1
|
Qing L, Qian X, Zhu H, Wang J, Sun J, Jin Z, Tang X, Zhao Y, Wang G, Zhao J, Chen W, Tian P. Maternal-infant probiotic transmission mitigates early-life stress-induced autism in mice. Gut Microbes 2025; 17:2456584. [PMID: 39931863 PMCID: PMC11817528 DOI: 10.1080/19490976.2025.2456584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
Autism, a disorder influenced by both genetic and environmental factors, presents significant challenges for prevention and treatment. While maternal-infant gut microbiota has been a focus in autism research, preventive strategies targeting maternal gut microbiota remain underexplored. This study demonstrates that prenatal probiotic intake can effectively prevent maternal separation-induced autistic-like behaviors in offspring without altering the embryonic neurodevelopment in mice. Using specific PCR primers and cross-fostering experiments, we traced the vertical transmission of probiotics, primarily via fecal/vaginal contamination. Early probiotic colonization conferred resilience against stress-induced gut pathogenic microbes and Th17-mediated peripheral inflammation while significantly inhibiting hypermyelination and neuroinflammation linked to systemic inflammation. Microbial metabolites like tyrosol and xanthurenic acid alleviated neuroinflammation and hypermyelination in vitro, though the causal relationship among neuroinflammation, hypermyelination, and autism in vivo requires further validation. These findings underscore the importance of the maternal-infant microbiota transmission window in autism prevention and highlight the clinical potential of prenatal probiotic interventions.
Collapse
Affiliation(s)
- Li Qing
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jingyu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jingge Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhiying Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xinyu Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Yingqi Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
2
|
Davis LK, Ince LM, Gullapalli S, Fonken LK. Neuroimmune and behavioral changes elicited by maternal immune activation in mice are ameliorated by early postnatal immune stimulation. Brain Behav Immun 2025; 127:375-386. [PMID: 40081778 DOI: 10.1016/j.bbi.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Though the etiology of autism spectrum disorder (ASD) is complex and not fully understood, it is believed that genetic risk factors, coupled with early life inflammation may predispose individuals to develop ASD. Maternal immune activation (MIA) is associated with increased incidence of ASD in offspring; however, not all mothers who experience inflammation during pregnancy have children with autism, suggesting that MIA may act as a disease primer that results in ASD pathology when paired with additional inflammatory insults. Here, we tested the hypothesis that MIA is a disease primer by using a two-hit model that combined MIA with a secondary immune stimulation in early life. C57BL/6J mouse dams were treated with polyinosinic-polycytidylic acid (Poly(I:C)) at embyronic day 12.5, and a subset of litters were then treated with the endotoxin lipopolysaccharide (LPS) four days after birth. Offspring were assessed in young adulthood for changes in behavior including sociability, repetitive-like behaviors, and anxiety-like behaviors. Flow cytometry was performed in adulthood to assess changes in immune cell populations in the periphery and in the brain. MIA increased repetitive-like behaviors in male mice and decreased sociability in both sexes. Unexpectedly, the secondary immune stimulation with LPS did not exacerbate changes in social and repetitive-like behaviors in either sex. MIA also altered distribution of cytotoxic CD8 + T cell populations in the periphery and brain of both sexes: CD8 + T cells were elevated in thymus but reduced in spleen, lymph, and brain. Additionally, MIA altered microglia activity in a region-specific manner in male mice, which was also not exacerbated but rather ameliorated when combined with LPS. Our results demonstrate that changes in repetitive-like and social behaviors that are induced by MIA in male mice are not exacerbated by subsequent inflammatory challenge and highlights the importance of considering the timing of stressors in the appearance of developmental pathology.
Collapse
Affiliation(s)
- Lourdes K Davis
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Neuroscience Program, University of Texas at Austin, Austin, TX 78712, USA.
| | - Louise M Ince
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Sriya Gullapalli
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura K Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Neuroscience Program, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
McEwan F, Kambara C, Lorusso JM, Harte MK, Glazier JD, Hager R. Association between redox dysregulation and vulnerability to cognitive deficits induced by maternal immune activation. Transl Psychiatry 2025; 15:184. [PMID: 40419496 DOI: 10.1038/s41398-025-03398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Exposure to maternal immune activation (MIA) in utero is a major risk factor for neurodevelopmental disorders, including schizophrenia. However, a proportion of individuals are resilient to developing schizophrenia following exposure to MIA, which has also been reported in animal models of MIA. The molecular mechanisms leading to resilient and vulnerable behavioural phenotypes remain poorly understood, and we currently lack reliable blood biomarkers that predict resilience or vulnerability. Redox dysregulation, caused by an imbalance between oxidative stress and antioxidant defence mechanisms, has recently been predicted to be central to the pathogenesis of schizophrenia. Here, we use a poly(I:C)-induced MIA model of schizophrenia to investigate mechanisms underlying cognitive dysfunction and redox dysregulation in resilient and vulnerable individuals. We show that activity of the antioxidant enzyme superoxide dismutase (SOD) was reduced in the plasma of poly(I:C) offspring with a cognitive deficit, in contrast to individuals with typical cognition during both adolescence and adulthood. However, SOD activity in the hippocampus was not significantly different between vulnerable and resilient offspring. In addition, the lipid peroxidation marker malondialdehyde (MDA) and the pro-inflammatory cytokine IL-6 were not differentially expressed within the hippocampus or plasma of vulnerable poly(I:C) offspring. Our results suggest that reduced plasma SOD activity may be a potential blood biomarker to identify resilience or vulnerability to MIA-induced cognitive deficits. Further research is necessary to determine if reduced antioxidant capacity is present in plasma prior to symptom presentation and to understand if this predicts redox dysregulation in the brain.
Collapse
Affiliation(s)
- Francesca McEwan
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom.
| | - Chiho Kambara
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jarred M Lorusso
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
- School of Humanities and Social Science, University of Brighton, Brighton, BN2 4AT, United Kingdom
| | - Michael K Harte
- Division of Pharmacy & Optometry, School of Health Sciences, Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jocelyn D Glazier
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Reinmar Hager
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
4
|
Zha X, Liu XY, Wang L, Li SS, Sun YZ, Lin JK, Yan JJ, Gao MT, Zhang YL, Yang RR, Xu C, Xu XH. Estrogen signaling in the ventromedial hypothalamus is required for the development of aggression circuitry in male mice. Curr Biol 2025:S0960-9822(25)00573-1. [PMID: 40403719 DOI: 10.1016/j.cub.2025.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/24/2025]
Abstract
Aggression in male mice depends on developmental estrogen exposure, yet the neural mechanisms underlying this phenomenon remain poorly understood. Although estrogen receptor α (Esr1) has served as a genetic marker to identify aggression-regulating neurons in the ventrolateral division of ventromedial hypothalamus (VMHvl), its functional role in organizing male-aggression circuits remains poorly understood. Here, we developed a genetic strategy to knock out Esr1 in VMHvl neurons while simultaneous tracing and manipulating Esr1-deleted cells. Developmental Esr1 knockout selectively altered synaptic inputs from aggression-regulating regions onto VMHvl neurons, with a stronger effect observed in males, revealing the posterior intralaminar thalamic nucleus (PIL) as a critical upstream region involved in male aggression. Additionally, VMHvl Esr1+ neurons in knockout males showed reduced excitability and failed to initiate attacks upon chemogenetic activation. These findings underscore the essential role of Esr1 in establishing male-specific aggression circuits, providing new insights into male-specific neural circuit development and function.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiao-Yao Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Peking University, Tsinghua University, National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing 100871, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Zhuo Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Jing Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng-Tong Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Li Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong-Rong Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Zhang L, Guan X, Xue H, Liu X, Zhang B, Liu S, Ming D. Sex-specific patterns in social visual attention among individuals with autistic traits. BMC Psychiatry 2025; 25:440. [PMID: 40307763 PMCID: PMC12042429 DOI: 10.1186/s12888-025-06896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Autism is a neurodevelopmental condition more prevalent in males, with sex differences emerging in both prevalence and core symptoms. However, most studies investigating behavioral and cognitive features of autism tend to include more male samples, leading to a male-biased understanding. The sex imbalance limits the specificity of these features, especially in female individuals with autism. Hence, it is necessary to explore sex-related differences in behavioral-cognitive traits linked to autism in the general population. METHODS In this study, we designed a dynamic emotion-discrimination task to investigate sex differences in attention to emotional stimuli among the general population with autistic traits. Behavioral and eye movement data were recorded during the task, and the Autism-Spectrum Quotient (AQ) was used to assess autistic traits. Qualitative and quantitative methods were used to analyze gaze patterns in male and female groups. Additionally, correlation analyses were conducted to examine the relationship between AQ scores and proportion of fixation time in both groups. RESULTS Significant sex differences in attention to the eye regions of faces were observed, with females focusing more on the eyes than males. Correlation analyses revealed that, in males, lower eye-looking was associated with higher levels of autistic traits, whereas no such association was found in females. CONCLUSIONS Overall, these results reveal that attention patterns to emotional faces differed between females and males, and autistic traits predicted the trend of eye-looking in males. These findings suggest that sex-related stratification in social attention should be considered in clinical contexts.
Collapse
Affiliation(s)
- Ludan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Xin Guan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Huiqin Xue
- Precision Medicine Laboratory, Children's Hospital, Tianjin University, Tianjin, China
| | - Xiaoya Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Bo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
6
|
Kulyabin M, Zhdanov A, Lee IO, Skuse DH, Thompson DA, Maier A, Constable PA. Synthetic electroretinogram signal generation using a conditional generative adversarial network. Doc Ophthalmol 2025:10.1007/s10633-025-10019-0. [PMID: 40240677 DOI: 10.1007/s10633-025-10019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE The electroretinogram (ERG) records the functional response of the retina. In some neurological conditions, the ERG waveform may be altered and could support biomarker discovery. In heterogeneous or rare populations, where either large data sets or the availability of data may be a challenge, synthetic signals with Artificial Intelligence (AI) may help to mitigate against these factors to support classification models. METHODS This approach was tested using a publicly available dataset of real ERGs, n = 560 (ASD) and n = 498 (Control) recorded at 9 different flash strengths from n = 18 ASD (mean age 12.2 ± 2.7 years) and n = 31 Controls (mean age 11.8 ± 3.3 years) that were augmented with synthetic waveforms, generated through a Conditional Generative Adversarial Network. Two deep learning models were used to classify the groups using either the real only or combined real and synthetic ERGs. One was a Time Series Transformer (with waveforms in their original form) and the second was a Visual Transformer model utilizing images of the wavelets derived from a Continuous Wavelet Transform of the ERGs. Model performance at classifying the groups was evaluated with Balanced Accuracy (BA) as the main outcome measure. RESULTS The BA improved from 0.756 to 0.879 when synthetic ERGs were included across all recordings for the training of the Time Series Transformer. This model also achieved the best performance with a BA of 0.89 using real and synthetic waveforms from a single flash strength of 0.95 log cd s m-2. CONCLUSIONS The improved performance of the deep learning models with synthetic waveforms supports the application of AI to improve group classification with ERG recordings.
