1
|
Song Q, Wu X, Yang J, Li S, Duan J. Glial connexins in glaucoma. Front Neurosci 2025; 19:1560344. [PMID: 40270762 PMCID: PMC12014763 DOI: 10.3389/fnins.2025.1560344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Glial cells play a crucial role in maintaining central nervous system (CNS) homeostasis and facilitating the repair of neural tissue following injury. The regulation of neuroglia may serve as a safe and effective strategy for modulating neuroinflammatory responses and restoring glial homeostasis and defense functions. Given that the glial network is composed of connexin (CX) proteins, its neuroprotective role is extensive. Therefore, connexins should be considered as functional "bridges" within this network. This review examines evidence for the active involvement of glial networks in neuroinflammation under both physiological and pathological conditions and summarizes the role of CXs in glaucoma. Finally, potential therapeutic strategies for glaucoma are explored.
Collapse
Affiliation(s)
- Qiuyi Song
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
| | - Xi Wu
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
| | - Jiawei Yang
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, China
| | - Siqi Li
- Chengdu University of TCM, Chengdu, China
| | - Junguo Duan
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
2
|
Iyer AR, Sheeba V. A new player in circadian networks: Role of electrical synapses in regulating functions of the circadian clock. Front Physiol 2022; 13:968574. [PMID: 36406999 PMCID: PMC9669436 DOI: 10.3389/fphys.2022.968574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies have indicated that coherent circadian rhythms in behaviour can be manifested only when the underlying circadian oscillators function as a well-coupled network. The current literature suggests that circadian pacemaker neuronal networks rely heavily on communication mediated by chemical synapses comprising neuropeptides and neurotransmitters to regulate several behaviours and physiological processes. It has become increasingly clear that chemical synapses closely interact with electrical synapses and function together in the neuronal networks of most organisms. However, there are only a few studies which have examined the role of electrical synapses in circadian networks and here, we review our current understanding of gap junction proteins in circadian networks of various model systems. We describe the general mechanisms by which electrical synapses function in neural networks, their interactions with chemical neuromodulators and their contributions to the regulation of circadian rhythms. We also discuss the various methods available to characterize functional electrical synapses in these networks and the potential directions that remain to be explored to understand the roles of this relatively understudied mechanism of communication in modulating circadian behaviour.
Collapse
Affiliation(s)
- Aishwarya Ramakrishnan Iyer
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, United States
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- *Correspondence: Vasu Sheeba,
| |
Collapse
|
3
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
5
|
Iacobas DA, Iacobas S, Stout RF, Spray DC. Cellular Environment Remodels the Genomic Fabrics of Functional Pathways in Astrocytes. Genes (Basel) 2020; 11:genes11050520. [PMID: 32392822 PMCID: PMC7290327 DOI: 10.3390/genes11050520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
We profiled the transcriptomes of primary mouse cortical astrocytes cultured alone or co-cultured with immortalized precursor oligodendrocytes (Oli-neu cells). Filters between the cell types prevented formation of hetero-cellular gap junction channels but allowed for free exchange of the two culture media. We previously reported that major functional pathways in the Oli-neu cells are remodeled by the proximity of non-touching astrocytes and that astrocytes and oligodendrocytes form a panglial transcriptomic syncytium in the brain. Here, we present evidence that the astrocyte transcriptome likewise changes significantly in the proximity of non-touching Oli-neu cells. Our results indicate that the cellular environment strongly modulates the transcriptome of each cell type and that integration in a heterocellular tissue changes not only the expression profile but also the expression control and networking of the genes in each cell phenotype. The significant decrease of the overall transcription control suggests that in the co-culture astrocytes are closer to their normal conditions from the brain. The Oli-neu secretome regulates astrocyte genes known to modulate neuronal synaptic transmission and remodels calcium, chemokine, NOD-like receptor, PI3K-Akt, and thyroid hormone signaling, as well as actin-cytoskeleton, autophagy, cell cycle, and circadian rhythm pathways. Moreover, the co-culture significantly changes the gene hierarchy in the astrocytes.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, RG Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Correspondence: ; Tel.: +1-936-261-9926
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| | - Randy F Stout
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - David C Spray
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
6
|
Morioka N, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Role of Connexins in Chronic Pain and Their Potential as Therapeutic Targets for Next-Generation Analgesics. Biol Pharm Bull 2019; 42:857-866. [PMID: 31155584 DOI: 10.1248/bpb.b19-00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pain, including inflammatory, neuropathic pain, is a serious clinical issue. There are increasing numbers of patients with chronic pain due to the growing number of elderly and it is estimated that about 25% of the global population will develop chronic pain. Chronic pain patients are refractory to medications used to treat acute pain such as opioids and non-steroidal anti-inflammatory drugs. Furthermore, the complexity and diversity of chronic pain mechanisms hinder the development of new analgesics. Thus, a better understanding of the mechanism of chronic pain is needed, which would facilitate the development of novel analgesics based on novel mechanisms. With this goal, connexins (Cxs) could be targeted for the development of new analgesics. Connexins are proteins with 20 subtypes, and function as channels, gap junctions between cells, and hemichannels that sample the extracellular space and release molecules such as neurotransmitters. Furthermore, Cxs could have functions independent of channel activity. Recent studies have shown that Cxs could be crucial in the induction and maintenance of chronic pain, and modulation of the activity or the expression of Cxs ameliorates nociceptive hypersensitivity in multiple chronic pain models. This review will cite novel findings on the role of of Cxs in the nociceptive transduction pathway under the chronic pain state and antinociceptive effects of various molecules modulating activity or expression of Cxs. Also, the potential of Cx modulation as a therapeutic strategy for intractable chronic pain will be discussed.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences.,Institute of Pharmacology, Taishan Medical University
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| |
Collapse
|
7
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Wu Q, Han Y, Tong Q. Current Genetic Techniques in Neural Circuit Control of Feeding and Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:211-233. [PMID: 30390293 DOI: 10.1007/978-981-13-1286-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current epidemic of obesity and its associated metabolic syndromes imposes unprecedented challenges to our society. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. The obesity development is due to a disturbed homeostatic control of feeding and energy expenditure, both of which are controlled by an intricate neural network in the brain. Given the inherent complexity of brain networks in controlling feeding and energy expenditure, the understanding of brain-based pathophysiology for obesity development is limited. One key limiting factor in dissecting neural pathways for feeding and energy expenditure is unavailability of techniques that can be used to effectively reduce the complexity of the brain network to a tractable paradigm, based on which a strong hypothesis can be tested. Excitingly, emerging techniques have been involved to be able to link specific groups of neurons and neural pathways to behaviors (i.e., feeding and energy expenditure). In this chapter, novel techniques especially those based on animal models and viral vector approaches will be discussed. We hope that this chapter will provide readers with a basis that can help to understand the literatures using these techniques and with a guide to apply these exciting techniques to investigate brain mechanisms underlying feeding and energy expenditure.
