1
|
Ysphaneendramallimoggala, Biswas M, Anburaj SE, Iqbal F, A S, Suryakanth VB, Lewis LES. Thiamine: An indispensable regulator of paediatric neuro-cardiovascular health and diseases. Eur J Pediatr 2024; 183:4597-4610. [PMID: 39271555 PMCID: PMC11473601 DOI: 10.1007/s00431-024-05756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
The sustainable developmental goals emphasize good health, reduction in preventable neonatal and under-five mortalities, and attaining zero hunger. However, South Asian countries report a higher incidence of neonatal and under-five mortalities when compared to the Western world, many of which are attributed to maternal and perinatal micronutrient deficiencies. Isolated nutrient deficiency in the absence of calorie deficit poses a diagnostic challenge since such deficiencies present with acute multisystemic and enigmatic manifestations. Thiamine (vitamin B1) is a micronutrient of prime importance which exerts indispensable roles in energy metabolism. Deficiency of thiamine can lead to catastrophic consequences. This review provides insight into the biochemical actions of thiamine in energy metabolism, the compromised aerobic metabolism resulting from thiamine deficiency, and the crucial role of thiamine in the proper functioning of the nervous, cardiovascular, and immune systems. The review also explores the acute life-threatening consequences of thiamine deficiencies in neonates and infants and the speculative role of thiamine in other pathologies like encephalopathy, sepsis, and autism spectrum disorders. However, routine assessment of thiamine in pregnant women and neonates is yet to be implemented, due to the lack of affordable and automated diagnostic techniques, and the cost-intensive nature of mass spectrometry-based quantification. CONCLUSION Physicians are recommended to have a low threshold for suspecting thiamine deficiency especially in vulnerable populations. Laboratory diagnosis of thiamine deficiency needs to be implemented as a standard of care, especially in endemic regions. Further, public health policies on food fortification, mandatory supplementation, and surveillance are imperative to eliminate thiamine deficiency-induced health hazards. WHAT IS KNOWN • South Asian countries report a higher incidence of neonatal and under-five mortalities, many of which are attributed to maternal and perinatal micronutrient deficiencies. • Preventable causes of neonatal/ infantile deaths include birth factors (low birth weight, birth asphyxia), infectious diseases (pneumonia, diarrhoea, tetanus, tuberculosis, measles, diphtheria, malaria, acute infections), deficiency diseases and genetic diseases (vitamin & mineral deficiencies, IEMs, congenital heart disease, unexplained PPHN, SIDS etc). WHAT IS NEW • Acute thiamine deficiency presenting as multisystemic syndromes, has unfortunately been a long standing unresolved public health concern. However, accessible surveillance and diagnostic strategies remain elusive in most clinical settings. • Despite decades of reports and emerging guidelines, diagnosis of thiamine deficiency is often missed and policy mandates at national level are yet to be implemented even in endemic countries. • This review provides a comprehensive summary of the biochemical role of thiamine, its key functions and effects on major organ systems, the diagnostic gap, the enigmatic presentation of acute thiamine deficiency, the plausible role of thiamine in other pathologies and the preventive measures at individual and community level.