Collapse
Affiliation(s)
- Mikhail Kulyabin
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Irene O Lee
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David H Skuse
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dorothy A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic, Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul A Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, 5000, Australia.
| |
Collapse
|
7
|
Mamali PM, Dignon C, Ngwenya A, Maseko BC. Sex-Specific Behavioral Features of the Prenatal Valproic Acid Rat Model of Autism Spectrum Disorder. Brain Sci 2025; 15:388. [PMID: 40309826 PMCID: PMC12025559 DOI: 10.3390/brainsci15040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: Autism is a complex neurodevelopmental disorder characterized by restricted behaviors and impaired social and communication skills. The exact cause of autism remains unknown. One promising animal model for studying autism is the valproic acid rat model. Due to a 1 to 4 bias for males in autism occurrence, most animal model studies investigate only males and neglect females. However, female autism often appears different from that observed in males. Females are said to be less regularly diagnosed because they can "mask" their symptoms. Female autism is as necessary to investigate as male autism. Methods: Fertile adult female Sprague-Dawley rats were impregnated and injected with valproic acid on gestational day 13. Male and female offspring were subjected to behavioral tests to investigate autistic symptoms. Tests included novel object recognition, balance-beam, Y-maze, hole-board, three-chamber, marble burying, olfactory, light/dark and hot plate tests. Results: The tests revealed that VPA-exposed rats had increased anxiety-like behaviors, hyperactivity, and impaired non-verbal communication. However, they did not display repetitive behaviors or cognitive impairments. Notably, male and female rats showed different autism-like traits, with both showing hyperactivity, and males (but not females) additionally showing impaired sociability and increased anxiety. Conclusions: The findings suggest that prenatal exposure to VPA induces autism-like behaviors in both male and female Sprague-Dawley rat offspring. However, males appear more impacted by VPA exposure as evinced by their display of more autism-like symptoms relative to females. This study provides support for including both sexes in all studies modelling autism, as outcomes are seemingly impacted by the sex being observed.
Collapse
Affiliation(s)
| | | | | | - Busisiwe Constance Maseko
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa; (P.M.M.); (C.D.); (A.N.)
| |
Collapse
|
8
|
Leng Y, Wu N, Wang J, Geng L, Yue Y, Zhang Q. Astaxanthin Mitigates ADHD Symptoms in Spontaneously Hypertensive Rats via Dopaminergic Modulation and Brain-Gut Axis Regulation. Molecules 2025; 30:1637. [PMID: 40286220 PMCID: PMC11990597 DOI: 10.3390/molecules30071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder that significantly impacts learning, daily functioning, and personal development. Astaxanthin (ASTA), a naturally occurring antioxidant, has garnered interest as a potential therapeutic agent for various diseases, particularly in mitigating oxidative stress. This study explores a novel application of ASTA in the context of ADHD, aiming to investigate its therapeutic effects and underlying mechanisms. Spontaneously hypertensive rats (SHRs), widely used ADHD model animals, were treated with ASTA (50/100 mg/kg/day) for three weeks, 5 mg/kg/day atomoxetine (ATO) as the positive, and Wistar Kyoto (WKY) rats as control. Behavioral improvements were assessed using the open field test (OFT) and the Morris water maze (MWM). Biochemical analyses were conducted to evaluate changes in the levels of various neurotrophic factors, while histological examinations were performed to assess neuroprotective effects. Additionally, the role of ASTA in the brain-gut axis was investigated. The behavioral symptoms of hyperactivity, anxiety, and impaired spatial memory in ADHD animals were mitigated by ASTA. This improvement is primarily attributed to the restoration of neurotransmitter levels, particularly dopamine (DA), achieved through the modulation of several critical components within the dopamine system, including dopamine receptor 1 (DR1), dopamine transporter (DAT), tyrosine hydroxylase (TH), and synaptic-associated protein 25 (SNAP-25). Additionally, regulating the serotonin transporter (SERT) and glial cell-derived neurotrophic factor (GDNF) supports the recovery of serotonin levels and facilitates optimal brain development. Furthermore, cerebellar cells were protected, and the structure of the intestinal microbiota was regulated. ASTA can mitigate ADHD symptoms in SHR through the modulation of the dopaminergic system, multiple neurotransmitters, neurotrophic factors, and the neuro-intestinal environment, which establishes ASTA as a promising nutraceutical candidate for adjunctive therapy in pediatric ADHD.
Collapse
Affiliation(s)
- Yueyang Leng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (N.W.); (J.W.); (L.G.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (N.W.); (J.W.); (L.G.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (N.W.); (J.W.); (L.G.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (N.W.); (J.W.); (L.G.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (N.W.); (J.W.); (L.G.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (N.W.); (J.W.); (L.G.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
9
|
Timkova V, Mikula P, Katreniakova Z, Howick J, Nagyova I. Assessing healthcare needs in endometriosis: a scoping review. Psychol Health 2025:1-39. [PMID: 40108880 DOI: 10.1080/08870446.2025.2478154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Women with endometriosis still have to seek the legitimacy of their disease from the medical community and often feel unheard. This scoping review aims to map the scientific literature to describe barriers and facilitators in the endometriosis management from both patients' and healthcare professionals' (HCPs') perspectives. METHODS AND MEASURES We searched the literature published between 2012 and 2023 in the Web of Science, PsychInfo, PubMed, CINAHL, Embase, and Cochrane Library databases. A total of 52 eligible studies were identified. RESULTS We observed several barriers in the endometriosis management: the perception of patients as challenging and psychosomatic; lack of awareness and medical knowledge; persistent taboos and biases; challenging communication about pain, pregnancy, and infertility; lack of empathy from HCPs; and barriers in diagnostic tools and healthcare accessibility. Key facilitators were HCPs and community awareness; taking patients' symptoms seriously; compassionate communication about fertility and pain; shared decision-making, encouraging patients to seek evidence-based information; and multidisciplinary support. CONCLUSION We were able to identify concrete barriers and facilitators to successful endometriosis management. Future research is now required to identify optimal ways to implement this evidence, and research the extent to which it applies to more diverse populations in non-Western setting, and to explore the impact of HCP demographic characteristics.
Collapse
Affiliation(s)
- Vladimira Timkova
- Department of Social and Behavioural Medicine, Faculty of Medicine, PJ Safarik University in Kosice, Kosice, Slovakia
| | - Pavol Mikula
- Department of Social and Behavioural Medicine, Faculty of Medicine, PJ Safarik University in Kosice, Kosice, Slovakia
| | - Zuzana Katreniakova
- Department of Social and Behavioural Medicine, Faculty of Medicine, PJ Safarik University in Kosice, Kosice, Slovakia
| | - Jeremy Howick
- The Stoneygate Centre for Empathic Healthcare, Leicester Medical School, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Iveta Nagyova
- Department of Social and Behavioural Medicine, Faculty of Medicine, PJ Safarik University in Kosice, Kosice, Slovakia
| |
Collapse
|
10
|
Zhou R, Zhang T, Sun B. Single-Cell Transcriptional Profiling Reveals Cell Type-Specific Sex-Dependent Molecular Patterns of Schizophrenia. Int J Mol Sci 2025; 26:2227. [PMID: 40076849 PMCID: PMC11900070 DOI: 10.3390/ijms26052227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Schizophrenia (SCZ) is a debilitating psychiatric disorder marked by alterations in cognition and social behavior, resulting in profound impacts on individuals and society. Although sex-dependent disparities in the epidemiology of SCZ are well established, the biological molecular basis of these disparities remains poorly understood. Investigating cell type-specific transcriptomic profiles is critical for identifying regulatory components underlying sex-dependent molecular dysregulation in SCZ, which could serve as targets for sex-specific therapeutic interventions. To address this, we systematically analyzed publicly available single-nucleus RNA sequencing datasets to characterize cell type-specific sex-dependent gene expression profiles in the prefrontal cortex of SCZ cases. Functional enrichment analyses revealed sex-dependent dysregulation patterns of SCZ at the pathway level. Furthermore, we constructed cell type-specific gene regulatory networks for males and females, identifying SCZ-associated transcription factors that interact with sex hormones and their receptors. By incorporating drug screening results from the Connectivity Map, we established disease-gene-drug connections, elucidating sex-dependent molecular mechanisms of SCZ from the single-gene to the regulatory network level. Our findings delineate the molecular patterns of sex-dependent disparities in SCZ, uncover regulatory mechanisms driving SCZ-associated sex-dependent dysregulation, and illustrate the signal flow through which the biological sex influences downstream cellular pathways in SCZ cases. Our study provides significant evidence supporting the neuroprotective role of estrogen in the pathophysiology of female SCZ cases, while also establishing a robust foundation for the development of sex-specific therapeutic approaches for both sexes.
Collapse
Affiliation(s)
| | | | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Cortese S, Bellato A, Gabellone A, Marzulli L, Matera E, Parlatini V, Petruzzelli MG, Persico AM, Delorme R, Fusar-Poli P, Gosling CJ, Solmi M, Margari L. Latest clinical frontiers related to autism diagnostic strategies. Cell Rep Med 2025; 6:101916. [PMID: 39879991 PMCID: PMC11866554 DOI: 10.1016/j.xcrm.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
The diagnosis of autism is currently based on the developmental history, direct observation of behavior, and reported symptoms, supplemented by rating scales/interviews/structured observational evaluations-which is influenced by the clinician's knowledge and experience-with no established diagnostic biomarkers. A growing body of research has been conducted over the past decades to improve diagnostic accuracy. Here, we provide an overview of the current diagnostic assessment process as well as of recent and ongoing developments to support diagnosis in terms of genetic evaluation, telemedicine, digital technologies, use of machine learning/artificial intelligence, and research on candidate diagnostic biomarkers. Genetic testing can meaningfully contribute to the assessment process, but caution is required when interpreting negative results, and more work is needed to strengthen the transferability of genetic information into clinical practice. Digital diagnostic and machine-learning-based analyses are emerging as promising approaches, but larger and more robust studies are needed. To date, there are no available diagnostic biomarkers. Moving forward, international collaborations may help develop multimodal datasets to identify biomarkers, ensure reproducibility, and support clinical translation.