Collapse
Affiliation(s)
- Qi Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Children's Nutrition Research Center, Research Service of Department of Agriculture of USA, Houston, TX, USA.
| | - Yong Han
- Department of Pediatrics, Baylor College of Medicine, USDA-ARS, Houston, TX, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
9
|
Morioka N, Fujii S, Kondo S, Zhang FF, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Downregulation of spinal astrocytic connexin43 leads to upregulation of interleukin-6 and cyclooxygenase-2 and mechanical hypersensitivity in mice. Glia 2017; 66:428-444. [DOI: 10.1002/glia.23255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Shiori Fujii
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Syun Kondo
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Fang Fang Zhang
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road; Taian Shandong 271016 China
| | - Kazuki Miyauchi
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoki Nakamura
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse IRP, Triad Suite 3305, 333 Cassell Drive; Baltimore MD 21224
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoshihiro Nakata
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| |
Collapse
|
10
|
Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Involvement of autophagy in connexin 40 reduction in the late phase of traumatic brain injury in rats. Brain Res Bull 2017; 131:100-106. [PMID: 28373150 DOI: 10.1016/j.brainresbull.2017.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
Brain trauma can activate an attenuation of connexin gap junction that is implicated in neuronal injury, but the underlying cellular mechanisms remain incompletely understood. Here, we aimed to study whether autophagy, a stress-response process for recycling of intracellular proteins and organelles, is involved in the reduction of connexin 40 (Cx40) during the late phase of traumatic brain injury (TBI). In a rat model of TBI induced by controlled cortical impact (CCI), we found that Cx40 protein in the brain started to decline at post-surgery day 2 and the decrease continued for up to day 6. Such a relatively late response of Cx40 following TBI was found to be coincident with the substantial induction of neuron degeneration and autophagy, elevated autophagic vacuole numbers, and induced LC3-II and p62 levels. At day 4 post-injury, the extent of co-localization between LC3 and Cx40 was greatly enhanced, and the reduction of Cx40 was rescued by the administration of an autophagy inhibitor chloroquine. Thus, autophagy stimulated in the injured brains may act as a suppressing mechanism to decrease gap junction protein Cx40 in the late phase of TBI.
Collapse
Affiliation(s)
- Wei Chen
- The People's Hospital of Pudong New Area, 490 South Chuanhuan Road, Chuansha New Town, Shanghai 201299, PR China
| | - Yijun Guo
- The People's Hospital of Pudong New Area, 490 South Chuanhuan Road, Chuansha New Town, Shanghai 201299, PR China
| | - Wenjin Yang
- The People's Hospital of Pudong New Area, 490 South Chuanhuan Road, Chuansha New Town, Shanghai 201299, PR China
| | - Ping Zheng
- The People's Hospital of Pudong New Area, 490 South Chuanhuan Road, Chuansha New Town, Shanghai 201299, PR China
| | - Jinsong Zeng
- The People's Hospital of Pudong New Area, 490 South Chuanhuan Road, Chuansha New Town, Shanghai 201299, PR China
| | - Wusong Tong
- The People's Hospital of Pudong New Area, 490 South Chuanhuan Road, Chuansha New Town, Shanghai 201299, PR China.
| |
Collapse
|
11
|
Amyloid Precursor Protein in Drosophila Glia Regulates Sleep and Genes Involved in Glutamate Recycling. J Neurosci 2017; 37:4289-4300. [PMID: 28314820 DOI: 10.1523/jneurosci.2826-16.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/03/2017] [Accepted: 02/27/2017] [Indexed: 12/19/2022] Open
Abstract
Amyloid precursor protein (App) plays a crucial role in Alzheimer's disease via the production and deposition of toxic β-amyloid peptides. App is heavily expressed in neurons, the focus of the vast majority of studies investigating its function. Meanwhile, almost nothing is known about App's function in glia, where it is also expressed, and can potentially participate in the regulation of neuronal physiology. In this report, we investigated whether Appl, the Drosophila homolog of App, could influence sleep-wake regulation when its function is manipulated in glial cells. Appl inhibition in astrocyte-like and cortex glia resulted in higher sleep amounts and longer sleep bout duration during the night, while overexpression had the opposite effect. These sleep phenotypes were not the result of developmental defects, and were correlated with changes in expression in glutamine synthetase (GS) in astrocyte-like glia and in changes in the gap-junction component innexin2 in cortex glia. Downregulating both GS and innexin2, but not either one individually, resulted in higher sleep amounts, similarly to Appl inhibition. Consistent with these results, the expression of GS and innexin2 are increased following sleep deprivation, indicating that GS and innexin2 genes are dynamically linked to vigilance states. Interestingly, the reduction of GS expression and the sleep phenotype observed upon Appl inhibition could be rescued by increasing the expression of the glutamate transporter dEaat1. In contrast, reducing dEaat1 expression severely disrupted sleep. These results associate glutamate recycling, sleep, and a glial function for the App family proteins.SIGNIFICANCE STATEMENT The amyloid precursor protein (App) has been intensively studied for its implication in Alzheimer's disease (AD). The attributed functions of App are linked to the physiology and cellular biology of neurons where the protein is predominantly expressed. Consequences on glia in AD are generally thought to be secondary effects of the pathology in neurons. Researchers still do not know whether App plays a role in glia in nonpathological conditions. We report here that glial App plays a role in physiology and in the regulation of sleep/wake, which has been shown recently to be involved in AD pathology. These results also associate glutamate recycling and sleep regulation, adding further complexity to the physiological role of App and to its implication in AD.
Collapse
|
12
|
Siddiqui M, Swarbreck S, Shao Q, Secor D, Peng T, Laird DW, Tyml K. Critical Role of Cx40 in Reduced Endothelial Electrical Coupling by Lipopolysaccharide and Hypoxia-Reoxygenation. J Vasc Res 2016; 52:396-403. [PMID: 27194161 DOI: 10.1159/000445772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/20/2016] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND We discovered that lipopolysaccharide (LPS, an initiating factor in sepsis) and hypoxia-reoxygenation (H/R, a confounding factor) reduce electrical coupling between microvascular endothelial cells from wild-type (WT) but not Cx40-/- mice. Because Cx40 knockout could result in nonspecific effects, this discovery may not establish the causal relationship between Cx40 and reduced coupling. Using the same cell culture model, we aimed to address this uncertainty by using the rescue-of-function approach. METHODS/RESULTS Electrical coupling between endothelial cells (hind-limb muscle origin) was determined by electrophysiology. LPS, H/R and concurrent LPS + H/R reduced coupling between WT but not Cx40-/- cells. The defect in Cx40-/- cells was rescued by ectopic expression of Cx40, after infecting the cells with adenovirus encoding Cx40. Cx40-/- cells were also engineered to express mutant Cx40 that lacked the carboxyl terminal domain beginning at residue 236 (Cx40x0394;237-358) or 344 (Cx40x0394;345-358). No response to inflammatory stimuli was observed in cells expressing either of these 2 mutants. CONCLUSION Our data establish the causal relationship between Cx40 and reduced coupling and suggest that the 345-358 amino acid motif of the Cx40 carboxyl terminal is required for reduced coupling. Cx40 may participate in compromised conducted response in the microvasculature during sepsis.
Collapse
Affiliation(s)
- Mohammad Siddiqui
- Lawson Health Research Institute, Critical Illness Research, London, Ont., Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Brockmeyer P, Hemmerlein B, Jung K, Fialka F, Brodmann T, Gruber RM, Schliephake H, Kramer FJ. Connexin subtype expression during oral carcinogenesis: A pilot study in patients with oral squamous cell carcinoma. Mol Clin Oncol 2016; 4:298-302. [PMID: 26893879 DOI: 10.3892/mco.2015.685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/10/2015] [Indexed: 11/06/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) and connexin (Cx) expression were reported in association with carcinogenesis in various types of tumours. In an earlier histomorphometric study, the protein levels of Cx subtypes 26, 43 and 45 were differentially expressed in oral squamous cell carcinoma (OSCC), corresponding lymph node metastases and dysplasia-free oral mucosa. Moreover, membrane Cx43 acted as an independent prognostic marker in OSCC tissues. This study aimed to confirm the expression of described Cx subtypes at the mRNA level. Hence, a reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis of Cx26, Cx43 and Cx45 gene expressions was performed in paired carcinoma and mucosa samples of 15 OSCC patients. Additionally, we assessed the interaction between Cx subtype expression and clinicopathological routine parameters. The RT-qPCR analysis revealed that Cx26 was downregulated in OSCC (P=0.01), while Cx43 was marginally upregulated in cancer tissue (P=0.04). Cx45 was significantly overexpressed in OSCC tissue compared with the intraoral mucosa controls (P<0.01), and remained unchanged at different tumour stages. No significant interactions between differential Cx subtype expression and clinicopathological routine parameters were observed. In conclusion, Cx regulation at the transcriptional level appears to be an early event during the initiation and development of OSCC, and is maintained during further progression. However, the mRNA-protein correlation is variable. This may be indicative of post-transcriptional, translational and degradation regulations being associated with the determination of Cx protein concentration during oral carcinogenesis.