Collapse
Affiliation(s)
- Ysphaneendramallimoggala
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Monalisa Biswas
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher EducationKasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Stanly Elstin Anburaj
- Department of Health Information, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Faiza Iqbal
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Shrikiran A
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Varashree Bolar Suryakanth
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher EducationKasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
2
|
Zahr NM. Race explains substantial variance in whole blood thiamine diphosphate concentrations. Nutr Res 2024; 126:138-150. [PMID: 38696890 PMCID: PMC11179978 DOI: 10.1016/j.nutres.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/04/2024]
Abstract
Deficiency for thiamine (vitamin B1), traditionally assessed via the activity of the thiamine-dependent enzyme erythrocyte transketolase, has been reported in individuals with alcohol use disorder (AUD) and in people with HIV; concentrations of the metabolically active diphosphate form, however, have yet to be reported in HIV cohorts and results in AUD are equivocal. In this cross-sectional study, samples from 170 AUD, 130 HIV, and 100 healthy control individuals were analyzed to test the hypothesis that AUD and HIV groups relative to healthy controls would show low whole blood thiamine diphosphate (TDP) concentrations related to peripheral neuropathy. TDP concentrations were not different in the 3 study groups (P = .6141) but were lower in Black (n = 172) relative to White (n = 155) individuals (P < .0001) regardless of group. In a multiple regression, race relative to diagnoses explained more than 10 times the variance in whole blood TDP concentrations (F4,395 = 3.5, P = .0086; r2 = 15.1]. Performance on a measure of peripheral neuropathy (2-point discrimination) was worse in the HIV and AUD cohorts relative to the healthy control group (P < .0001) but was not associated with TDP concentrations. These findings suggest that Black individuals carry a heightened vulnerability for low whole blood TDP concentrations, but the clinical significance and mechanisms underlying these results remain to be determined.
Collapse
Affiliation(s)
- Natalie M Zahr
- Department of Psychiatry & Behavioral Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA, 94025, USA.
| |
Collapse
|
3
|
Tamura Y, Kouzaki K, Kotani T, Nakazato K. Coculture with Colon-26 cancer cells decreases the protein synthesis rate and shifts energy metabolism toward glycolysis dominance in C2C12 myotubes. Am J Physiol Cell Physiol 2024; 326:C1520-C1542. [PMID: 38557354 DOI: 10.1152/ajpcell.00179.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Cancer cachexia is the result of complex interorgan interactions initiated by cancer cells and changes in patient behavior such as decreased physical activity and energy intake. Therefore, it is crucial to distinguish between the direct and indirect effects of cancer cells on muscle mass regulation and bioenergetics to identify novel therapeutic targets. In this study, we investigated the direct effects of Colon-26 cancer cells on the molecular regulating machinery of muscle mass and its bioenergetics using a coculture system with C2C12 myotubes. Our results demonstrated that coculture with Colon-26 cells induced myotube atrophy and reduced skeletal muscle protein synthesis and its regulating mechanistic target of rapamycin complex 1 signal transduction. However, we did not observe any activating effects on protein degradation pathways including ubiquitin-proteasome and autophagy-lysosome systems. From a bioenergetic perspective, coculture with Colon-26 cells decreased the complex I-driven, but not complex II-driven, mitochondrial ATP production capacity, while increasing glycolytic enzyme activity and glycolytic metabolites, suggesting a shift in energy metabolism toward glycolysis dominance. Gene expression profiling by RNA sequencing showed that the increased activity of glycolytic enzymes was consistent with changes in gene expression. However, the decreased ATP production capacity of mitochondria was not in line with the gene expression. The potential direct interaction between cancer cells and skeletal muscle cells revealed in this study may contribute to a better fundamental understanding of the complex pathophysiology of cancer cachexia.NEW & NOTEWORTHY We explored the potential direct interplay between colon cancer cells (Colon-26) and skeletal muscle cells (C2C12 myotubes) employing a noncontact coculture experimental model. Our findings reveal that coculturing with Colon-26 cells substantially impairs the protein synthesis rate, concurrently instigating a metabolic shift toward glycolytic dominance in C2C12 myotubes. This research unveils critical insights into the intricate cellular cross talk underpinning the complex pathophysiology of cancer cachexia.
Collapse
Affiliation(s)
- Yuki Tamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- High Performance Center, Nippon Sport Science University, Tokyo, Japan
- Sport Training Center, Nippon Sport Science University, Tokyo, Japan
- Center for Coaching Excellence, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakazato
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
4
|
Tamura Y, Jee E, Kouzaki K, Kotani T, Nakazato K. Monocarboxylate transporter 4 deficiency enhances high-intensity interval training-induced metabolic adaptations in skeletal muscle. J Physiol 2024; 602:1313-1340. [PMID: 38513062 DOI: 10.1113/jp285719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.