Collapse
Affiliation(s)
- Samuele Cortese
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Hampshire and Isle of Wight NHS Foundation Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy.
| | - Alessio Bellato
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK; Mind and Neurodevelopment (MiND) Interdisciplinary Cluster, University of Nottingham, Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Alessandra Gabellone
- DIBRAIN - Department of Biomedicine Translational and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Marzulli
- DIBRAIN - Department of Biomedicine Translational and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Emilia Matera
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| | - Valeria Parlatini
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Hampshire and Isle of Wight NHS Foundation Trust, Southampton, UK
| | | | - Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, & Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy
| | - Richard Delorme
- Child and Adolescent Psychiatry Department & Child Brain Institute, Robert Debré Hospital, Paris Cité University, Paris, France
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Outreach and Support in South-London (OASIS) Service, South London and Maudlsey (SLaM) NHS Foundation Trust, London, UK; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Corentin J Gosling
- Developmental EPI (Evidence synthesis, Prediction, Implementation) Lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Child and Adolescent Psychiatry Department & Child Brain Institute, Robert Debré Hospital, Paris Cité University, Paris, France; Université Paris Nanterre, Laboratoire DysCo, Nanterre, France; Université de Paris Cite', Laboratoire de Psychopathologie et Processus de Santé, Boulogne-Billancourt, France
| | - Marco Solmi
- SCIENCES Lab, Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada; Regional Centre for the Treatment of Eating Disorders and On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, ON, Canada; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Lucia Margari
- DiMePRe-J-Department of Precision and Rigenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
Mukaetova-Ladinska EB, Paddick SM. Editorial: Women in psychiatry 2023: aging psychiatry. Front Psychiatry 2025; 16:1556398. [PMID: 39995951 PMCID: PMC11848718 DOI: 10.3389/fpsyt.2025.1556398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Affiliation(s)
- Elizabeta B. Mukaetova-Ladinska
- Department of Psychology and Visual Sciences, University of Leicester, Leicester, United Kingdom
- The Evington Centre, Leicester General Hospital Site, Leicester, United Kingdom
| | - Stella-Maria Paddick
- Translational and Clinical Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Old Age Psychiatry, Gateshead Health National Health Service (NHS) Foundation Trust, Gateshead, United Kingdom
| |
Collapse
|
13
|
Meyer U, Penner IK. Endogenous retroviruses in neurodevelopmental, psychotic and cognitive disorders. Microbes Infect 2025:105479. [PMID: 39914656 DOI: 10.1016/j.micinf.2025.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Endogenous retroviruses (ERVs) are inherited retroviral genomic elements that integrated into the mammalian genome through germline infections and insertions during evolution. Human ERVs (HERVs) comprise approximately 8 % of the human genome and are increasingly recognized to be involved in the etiology and pathophysiology of numerous brain disorders. In this narrative review, we summarize the existing evidence linking abnormal HERV expression to neurodevelopmental and psychosis-related disorders and discuss how these retroviral elements may contribute to the heterogeneity in clinical outcomes. We also review the findings suggesting that aberrant HERV expression contribute to late-onset cognitive disorders with neurodegenerative components, such as Alzheimer's disease (AD) and other forms of dementia. The evidence implicating abnormal HERV expression in neurodevelopmental, psychotic, and cognitive disorders is manifold and stems from diverse research fields, including human post-mortem brain studies, serological investigations, gene expression analyses, and clinical trials with HERV-specific pharmacological compounds. The recent establishment and use of animal models offer a complementary experimental platform that will help establish causal relationships and identify specific disease pathways affected by abnormal HERV expression. Yet, significant gaps persist in understanding the role of HERVs in neurodevelopmental, psychotic, and cognitive disorders, particularly concerning the specificity and stability of abnormal HERV expression in these conditions. Addressing these questions appears crucial for optimizing the potential benefits of therapeutic interventions aimed at targeting abnormal HERV expression across the broad spectrum of HERV-associated disorders of the central nervous system.
Collapse
Affiliation(s)
- Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Iris Katharina Penner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
14
|
Randell AM, Salia S, Fowler LF, Aung T, Puts DA, Swift-Gallant A. A meta-analysis of sex differences in neonatal rodent ultrasonic vocalizations and the implication for the preclinical maternal immune activation model. Biol Sex Differ 2025; 16:4. [PMID: 39863873 PMCID: PMC11762899 DOI: 10.1186/s13293-025-00685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As the earliest measure of social communication in rodents, ultrasonic vocalizations (USVs) in response to maternal separation are critical in preclinical research on neurodevelopmental disorders (NDDs). While sex differences in both USV production and behavioral outcomes are reported, many studies overlook sex as a biological variable in preclinical NDD models. We aimed to evaluate sex differences in USV call parameters and determine if USVs are differently impacted based on sex in the preclinical maternal immune activation (MIA) model. Results indicate that sex differences in USVs vary with developmental stage and are more pronounced in MIA offspring. Specifically, developmental stage is a moderator of sex differences in USV call duration, with control females emitting longer calls than males in early development (up to postnatal day [PND] 8), but this pattern reverses after PND8. MIA leads to a reduction in call numbers for females compared to same-sex controls in early development, with a reversal post-PND8. MIA decreased call duration and increased total call duration in males, but unlike females, developmental stage did not influence these differences. In males, MIA effects varied by species, with decreased call numbers in rats but increased call numbers in mice. MIA timing (gestational day ≤ 12.5 vs. > 12.5) did not significantly affect results. Our findings highlight the importance of considering sex, developmental timing, and species in USVs research. We discuss how analyzing USV call types and incorporating sex as a biological variable can enhance our understanding of neonatal ultrasonic communication and its translational value in NDD research.
Collapse
Affiliation(s)
- Alison M Randell
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Stephanie Salia
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Lucas F Fowler
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Toe Aung
- Department of Psychology and Counseling, Immaculata University, Immaculata, PA, USA
| | - David A Puts
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Ashlyn Swift-Gallant
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| |
Collapse
|
15
|
Su J, Gupta R, Van Hoof S, Kreye J, Prüss H, Spielman B, Brimberg L, Volpe BT, Huerta PT, Diamond B. Heterogeneity of anti-Caspr2 antibodies: specificity and pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633238. [PMID: 39896527 PMCID: PMC11785012 DOI: 10.1101/2025.01.16.633238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Maternal anti-Caspr2 (Contactin-associated protein-like 2) antibodies have been associated with increased risk for autism spectrum disorder (ASD). Previous studies have shown that in utero exposure to anti-Caspr2 antibodies results in a phenotype with ASD-like features in male mice. Here we ask whether four newly generated antibodies against Caspr2 are pathogenic to the developing fetal brain and whether they function through similar means. Our results show that the novel anti-Caspr2 antibodies recognize different epitopes of Caspr2. In utero exposure to these antibodies elicits differential ASD-like phenotypes in male offspring, tested in the social interaction, open field, and light-dark tasks. These results demonstrate variability in the antigenic specificity and pathogenicity of anti-Caspr2 antibodies which may have clinical implications.
Collapse
|
16
|
Quiñones-Labernik P, Blocklinger KL, Bruce MR, Ferri SL. Excess neonatal testosterone causes male-specific social and fear memory deficits in wild-type mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.562939. [PMID: 37905064 PMCID: PMC10614869 DOI: 10.1101/2023.10.18.562939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neurodevelopmental disorders disproportionately affect males compared to females. The biological mechanisms of this male susceptibility or female protection have not been identified. There is evidence that fetal/neonatal gonadal hormones, which play a pivotal role in many aspects of development, may contribute. Here, we investigate the effects of excess testosterone during a critical period of sex-specific brain organization on social approach and fear learning behaviors in C57BL/6J wild-type mice. Male, but not female, mice treated with testosterone on the day of birth (PN0) exhibited decreased social approach as juveniles and decreased contextual fear memory as adults, compared to vehicle-treated controls. These deficits were not driven by anxiety-like behavior or changes in locomotion or body weight. Mice treated with the same dose of testosterone on postnatal day 18 (PN18), which is outside of the critical period of brain masculinization, did not demonstrate impairments compared to the vehicle group. These findings indicate that excess testosterone during a critical period of early development, but not shortly after, induces long-term deficits relevant to the male sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Sarah L Ferri
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Pais ML, Castelo-Branco M, Gonçalves J. Brain-related sexual dimorphism in tuberous sclerosis complex: an overlooked matter. Trends Mol Med 2025:S1471-4914(25)00002-4. [PMID: 39843289 DOI: 10.1016/j.molmed.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Biological sex strongly impacts tuberous sclerosis complex (TSC) symptoms like epilepsy and autism. However, the mechanisms driving this influence remain largely unknown. Here, we discuss how sex-specific changes in brain synapses and neural networks may drive these differences, offering insights that could be crucial for developing targeted therapies for TSC.
Collapse
Affiliation(s)
- Mariana Lapo Pais
- University of Coimbra, Faculty of Sciences and Technology, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal; University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal; University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal; University of Coimbra, Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
| | - Joana Gonçalves
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal; University of Coimbra, Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal; University of Coimbra, Institute of Physiology, Faculty of Medicine, Coimbra, Portugal.
| |
Collapse
|
18
|
Amini-Khoei H, Taei N, Dehkordi HT, Lorigooini Z, Bijad E, Farahzad A, Madiseh MR. Therapeutic Potential of Ocimum basilicum L. Extract in Alleviating Autistic-Like Behaviors Induced by Maternal Separation Stress in Mice: Role of Neuroinflammation and Oxidative Stress. Phytother Res 2025; 39:64-76. [PMID: 39496541 DOI: 10.1002/ptr.8360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
A confluence of genetic, environmental, and epigenetic factors shapes autism spectrum disorder (ASD). Early-life stressors like MS play a contributing role in this multifaceted neurodevelopmental disorder. This research was to explore the efficacy of Ocimum basilicum L. (O.B.) extract in mitigating behaviors reminiscent of autism prompted by maternal separation (MS) stress in male mice, focusing on its impact on neuroinflammation and oxidative stress. MS mice were treated with O.B. extract at varying dosages (20, 40, and 60 mg/kg) from postnatal days (PND) 51-53 to PND 58-60. Behavioral experiments, including the Morris water maze, three-chamber test, shuttle box, and resident-intruder test, were conducted post-treatment. The method of maternal separation involved separating the pups from their mothers for 3 h daily, from PND 2 to PND 14. Molecular analysis of hippocampal tissue was performed to assess gene expression of Toll-like receptor 4 (TLR4), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Hippocampal and serum malondialdehyde (MDA) levels and total antioxidant capacity (TAC) were measured. O.B. extract administration resulted in the amelioration of autistic-like behaviors in MS mice, as evidenced by improved spatial and passive avoidance memories and social interactions, as well as reduced aggression in behavioral tests. O.B. extract attenuated oxidative stress and neuroinflammation, as indicated by decreased MDA and increased TAC levels, as well as downregulation of TLR4, TNF-α, and IL-1β expression in the hippocampus. O.B. extract may offer a novel therapeutic avenue for ASD, potentially mediated through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nafiseh Taei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
19
|
Constable PA, Pinzon-Arenas JO, Mercado Diaz LR, Lee IO, Marmolejo-Ramos F, Loh L, Zhdanov A, Kulyabin M, Brabec M, Skuse DH, Thompson DA, Posada-Quintero H. Spectral Analysis of Light-Adapted Electroretinograms in Neurodevelopmental Disorders: Classification with Machine Learning. Bioengineering (Basel) 2024; 12:15. [PMID: 39851292 PMCID: PMC11761560 DOI: 10.3390/bioengineering12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Electroretinograms (ERGs) show differences between typically developing populations and those with a diagnosis of autism spectrum disorder (ASD) or attention deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores the use of machine learning and feature selection techniques to improve the classification between these clinically defined groups. Standard time domain and signal analysis features were evaluated in different machine learning models. For ASD classification, a balanced accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was achieved for female participants. When a three-group model (ASD, ADHD, and control) the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD, ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing a broad two-group classification of ASD or ADHD, but the model's performance depends upon sex and is limited when multiple classes are included in machine learning modeling.