Collapse
Affiliation(s)
- Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, D-37075 Goettingen, Germany
| | - Bernhard Hemmerlein
- Department of Pathology, University Medical Centre Goettingen, D-37075 Goettingen, Germany; Institute of Pathology, Krefeld Helios Hospital, D-47805 Krefeld, Germany
| | - Klaus Jung
- Department of Medical Statistics, University Medical Centre Goettingen, D-37075 Goettingen, Germany
| | - Florian Fialka
- Private Practice, MKG Leinetal, D-37574 Einbeck, Germany
| | - Tobias Brodmann
- Private Practice, Zahnarztpraxis am Westertor, D-37115 Duderstadt, Germany
| | - Rudolf Matthias Gruber
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, D-37075 Goettingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, D-37075 Goettingen, Germany
| | - Franz-Josef Kramer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, D-37075 Goettingen, Germany
| |
Collapse
|
14
|
Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav Immun 2015; 49:293-310. [PMID: 26116449 DOI: 10.1016/j.bbi.2015.06.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
Spinal cord astrocytes are critical in the maintenance of neuropathic pain. Connexin 43 (Cx43) expressed on spinal dorsal horn astrocytes modulates synaptic neurotransmission, but its role in nociceptive transduction has yet to be fully elaborated. In mice, Cx43 is mainly expressed in astrocytes, not neurons or microglia, in the spinal dorsal horn. Hind paw mechanical hypersensitivity was observed beginning 3days after partial sciatic nerve ligation (PSNL), but a persistent downregulation of astrocytic Cx43 in ipsilateral lumbar spinal dorsal horn was not observed until 7days post-PSNL, suggesting that Cx43 downregulation mediates the maintenance and not the initiation of nerve injury-induced hypersensitivity. Downregulation of Cx43 expression by intrathecal treatment with Cx43 siRNA also induced mechanical hypersensitivity. Conversely, restoring Cx43 by an adenovirus vector expressing Cx43 (Ad-Cx43) ameliorated PSNL-induced mechanical hypersensitivity. The sensitized state following PSNL is likely maintained by dysfunctional glutamatergic neurotransmission, as Cx43 siRNA-induced mechanical hypersensitivity was attenuated with intrathecal treatment of glutamate receptor antagonists MK801 and CNQX, but not neurokinin-1 receptor antagonist CP96345 or the Ca(2+) channel subunit α2δ1 blocker gabapentin. The source of this dysfunctional glutamatergic neurotransmission is likely decreased clearance of glutamate from the synapse rather than increased glutamate release into the synapse. Astrocytic expression of glutamate transporter GLT-1, but not GLAST, and activity of glutamate transport were markedly decreased in mice intrathecally injected with Cx43-targeting siRNA but not non-targeting siRNA. Glutamate release from spinal synaptosomes prepared from mice treated with either Cx43-targeting siRNA or non-targeting siRNA was unchanged. Intrathecal injection of Ad-Cx43 in PSNL mice restored astrocytic GLT-1 expression. The cytokine tumor necrosis factor (TNF) has been implicated in the induction of central sensitization, particularly through its actions on astrocytes, in the spinal cord following peripheral injury. Intrathecal injection of TNF in naïve mice induced the downregulation of both Cx43 and GLT-1 in spinal dorsal horn, as well as hind paw mechanical hypersensitivity, as observed in PSNL mice. Conversely, intrathecal treatment of PSNL mice with the TNF inhibitor etanercept prevented not only mechanical hypersensitivity but also the downregulation of Cx43 and GLT-1 expression in astrocytes. The current findings indicate that spinal astrocytic Cx43 are essential for the maintenance of neuropathic pain following peripheral nerve injury and suggest modulation of Cx43 as a novel target for developing analgesics for neuropathic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoya Kitamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
15
|
Maqbool R, Rashid R, Ismail R, Niaz S, Chowdri NA, Hussain MU. The carboxy-terminal domain of connexin 43 (CT-Cx43) modulates the expression of p53 by altering miR-125b expression in low-grade human breast cancers. Cell Oncol (Dordr) 2015; 38:443-51. [PMID: 26335100 DOI: 10.1007/s13402-015-0240-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Connexin 43 (Cx43) is a widely expressed gap junction protein. It can also regulate various gap-junction independent processes, including cellular proliferation. The latter regulatory functions have been attributed to its carboxy-terminal domain, CT-Cx43. CT-Cx43 has been found to be expressed independent of full-length Cx43 in various cell types. Its nuclear localization has additionally raised the possibility that it may regulate the expression of particular genes, including miRNAs, known play a role in the regulation of cellular proliferation. Here, we set out to uncover the molecular mechanism(s) underlying CT-Cx43 mediated gene (de-)regulation in human breast cancer. METHODS Western blotting and quantitative real time PCR were carried to assess the expression of CT-Cx43 and miR-125b in a panel of 60 primary human breast cancer tissues and its paired normal adjacent tissues. In addition, CT-Cx43 was exogenously expressed in the breast cancer-derived cell line MCF-7 and its effect on the expression of miR-125b and its downstream target p53 were evaluated, as well as its effect on cellular proliferation and death using MTT and LDH assays, respectively. RESULTS We found that CT-Cx43, but not full-length Cx43, was down-regulated in low grade human breast cancers. In addition, we found that the tumor suppressor protein p53 exhibited a decreased expression in the CT-Cx43 down-regulated samples. Interestingly, we found that miR-125b, a negative regulator of p53, exhibited an inverse expression relationship with CT-Cx43 in the breast cancer samples tested. This inverse relationship was confirmed by exogenous expression of CT-Cx43 in MCF-7 cells. In addition, we found that CT-Cx43 up-regulation and subsequent miR-125b down-regulation resulted in a decreased proliferation of MCF-7 cells. CONCLUSIONS Our data suggest a mechanism by which CT-Cx43 may regulate cell proliferation. Targeting of CT-Cx43 and/or miR-125b may be instrumental for therapeutic intervention in human breast cancer.