Collapse
Affiliation(s)
- Yuki Tamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Sport Training Center, Nippon Sport Science University, Tokyo, Japan
- High Performance Center, Nippon Sport Science University, Tokyo, Japan
- Center for Coaching Excellence, Nippon Sport Science University, Tokyo, Japan
| | - Eunbin Jee
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
5
|
Moosavian T, Jamalipour Soufi G, Kamfar S. Dehydrogenase (DLD) Deficiency in an Iranian Patient with Recurrent Intractable Vomiting: Successful Treatment with Thiamine Supplementation. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:131-138. [PMID: 38375122 PMCID: PMC10874511 DOI: 10.22037/ijcn.v18i1.38971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/21/2023] [Indexed: 02/21/2024]
Abstract
Dihydrolipoamide dehydrogenase (DLD) deficiency is a rare disease of genetic origin due to the malfunctioning of a shared subunit of three mitochondrial multi-enzyme complexes. Phenotypes of this disease are a set of clinical manifestations ranging from neonatal disorders to myopathy or recurrent episodes of liver failures, and vomiting for which no adequate or definitive treatment is currently available. This study described a case involving a 16-year-old boy who had experienced recurrent vomiting of unknown cause from age two. Normal value ranges for the basic metabolic panel were reported in previous years. The patient was admitted with Wernicke's encephalopathy after the last vomiting attack, also indicating metabolites of organic acids compatible with DLD deficiency. Whole exome sequencing identified a known pathogenic mutation in the DLD gene, leading to a diagnosis of DLD deficiency. Our patient was treated with a high dose of thiamine supplementation and continued treatment, has not experienced any vomiting attacks or related problems in the last two years and has adequately responded to the treatment prescribed. Normal urine organic acid levels in patients with recurrent vomiting cannot roll out DLD deficiency. However, although thiamine deficiency typically induces Wernicke's encephalopathy, it can also be implicated in pyruvate dehydrogenase complex (PDHc) deficiency, and high-dose thiamine therapy (with doses up to 30 mg/kg) is recommended for deficient patients.
Collapse
Affiliation(s)
- Toktam Moosavian
- Pediatric Neurology Department, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research nstitute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kareem O, Nisar S, Tanvir M, Muzaffer U, Bader GN. Thiamine deficiency in pregnancy and lactation: implications and present perspectives. Front Nutr 2023; 10:1080611. [PMID: 37153911 PMCID: PMC10158844 DOI: 10.3389/fnut.2023.1080611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
During pregnancy, many physiologic changes occur in order to accommodate fetal growth. These changes require an increase in many of the nutritional needs to prevent long-term consequences for both mother and the offspring. One of the main vitamins that are needed throughout the pregnancy is thiamine (vitamin B1) which is a water-soluble vitamin that plays an important role in many metabolic and physiologic processes in the human body. Thiamine deficiency during pregnancy can cause can have many cardiac, neurologic, and psychological effects on the mother. It can also dispose the fetus to gastrointestinal, pulmonological, cardiac, and neurologic conditions. This paper reviews the recently published literature about thiamine and its physiologic roles, thiamine deficiency in pregnancy, its prevalence, its impact on infants and subsequent consequences in them. This review also highlights the knowledge gaps within these topics.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Ozaifa Kareem, ,
| | - Sobia Nisar
- Department of Medicine, Government Medical College, Srinagar, India
| | - Masood Tanvir
- Department of Medicine, Government Medical College, Srinagar, India
| | - Umar Muzaffer
- Department of Medicine, Government Medical College, Srinagar, India
| | - G. N. Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- G. N. Bader,
| |
Collapse
|
7
|
Hansen GE, Gibson GE. The α-Ketoglutarate Dehydrogenase Complex as a Hub of Plasticity in Neurodegeneration and Regeneration. Int J Mol Sci 2022; 23:12403. [PMID: 36293260 PMCID: PMC9603878 DOI: 10.3390/ijms232012403] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 07/30/2023] Open
Abstract