Collapse
Affiliation(s)
- Paul A. Constable
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia;
| | - Javier O. Pinzon-Arenas
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; (J.O.P.-A.); (L.R.M.D.); (H.P.-Q.)
| | - Luis Roberto Mercado Diaz
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; (J.O.P.-A.); (L.R.M.D.); (H.P.-Q.)
| | - Irene O. Lee
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (I.O.L.); (D.H.S.)
| | | | - Lynne Loh
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia;
| | - Aleksei Zhdanov
- “VisioMed.AI”, Golovinskoe Highway, 8/2A, 125212 Moscow, Russia;
| | - Mikhail Kulyabin
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany;
| | - Marek Brabec
- Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou Vezi 2, 182 00 Prague, Czech Republic;
- National Institute of Public Health, Srobarova 48, 100 00 Prague, Czech Republic
| | - David H. Skuse
- Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (I.O.L.); (D.H.S.)
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3BH, UK;
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Hugo Posada-Quintero
- Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; (J.O.P.-A.); (L.R.M.D.); (H.P.-Q.)
| |
Collapse
|
20
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
21
|
Resch A, Moosavi J, Sokolov AN, Steinwand P, Wagner E, Fallgatter AJ, Pavlova MA. Inferring social signals from the eyes in male schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:107. [PMID: 39543186 PMCID: PMC11564648 DOI: 10.1038/s41537-024-00527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Nonverbal communication habitually leaks out in ways that expose underlying thoughts, true feelings, and integrity of a counterpart. Social cognition is deficient in a wide range of mental disorders, including schizophrenia (SZ). Inferring social signals through the eyes is pivotal for social interaction but remains poorly investigated. The present work aims to fill this gap by examining whether and, if so, how reading language of the eyes is altered in SZ. We focused on male SZ, primarily because the disorder manifests a gender-specific profile. Patients and matched typically developing (TD) individuals were administered the Reading the Mind in the Eyes Test-Modified (RMET-M) and Emotions in Masked Faces (EMF) task that provide comparable visual information. The findings indicate that in SZ, the emotion recognition profile is similar to TD, with a more accurate recognition of some emotions such as fear, neutral expressions, and happiness than the others (sadness and disgust). In SZ, however, this profile is shifted down: all emotions are recognized less accurately than in TD. On the RMET-M, patients are also less precise, albeit they perform better on items with positive valence. In SZ only, recognition accuracy on both tasks is tightly linked to each other. The outcome reveals global challenges for males with SZ in inferring social information in the eyes and calls for remediation programs to shape social cognition. This work offers novel insights into the profiles of social cognitive deficits in mental disorders that differ in their gender prevalence.
Collapse
Affiliation(s)
- Annika Resch
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonas Moosavi
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Patrick Steinwand
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Erika Wagner
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024; 111:2309-2346. [PMID: 39332410 PMCID: PMC11568765 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
23
|
Li H, Ke X, Huang D, Xu X, Tian H, Gao J, Jiang C, Song W. The prevalence of developmental coordination disorder in children: a systematic review and meta-analysis. Front Pediatr 2024; 12:1387406. [PMID: 39391054 PMCID: PMC11464289 DOI: 10.3389/fped.2024.1387406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose The aim of the study was to synthesize previous evidence and clarify the prevalence of developmental coordination disorder (DCD) in children by meta-analysis. Methods A comprehensive computerized search of databases, including PubMed, Embase, Web of Science, The Cochrane Library, CINAHL, and PsycINFO databases, was conducted to identify relevant national and international articles published before 18 December 2023 on DCD prevalence in children. The meta-analysis of prevalence was conducted using Stata 18.0. Results A total of 18 papers involving 31,203 patients were included. The prevalence of children with DCD was found to be 5%. A subgroup analysis showed that prevalence was 7% [95% confidence interval (CI) 4%-10%] and 4% (95% CI 3%-7%) for boys and girls, respectively; 4% (95% CI 2%-8%), 2% (95% CI 2%-2%), and 6% (95% CI 3%-10%) in Asia, Europe, and North America, respectively; and 18% (95% CI 8%-31%) and 6% (95% CI 4%-7%) for preterm (<37 weeks) and term infants (≥37 weeks), respectively. The prevalence of very low birth weight children (<1,250 g) with DCD was found to be 31%. Conclusion In this study, we found that the prevalence of children with DCD in the general population was 5% and that preterm infants (<37 weeks) and very low birth weight infants (<1,250 g) have a higher prevalence of DCD and require early screening and regular follow-up. Systematic Review Registration https://www.crd.york.ac.uk/, Identifier (CRD42024503320).
Collapse
Affiliation(s)
- Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaqing Xu
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cai Jiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Department, Fujian Provincial Hospital, Fuzhou, China
| | - Wei Song
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Guerini FR, Bolognesi E, Mensi MM, Zanette M, Agliardi C, Zanzottera M, Chiappedi M, Annunziata S, García-García F, Cavallini A, Clerici M. HLA-A, -B, -C and -DRB1 Association with Autism Spectrum Disorder Risk: A Sex-Related Analysis in Italian ASD Children and Their Siblings. Int J Mol Sci 2024; 25:9879. [PMID: 39337366 PMCID: PMC11431861 DOI: 10.3390/ijms25189879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Autism Spectrum disorders (ASD) are diagnosed more often in males than in females, by a ratio of about 3:1; this is likely to be due to a difference in risk burden between the sexes and/or to "compensatory skills" in females, that may delay the diagnosis of ASD. Identifying specific risk factors for ASD in females may be important in facilitating early diagnosis. We investigated whether HLA- class I: -A, -B, -C and class II -DRB1 alleles, which have been suggested to play a role in the development of ASD, can be considered as sex-related risk/protective markers towards the ASD. We performed HLA allele genotyping in 178 Italian children with ASD, 94 healthy siblings, and their parents. HLA allele distribution was compared between children with ASD, sex-matched healthy siblings, and a cohort of healthy controls (HC) enrolled in the Italian bone marrow donor registry. Allele transmission from parents to children with ASD and their siblings was also assessed. Our findings suggest that HLA-A*02, B*38, and C*12 alleles are more frequently carried by females with ASD compared to both HC and healthy female siblings, indicating these alleles as potential risk factors for ASD in females. Conversely, the HLA-A*03 allele was more commonly transmitted to healthy female siblings, suggesting it might have a protective effect. Additionally, the HLA-B*44 allele was found to be more prevalent in boys with ASD, indicating it is a potential risk factor for male patients. This is the first Italian study of sex-related HLA association with ASD. If confirmed, these results could facilitate early ASD diagnosis in female patients, allowing earlier interventions, which are crucial in the management of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Franca Rosa Guerini
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Elisabetta Bolognesi
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Martina Maria Mensi
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Fondazione Mondino, 27100 Pavia, Italy
| | - Michela Zanette
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Matteo Chiappedi
- Child Neurology and Psychiatry Unit, ASST Pavia, 27029 Vigevano, Italy
| | - Silvia Annunziata
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Anna Cavallini
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
- Pathophysiology and Transplantation Department, University of Milan, 20122 Milan, Italy
| |
Collapse
|
25
|
Amin RM, Amin SC, Amin NJ, Islam MA. Post-COVID-19 Yearly Pattern Changes and Gender Variations in Attention Deficit Hyperactivity Disorder Patients at an Urban Mental Health Clinic in Alabama, USA. Cureus 2024; 16:e69596. [PMID: 39291255 PMCID: PMC11407703 DOI: 10.7759/cureus.69596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The COVID-19 era has seen an increased trend in attention deficit hyperactivity disorder (ADHD) diagnoses. Historically, males have been diagnosed with ADHD more frequently than females during childhood. Studies have indicated a higher use of stimulant medications among male ADHD cases compared to females. This study examines ADHD cases from 2021 to 2023 to analyze yearly trends following the initial COVID-19 spike and explores gender and age differences between ADHD-positive and ADHD-negative cases. Methods This retrospective study was conducted using data from an urban outpatient mental health clinic in Alabama. Data were extracted from Electronic Health Records (EHR) for patients seen from January 1, 2021, to December 31, 2023. The Institutional Review Board (IRB) approved the study under the exempt research category. Data were analyzed using Microsoft Excel (Microsoft® Corp., Redmond, WA, USA) and the Statistical Package for the Social Sciences (IBM SPSS Statistics for Windows, IBM Corp., Version 26.0, Armonk, NY). Diagnoses were based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria, and clinical diagnoses and medication information were obtained from the EHR. Results The study included 1,422 patients, of whom 881 (62%) were diagnosed with ADHD. Females with ADHD had significantly higher comorbid conditions, such as major depressive disorder, generalized anxiety disorder, panic disorder, and post-traumatic stress disorder, compared to males with ADHD. Gender differences in ADHD diagnoses were seen over the years, though no significant age differences were observed. Conclusions The study indicates a sustained high rate of ADHD diagnoses even after the initial COVID-19 spike. Females showed a higher ADHD diagnoses compared to males, but stimulant medication use remained consistent across genders. No significant age differences were observed between males and females with ADHD. Further research is needed to explore the reasons behind these gender differences and to evaluate their implications.