Collapse
Affiliation(s)
- Raihana Maqbool
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Rabiya Rashid
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Rehana Ismail
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Saif Niaz
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nisar Ahmad Chowdri
- Department of General and Minimal Invasive Surgery, SKIMS, Srinagar, Soura, India
| | - Mahboob Ul Hussain
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
16
|
Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene 2015; 35:1504-16. [DOI: 10.1038/onc.2015.210] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/03/2023]
|
17
|
Lizarbe B, López-Larrubia P, Cerdán S. fDWI Evaluation of Hypothalamic Appetite Regulation Pathways in Mice Genetically Deficient in Leptin or Neuropeptide Y. Neurochem Res 2015; 40:2628-38. [DOI: 10.1007/s11064-015-1596-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/15/2015] [Accepted: 04/30/2015] [Indexed: 12/30/2022]
|
18
|
Gago-Fuentes R, Fernández-Puente P, Megias D, Carpintero-Fernández P, Mateos J, Acea B, Fonseca E, Blanco FJ, Mayan MD. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Mol Cell Proteomics 2015; 14:1831-45. [PMID: 25903580 DOI: 10.1074/mcp.m115.050211] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that articular chondrocytes in tissue contain long cytoplasmic arms that physically connect two distant cells. Cell-to-cell communication occurs through connexin channels termed Gap Junction (GJ) channels, which achieve direct cellular communication by allowing the intercellular exchange of ions, small RNAs, nutrients, and second messengers. The Cx43 protein is overexpressed in several human diseases and inflammation processes and in articular cartilage from patients with osteoarthritis (OA). An increase in the level of Cx43 is known to alter gene expression, cell signaling, growth, and cell proliferation. The interaction of proteins with the C-terminal tail of connexin 43 (Cx43) directly modulates GJ-dependent and -independent functions. Here, we describe the isolation of Cx43 complexes using mild extraction conditions and immunoaffinity purification. Cx43 complexes were extracted from human primary articular chondrocytes isolated from healthy donors and patients with OA. The proteomic content of the native complexes was determined using LC-MS/MS, and protein associations with Cx43 were validated using Western blot and immunolocalization experiments. We identified >100 Cx43-associated proteins including previously uncharacterized proteins related to nucleolar functions, RNA transport, and translation. We also identified several proteins involved in human diseases, cartilage structure, and OA as novel functional Cx43 interactors, which emphasized the importance of Cx43 in the normal physiology and structural and functional integrity of chondrocytes and articular cartilage. Gene Ontology (GO) terms of the proteins identified in the OA samples showed an enrichment of Cx43-interactors related to cell adhesion, calmodulin binding, the nucleolus, and the cytoskeleton in OA samples compared with healthy samples. However, the mitochondrial proteins SOD2 and ATP5J2 were identified only in samples from healthy donors. The identification of Cx43 interactors will provide clues to the functions of Cx43 in human cells and its roles in the development of several diseases, including OA.
Collapse
Affiliation(s)
- Raquel Gago-Fuentes
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Patricia Fernández-Puente
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Diego Megias
- ‖Confocal Microscopy Core Unit. Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Paula Carpintero-Fernández
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Jesus Mateos
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Benigno Acea
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Eduardo Fonseca
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Francisco Javier Blanco
- §Rheumatology Division, ProteoRed/ISCIII, Proteomics Group, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain; ¶Rheumatology Division, CIBER-BBN/ISCIII, Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC. University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Maria Dolores Mayan
- From the ‡CellCOM Research Group. Instituto de Investigación Biomédica A Coruña (INIBIC), XXIAC, University of A Coruña. Xubias de Arriba 84, 15006 A Coruña, Spain;
| |
Collapse
|
19
|
Brockmeyer P, Jung K, Perske C, Schliephake H, Hemmerlein B. Membrane connexin 43 acts as an independent prognostic marker in oral squamous cell carcinoma. Int J Oncol 2014; 45:273-81. [PMID: 24788723 DOI: 10.3892/ijo.2014.2394] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the expression and localization of connexin (Cx) 26, -43 and -45 in a group of 35 patients with primary oral squamous cell carcinoma (OSCC) with the objective of making a more accurate disease prognosis. We analysed the expression of connexins in tissue samples of primary OSCC, matching oral mucosa free of dysplasia, and its associated lymph node metastases (LNM) by semi-quantitative immunohistochemistry of membrane, cytoplasmic and nuclear connexin expression. The levels of expression were correlated with the overall survival time (OS). Cx43 was overexpressed in tumour cells compared to epithelia in dysplasia-free mucosa. High membrane expression of Cx43 on tumour cells was the only statistically significant and independent prognostic factor of short OS (P=0.0088). Membrane expression of Cx43 in matching dysplasia-free mucosa acted similarly, but did not reach statistical significance (P=0.059). No correlation was found between the Cx26, Cx45 expression and OS. We conclude that Cx43 expression in dysplasia-free mucosa may indicate a very early stage of tumour promotion. Although overexpression of Cx43 is found in invasive tumours we only found membrane Cx43 expression to correlate with OS. This observation suggests that cytoplasmic Cx43 serves as storage and only membrane translocation may promote the formation of gap junctions and gap junctional intercellular communication (GJIC) with prognostic relevance.
Collapse
Affiliation(s)
- Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University of Goettingen, D-37075 Goettingen, Germany
| | - Klaus Jung
- Department of Medical Statistics, University of Goettingen, D-37073 Goettingen, Germany
| | - Christina Perske
- Department of Pathology, University of Goettingen, D-37075 Goettingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University of Goettingen, D-37075 Goettingen, Germany
| | - Bernhard Hemmerlein
- Department of Pathology, University of Goettingen, D-37075 Goettingen, Germany
| |
Collapse
|
20
|
De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2211-32. [PMID: 24768716 DOI: 10.1016/j.bbamcr.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/21/2022]
Abstract
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N-I bus 802, B-3000 Leuven, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
21
|
Rinaldi F, Hartfield EM, Crompton LA, Badger JL, Glover CP, Kelly CM, Rosser AE, Uney JB, Caldwell MA. Cross-regulation of Connexin43 and β-catenin influences differentiation of human neural progenitor cells. Cell Death Dis 2014; 5:e1017. [PMID: 24457961 PMCID: PMC4040652 DOI: 10.1038/cddis.2013.546] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 12/03/2022]
Abstract
Connexin43 (Cx43) is the most widely and abundantly expressed gap junction (GJ) protein and it is strongly associated with the regulation of cell cycle progression. Emerging roles for Cx43 in cell adhesion and migration during neural differentiation have also been recently recognized, and this has emphasized the involvement of Cx43 in different physiological process beyond its role as a GJ protein. In this study, we explore the function of Cx43 in the differentiation of human neural progenitor cells (hNPCs) using viral vectors that mediate the overexpression or knockdown of the protein. Results showed that in the absence of this protein fetal cortex-derived hNPCs differentiated toward a neuronal phenotype at expenses of a glial phenotype. Furthermore, the silencing of Cx43 did not affect hNPC proliferation rate or numbers of apoptotic cells. The increase in the number of neurons was not recapitulated when GJ intercellular communications were pharmacologically blocked, and this suggested that Cx43 was influencing hNPCs differentiation with a GJ-independent effect. In addition, Cx43 knockdown significantly increased β-catenin signaling, which has been shown to regulate the transcription of pro-neuronal genes during embryonic neural development. Our results add further support to the hypothesis that Cx43 protein itself regulates key signaling pathways during development and neurogenesis beyond its role as GJ protein.
Collapse
Affiliation(s)
- F Rinaldi
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - E M Hartfield
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - L A Crompton
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - J L Badger
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - C P Glover
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - C M Kelly
- Brain Repair Group, School of Biosciences, Life Science Building, University of Cardiff, Cardiff, UK
| | - A E Rosser
- Brain Repair Group, School of Biosciences, Life Science Building, University of Cardiff, Cardiff, UK
- Department of Neurology, School of Medicine, University of Cardiff, Cardiff, UK
| | - J B Uney
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - M A Caldwell
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 2013; 7:272. [PMID: 24399932 PMCID: PMC3871966 DOI: 10.3389/fncel.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.