Abnormal glucose metabolism is central to neurodegeneration, and considerable evidence suggests that abnormalities in key enzymes of the tricarboxylic acid (TCA) cycle underlie the metabolic deficits. Significant recent advances in the role of metabolism in cancer provide new insight that facilitates our understanding of the role of metabolism in neurodegeneration. Research indicates that the rate-limiting step of the TCA cycle, the α-ketoglutarate dehydrogenase complex (KGDHC) and its substrate alpha ketoglutarate (KG), serve as a signaling hub that regulates multiple cellular processes: (1) is the rate-limiting step of the TCA cycle, (2) is sensitive to reactive oxygen species (ROS) and produces ROS, (3) determines whether KG is used for energy or synthesis of compounds to support growth, (4) regulates the cellular responses to hypoxia, (5) controls the post-translational modification of hundreds of cell proteins in the mitochondria, cytosol, and nucleus through succinylation, (6) controls critical aspects of transcription, (7) modulates protein signaling within cells, and (8) modulates cellular calcium. The primary focus of this review is to understand how reductions in KGDHC are translated to pathologically important changes that underlie both neurodegeneration and cancer. An understanding of each role is necessary to develop new therapeutic strategies to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Grace E. Hansen
- Department of Biology, University of Massachusetts, Lowell, MA 01852, USA
| | - Gary E. Gibson
- Weill Cornell Medicine, Brain and Mind Research Institute, Burke Neurological Institute, White Plains, NY 10605, USA
| |
Collapse
|
8
|
Piquereau J, Boitard SE, Ventura-Clapier R, Mericskay M. Metabolic Therapy of Heart Failure: Is There a Future for B Vitamins? Int J Mol Sci 2021; 23:30. [PMID: 35008448 PMCID: PMC8744601 DOI: 10.3390/ijms23010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is a plague of the aging population in industrialized countries that continues to cause many deaths despite intensive research into more effective treatments. Although the therapeutic arsenal to face heart failure has been expanding, the relatively short life expectancy of HF patients is pushing towards novel therapeutic strategies. Heart failure is associated with drastic metabolic disorders, including severe myocardial mitochondrial dysfunction and systemic nutrient deprivation secondary to severe cardiac dysfunction. To date, no effective therapy has been developed to restore the cardiac energy metabolism of the failing myocardium, mainly due to the metabolic complexity and intertwining of the involved processes. Recent years have witnessed a growing scientific interest in natural molecules that play a pivotal role in energy metabolism with promising therapeutic effects against heart failure. Among these molecules, B vitamins are a class of water soluble vitamins that are directly involved in energy metabolism and are of particular interest since they are intimately linked to energy metabolism and HF patients are often B vitamin deficient. This review aims at assessing the value of B vitamin supplementation in the treatment of heart failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| | | | | | - Mathias Mericskay
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| |
Collapse
|
9
|
Alfarsi A, Alfadhel M, Alameer S, Alhashem A, Tabarki B, Ababneh F, Al Fares A, Al Mutairi F. The phenotypic spectrum of dihydrolipoamide dehydrogenase deficiency in Saudi Arabia. Mol Genet Metab Rep 2021; 29:100817. [PMID: 34745891 PMCID: PMC8554626 DOI: 10.1016/j.ymgmr.2021.100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022] Open
Abstract
Background Dihydrolipoamide dehydrogenase deficiency (DLDD) is a rare metabolic disorder inherited in an autosomal recessive manner. This heterogeneous disease has a variable clinical presentation, onset, and biochemical markers. Materials and methods We retrospectively reviewed the clinical and molecular diagnosis of eight cases with DLDD from four referral centers in Saudi Arabia. Results Remarkably, we found hepatic involvement ranging from acute hepatic failure to chronic hepatitis in five patients. In addition, neurological disorders in the form of seizures, developmental delay, ataxia, hypotonia and psychomotor symptoms were found in five patients, two of them with a combination of hepatic and neurological symptoms. In addition, only one patient had recurrent episodes of hypoglycemia. While most patients had the hepatic form of homozygous variant c.685G > T in the DLD gene, one patient was found to have a novel variant c.623C > T that had neurological and hepatic symptoms. Conclusions We describe the largest reported DLDD cohort in the Saudi population. Clinical, biochemical, radiological, and molecular characterization was reviewed and no clear genotype-phenotype correlation was found in this cohort.