Collapse
Affiliation(s)
- Rasheeq M Amin
- Psychiatry and Behavioral Sciences, Alabama College of Osteopathic Medicine, Birmingham, USA
| | - Sharno C Amin
- Psychiatry and Behavioral Sciences, Alabama College of Osteopathic Medicine, Birmingham, USA
| | - Nasima J Amin
- Psychiatry and Behavioral Sciences, My Psychiatry Clinic, Hoover, USA
| | - M Aminul Islam
- Psychiatry and Behavioral Sciences, My Psychiatry Clinic, Hoover, USA
| |
Collapse
|
26
|
Tartaglione AM, Camoni L, Calamandrei G, Chiarotti F, Venerosi A. The contribution of environmental pollutants to the risk of autism and other neurodevelopmental disorders: A systematic review of case-control studies. Neurosci Biobehav Rev 2024; 164:105815. [PMID: 39053787 DOI: 10.1016/j.neubiorev.2024.105815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Exposure to environmental pollutants, such as metals, pesticides, and air pollutants during early life, is a risk factor for neurodevelopmental disorders (NDDs), including Autism Spectrum Disorder (ASD). Our systematic review aimed to select and summarize more recent case-control studies that examined the association between prenatal and early postnatal exposure to environmental pollutants and NDDs. We searched five databases (Web of Science, PubMed, Embase, Scopus, Ovid), screened 2261 records, and included 24 eligible case-control studies. Meta-analyses were conducted on subgroups of at least three studies that shared both the outcome and the exposure. A noteworthy discovery from this literature review is the existence of non-linear or non-monotonic dose-response relationships between the exposure to certain metals and the risk of ASD. The meta-analysis revealed a significant association between exposure to particular matter (PM)10 during the first year of life and the risk of ASD. Overall, studies included in our systematic review indicate that exposure to several pollutants within the first three years of life was significantly associated with the risk of NDDs.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - L Camoni
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Calamandrei
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - F Chiarotti
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Venerosi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
27
|
Peterson S, Maheras A, Wu B, Chavira J, Keiflin R. Sex differences in discrimination behavior and orbitofrontal engagement during context-gated reward prediction. eLife 2024; 12:RP93509. [PMID: 39046898 PMCID: PMC11268887 DOI: 10.7554/elife.93509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Animals, including humans, rely on contextual information to interpret ambiguous stimuli. Impaired context processing is a hallmark of several neuropsychiatric disorders, including schizophrenia, autism spectrum disorders, post-traumatic stress disorder, and addiction. While sex differences in the prevalence and manifestations of these disorders are well established, potential sex differences in context processing remain uncertain. Here, we examined sex differences in the contextual control over cue-evoked reward seeking and its neural correlates, in rats. Male and female rats were trained in a bidirectional occasion-setting preparation in which the validity of two auditory reward-predictive cues was informed by the presence, or absence, of a visual contextual feature (LIGHT: X+/DARK: X-/LIGHT: Y-/DARK: Y+). Females were significantly slower to acquire contextual control over cue-evoked reward seeking. However, once established, the contextual control over behavior was more robust in female rats; it showed less within-session variability (less influence of prior reward) and greater resistance to acute stress. This superior contextual control achieved by females was accompanied by an increased activation of the orbitofrontal cortex (OFC) compared to males. Critically, these behavioral and neural sex differences were specific to the contextual modulation process and not observed in simple, context-independent, reward prediction tasks. These results indicate a sex-biased trade-off between the speed of acquisition and the robustness of performance in the contextual modulation of cued reward seeking. The different distribution of sexes along the fast learning ↔ steady performance continuum might reflect different levels of engagement of the OFC, and might have implications for our understanding of sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Sophie Peterson
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Amanda Maheras
- Department of Molecular, Cellular & Developmental Biology, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Brenda Wu
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Jose Chavira
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Ronald Keiflin
- Department of Psychological & Brain Sciences, University of California, Santa BarbaraSanta BarbaraUnited States
- Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
28
|
Rootes-Murdy K, Panta S, Kelly R, Romero J, Quidé Y, Cairns MJ, Loughland C, Carr VJ, Catts SV, Jablensky A, Green MJ, Henskens F, Kiltschewskij D, Michie PT, Mowry B, Pantelis C, Rasser PE, Reay WR, Schall U, Scott RJ, Watkeys OJ, Roberts G, Mitchell PB, Fullerton JM, Overs BJ, Kikuchi M, Hashimoto R, Matsumoto J, Fukunaga M, Sachdev PS, Brodaty H, Wen W, Jiang J, Fani N, Ely TD, Lorio A, Stevens JS, Ressler K, Jovanovic T, van Rooij SJ, Federmann LM, Jockwitz C, Teumer A, Forstner AJ, Caspers S, Cichon S, Plis SM, Sarwate AD, Calhoun VD. Cortical similarities in psychiatric and mood disorders identified in federated VBM analysis via COINSTAC. PATTERNS (NEW YORK, N.Y.) 2024; 5:100987. [PMID: 39081570 PMCID: PMC11284501 DOI: 10.1016/j.patter.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 04/10/2024] [Indexed: 08/02/2024]
Abstract
Structural neuroimaging studies have identified a combination of shared and disorder-specific patterns of gray matter (GM) deficits across psychiatric disorders. Pooling large data allows for examination of a possible common neuroanatomical basis that may identify a certain vulnerability for mental illness. Large-scale collaborative research is already facilitated by data repositories, institutionally supported databases, and data archives. However, these data-sharing methodologies can suffer from significant barriers. Federated approaches augment these approaches by enabling access or more sophisticated, shareable and scaled-up analyses of large-scale data. We examined GM alterations using Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation, an open-source, decentralized analysis application. Through federated analysis of eight sites, we identified significant overlap in the GM patterns (n = 4,102) of individuals with schizophrenia, major depressive disorder, and autism spectrum disorder. These results show cortical and subcortical regions that may indicate a shared vulnerability to psychiatric disorders.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Sandeep Panta
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Ross Kelly
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Javier Romero
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Carmel Loughland
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vaughan J. Carr
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Department of Psychiatry, Monash University, Clayton, VIC, Australia
| | - Stanley V. Catts
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Melissa J. Green
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Frans Henskens
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, NSW, Australia
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Patricia T. Michie
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, University of Queensland, Brisbane, QLD, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Carlton South, VIC, Australia
- Florey Institute of Neuroscience & Mental Health, Parkville, VIC, Australia
| | - Paul E. Rasser
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, NSW, Australia
| | - William R. Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Oliver J. Watkeys
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Gloria Roberts
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Philip B. Mitchell
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Masataka Kikuchi
- Department of Computational Biology and Medical Sciences, University of Tokyo, Chiba, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute for Physiological Sciences, Aichi, Japan
| | - Perminder S. Sachdev
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Kerry Ressler
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Sanne J.H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lydia M. Federmann
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Andreas J. Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sergey M. Plis
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Anand D. Sarwate
- Department of Electrical and Computer Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
29
|
DeCasien AR, Chiou KL, Testard C, Mercer A, Negrón-Del Valle JE, Bauman Surratt SE, González O, Stock MK, Ruiz-Lambides AV, Martínez MI, Antón SC, Walker CS, Sallet J, Wilson MA, Brent LJN, Montague MJ, Sherwood CC, Platt ML, Higham JP, Snyder-Mackler N. Evolutionary and biomedical implications of sex differences in the primate brain transcriptome. CELL GENOMICS 2024; 4:100589. [PMID: 38942023 PMCID: PMC11293591 DOI: 10.1016/j.xgen.2024.100589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Humans exhibit sex differences in the prevalence of many neurodevelopmental disorders and neurodegenerative diseases. Here, we generated one of the largest multi-brain-region bulk transcriptional datasets for the rhesus macaque and characterized sex-biased gene expression patterns to investigate the translatability of this species for sex-biased neurological conditions. We identify patterns similar to those in humans, which are associated with overlapping regulatory mechanisms, biological processes, and genes implicated in sex-biased human disorders, including autism. We also show that sex-biased genes exhibit greater genetic variance for expression and more tissue-specific expression patterns, which may facilitate rapid evolution of sex-biased genes. Our findings provide insights into the biological mechanisms underlying sex-biased disease and support the rhesus macaque model for the translational study of these conditions.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA.
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Psychology, University of Washington, Seattle, WA, USA; Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | | | | | - Olga González
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | | | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Susan C Antón
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, Université Lyon, Lyon, France
| | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behavior, University of Exeter, Exeter, UK
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Psychology, University of Washington, Seattle, WA, USA; Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA; ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
30
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
31
|
Grissom NM, Glewwe N, Chen C, Giglio E. Sex mechanisms as nonbinary influences on cognitive diversity. Horm Behav 2024; 162:105544. [PMID: 38643533 PMCID: PMC11338071 DOI: 10.1016/j.yhbeh.2024.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Essentially all neuropsychiatric diagnoses show some degree of sex and/or gender differences in their etiology, diagnosis, or prognosis. As a result, the roles of sex-related variables in behavior and cognition are of strong interest to many, with several lines of research showing effects on executive functions and value-based decision making in particular. These findings are often framed within a sex binary, with behavior of females described as less optimal than male "defaults"-- a framing that pits males and females against each other and deemphasizes the enormous overlap in fundamental neural mechanisms across sexes. Here, we propose an alternative framework in which sex-related factors encompass just one subset of many sources of valuable diversity in cognition. First, we review literature establishing multidimensional, nonbinary impacts of factors related to sex chromosomes and endocrine mechanisms on cognition, focusing on value- based decision-making tasks. Next, we present two suggestions for nonbinary interpretations and analyses of sex-related data that can be implemented by behavioral neuroscientists without devoting laboratory resources to delving into mechanisms underlying sex differences. We recommend (1) shifting interpretations of behavior away from performance metrics and towards strategy assessments to avoid the fallacy that the performance of one sex is worse than another; and (2) asking how much variance sex explains in measures and whether any differences are mosaic rather than binary, to avoid assuming that sex differences in separate measures are inextricably correlated. Nonbinary frameworks in research on cognition will allow neuroscience to represent the full spectrum of brains and behaviors.
Collapse
Affiliation(s)
- Nicola M Grissom
- Department of Psychology, University of Minnesota, United States of America.
| | - Nic Glewwe
- Department of Psychology, University of Minnesota, United States of America
| | - Cathy Chen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, United States of America
| | - Erin Giglio
- Department of Psychology, University of Minnesota, United States of America
| |
Collapse
|
32
|
Kim J, Vanrobaeys Y, Davatolhagh MF, Kelvington B, Chatterjee S, Ferri SL, Angelakos C, Mills AA, Fuccillo MV, Nickl-Jockschat T, Abel T. A chromosome region linked to neurodevelopmental disorders acts in distinct neuronal circuits in males and females to control locomotor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594746. [PMID: 38952795 PMCID: PMC11216371 DOI: 10.1101/2024.05.17.594746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Biological sex shapes the manifestation and progression of neurodevelopmental disorders (NDDs). These disorders often demonstrate male-specific vulnerabilities; however, the identification of underlying mechanisms remains a significant challenge in the field. Hemideletion of the 16p11.2 region (16p11.2 del/+) is associated with NDDs, and mice modeling 16p11.2 del/+ exhibit sex-specific striatum-related phenotypes relevant to NDDs. Striatal circuits, crucial for locomotor control, consist of two distinct pathways: the direct and indirect pathways originating from D1 dopamine receptor (D1R) and D2 dopamine receptor (D2R) expressing spiny projection neurons (SPNs), respectively. In this study, we define the impact of 16p11.2 del/+ on striatal circuits in male and female mice. Using snRNA-seq, we identify sex- and cell type-specific transcriptomic changes in the D1- and D2-SPNs of 16p11.2 del/+ mice, indicating distinct transcriptomic signatures in D1-SPNs and D2-SPNs in males and females, with a ∼5-fold greater impact in males. Further pathway analysis reveals differential gene expression changes in 16p11.2 del/+ male mice linked to synaptic plasticity in D1- and D2-SPNs and GABA signaling pathway changes in D1-SPNs. Consistent with our snRNA-seq study revealing changes in GABA signaling pathways, we observe distinct changes in miniature inhibitory postsynaptic currents (mIPSCs) in D1- and D2-SPNs from 16p11.2 del/+ male mice. Behaviorally, we utilize conditional genetic approaches to introduce the hemideletion selectively in either D1- or D2-SPNs and find that conditional hemideletion of genes in the 16p11.2 region in D2-SPNs causes hyperactivity in male mice, but hemideletion in D1-SPNs does not. Within the striatum, hemideletion of genes in D2-SPNs in the dorsal lateral striatum leads to hyperactivity in males, demonstrating the importance of this striatal region. Interestingly, conditional 16p11.2 del/+ within the cortex drives hyperactivity in both sexes. Our work reveals that a locus linked to NDDs acts in different striatal circuits, selectively impacting behavior in a sex- and cell type-specific manner, providing new insight into male vulnerability for NDDs. Highlights - 16p11.2 hemideletion (16p11.2 del/+) induces sex- and cell type-specific transcriptomic signatures in spiny projection neurons (SPNs). - Transcriptomic changes in GABA signaling in D1-SPNs align with changes in inhibitory synapse function. - 16p11.2 del/+ in D2-SPNs causes hyperactivity in males but not females. - 16p11.2 del/+ in D2-SPNs in the dorsal lateral striatum drives hyperactivity in males. - 16p11.2 del/+ in cortex drives hyperactivity in both sexes. Graphic abstract
Collapse
|
33
|
Kim J, Vanrobaeys Y, Kelvington B, Peterson Z, Baldwin E, Gaine ME, Nickl-Jockschat T, Abel T. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevelopmental disorders. Mol Psychiatry 2024; 29:1310-1321. [PMID: 38278994 PMCID: PMC11189748 DOI: 10.1038/s41380-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del/+) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and highlighted three genes within the deleted region: thousand and one amino acid protein kinase 2 (Taok2), seizure-related 6 homolog-like 2 (Sez6l2), and major vault protein (Mvp). Using CRISPR/Cas9, we generated mice carrying null mutations in Taok2, Sez6l2, and Mvp (3 gene hemi-deletion (3g del/+)). Hemi-deletion of these 3 genes recapitulates sex-specific behavioral alterations in striatum-dependent behavioral tasks observed in 16p11.2 del/+ mice, specifically male-specific hyperactivity and impaired motivation for reward seeking. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice exclusively in males. Subsequent analysis identified translation dysregulation and/or extracellular signal-regulated kinase signaling as plausible molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Interestingly, ribosomal profiling supported the notion of translation dysregulation in both 3g del/+ and 16p11.2 del/+ male mice. However, mice carrying a 4-gene deletion (with an additional deletion of Mapk3) exhibited fewer phenotypic similarities with 16p11.2 del/+ mice. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice. These results support the importance of a polygenic approach to study NDDs and underscore that the effects of the large genetic deletions result from complex interactions between multiple candidate genes.