Collapse
Affiliation(s)
- David Davila
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Karine Thibault
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Todd A Fiacco
- Department of Cell Biology and Neuroscience, and Center for Glial-Neuronal Interactions and Program in Cellular, Molecular and Developmental Biology, University of California at Riverside Riverside, CA, USA
| | - Cendra Agulhon
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| |
Collapse
|
23
|
Wan CK, O'Carroll SJ, Kim SL, Green CR, Nicholson LFB. Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells. CELL BIOLOGY INTERNATIONAL REPORTS 2013; 20:13-23. [PMID: 25505515 PMCID: PMC4255794 DOI: 10.1002/cbi3.10005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/17/2013] [Indexed: 12/23/2022]
Abstract
While connexins (Cxs) are thought to be involved in differentiation, their expression and role has yet to be fully elucidated. We investigated the temporal expression of Cx30, Cx36 and Cx43 in two in vitro models of neuronal differentiation: human NT2/D1 and murine P19 cells, and the spatial localisation of Cx30 and Cx43 in these models. A temporal Cx43 downregulation was confirmed in both cell lines during RA-induced neuronal differentiation using RT-PCR (P < 0.05) preceding an increase in neuronal doublecortin protein. RT-PCR showed Cx36 was upregulated twofold in NT2/D1 cells (P < 0.05) and sixfold in P19 cells (P < 0.001) during neuronal differentiation. Cx30 exhibited a transient peak in expression midway through the timecourse of differentiation increasing threefold in NT2/D1 cells (P < 0.001) and eightfold in P19 cells (P < 0.01). Qualitative immunocytochemistry was used to examine spatiotemporal patterns of Cx protein distribution alongside neuronal differentiation markers. The temporal immunolabelling pattern was similar to that seen using RT-PCR. Cx43 was observed intracellularly and on cell surfaces, while Cx30 was seen as puncta. Spatially Cx43 was seen on doublecortin-negative cells, which may indicate Cx43 downregulation is requisite for differentiation in these models. Conversely, Cx30 puncta were observed on doublecortin-positive and -negative cells in NT2/D1 cells and examination of the Cx30 peak showed puncta also localized to nestin-positive cells, with few puncta on MAP2-positive cells. In P19 cells Cx30 was localized on clusters of cells surrounded by MAP2- and doublecortin-positive processes. The expression pattern of Cx30 indicates a role in neuronal differentiation; the nature of that role warrants future investigation.
Collapse
Affiliation(s)
- Carthur K Wan
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| | - Simon J O'Carroll
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| | - Sue-Ling Kim
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| | - Colin R Green
- Faculty of Medical and Health Sciences, Department of Ophthalmology, The University of Auckland Auckland, 92019, New Zealand
| | - Louise F B Nicholson
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| |
Collapse
|
24
|
Giaume C, Leybaert L, Naus CC, Sáez JC. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 2013; 4:88. [PMID: 23882216 PMCID: PMC3713369 DOI: 10.3389/fphar.2013.00088] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022] Open
Abstract
Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050 Paris, France ; University Pierre et Marie Curie Paris, France ; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University Paris, France
| | | | | | | |
Collapse
|
25
|
Opposing roles of connexin43 in glioma progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2058-67. [DOI: 10.1016/j.bbamem.2011.10.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/17/2011] [Accepted: 10/24/2011] [Indexed: 12/12/2022]
|
26
|
Abstract
Spinal cord injury (SCI) is often complicated by secondary injury as a result of the innate inflammatory response to tissue trauma and swelling. Previous studies have shown that excessive ATP release from peritraumatic regions contributes to the inflammatory response to SCI by activation of low-affinity P2X7 receptors. Because connexin hemichannels constitute an important route for astrocytic ATP release, we here evaluated the impact on post-traumatic ATP release of deletion of connexins (Cx30/Cx43) in astrocytes. In vivo bioluminescence imaging showed a significant reduction in ATP release after weight-drop injury in mice with deletion of Cx43 compared with Cx43-expressing littermates, both on a Cx30 knockout background. Moreover, astrogliosis and microglia activation were reduced in peritraumatic areas of those mice lacking Cx43; motor recovery was also significantly improved, and the traumatic lesion was smaller. Combined, these observations are consistent with a contribution by astrocytic hemichannels to post-traumatic ATP release that aggravates secondary injury and restrains functional recovery after experimental spinal cord injury. Connexins may thereby constitute a new therapeutic target in spinal cord injury.
Collapse
|
27
|
Karpuk N, Burkovetskaya M, Fritz T, Angle A, Kielian T. Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 2011; 31:414-25. [PMID: 21228152 PMCID: PMC3089986 DOI: 10.1523/jneurosci.5247-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/23/2010] [Indexed: 11/21/2022] Open
Abstract
Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.
Collapse
Affiliation(s)
- Nikolay Karpuk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Maria Burkovetskaya
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Teresa Fritz
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Amanda Angle
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
28
|
Abstract
BACKGROUND Connexins are a family of transmembrane proteins that are widely expressed in the human body. Connexins play an important role in cell-cell communication and homeostasis in various tissues by forming gap junction channels, which enable a direct passage of ions or metabolites from one cell to another. Twenty-one different connexins are expressed in humans, each having distinct expression patterns and regulation properties. Knowledge on this family of proteins can be gained by making an inventory of mutations and associated diseases in human. DESIGN PubMed and other relevant databases were searched. In addition, key review articles were screened for relevant original publications. Sections of representative organs were photographed and annotated. RESULTS The crucial role of connexins is highlighted by the discovery of mutations in connexin genes which cause a variety of disorders such as myelin-related diseases, skin disorders, hearing loss, congenital cataract, or more complex syndromes such as the oculodendrodigital dysplasia. This review systematically addresses current knowledge on mutations in connexin genes and disease, focusing on the correlation between genetic defects, cellular phenotypes and clinical manifestations. CONCLUSIONS The review of diseases caused by mutations in connexin genes highlights the essential nature of connexin function and intercellular communication in tissue homeostasis.
Collapse
Affiliation(s)
- Anna Pfenniger
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
29
|
WASSEFF SAMEH, ABRAMS CHARLESK, SCHERER STEVENS. A dominant connexin43 mutant does not have dominant effects on gap junction coupling in astrocytes. NEURON GLIA BIOLOGY 2010; 6:213-23. [PMID: 21375791 PMCID: PMC3848784 DOI: 10.1017/s1740925x11000019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dominant mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause oculodentodigital dysplasia (ODDD), a syndrome affecting multiple tissues, including the central nervous system (CNS). We investigated the effects of the G60S mutant, which causes a similar, dominant phenotype in mice (Gja1(Jrt/+)). Astrocytes in acute brain slices from Gja1(Jrt/+) mice transfer sulforhodamine-B comparably to that in their wild-type (WT) littermates. Further, astrocytes and cardiomyocytes cultured from Gja1(Jrt/+) mice showed a comparable transfer of lucifer yellow to those from WT mice. In transfected cells, the G60S mutant formed gap junction (GJ) plaques but not functional channels. In co-transfected cells, the G60S mutant co-immunoprecipitated with WT Cx43, but did not diminish GJ coupling as measured by dual patch clamp. Thus, whereas G60S has dominant effects, it did not appreciably reduce GJ coupling.
Collapse
Affiliation(s)
- SAMEH WASSEFF
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - CHARLES K. ABRAMS
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - STEVEN S. SCHERER
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 2010; 7:338-53. [PMID: 20880499 PMCID: PMC2982258 DOI: 10.1016/j.nurt.2010.07.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 12/28/2022] Open
Abstract
Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise-that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review focuses on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases, and critically re-evaluates our concepts of the functional properties of astrocytes and relates these functions and properties to the intricate morphology of these cells.
Collapse
Affiliation(s)
| | - Maiken Nedergaard
- grid.16416.340000000419369174Center for Translational Neuromedicine, Department of Neurosurgery, University of Prochester Medical School, 601 Elmwood Avenue, 114642 Rochester, New York
| |
Collapse
|
31
|
Abstract
Before the roles of normal, mature astrocytes in the mammalian CNS can be discussed, we first need to define these cells. A definition proposed here is that such a class is best defined as consisting of the protoplasmic and fibrous astrocytes of the gray and white matter, respectively, the Bergmann glia of the molecular layer of the cerebellum, and the Muller cells of the retina. It is concluded that the established properties and functions of these mature astrocytes are essential support for neuronal activity, in the sense of Claude Bernard's principle of maintaining "la fixité du milieu intérieur." This milieu would be the extracellular space common to astrocytes and neurons. More specialized roles, such as the recently described "light guides" for retinal Muller cells can also be viewed as support and facilitation. The ECS is also, of course, common to all other neural cells, but here, I limit the discussion to perturbations of the ECS caused only by neuronal activities and the resolution of these perturbations by astrocytes, such as control of increases in extracellular K(+), uptake of excitatory amino acids, and alterations in blood vessel diameter and therefore blood flow. It is also proposed how this fits into the current morphological picture for the protoplasmic astrocytes as having small cell bodies with up to 100,000 process endings that occupy separate territories on which the processes of neighboring astrocytes scarcely intrude.
