the SADF-LPME method was combined with ID4, the percent recovery values for urine and serum samples were calculated as 99.7-100.0% and 99.4-100.2%, respectively. These results demonstrated the applicability and accuracy of the proposed method for urine and serum samples.
Collapse
Affiliation(s)
- Sude Oflu
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34,210, Davutpasa, Esenler, İstanbul, Türkiye
| | - Sezin Erarpat
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34,210, Davutpasa, Esenler, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34,210, Davutpasa, Esenler, İstanbul, Türkiye
| | - Ömer Tahir Günkara
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34,210, Davutpasa, Esenler, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34,210, Davutpasa, Esenler, İstanbul, Türkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06690, Ankara, Türkiye.
| | - Fatma Turak
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34,210, Davutpasa, Esenler, İstanbul, Türkiye.
| |
Collapse
|
31
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
32
|
Memory and Executive Function Deficits in Abstinent Patients with Methamphetamine Use Disorder. Int J Ment Health Addict 2022. [DOI: 10.1007/s11469-022-00939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Highgate Q, Abadey AA, Schenk S. Repeated eticlopride administration increases dopamine D 2 receptor expression and restores behavioral flexibility disrupted by methamphetamine exposure to male rats. Behav Brain Res 2022; 435:114064. [PMID: 35987306 DOI: 10.1016/j.bbr.2022.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
Abstract
Repeated methamphetamine exposure impairs reversal learning in laboratory animals and downregulates dopamine D2 receptor expression. In the present study, we tested the possibility that repeated exposure to the dopamine D2 antagonist, eticlopride, would increase D2 receptor expression, improve behavioral flexibility and restore behavioral flexibility that was disrupted by exposure to methamphetamine in rats. Male Sprague-Dawley rats received repeated daily pretreatment with the dopamine D2 antagonist, eticlopride (0.0 or 0.3 mg/kg/day, 14 days). Three days after the last treatment, whole brain (minus olfactory bulbs and cerebellum) dopamine D2 receptor expression was measured using flow cytometry in one group and reversal learning performance was measured in another group. Reversal learning was also measured in other groups prior to and after methamphetamine exposure (0.0 or 2.0 mg/kg, 4 injections, 2 h apart, 1 day) followed by repeated eticlopride (0.0 or 0.3 mg/kg, 14 days) treatment. Eticlopride treatment increased D2 receptor expression and improved reversal learning performance. Methamphetamine impaired reversal learning performance and eticlopride treatment reversed the deficit. These results suggest that repeated administration of eticlopride can restore behavioral flexibility and that upregulation of D2 receptors might be an effective adjunct to treatment of methamphetamine misuse.
Collapse
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand; Department of Zoology, University of Otago, Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
34
|
Zhang C, Chen C, Zhao X, Lu J, Zhang M, Qiu H, Yue X, Wang H. New insight into methamphetamine-associated heart failure revealed by transcriptomic analyses: Circadian rhythm disorder. Toxicol Appl Pharmacol 2022; 451:116172. [PMID: 35863504 DOI: 10.1016/j.taap.2022.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Methamphetamine (METH) abuse is a significant public health concern globally. Cardiac toxicity is one of the important characteristics of METH, in addition to its effects on the nervous system. However, to date, research on the cardiotoxic injury induced by METH consumption has been insufficient. To systematically analyze the potential molecular mechanism of cardiac toxicity in METH-associated heart failure (HF), a rat model was constructed with a dose of 10 mg/kg of METH consumption. Cardiac function was evaluated by echocardiography, and HE staining was used to clarify the myocardial histopathological changes. Integrated analyses, including mRNA, miRNA and lncRNA, was performed to analyze the RNA expression profile and the potential molecular mechanisms involved in METH-associated HF. The results showed that METH caused decreased myocardial contractility, with a decreased percent ejection fraction (%EF). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the RNAs with expression changes revealed abnormal circadian rhythm regulation in the METH groups, with circadian rhythm-related genes and their downstream effectors expressed differentially, especially the aryl hydrocarbon receptor nuclear translocator-like (Arntl). Competing endogenous RNA (ceRNA) networks associated with circadian rhythm, including Arntl, was also observed. Therefore, this study revealed that long-term METH consumption was associated with the HF in a rat model by decreasing the %EF, and that the abnormal circadian rhythm could provide new directions for investigating the METH-associated HF, and that the differentially expressed genes in this model could provide candidate genes for the identification and assessment of cardiac toxicity in METH-associated HF, which is fundamental for further understanding of the disease.