Collapse
Key Words
- BCAAs, Branched Chain Amino Acids
- BCKDH, Branched-chain a-keto acid dehydrogenase
- DCA, Dichloroacetate
- DLDD, Dihydrolipoamide Dehydrogenase Deficiency
- Dihydrolipoamide dehydrogenase deficiency
- Flavoprotein and E3
- Hypoglycemia
- IRB, Institutional Review Board
- KAIMRC, King Abdullah International Medical Research Centre
- Lactic acidosis
- MRI, Magnetic resonance imaging
- PDH, Pyruvate dehydrogenase
- Pyruvate dehydrogenase complex
- WES, Whole Exome Sequencing
- αKGDH, alpha-ketoglutarate dehydrogenase
Collapse
Affiliation(s)
- Anar Alfarsi
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Seham Alameer
- King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Jeddah, Saudi Arabia
| | - Amal Alhashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Anatomy and Cell biology, college of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Faroug Ababneh
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ahmed Al Fares
- King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Division of Translational Pathology, Department of Pathology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pediatrics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics & Precision Medicine Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Bolaños-Burgos IC, Bernal-Correa AM, Mahecha GAB, Ribeiro ÂM, Kushmerick C. Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells. THE CEREBELLUM 2020; 20:186-202. [PMID: 33098550 DOI: 10.1007/s12311-020-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Thiamine deficiency is associated with cerebellar dysfunction; however, the consequences of thiamine deficiency on the electrophysiological properties of cerebellar Purkinje cells are poorly understood. Here, we evaluated these parameters in brain slices containing cerebellar vermis. Adult mice were maintained for 12-13 days on a thiamine-free diet coupled with daily injections of pyrithiamine, an inhibitor of thiamine phosphorylation. Morphological analysis revealed a 20% reduction in Purkinje cell and nuclear volume in thiamine-deficient animals compared to feeding-matched controls, with no reduction in cell count. Under whole-cell current clamp, thiamine-deficient Purkinje cells required significantly less current injection to fire an action potential. This reduction in rheobase was not due to a change in voltage threshold. Rather, thiamine-deficient neurons presented significantly higher input resistance specifically in the voltage range just below threshold, which increases their sensitivity to current at these critical membrane potentials. In addition, thiamine deficiency caused a significant decrease in the amplitude of the action potential afterhyperpolarization, broadened the action potential, and decreased the current threshold for depolarization block. When thiamine-deficient animals were allowed to recover for 1 week on a normal diet, rheobase, threshold, action potential half-width, and depolarization block threshold were no longer different from controls. We conclude that thiamine deficiency causes significant but reversible changes to the electrophysiology properties of Purkinje cells prior to pathological morphological alterations or cell loss. Thus, the data obtained in the present study indicate that increased excitability of Purkinje cells may represent a leading indicator of cerebellar dysfunction caused by lack of thiamine.