Collapse
|
32
|
Abstract
The idea that the gap junction family of proteins, connexins, are tumour suppressors has been widely supported through numerous cancer models. However, the paradigm that connexins and enhanced gap junctional intercellular communication is of universal benefit by restricting tumour growth has been challenged by more recent evidence that suggests a role for connexins in facilitating tumour progression and metastasis. Therefore, connexins might be better classified as conditional tumour suppressors that modulate cell proliferation, as well as adhesion and migration.
Collapse
Affiliation(s)
- Christian C Naus
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T-1Z3, Canada.
| | | |
Collapse
|
33
|
Cochrane K, Berestecky JM, Kitamura C, Lau AF. Monoclonal antibodies against the connexin43-interacting protein CIP85. Hybridoma (Larchmt) 2010; 28:355-61. [PMID: 19857117 DOI: 10.1089/hyb.2009.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The connexin43 (Cx43)-interacting protein of 85 kDa CIP85 has been identified as an interacting partner for the cytoplasmically located, carboxyl-terminal tail of Cx43. Further characterization has shown that the interaction between Cx43 and CIP85 is associated with increased turnover of Cx43 that may be lysosome-mediated. This suggests that CIP85 may regulate the endocytic trafficking of Cx43 from the plasma membrane and its degradation, and thus, indirectly influence gap junction function. This study reports the first successful production of monoclonal antibodies (MAbs) against CIP85. These antibodies are useful in detecting CIP85 expressed in several species in immunoblotting, immunoprecipitation, and immunofluorescence microscopy experiments. These MAbs will assist in defining the functional roles of CIP85, including its influence on Cx43 trafficking and intercellular communication through Cx43-containing gap junctions.
Collapse
Affiliation(s)
- Kimberly Cochrane
- Natural Products and Cancer Biology Program, Cancer Research Center of Hawaii, Honolulu, Hawaii, USA
| | | | | | | |
Collapse
|
34
|
Niger C, Howell FD, Stains JP. Interleukin-1beta increases gap junctional communication among synovial fibroblasts via the extracellular-signal-regulated kinase pathway. Biol Cell 2009; 102:37-49. [PMID: 19656083 PMCID: PMC2874634 DOI: 10.1042/bc20090056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The gap junction protein, Cx43 (connexin 43), has been implicated in the aetiology of osteoarthritis. Studies have revealed that the size and number of gap junctions increase in synovial biopsies from patients with osteoarthritis. Furthermore, pharmacological inhibition of Cx43 function has been shown to reduce IL-1beta (interleukin-1beta)-induced metalloproteinase production by synovial fibroblasts in vitro. RESULTS In the present study, we examined the link between IL-1beta and Cx43 function. We demonstrated that treatment of a rabbit synovial fibroblast cell line with IL-1beta markedly increased the level of the Cx43 protein in a concentration- and time-dependent manner. The impact on Cx43 protein levels appeared to occur post-transcriptionally, as mRNA levels are unaffected by IL-1beta administration. Additionally, we showed by fluorescence microscopy that IL-1beta alters the cellular distribution of Cx43 to cell-cell junctions and is concomitant with a striking increase in gap junction communication. Furthermore, we demonstrated that the increase in Cx43 protein, and the associated change in protein localization and gap junction communication following IL-1beta treatment, are dependent upon activation of the ERK (extracellular-signal-regulated kinase) signalling cascade. CONCLUSION These data show that IL-1beta acts through the ERK signalling cascade to alter the expression and function of Cx43 in synovial fibroblasts.
Collapse
Affiliation(s)
- Corinne Niger
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Floyd D. Howell
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
35
|
Hewett JA. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem 2009; 110:1717-36. [PMID: 19627442 DOI: 10.1111/j.1471-4159.2009.06288.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes are a major component of the resident non-neuronal glial cell population of the CNS. They are ubiquitously distributed throughout the brain and spinal cord, where they were initially thought to function in both structural and homeostatic capacities, providing the framework and environment in which neurons performed their parenchymal duties. However, this stroma-like view of astrocytes is no longer satisfactory. Mounting evidence particularly within the last decade indicates that astrocytes do not simply support neuronal activity but directly contribute to it. Congruent with this evolving view of astrocyte function in information processing is the emergent notion that these glial cells are not a homogeneous population of cells. Thus, astrocytes in various anatomically distinct regions of the normal CNS possess unique phenotypic characteristics that may directly influence the particular neuronal activities that define these regions. Remarkably, regional populations of astrocytes appear to exhibit local heterogeneity as well. Many phenotypic traits of the astrocyte lineage are responsive to local environmental cues (i.e., are adaptable), suggesting that plasticity contributes to this diversity. However, compelling evidence suggests that astrocytes arise from multiple distinct progenitor pools in the developing CNS, raising the intriguing possibility that some astrocyte heterogeneity may result from intrinsic differences between these progenitors. The purpose of this review is to explore the evidence for and mechanistic determinants of regional and local astrocyte diversity.
Collapse
Affiliation(s)
- James A Hewett
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
36
|
Young NJ, Becker DL, Fleck RA, Goodship AE, Patterson-Kane JC. Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function. Matrix Biol 2009; 28:311-23. [PMID: 19481603 DOI: 10.1016/j.matbio.2009.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 04/15/2009] [Accepted: 05/21/2009] [Indexed: 11/18/2022]
Abstract
Energy-storing tendons including the equine superficial digital flexor tendon (SDFT) contribute to energetic efficiency of locomotion at high-speed gaits, but consequently operate close to their physiological strain limits. Significant evidence of exercise-induced microdamage has been found in the SDFT which appears not to exhibit functional adaptation; the degenerative changes have not been repaired by the tendon fibroblasts (tenocytes), and are proposed to accumulate and predispose the tendon to rupture during normal athletic activity. The anatomically opposing common digital extensor tendon (CDET) functions only to position the digit, experiencing significantly lower levels of strain and is rarely damaged by exercise. A number of studies have indicated that tenocytes in the adult SDFT are less active in collagen synthesis and turnover than those in the immature SDFT or the CDET. Gap junction intercellular communication (GJIC) is known to be necessary for strain-induced collagen synthesis by tenocytes. We postulate therefore that expression of GJ proteins connexin 43 and 32 (Cx43; Cx32), GJIC and associated collagen expression levels are high in the SDFT and CDET of immature horses, when the SDFT in particular grows significantly in cross-sectional area, but reduce significantly during maturation in the energy-storing tendon only. The hypothesis was tested using tissue from the SDFT and CDET of foetuses, foals, and young adult Thoroughbred horses. Cellularity and the total area of both Cx43 and Cx32 plaques/mm(2) of tissue reduced significantly with maturation in each tendon. However, the total Cx43 plaque area per tenocyte significantly increased in the adult CDET. Evidence of recent collagen synthesis in the form of levels of neutral salt-soluble collagen, and collagen type I mRNA was significantly less in the adult compared with the immature SDFT; procollagen type I amino-propeptide (PINP) and procollagen type III amino-propeptide (PIIINP) levels per mm(2) of tissue and PINP expression per tenocyte also decreased with maturation in the SDFT. In the CDET PINP and PIIINP expression per tenocyte increased in the adult, and exceeded those in the adult SDFT. The level of PINP per mm(2) was greater in the adult CDET than in the SDFT despite the higher cellularity of the latter tendon. In the adult SDFT, levels of PIIINP were greater than those of PINP, suggesting relatively greater synthesis of a weaker form of collagen previously associated with microdamage. Tenocytes in monolayers showed differences in Cx43 and Cx32 expression compared with those in tissue, however there were age- and tendon-specific phenotypic differences, with a longer time for 50% recovery of fluorescence after photobleaching in adult SDFT cells compared with those from the CDET and immature SDFT. As cellularity reduces following growth in the SDFT, a failure of the remaining tenocytes to show a compensatory increase in GJ expression and collagen synthesis may explain why cell populations are not able to respond to exercise and to repair microdamage in some adult athletes. Enhancing GJIC in mature energy-storing tendons could provide a strategy to increase the cellular synthetic and reparative capacity.