Collapse
Affiliation(s)
- Cui Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xu Zhao
- The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hai Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China..
| |
Collapse
|
35
|
Zhou Y, Hu Y, Wang Q, Yang Z, Li J, Ma Y, Wu Q, Chen S, Yang D, Hao Y, Wang Y, Li M, Peng P, Liu T, Yang WFZ. Association between white matter microstructure and cognitive function in patients with methamphetamine use disorder. Hum Brain Mapp 2022; 44:304-314. [PMID: 35838008 PMCID: PMC9842920 DOI: 10.1002/hbm.26020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
Methamphetamine use disorder (MUD) has been associated with broad neurocognitive impairments. While the cognitive impairments of MUD have been demonstrated, the neuropathological underpinnings remain inadequately understood. To date, the published human diffusion tensor imaging (DTI) studies involving the correlation between diffusion parameters and neurocognitive function in MUD are limited. Hence, the present study aimed to examine the association between cognitive performance and white matter microstructure in patients with MUD. Forty-five patients with MUD and 43 healthy controls (HCs) completed their demographic information collection, cognitive assessments, and DTI imaging. DTI images were preprocessed to extract fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of various fiber tracts. Univariate tests were used to examine group differences in cognitive assessments and DTI metrics. Linear regression was used to examine the relationship between these two metrics. The results revealed that patients with MUD had lower subset scores of the MATRICS Consensus Cognitive Battery (MCCB), which reflects five cognitive domains: processing speed, attention, verbal learning, visual learning, problem-solving. Patients with MUD also had significantly higher AD, MD, and RD values of the left superior longitudinal fasciculus than HCs. Furthermore, the RD value of the left superior longitudinal fasciculus was a significant predictor of processing speed and problem-solving ability, as shown by the digit-symbol coding test and NAB-Mazes scores, respectively. Findings extended our understanding of white matter microstructure that is related to neurocognitive deficits in MUD and provided potential targets for the prevention and treatment of this chronic disorder.
Collapse
Affiliation(s)
- Yanan Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina,Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Yang Hu
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qianjin Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhi Yang
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinguang Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yuejiao Ma
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Qiuxia Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Shubao Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Dong Yang
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Yuzhu Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yunfei Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Manyun Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Pu Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Tieqiao Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatrythe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts & SciencesTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
36
|
Song F, Cao S, Liu Z, Su H, Chen Z. Different decorated ZIF-67 adsorption performance towards methamphetamine revealed by theoretical and experimental investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Shen B, Zhang D, Zeng X, Guan L, Yang G, Liu L, Huang J, Li Y, Hong S, Li L. Cannabidiol inhibits methamphetamine-induced dopamine release via modulation of the DRD1-MeCP2-BDNF-TrkB signaling pathway. Psychopharmacology (Berl) 2022; 239:1521-1537. [PMID: 34997862 DOI: 10.1007/s00213-021-06051-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Adaptive alteration of dopamine (DA) system in mesocorticolimbic circuits is an extremely intricate and dynamic process, which contributes to maintaining methamphetamine (METH)-related disorders. There are no approved pharmacotherapies for METH-related disorders. Cannabidiol (CBD), a major non-psychoactive constituent of cannabis, has received attention for its therapeutic potential in treating METH-related disorders. However, the major research obstacles of CBD are the yet to be clarified mechanisms behind its therapeutic potential. Recent evidence showed that DA system may be active target of CBD. CBD could be a promising dopaminergic medication for METH-related disorders. OBJECTIVES We investigated the role of the DA receptor D1 (DRD1)-methyl-CpG-binding protein 2 (MeCP2)-brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling pathway in DA release induced by METH. Investigating the intervention effects of CBD on the DRD1-MeCP2-BDNF-TrkB signaling pathway could help clarify the underlying mechanisms and therapeutic potential of CBD in METH-related disorders. RESULTS METH (400 μM) significantly increased DA release from primary neurons in vitro, which was blocked by CBD (1 μM) pretreatment. METH (400 μM) significantly increased the expression levels of DRD1, BDNF, and TrkB, but decreased the expression of MeCP2 in the neurons, whereas CBD (1 μM) pretreatment notably inhibited the protein changes induced by METH. In addition, DRD1 antagonist SCH23390 (10 μM) inhibited the DA release and protein change induced by METH in vitro. However, DRD1 agonist SKF81297 (10 μM) induced DA release and protein change in vitro, which was also blocked by CBD (1 μM) pretreatment. METH (2 mg/kg) significantly increased the DA level in the nucleus accumbens (NAc) of rats with activation of the DRD1-MeCP2-BDNF-TrkB signaling pathway, but these changes were blocked by CBD (40 or 80 mg/kg) pretreatment. CONCLUSIONS This study indicates that METH induces DA release via the DRD1-MeCP2-BDNF-TrkB signaling pathway. Furthermore, CBD significantly inhibits DA release induced by METH through modulation of this pathway.