Collapse
Affiliation(s)
- Jaekyoon Kim
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa, IA, USA
| | - Benjamin Kelvington
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
| | - Zeru Peterson
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
| | - Emily Baldwin
- The Iowa Medical Scientist Training Program, University of Iowa, Iowa, IA, USA
| | - Marie E Gaine
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA.
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA.
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
34
|
Michaelovsky E, Carmel M, Gothelf D, Weizman A. Lymphoblast transcriptome analysis in 22q11.2 deletion syndrome individuals with schizophrenia-spectrum disorder. World J Biol Psychiatry 2024; 25:242-254. [PMID: 38493364 DOI: 10.1080/15622975.2024.2327030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES 22q11.2 deletion is the most prominent risk factor for schizophrenia (SZ). The aim of the present study was to identify unique transcriptome profile for 22q11.2 deletion syndrome (DS)-related SZ-spectrum disorder (SZ-SD). METHODS We performed RNA-Seq screening in lymphoblasts collected from 20 individuals with 22q11.2DS (10 men and 10 women, four of each sex with SZ-SD and six with no psychotic disorders (Np)). RESULTS Sex effect in RNA-Seq descriptive analysis led to separating the analyses between men and women. In women, only one differentially expressed gene (DEG), HLA-DQA2, was associated with SZ-SD. In men, 48 DEGs (adjp < 0.05) were found to be associated with SZ-SD. Ingenuity pathway analysis of top 85 DEGs (p < 4.66E - 04) indicated significant enrichment for immune-inflammatory response (IIR) and neuro-inflammatory signalling pathways. Additionally, NFATC2, IFNG, IFN-alpha, STAT1 and IL-4 were identified as upstream regulators. Co-expression network analysis revealed the contribution of endoplasmic reticulum protein processing and N-Glycan biosynthesis. These findings indicate dysregulation of IIR and post-translational protein modification processes in individuals with 22q11.2DS-related SZ-SD. CONCLUSIONS Candidate pathways and upstream regulators may serve as novel biomarkers and treatment targets for SZ. Future transcriptome studies, including larger samples and proteomic analysis, are needed to substantiate our findings.
Collapse
Affiliation(s)
- Elena Michaelovsky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Miri Carmel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Doron Gothelf
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Behavioral Neurogenetics Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Abraham Weizman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Research Unit, Geha Mental Health Center, Petah Tikva, Israel
| |
Collapse
|
35
|
Nkire N, Kinsella A, Russell V, Waddington JL. Duration of the psychosis prodrome and its relationship to duration of untreated psychosis across all 12 DSM-IV psychotic diagnoses: Evidence for a trans-diagnostic process associated with resilience. Eur Neuropsychopharmacol 2024; 80:5-13. [PMID: 38128335 DOI: 10.1016/j.euroneuro.2023.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
While duration of the psychosis prodrome (DPP) attracts attention in relation to the developmental trajectory of psychotic illness and service models, fundamental issues endure in the context of dimensional-spectrum models of psychosis. Among 205 epidemiologically representative subjects in the Cavan-Monaghan First Episode Psychosis Study, DPP was systematically quantified and compared, for the first time, across all 12 DSM-IV psychotic diagnoses. DPP was also compared with duration of untreated psychosis (DUP) and each was then analysed in relation to premorbid features across three age ranges: <12, 12-15 and 16-18 years. For each diagnosis, medians for both DPP and DUP were shorter than means, indicating common right-skewed distributions. Rank orders for both DPP and DUP were longest for schizophrenia, intermediate for other schizophrenia-spectrum psychoses, psychotic depression and psychotic disorder not otherwise specified, and shortest for brief psychotic disorder, bipolar disorder and substance-induced psychotic disorder, though with overlapping right-skewed distributions. DPP was longer than DUP for all diagnoses except substance-induced psychotic disorder. Across functional psychotic diagnoses, longer DPP was predicted by higher premorbid intelligence and better premorbid adjustment during age 16-18 years. These findings indicate that, trans-diagnostically, DPP and DUP share right-skewed continuities, in accordance with a dimensional-spectrum model of psychotic illness, and may reflect a unitary process that has been dichotomized at a subjective threshold along its trajectory. Better premorbid functioning during age 16-18 years appears to confer resilience by delaying progression to overt psychotic symptoms and may constitute a particular target period for psychosocial interventions.
Collapse
Affiliation(s)
- Nnamdi Nkire
- Drumalee Primary Care Centre, Cavan-Monaghan Mental Health Service, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anthony Kinsella
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vincent Russell
- Drumalee Primary Care Centre, Cavan-Monaghan Mental Health Service, Cavan, Ireland; Department of Psychiatry, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
36
|
Boerner KE, Keogh E, Inkster AM, Nahman-Averbuch H, Oberlander TF. A developmental framework for understanding the influence of sex and gender on health: Pediatric pain as an exemplar. Neurosci Biobehav Rev 2024; 158:105546. [PMID: 38272336 DOI: 10.1016/j.neubiorev.2024.105546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Sex differences are a robust finding in many areas of adult health, including cardiovascular disease, psychiatric disorders, and chronic pain. However, many sex differences are not consistently observed until after the onset of puberty. This has led to the hypothesis that hormones are primary contributors to sex differences in health outcomes, largely ignoring the relative contributions of early developmental influences, emerging psychosocial factors, gender, and the interaction between these variables. In this paper, we argue that a comprehensive understanding of sex and gender contributions to health outcomes should start as early as conception and take an iterative biopsychosocial-developmental perspective that considers intersecting social positions. We present a conceptual framework, informed by a review of the literature in basic, clinical, and social science that captures how critical developmental stages for both sex and gender can affect children's health and longer-term outcomes. The literature on pediatric chronic pain is used as a worked example of how the framework can be applied to understanding different chronic conditions.
Collapse
Affiliation(s)
- Katelynn E Boerner
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Edmund Keogh
- Department of Psychology & Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Amy M Inkster
- Department of Medical Genetics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim F Oberlander
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
37
|
Huang H, Zhang KP, Sun KK, Yu G. Association between type 2 inflammatory diseases and neurodevelopmental disorders in low-birth-weight children and adolescents. Front Psychol 2024; 15:1292071. [PMID: 38455122 PMCID: PMC10918750 DOI: 10.3389/fpsyg.2024.1292071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Background Evidence of the association of certain neurodevelopmental disorder with specific type 2 inflammatory (T2) disease has been found. However, the association of various neurodevelopmental disorders with T2 diseases as a whole remains unclear in low-birth-weight (LBW) infants. Objective To evaluate the association of type 2 inflammatory (T2) diseases with intellectual disability (ID), autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and learning disability (LD) in LBW children and adolescents. Methods The study sample was derived from 2005 to 2018 National Health Interview Survey sample child files. LBW children and adolescents aged 3-17 were included. History of T2 diseases (including asthma and atopic dermatitis) and four neurodevelopmental disorders were reported by adults in families. The relationship between T2 diseases and the risk of four neurodevelopmental disorders was investigated through multiple-weighted logistic regression. Age, sex, race/ethnicity, region, highest education in family and ratio of family income to the poverty threshold were adjusted as covariates for model estimation. Subgroup analyses were conducted by age stratification (3-11 and 12-17 years), sex (male and female), and race (white and non-white). Results 11,260 LBW children aged 3-17 years [mean age (SE), 9.73 (0.05) years] were included, in which 3,191 children had T2 diseases. History of T2 diseases was associated with an increased risk of neurodevelopmental disorders, with an OR of 1.35 (95% CI, 0.99-1.84) for ID, 1.47 (95% CI, 1.05-2.05) for ASD, 1.81 (95% CI, 1.51-2.16) for ADHD, and 1.74 (95% CI, 1.49-2.04) for LD following the adjustment of all the covariates. The correlations between T2 disorders and each of the four neurodevelopmental disorders were significantly different by sex and race (all P for interaction < 0.001), and no differences were found in age stratification (all P for interaction > 0.05). Conclusion In a nationally representative sample of children, we found a significant association of T2 diseases with ASD, ADHD, and LD, even after adjusting for demographic baseline. We also found that the association of T2 disease with neurodevelopmental disorders differed between sex and race. Further investigation is needed to evaluate causal relationships and elucidate their potential mechanisms.
Collapse
Affiliation(s)
- Hengye Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kelvin Pengyuan Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Karol Kexin Sun
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Guangjun Yu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in brain-behavior relationships in the first two years of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578147. [PMID: 38352542 PMCID: PMC10862872 DOI: 10.1101/2024.01.31.578147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.