Collapse
Affiliation(s)
- N J Young
- Department of Veterinary Clinical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol 2009; 104:631-42. [DOI: 10.1007/s00395-009-0029-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/04/2009] [Accepted: 04/08/2009] [Indexed: 01/17/2023]
|
38
|
Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 2009; 7:4. [PMID: 19284610 PMCID: PMC2660342 DOI: 10.1186/1478-811x-7-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 03/12/2009] [Indexed: 01/03/2023] Open
Abstract
Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | | | | | |
Collapse
|
39
|
Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M. Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 2009; 11:323-38. [PMID: 18834328 DOI: 10.1089/ars.2008.2153] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer was one of the first pathologies to be associated with gap-junction defect. Despite the evidence accumulated over the last 40-year period, the molecular involvement of gap junctions and their structural proteins (connexins) in cancer has not been elucidated. The lack of a satisfying explanation may come from the complexity of the disease, evolving through various stages during tumor progression, with cancer cells exhibiting different phenotypes. Here, the question of the involvement of gap junctions has been readdressed by considering the connexin expression/function level at different fundamental stages of carcinogenesis (cell proliferation, cell invasion, and cancer cell dissemination). By performing this analysis, it becomes clear that gap junctions are probably differently involved, depending on the stage of the cancer progression considered. In particular, the most recent data suggest that connexins may act on cell growth by controlling gene expression through a variety of processes (independent of or dependent on the gap-junctional communication capacity). During invasion, connexins have been demonstrated to enhance adherence of cancer cells to the stroma, migration, and probably their dissemination by establishing communication with the endothelial barrier. All these data present a complex picture of connexins in various functions, depending on the cell phenotype.
Collapse
Affiliation(s)
- Laurent Cronier
- Institute of Cellular Physiology and Biology, University of Poitiers/CNRS, Poitiers, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
Gap junctions are intercellular channels formed by hemichannels (or connexons) from two neighboring cells. Hemichannels, which are composed of proteins called connexins, can function as conduits of ATP and glutamate, and interact with adhesion molecules and other signaling elements. As a result, their functional repertoire is expanding into other roles, such as control of cell growth or cell migration. Here we further elucidate the involvement of hemichannels in cell-cell adhesion by analyzing how connexins regulate cell adhesion without the need of gap junction formation. Using a short-term aggregation assay with C6-glioma and HeLa cells stably transfected with connexin (Cx) 43 or Cx32, we found that the connexin type dictates the ability of these cells to aggregate, even though these two cell types do not usually adhere to each other. We have also found that high expression of Cx43, but not Cx32 hemichannels, can drive adhesion of cells expressing low levels of Cx43. Aggregation was not dependent on high levels of extracellular Ca(2+), as Ca(2+) removal did not change the aggregation of Cx43-expressing cells. Our data confirm that connexin hemichannels can establish adhesive interactions without the need for functional gap junctions, and support the concept that connexins act as adhesion molecules independently of channel formation.
Collapse
Affiliation(s)
- M L Cotrina
- Department of Neurosurgery, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
41
|
Lichter-Konecki U. Profiling of astrocyte properties in the hyperammonaemic brain: shedding new light on the pathophysiology of the brain damage in hyperammonaemia. J Inherit Metab Dis 2008; 31:492-502. [PMID: 18683079 DOI: 10.1007/s10545-008-0834-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Acute hyperammonaemia (HA) causes cerebral oedema and severe brain damage in patients with urea cycle disorders (UCDs) or acute liver failure (ALF). Chronic HA is associated with developmental delay and intellectual disability in patients with UCDs and with neuropsychiatric symptoms in patients with chronic liver failure. Treatment often cannot prevent severe brain injury and neurological sequelae. The causes of the brain oedema in hyperammonaemic encephalopathy (HAE) have been subject of intense controversy among physicians and scientists working in this field. Currently favoured hypotheses are astrocyte swelling due to increased intracellular glutamine content and neuronal cell death due to excitotoxicity caused by elevated extracellular glutamate levels. While many researchers focus on these mechanisms of cytotoxicity, others emphasize vascular causes of brain oedema. New data gleaned from expression profiling of astrocytes acutely isolated from hyperammonaemic mouse brains point to disturbed water and potassium homeostasis as regulated by astrocytes at the brain microvasculature and in the perisynaptic space as a potential mechanism of brain oedema development in hyperammonaemia.
Collapse
Affiliation(s)
- U Lichter-Konecki
- Center for Neuroscience Research, and Division of Genetics & Metabolism, Children's National Medical Center, Washington, DC 20010-2970, USA.
| |
Collapse
|
42
|
Abstract
Astrocytes are electrically nonexcitable cells that communicate by means of Ca(2+) signaling. Long-distance intercellular Ca(2+) waves are initiated by release of ATP and activation of purinergic receptors on nearby cells. Previous studies have implicated connexin 43 (Cx43) in ATP release, but definitive proof that ATP exits through Cx43 hemichannels does not exist. Here, through several alternative approaches, we show that ATP anions can permeate through Cx43 hemichannels. First, openings of Cx43 hemichannels were detected in both cell-attached and inside-out patch recordings in C6 cells expressing Cx43, but not in C6 cells expressing Cx43-eGFP (enhanced green fluorescent protein) or a C-terminus truncation mutant of Cx43. Second, Cx43 hemichannel openings were inhibited by three structurally different gap-junction channel blockers, but not by the P2X(7) blocker Brilliant blue G. Third, bioluminescence imaging of ATP combined with single-channel recording in the inside-out patch configuration showed that ATP efflux coincided with channel openings and was absent when the Cx43 hemichannel was closed. Fourth, ion replacement experiments confirmed that Cx43 hemichannels are permeable to ATP. In summary, these observations provide the first direct evidence for efflux of ATP through Cx43 hemichannels. Furthermore, a putative Cx43 hemichannel with characteristics identical to the Cx43 hemichannel in C6 cells was identified in the membrane of hippocampal astrocytes in acutely prepared slices.
Collapse
|
43
|
Lichter-Konecki U, Mangin JM, Gordish-Dressman H, Hoffman EP, Gallo V. Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia 2008; 56:365-77. [PMID: 18186079 DOI: 10.1002/glia.20624] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute hyperammonemia (HA) causes cerebral edema and brain damage in children with urea cycle disorders (UCDs) and in patients in acute liver failure. Chronic HA is associated with developmental delay and mental retardation in children with UCDs, and with neuropsychiatric symptoms in patients with chronic liver failure. Astrocytes are a major cellular target of hyperammonemic encephalopathy, and changes occurring in these cells are thought to be causally related to the brain edema of acute HA. To study the effect of HA on astrocytes in vivo, we crossed the Otc(spf) mouse, a mouse with the X-linked UCD ornithine transcarbamylase (OTC) deficiency, with the hGFAP-EGFP mouse, a mouse selectively expressing green fluorescent protein in astrocytes. We used FACS to purify astrocytes from the brains of hyperammonemic and healthy Otcspf/GFAP-EGFP mice. RNA isolated from these astrocytes was used in microarray expression analyses and qRT-PCR. When compared with healthy littermates, we observed a significant downregulation of the gap-junction channel connexin 43 (Cx43) the water channel aquaporin 4 (Aqp4) genes, and the astrocytic inward-rectifying potassium channel (Kir) genes Kir4.1 and Kir5.1 in hyperammonemic mice. Aqp4, Cx43, and Kir4.1/Kir5.1 are co-localized to astrocytic end-feet at the brain vasculature, where they regulate potassium and water transport. Since, NH4+ ions can permeate water and K+-channels, downregulation of these three channels may be a direct effect of elevated blood ammonia levels. Our results suggest that alterations in astrocyte-mediated water and potassium homeostasis in brain may be key to the development of the brain edema.