Collapse
Affiliation(s)
- Baoyu Shen
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dongxian Zhang
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Lina Guan
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Genmeng Yang
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Liu Liu
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian Huang
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yuanyuan Li
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Shijun Hong
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Lihua Li
- School of Forensic Medicine, Key Laboratory of Drug Addiction Medicine of National Health Commission (NHC), Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
38
|
Daiwile AP, Sullivan P, Jayanthi S, Goldstein DS, Cadet JL. Sex-Specific Alterations in Dopamine Metabolism in the Brain after Methamphetamine Self-Administration. Int J Mol Sci 2022; 23:ijms23084353. [PMID: 35457170 PMCID: PMC9027322 DOI: 10.3390/ijms23084353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine (METH) use disorder affects both sexes, with sex differences occurring in behavioral, structural, and biochemical consequences. The molecular mechanisms underlying these differences are unclear. Herein, we used a rat model to identify potential sex differences in the effects of METH on brain dopaminergic systems. Rats were trained to self-administer METH for 20 days, and a cue-induced drug-seeking test was performed on withdrawal days 3 and 30. Dopamine and its metabolites were measured in the prefrontal cortex (PFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and hippocampus (HIP). Irrespective of conditions, in comparison to females, male rats showed increased 3,4-dihydroxyphenylalanine (DOPA) in the PFC, dSTR, and HIP; increased cys-dopamine in NAc; and increased 3,4-dihydroxyphenylethanol (DOPET) and 3,4-dihydroxyphenylacetic acid (DOPAC) in dSTR. Males also showed METH-associated decreases in DA levels in the HIP but increases in the NAc. Female rats showed METH-associated decreases in DA, DOPAL, and DOPAC levels in the PFC but increases in DOPET and DOPAC levels in the HIP. Both sexes showed METH-associated decreases in NAc DA metabolites. Together, these data document sex differences in METH SA-induced changes in DA metabolism. These observations provide further support for using sex as an essential variable when discussing therapeutic approaches against METH use disorder in humans.
Collapse
Affiliation(s)
- Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, National Institutes of Health (NIH), Baltimore, MD 21224, USA; (A.P.D.); (S.J.)
| | - Patricia Sullivan
- Autonomic Medicine Section, NINDS Intramural Research Program, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (P.S.); (D.S.G.)
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, National Institutes of Health (NIH), Baltimore, MD 21224, USA; (A.P.D.); (S.J.)
| | - David S. Goldstein
- Autonomic Medicine Section, NINDS Intramural Research Program, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (P.S.); (D.S.G.)
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, National Institutes of Health (NIH), Baltimore, MD 21224, USA; (A.P.D.); (S.J.)
- Correspondence: ; Tel.: +1-443-740-2656
| |
Collapse
|
39
|
Fei X, Dou YN, Lv W, Ding B, Wei J, Wu X, He X, Fei Z, Fei F. TLR4 deletion improves cognitive brain function and structure in aged mice. Neuroscience 2022; 492:1-17. [DOI: 10.1016/j.neuroscience.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
|