Collapse
Affiliation(s)
| | - Ana María Bernal-Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ângela Maria Ribeiro
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
11
|
Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front Psychiatry 2019; 10:207. [PMID: 31019473 PMCID: PMC6459027 DOI: 10.3389/fpsyt.2019.00207] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 01/19/2023] Open
Abstract
Thiamine (vitamin B1) is an essential nutrient that serves as a cofactor for a number of enzymes, mostly with mitochondrial localization. Some thiamine-dependent enzymes are involved in energy metabolism and biosynthesis of nucleic acids whereas others are part of the antioxidant machinery. The brain is highly vulnerable to thiamine deficiency due to its heavy reliance on mitochondrial ATP production. This is more evident during rapid growth (i.e., perinatal periods and children) in which thiamine deficiency is commonly associated with either malnutrition or genetic defects. Thiamine deficiency contributes to a number of conditions spanning from mild neurological and psychiatric symptoms (confusion, reduced memory, and sleep disturbances) to severe encephalopathy, ataxia, congestive heart failure, muscle atrophy, and even death. This review discusses the current knowledge on thiamine deficiency and associated morbidity of neurological and psychiatric disorders, with special emphasis on the pediatric population, as well as the putative beneficial effect of thiamine supplementation in autism spectrum disorder (ASD) and other neurological conditions.
Collapse
Affiliation(s)
- Shibani Dhir
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maya Tarasenko
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Mkrtchyan GV, Üçal M, Müllebner A, Dumitrescu S, Kames M, Moldzio R, Molcanyi M, Schaefer S, Weidinger A, Schaefer U, Hescheler J, Duvigneau JC, Redl H, Bunik VI, Kozlov AV. Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:925-931. [DOI: 10.1016/j.bbabio.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
|
13
|
Positive correlation between rat brain glutamate concentrations and mitochondrial 2-oxoglutarate dehydrogenase activity. Anal Biochem 2018; 552:100-109. [DOI: 10.1016/j.ab.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023]
|
14
|
Thiamine and selected thiamine antivitamins - biological activity and methods of synthesis. Biosci Rep 2018; 38:BSR20171148. [PMID: 29208764 PMCID: PMC6435462 DOI: 10.1042/bsr20171148] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.
Collapse
|
15
|
Costantini A, Laureti T, Pala MI, Colangeli M, Cavalieri S, Pozzi E, Brusco A, Salvarani S, Serrati C, Fancellu R. Long-term treatment with thiamine as possible medical therapy for Friedreich ataxia. J Neurol 2016; 263:2170-2178. [PMID: 27488863 DOI: 10.1007/s00415-016-8244-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/13/2023]
Abstract
Thiamine (vitamin B1) is a cofactor of fundamental enzymes of cell energetic metabolism; its deficiency causes disorders affecting both the peripheral and central nervous system. Previous studies reported low thiamine levels in cerebrospinal fluid and pyruvate dehydrogenase dysfunction in Friedreich ataxia (FRDA). We investigated the effect of long-term treatment with thiamine in FRDA, evaluating changes in neurological symptoms, echocardiographic parameters, and plasma FXN mRNA levels. Thirty-four consecutive FRDA patients have been continuously treated with intramuscular thiamine 100 mg twice a week and have been assessed with the Scale for the Assessment and Rating of Ataxia (SARA) at baseline, after 1 month, and then every 3 months during treatment. Thiamine administration ranged from 80 to 930 days and was effective in improving total SARA scores from 26.6 ± 7.7 to 21.5 ± 6.2 (p < 0.02). Moreover, deep tendon reflexes reappeared in 57 % of patients with areflexia at baseline, and swallowing improved in 63 % of dysphagic patients. Clinical improvement was stable in all patients, who did not show worsening even after 2 years of treatment. In a subgroup of 13 patients who performed echocardiogram before and during treatment, interventricular septum thickness reduced significantly (p < 0.02). Frataxin mRNA blood levels were modestly increased in one-half of treated patients. We suppose that a focal thiamine deficiency may contribute to a selective neuronal damage in the areas involved in FRDA. Further studies are mandatory to evaluate thiamine role on FXN regulation, to exclude placebo effect, to verify our clinical results, and to confirm restorative and neuroprotective action of thiamine in FRDA.