Collapse
Affiliation(s)
- Uta Lichter-Konecki
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
44
|
Iacobas DA, Iacobas S, Urban-Maldonado M, Scemes E, Spray DC. Similar transcriptomic alterations in Cx43 knockdown and knockout astrocytes. CELL COMMUNICATION & ADHESION 2008; 15:195-206. [PMID: 18649190 PMCID: PMC2583241 DOI: 10.1080/15419060802014222] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous findings of widespread transcriptomic alteration in tissues from connexin null mice raise the issue of whether the transcriptomic changes are directly due to connexin down-regulation or to "compensatory" developmental alterations for the missing gene. To start addressing this question, the authors compared with wild-type control the gene expression profiles of connexin 43 (Cx43) knockout and Cx43siRNA knockdown wild-type cortical astrocytes. Array analysis revealed remarkable parallelism of transcriptomic changes in knockout and knockdown astrocytes, with similarly altered genes being located on all chromosomes and encoding proteins involved in a wide diversity of cell functions. Moreover, gene expression variability was analogously higher in Cx43 null and siRNA-treated astrocytes, and expression interlinkages were similarly altered among a selected subset of genes. This highly significant overlap between transcriptomic alterations in Cx43 knockout and knockdown astrocytes suggests that the widespread changes more likely reflect connexin-dependent Gene Regulatory Networks rather than developmental compensation for the missing gene.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Gap junction proteins, connexins, provide intercellular channels that allow ions and small signaling molecules to be transmitted to adjacent coupled cells. Besides this function, it is becoming apparent that connexins also exert channel-independent effects, which are likely mediated by processes involving protein-protein interactions. Although a number of connexin interacting proteins have been identified, only little is known about the functional consequences of such interactions. We have previously shown that deletion of the astrocytic gap junction protein, connexin43 (Cx43) causes a right-ward shift in the dose-response curve to P2Y1R agonists and decreased P2Y1R expression levels. To evaluate whether these changes were due to reduced gap junctional communication or to protein-protein interactions, Cx43-null astrocytes were transfected with full-length Cx43 and Cx43 domains, and P2Y1R function and expression levels evaluated. Results indicate that restoration of P2Y1R function is independent of gap junctional communication and that the Cx43 carboxyl terminus spanning the SH3 binding domain (260-280) participates in the rescue of P2Y1R pharmacological behavior (shifting to the left the P2Y1R dose-response curve) without affecting its expression levels. These results suggest that the Cx43 carboxyl-terminus domain provides a binding site for an intracellular molecule, most likely a member of the c-Src tyrosine kinase family, which affects P2Y1R-induced calcium mobilization. It is here proposed that a nonchannel function of Cx43 is to serve as a decoy for such kinases. Such modulation of P2Y1R is expected to influence several neural cell functions, especially under inflammation and neurodegenerative disorders where expression levels of Cx43 are decreased.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine. Bronx, New York 10461, USA.
| |
Collapse
|
46
|
Iacobas DA, Suadicani SO, Iacobas S, Chrisman C, Cohen MA, Spray DC, Scemes E. Gap junction and purinergic P2 receptor proteins as a functional unit: insights from transcriptomics. J Membr Biol 2007; 217:83-91. [PMID: 17665085 DOI: 10.1007/s00232-007-9039-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Gap junctions and purinergic P2 receptors (P2Rs) can be regarded as belonging to a common functional unit, given that they are involved in the transmission of calcium signals between cells. We have previously shown that deletion of the Gja1 gene alters expression levels of numerous genes encoding proteins with diverse functions, including purinergic receptors (P2Rs), and have found that genes synergistically or antagonistically expressed in wild-type tissues are more prone to be similarly or oppositely regulated in Cx43-nulls. We have now explored the use of coordination analysis of gene expression as a strategy to identify interlinked genes encoding functionally related proteins and pull-downs to evaluate their interlinkage. Our findings indicate that, in brain and in cultured astrocytes, several of these coexpressed genes encode proteins that are components of P2R signal-transduction pathways and/or directly interact with these receptors, including the gap junction protein connexin43 (Cx43) and Cx45 as well as pannexins. It is proposed that coordination analysis of gene expression may provide a novel unbiased strategy for the identification of proteins belonging to supramolecular complexes.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Spray DC, Iacobas DA. Organizational principles of the connexin-related brain transcriptome. J Membr Biol 2007; 218:39-47. [PMID: 17657523 DOI: 10.1007/s00232-007-9049-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 05/14/2007] [Indexed: 01/01/2023]
Abstract
We have found that deletion of genes encoding the gap junction proteins Cx43, Cx32 and Cx36 alter the expression levels of large numbers of genes in mouse brain located on all chromosomes and encoding proteins from all major functional categories. Gene regulation in Cx32 and Cx43 null brains was more similar than that in the Cx36 null brain, suggesting the possibility of transcriptomic controls exerted by both genes on both astrocytes and oligodendrocytes. In order to explore the nature of expression linkage among the genes, we examined coordinated expression patterns in wild-type and connexin null brains. Coordination with Cx43 in wild-type brain predicted regulation in Cx43 nulls with considerable accuracy. Moreover, interlinkage within gene networks was greatly perturbed in the Cx43 null brain. These findings suggest several principles regarding regulatory transcriptomic networks involving gap junction genes and raise the issue of the underlying cause of connexin null phenotypes as well as mechanisms of regulation.
Collapse
Affiliation(s)
- David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| | | |
Collapse
|
48
|
Abstract
Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made approximately 30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly, expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex--30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: what specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated.
Collapse
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, Newark, NJ 07103, USA.
| |
Collapse
|
49
|
Chesik D, Glazenburg L, De Keyser J, Wilczak N. Enhanced proliferation of astrocytes from beta(2)-adrenergic receptor knockout mice is influenced by the IGF system. J Neurochem 2007; 100:1555-64. [PMID: 17348863 DOI: 10.1111/j.1471-4159.2006.04289.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the IGF system in neonatal astrocytes derived from mice with a targeted disruption of the beta-2 adrenergic receptor (beta(2)AR). beta(2)AR knockout astrocytes demonstrated higher proliferation rates and increased expression of the astrogliotic marker GFAP, as compared with wild-type cells. beta(2)AR deletion also regulated molecules of the IGF system. Although IGF-1 levels remained unaltered, IGF-2 and type 1 IGF receptor expression was increased in beta(2)AR knockout cells. Furthermore, conditioned medium from knockout astrocytes contained lower levels of IGF binding protein-2 and -4. Our data suggest a deficit of beta(2)AR on astrocytes, as previously reported in multiple sclerosis, may have implications on proliferative status of astrocytes, a feature that might be attributed to regulation of IGF mitogenic actions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/chemistry
- Astrocytes/drug effects
- Astrocytes/physiology
- Cell Count
- Cell Proliferation/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/genetics
- Insulin-Like Growth Factor Binding Protein 1/metabolism
- Insulin-Like Growth Factor Binding Protein 4/metabolism
- Insulin-Like Growth Factor Binding Protein 4/pharmacology
- Mice
- Mice, Knockout
- RNA, Messenger/biosynthesis
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 2/metabolism
- Receptors, Adrenergic, beta-2/deficiency
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
50
|
Abstract
Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Devlopmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|