Collapse
Affiliation(s)
- Sonja J Fenske
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Janelle Liu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haitao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| | - Marcio A Diniz
- The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| |
Collapse
|
39
|
Miao Z, Chen L, Zhang Y, Zhang J, Zhang H. Bifidobacterium animalis subsp. lactis Probio-M8 alleviates abnormal behavior and regulates gut microbiota in a mouse model suffering from autism. mSystems 2024; 9:e0101323. [PMID: 38108654 PMCID: PMC10804959 DOI: 10.1128/msystems.01013-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Probiotics can effectively improve a variety of neurological diseases, but there is little research on autism, and the specific mechanism is unclear. In this study, shotgun metagenomics analysis was used to investigate the preventive and therapeutic effects of Bifidobacterium animalis subsp. lactis Probio-M8 on autism. The results showed that Probio-M8 treatment significantly alleviated valproate (VPA)-induced autism in mice, with autistic symptoms characterized by increased stereotyped behaviors such as grooming, reduced learning ability, and decreased desire to socialize. Further studies have found that Probio-M8 can alleviate autism by optimizing gut microbiota diversity and regulating metabolic levels. Probio-M8 regulates gut microbiota structure by increasing the abundance of beneficial bacteria such as Bifidobacterium globosum and Akkermansia muciniphila. In addition, Probio-M8 regulates metabolic activity by increasing levels of choline, which corrects CAZy disorders. In conclusion, Probio-M8 is therapeutic in the VPA-induced autism mouse model by regulating the gut microbiome and metabolic levels.IMPORTANCEIndividuals with autism often exhibit symptoms of social invariance, obsessive-compulsive tendencies, and repetitive behaviors. However, early intervention and treatment can be effective in improving social skills and mitigating autism symptoms, including behaviors related to irritability. Although taking medication for autism may lead to side effects such as weight gain, probiotics can be an ideal intervention for alleviating these symptoms. In this study, we investigated the effects of Probio-M8 intervention on the behavior of autistic mice using an open-field test, a three-chamber sociability test, and a novel object recognition test. Metagenomic analysis revealed differences in gut microbiota diversity among groups, predicted changes in metabolite levels, and functionally annotated CAZy. Additionally, we analyzed serum neurotransmitter levels and found that probiotics were beneficial in mitigating neurotransmitter imbalances in mice with autism.
Collapse
Affiliation(s)
- Zhuangzhuang Miao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lin Chen
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yong Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
40
|
Kretz PF, Wagner C, Mikhaleva A, Montillot C, Hugel S, Morella I, Kannan M, Fischer MC, Milhau M, Yalcin I, Brambilla R, Selloum M, Herault Y, Reymond A, Collins SC, Yalcin B. Dissecting the autism-associated 16p11.2 locus identifies multiple drivers in neuroanatomical phenotypes and unveils a male-specific role for the major vault protein. Genome Biol 2023; 24:261. [PMID: 37968726 PMCID: PMC10647150 DOI: 10.1186/s13059-023-03092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.
Collapse
Affiliation(s)
- Perrine F Kretz
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Christel Wagner
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Sylvain Hugel
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Ilaria Morella
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Meghna Kannan
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Marie-Christine Fischer
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
| | - Maxence Milhau
- Inserm UMR1231, Université de Bourgogne, 21000, Dijon, France
| | - Ipek Yalcin
- Institute of Cellular and Integrative neuroscience, CNRS, UPR321267000, Strasbourg, France
| | - Riccardo Brambilla
- School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Pavia, Italy
| | - Mohammed Selloum
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Yann Herault
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- University of Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, ICS, 67400, Illkirch, France
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Stephan C Collins
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France
| | - Binnaz Yalcin
- Institute of Genetics and Molecular and Cellular Biology, UMR7104, University of Strasbourg, CNRS, INSERM, IGBMC, U964, 67400, Illkirch, France.
- Current address: Université de Bourgogne, Inserm UMR1231, 21000, Dijon, France.
| |
Collapse
|
41
|
Shuffrey LC, Morales S, Jacobson MH, Enlow MB, Ghassabian A, Margolis AE, Lucchini M, Carroll KN, Crum RM, Dabelea D, Deutsch A, Fifer WP, Goldson B, Hockett CW, Mason WA, Jacobson LT, O’Connor TG, Pini N, Rayport Y, Sania A, Trasande L, Wright RJ, Lee S, Monk C. Association of Gestational Diabetes Mellitus and Perinatal Maternal Depression with Early Childhood Behavioral Problems: An Environmental Influences on Child Health Outcomes (ECHO) Study. Child Dev 2023; 94:1595-1609. [PMID: 37132048 PMCID: PMC10620104 DOI: 10.1111/cdev.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
This study examined the association of gestational diabetes mellitus (GDM), prenatal, and postnatal maternal depressive symptoms with externalizing, internalizing, and autism spectrum problems on the Preschool Child Behavior Checklist in 2379 children aged 4.12 ± 0.60 (48% female; 47% White, 32% Black, 15% Mixed Race, 4% Asian, <2% American Indian/Alaskan Native, <2% Native Hawaiian; 23% Hispanic). Data were collected from the NIH Environmental influences on Child Health Outcomes (ECHO) Program from 2009-2021. GDM, prenatal, and postnatal maternal depressive symptoms were each associated with increased child externalizing and internalizing problems. GDM was associated with increased autism behaviors only among children exposed to perinatal maternal depressive symptoms above the median level. Stratified analyses revealed a relation between GDM and child outcomes in males only.
Collapse
Affiliation(s)
- Lauren C. Shuffrey
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Santiago Morales
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Melanie H. Jacobson
- Department of Pediatrics, Division of Environmental Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Amy E. Margolis
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Kecia N. Carroll
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosa M. Crum
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - William P. Fifer
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute
| | - Brandon Goldson
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christine W. Hockett
- Avera Research Institute; Sioux Falls, South Dakota, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, South Dakota, USA
| | - W. Alex Mason
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lisette T. Jacobson
- Department of Population Health, Department of Obstetrics & Gynecology, University of Kansas School of Medicine, Wichita, Kansas, USA
| | - Thomas G O’Connor
- Departments of Psychiatry, Psychology, Neuroscience, and Obstetrics and Gynecology, University of Rochester, Rochester, New York, USA
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Yael Rayport
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Ayesha Sania
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Seonjoo Lee
- Mailman School of Public Health, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Catherine Monk
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Departments of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
42
|
László K, Vörös D, Correia P, Fazekas CL, Török B, Plangár I, Zelena D. Vasopressin as Possible Treatment Option in Autism Spectrum Disorder. Biomedicines 2023; 11:2603. [PMID: 37892977 PMCID: PMC10603886 DOI: 10.3390/biomedicines11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is rather common, presenting with prevalent early problems in social communication and accompanied by repetitive behavior. As vasopressin was implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior, its role in the development of ASD might be suggested. In this review, we summarized a wide range of problems associated with ASD to which vasopressin might contribute, from social skills to communication, motor function problems, autonomous nervous system alterations as well as sleep disturbances, and altered sensory information processing. Beside functional connections between vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a). Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover, vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by means of virus vectors) would benefit from this therapy.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dávid Vörös
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Imola Plangár
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, 7624 Pecs, Hungary; (K.L.); (D.V.); (P.C.); (C.L.F.); (B.T.); (I.P.)
- Center of Neuroscience, University of Pécs, 7624 Pecs, Hungary
- Szentágothai Research Center, University of Pécs, 7624 Pecs, Hungary
- Hungarian Research Network, Institute of Experimental Medicine, 1083 Budapest, Hungary
| |
Collapse
|
43
|
Pavlova MA, Moosavi J, Carbon CC, Fallgatter AJ, Sokolov AN. Emotions behind a mask: the value of disgust. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:58. [PMID: 37709796 PMCID: PMC10502067 DOI: 10.1038/s41537-023-00388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The impact of face masks on social cognition and interaction became a popular topic due to the long-lasting COVID-19 pandemic. This theme persists in the focus of attention beyond the pandemic, since face covering not only reduces the overall amount of face information available but also introduces biases and prejudices affecting social perception at large. Many questions are still open. One of them is whether gender of beholders affects inferring of emotions covered by face masks. Reading covered faces may be particularly challenging for individuals with mental disorders, most of which are gender-specific. Previous findings are not only sparse, but inconclusive because most research had been conducted online with resulting samples heavily dominated by females. Here in a face-to-face study, females and males were presented with a randomized set of faces covered by masks. In a two-alternative forced-choice paradigm, participants had to indicate facial emotions displayed by posers. In general, the outcome dovetails with earlier findings that face masks affect emotion recognition in a dissimilar way: Inferring some emotions suffers more severely than others, with the most pronounced influence of mask wearing on disgust and close to ceiling recognition of fear and neutral expressions. Contrary to our expectations, however, males were on overall more proficient in emotion recognition. In particular, males substantially excelled in inferring disgust. The findings help to understand gender differences in recognition of disgust, the forgotten emotion of psychiatry, that is of substantial value for a wide range of mental disorders including schizophrenia. Watch Prof. Marina Pavlova discussing this her work and this article: https://vimeo.com/860126397/5966610f49?share=copy .
Collapse
Affiliation(s)
- Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Jonas Moosavi
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Claus-Christian Carbon
- Department of General Psychology and Methodology, University of Bamberg, Bamberg, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Szakats S, McAtamney A, Cross H, Wilson MJ. Sex-biased gene and microRNA expression in the developing mouse brain is associated with neurodevelopmental functions and neurological phenotypes. Biol Sex Differ 2023; 14:57. [PMID: 37679839 PMCID: PMC10486049 DOI: 10.1186/s13293-023-00538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Sex differences pose a challenge and an opportunity in biomedical research. Understanding how sex chromosomes and hormones affect disease-causing mechanisms will shed light on the mechanisms underlying predominantly idiopathic sex-biased neurodevelopmental disorders such as ADHD, schizophrenia, and autism. Gene expression is a crucial conduit for the influence of sex on developmental processes; therefore, this study focused on sex differences in gene expression and the regulation of gene expression. The increasing interest in microRNAs (miRNAs), small, non-coding RNAs, for their contribution to normal and pathological neurodevelopment prompted us to test how miRNA expression differs between the sexes in the developing brain. METHODS High-throughput sequencing approaches were used to identify transcripts, including miRNAs, that showed significantly different expression between male and female brains on day 15.5 of development (E15.5). RESULTS Robust sex differences were identified for some genes and miRNAs, confirming the influence of biological sex on RNA. Many miRNAs that exhibit the greatest differences between males and females have established roles in neurodevelopment, implying that sex-biased expression may drive sex differences in developmental processes. In addition to highlighting sex differences for individual miRNAs, gene ontology analysis suggested several broad categories in which sex-biased RNAs might act to establish sex differences in the embryonic mouse brain. Finally, mining publicly available SNP data indicated that some sex-biased miRNAs reside near the genomic regions associated with neurodevelopmental disorders. CONCLUSIONS Together, these findings reinforce the importance of cataloguing sex differences in molecular biology research and highlight genes, miRNAs, and pathways of interest that may be important for sexual differentiation in the mouse and possibly the human brain.