Collapse
Affiliation(s)
- Antonio Costantini
- Department of Neurological Rehabilitation, "Villa Immacolata" Clinic, Strada Sammartinese 65A, 01100, Viterbo, Italy
| | - Tiziana Laureti
- Department of Economics and Management, University of Tuscia, Via del Paradiso 47, 01100, Viterbo, Italy
| | - Maria Immacolata Pala
- Department of Neurological Rehabilitation, "Villa Immacolata" Clinic, Strada Sammartinese 65A, 01100, Viterbo, Italy
| | - Marco Colangeli
- University Studies Abroad Consortium, University of Tuscia, Via Santa Maria in Gradi 4, 01100, Viterbo, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | - Sandro Salvarani
- Unit of Neurology, ASL3 Villa Scassi Hospital, Corso O. Scassi 1, 16149, Genoa, Italy
| | - Carlo Serrati
- Unit of Neurology, IRCCS San Martino University Hospital IST, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Roberto Fancellu
- Unit of Neurology, ASL3 Villa Scassi Hospital, Corso O. Scassi 1, 16149, Genoa, Italy. .,Unit of Neurology, IRCCS San Martino University Hospital IST, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
16
|
Ferreira-Vieira TH, de Freitas-Silva DM, Ribeiro AF, Pereira SRC, Ribeiro ÂM. Perinatal thiamine restriction affects central GABA and glutamate concentrations and motor behavior of adult rat offspring. Neurosci Lett 2016; 617:182-7. [PMID: 26836141 DOI: 10.1016/j.neulet.2016.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 11/11/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
The purposes of the present study were to investigate the effects of perinatal thiamine deficiency, from the 11th day of gestation until the 5th day of lactation, on motor behavior and neurochemical parameters in adult rat offspring, using 3-month-old, adult, male Wistar rats. All rats were submitted to motor tests, using the rotarod and paw print tasks. After behavioral tests, their thalamus, cerebellum and spinal cord were dissected for glutamate and GABA quantifications by high performance liquid chromatography. The thiamine-restricted mothers (RM) group showed a significant reduction of time spent on the rotarod at 25 rpm and an increase in hind-base width. A significant decrease of glutamate concentration in the cerebellum and an increase of GABA concentrations in the thalamus were also observed. For the offspring from control mothers (CM) group there were significant correlations between thalamic GABA concentrations and both rotarod performance and average hind-base width. In addition, for rats from the RM group a significant correlation between stride length and cerebellar GABA concentration was found. These results show that the deficiency of thiamine during an early developmental period affects certain motor behavior parameters and GABA and glutamate levels in specific brain areas. Hence, a thiamine deficiency episode during an early developmental period can induce motor impairments and excitatory and inhibitory neurotransmitter changes that are persistent and detectable in later periods of life.
Collapse
Affiliation(s)
- Talita Hélen Ferreira-Vieira
- Programa de Pós-graduação em Neurociências, Laboratório de Neurociência Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901,Brazil
| | - Danielle Marra de Freitas-Silva
- Departamento de Bioquímica e Imunologia, ICB-Laboratório de Neurociências Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901,Brazil
| | - Andrea Frozino Ribeiro
- Programa de Pós-graduação em Neurociências, Laboratório de Neurociência Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901,Brazil
| | - Sílvia Rejane Castanheira Pereira
- Departamento de Psicologia, FaFiCH-Laboratório de Neurociência Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901,Brazil
| | - Ângela Maria Ribeiro
- Programa de Pós-graduação em Neurociências, Laboratório de Neurociência Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901,Brazil; Departamento de Bioquímica e Imunologia, ICB-Laboratório de Neurociências Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901,Brazil.