Collapse
Affiliation(s)
- Susanna Szakats
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Alice McAtamney
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Hugh Cross
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
45
|
Abstract
Women have increased risks for both sleep disturbances and disorders and for mental health issues throughout their lives, starting in adolescence. Women have a higher prevalence of insomnia disorder and restless legs syndrome (RLS) versus men, and obstructive sleep apnea (OSA) is more likely as women age. Hormonal transitions are important to consider in women's sleep. For women, insomnia, OSA, and RLS are predictive of depression, and insomnia and sleep-disordered breathing are predictive of Alzheimer disease. These findings underscore the importance of assessment, treatment, and future research examining sleep and mental health in women, given their unique and increased vulnerability.
Collapse
Affiliation(s)
- Meredith E Rumble
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Boulevard, Madison, WI 53719, USA.
| | - Paul Okoyeh
- Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, 791 Jonestown Road, Winston-Salem, NC 27103, USA
| | - Ruth M Benca
- Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, 791 Jonestown Road, Winston-Salem, NC 27103, USA
| |
Collapse
|
46
|
Zarrei M, Burton CL, Engchuan W, Higginbotham EJ, Wei J, Shaikh S, Roslin NM, MacDonald JR, Pellecchia G, Nalpathamkalam T, Lamoureux S, Manshaei R, Howe J, Trost B, Thiruvahindrapuram B, Marshall CR, Yuen RKC, Wintle RF, Strug LJ, Stavropoulos DJ, Vorstman JAS, Arnold P, Merico D, Woodbury-Smith M, Crosbie J, Schachar RJ, Scherer SW. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum Mol Genet 2023; 32:2411-2421. [PMID: 37154571 PMCID: PMC10360394 DOI: 10.1093/hmg/ddad074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.
Collapse
Affiliation(s)
- Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Christie L Burton
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sabah Shaikh
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Roozbeh Manshaei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lisa J Strug
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Departments of Statistical Sciences, Computer Science and Biostatistics, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jacob A S Vorstman
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Paul Arnold
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Psychiatry & Medical Genetics, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Deep Genomics Inc., Toronto, ON M5G 1M1, Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Russell J Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
47
|
Kianičková K, Pažitná L, Kundalia PH, Pakanová Z, Nemčovič M, Baráth P, Katrlíková E, Šuba J, Trebatická J, Katrlík J. Alterations in the Glycan Composition of Serum Glycoproteins in Attention-Deficit Hyperactivity Disorder. Int J Mol Sci 2023; 24:ijms24108745. [PMID: 37240090 DOI: 10.3390/ijms24108745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Changes in protein glycosylation are associated with most biological processes, and the importance of glycomic analysis in the research of disorders is constantly increasing, including in the neurodevelopmental field. We glycoprofiled sera in 10 children with attention-deficit hyperactivity disorder (ADHD) and 10 matching healthy controls for 3 types of samples: whole serum, sera after depletion of abundant proteins (albumin and IgG), and isolated IgG. The analytical methods used were a lectin-based glycoprotein microarray enabling high-throughput glycan analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) as a standard method for the identification of glycan structures. For microarray analysis, the samples printed on microarray slides were incubated with biotinylated lectins and detected using the fluorescent conjugate of streptavidin by a microarray scanner. In the ADHD patient samples, we found increased antennary fucosylation, decreased di-/triantennary N-glycans with bisecting N-acetylglucosamine (GlcNAc), and decreased α2-3 sialylation. The results obtained by both independent methods were consistent. The study's sample size and design do not allow far-reaching conclusions to be drawn. In any case, there is a strong demand for a better and more comprehensive diagnosis of ADHD, and the obtained results emphasize that the presented approach brings new horizons to studying functional associations of glycan alterations in ADHD.
Collapse
Affiliation(s)
- Kristína Kianičková
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Paras H Kundalia
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| | - Eva Katrlíková
- Department of Paediatric Psychiatry, Faculty of Medicine, Comenius University, The National Institute of Children's Diseases, SK-83340 Bratislava, Slovakia
| | - Ján Šuba
- Department of Paediatric Psychiatry, Faculty of Medicine, Comenius University, The National Institute of Children's Diseases, SK-83340 Bratislava, Slovakia
| | - Jana Trebatická
- Department of Paediatric Psychiatry, Faculty of Medicine, Comenius University, The National Institute of Children's Diseases, SK-83340 Bratislava, Slovakia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia
| |
Collapse
|
48
|
Santos S, Martins B, Sereno J, Martins J, Castelo-Branco M, Gonçalves J. Neurobehavioral sex-related differences in Nf1 +/- mice: female show a "camouflaging"-type behavior. Biol Sex Differ 2023; 14:24. [PMID: 37101298 PMCID: PMC10131355 DOI: 10.1186/s13293-023-00509-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an inherited neurocutaneous disorder associated with neurodevelopmental disorders including autism spectrum disorder (ASD). This condition has been associated with an increase of gamma-aminobutyric acid (GABA) neurotransmission and, consequently, an excitation/inhibition imbalance associated with autistic-like behavior in both human and animal models. Here, we explored the influence of biological sex in the GABAergic system and behavioral alterations induced by the Nf1+/- mutation in a murine model. METHODS Juvenile male and female Nf1+/- mice and their wild-type (WT) littermates were used. Hippocampus size was assessed by conventional toluidine blue staining and structural magnetic resonance imaging (MRI). Hippocampal GABA and glutamate levels were determined by magnetic resonance spectroscopy (MRS), which was complemented by western blot for the GABA(A) receptor. Behavioral evaluation of on anxiety, memory, social communication, and repetitive behavior was performed. RESULTS We found that juvenile female Nf1+/- mice exhibited increased hippocampal GABA levels. Moreover, mutant female displays a more prominent anxious-like behavior together with better memory performance and social behavior. On the other hand, juvenile Nf1+/- male mice showed increased hippocampal volume and thickness, with a decrease in GABA(A) receptor levels. We observed that mutant males had higher tendency for repetitive behavior. CONCLUSIONS Our results suggested a sexually dimorphic impact of Nf1+/- mutation in hippocampal neurochemistry, and autistic-like behaviors. For the first time, we identified a "camouflaging"-type behavior in females of an animal model of ASD, which masked their autistic traits. Accordingly, like observed in human disorder, in this animal model of ASD, females show larger anxiety levels but better executive functions and production of normative social patterns, together with an imbalance of inhibition/excitation ratio. Contrary, males have more externalizing disorders, such as hyperactivity and repetitive behaviors, with memory deficits. The ability of females to camouflage their autistic traits creates a phenotypic evaluation challenge that mimics the diagnosis difficulty observed in humans. Thus, we propose the study of the Nf1+/- mouse model to better understand the sexual dimorphisms of ASD phenotypes and to create better diagnostic tools.
Collapse
Affiliation(s)
- Sofia Santos
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Beatriz Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - José Sereno
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
49
|
Ford A, Kovacs-Balint ZA, Wang A, Feczko E, Earl E, Miranda-Domínguez Ó, Li L, Styner M, Fair D, Jones W, Bachevalier J, Sánchez MM. Functional maturation in visual pathways predicts attention to the eyes in infant rhesus macaques: Effects of social status. Dev Cogn Neurosci 2023; 60:101213. [PMID: 36774827 PMCID: PMC9925610 DOI: 10.1016/j.dcn.2023.101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Differences in looking at the eyes of others are one of the earliest behavioral markers for social difficulties in neurodevelopmental disabilities, including autism. However, it is unknown how early visuo-social experiences relate to the maturation of infant brain networks that process visual social stimuli. We investigated functional connectivity (FC) within the ventral visual object pathway as a contributing neural system. Densely sampled, longitudinal eye-tracking and resting state fMRI (rs-fMRI) data were collected from infant rhesus macaques, an important model of human social development, from birth through 6 months of age. Mean trajectories were fit for both datasets and individual trajectories from subjects with both eye-tracking and rs-fMRI data were used to test for brain-behavior relationships. Exploratory findings showed infants with greater increases in FC between left V1 to V3 visual areas have an earlier increase in eye-looking before 2 months. This relationship was moderated by social status such that infants with low social status had a stronger association between left V1 to V3 connectivity and eye-looking than high status infants. Results indicated that maturation of the visual object pathway may provide an important neural substrate supporting adaptive transitions in social visual attention during infancy.
Collapse
Affiliation(s)
- Aiden Ford
- Neuroscience Program, Emory University, Atlanta, GA, USA; Marcus Autism Center, USA.
| | | | - Arick Wang
- Emory Natl. Primate Res. Ctr., Emory Univ., Atlanta, GA, USA; Dept of Psychology, Emory University, Atlanta, GA, USA
| | - Eric Feczko
- Dept. of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, NIH, DHHS, Bethesda, MD, USA
| | - Óscar Miranda-Domínguez
- Dept. of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Longchuan Li
- Marcus Autism Center, USA; Children's Healthcare of Atlanta, GA, USA; Dept. of Pediatrics, Emory University, Sch. of Med., Atlanta, GA, USA
| | - Martin Styner
- Dept. of Psychiatry, Univ. of North Carolina, Chapel Hill, NC, USA
| | - Damien Fair
- Dept. of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Warren Jones
- Marcus Autism Center, USA; Children's Healthcare of Atlanta, GA, USA; Dept. of Pediatrics, Emory University, Sch. of Med., Atlanta, GA, USA
| | - Jocelyne Bachevalier
- Emory Natl. Primate Res. Ctr., Emory Univ., Atlanta, GA, USA; Dept of Psychology, Emory University, Atlanta, GA, USA
| | - Mar M Sánchez
- Emory Natl. Primate Res. Ctr., Emory Univ., Atlanta, GA, USA; Dept. Psychiatry & Behavioral Sciences, Emory Univ., Sch. of Med., Atlanta, GA, USA
| |
Collapse
|
50
|
Pais ML, Martins J, Castelo-Branco M, Gonçalves J. Sex Differences in Tryptophan Metabolism: A Systematic Review Focused on Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24066010. [PMID: 36983084 PMCID: PMC10057939 DOI: 10.3390/ijms24066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Tryptophan (Tryp) is an essential amino acid and the precursor of several neuroactive compounds within the central nervous system (CNS). Tryp metabolism, the common denominator linking serotonin (5-HT) dysfunctions and neuroinflammation, is involved in several neuropsychiatric conditions, including neurological, neurodevelopmental, neurodegenerative, and psychiatric diseases. Interestingly, most of those conditions occur and progress in a sex-specific manner. Here, we explore the most relevant observations about the influence of biological sex on Tryp metabolism and its possible relation to neuropsychiatric diseases. Consistent evidence suggests that women have a higher susceptibility than men to suffer serotoninergic alterations due to changes in the levels of its precursor Tryp. Indeed, female sex bias in neuropsychiatric diseases is involved in a reduced availability of this amino acid pool and 5-HT synthesis. These changes in Tryp metabolism could lead to sexual dimorphism on the prevalence and severity of some neuropsychiatric disorders. This review identifies gaps in the current state of the art, thus suggesting future research directions. Specifically, there is a need for further research on the impact of diet and sex steroids, both involved in this molecular mechanism as they have been poorly addressed for this topic.
Collapse
Affiliation(s)
- Mariana Lapo Pais
- Doctoral Program in Biomedical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|