| |
Collapse
|
17
|
Costantini A, Pala MI, Grossi E, Mondonico S, Cardelli LE, Jenner C, Proietti S, Colangeli M, Fancellu R. Long-Term Treatment with High-Dose Thiamine in Parkinson Disease: An Open-Label Pilot Study. J Altern Complement Med 2015; 21:740-747. [PMID: 26505466 DOI: 10.1089/acm.2014.0353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To investigate the potential clinical, restorative, and neuroprotective effects of long-term treatment with thiamine in Parkinson disease (PD). DESIGN Observational open-label pilot study. SETTING Outpatient neurologic rehabilitation clinic. PATIENTS AND METHODS Starting in June 2012, we have recruited 50 patients with PD (33 men and 17 women; mean age, 70.4 ± 12.9 years; mean disease duration, 7.3 ± 6.7 years). All the patients were assessed at baseline with the Unified Parkinson's Disease Rating Scale (UPDRS) and the Fatigue Severity Scale (FSS) and began treatment with 100 mg of thiamine administered intramuscularly twice a week, without any change to personal therapy. All the patients were re-evaluated after 1 month and then every 3 months during treatment. RESULTS Thiamine treatment led to significant improvement of motor and nonmotor symptoms: mean UPDRS scores (parts I-IV) improved from 38.55 ± 15.24 to 18.16 ± 15.08 (p = 2.4 × 10(-14), t test for paired data) within 3 months and remained stable over time; motor UPDRS part III score improved from 22.01 ± 8.57 to 9.92 ± 8.66 (p = 3.1 × 10(-22)). Some patients with a milder phenotype had complete clinical recovery. FSS scores, in six patients who had fatigue, improved from 53.00 ± 8.17 to 23.60 ± 7.77 (p < 0.0001, t test for paired data). Follow-up duration ranged from 95 to 831 days (mean, 291.6 ± 207.2 days). CONCLUSIONS Administration of parenteral high-dose thiamine was effective in reversing PD motor and nonmotor symptoms. The clinical improvement was stable over time in all the patients. From our clinical evidence, we hypothesize that a dysfunction of thiamine-dependent metabolic processes could cause selective neural damage in the centers typically affected by this disease and might be a fundamental molecular event provoking neurodegeneration. Thiamine could have both restorative and neuroprotective action in PD.
Collapse
Affiliation(s)
- Antonio Costantini
- 1 Department of Neurological Rehabilitation, Villa Immacolata Clinic , Viterbo, Italy
| | - Maria Immacolata Pala
- 1 Department of Neurological Rehabilitation, Villa Immacolata Clinic , Viterbo, Italy
| | | | | | | | - Carina Jenner
- 1 Department of Neurological Rehabilitation, Villa Immacolata Clinic , Viterbo, Italy
| | - Sabrina Proietti
- 1 Department of Neurological Rehabilitation, Villa Immacolata Clinic , Viterbo, Italy
| | | | - Roberto Fancellu
- 6 Unit of Neurology, IRCCS San Martino University Hospital IST , Genoa, Italy
| |
Collapse
|
18
|
Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA, Stap J, Henneman P, Khurshed M, Lenting K, Mul AN, Dimitrakopoulou D, van Drunen CM, Hoebe RA, Radivoyevitch T, Wilmink JW, Maciejewski JP, Vandertop WP, Leenders WP, Bleeker FE, van Noorden CJ. Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Res 2015; 75:4790-802. [PMID: 26363012 DOI: 10.1158/0008-5472.can-14-3603] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/12/2015] [Indexed: 11/16/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) is mutated in various types of human cancer to IDH1(R132H), a structural alteration that leads to catalysis of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate. In this study, we present evidence that small-molecule inhibitors of IDH1(R132H) that are being developed for cancer therapy may pose risks with coadministration of radiotherapy. Cancer cells heterozygous for the IDH1(R132H) mutation exhibited less IDH-mediated production of NADPH, such that after exposure to ionizing radiation (IR), there were higher levels of reactive oxygen species, DNA double-strand breaks, and cell death compared with IDH1 wild-type cells. These effects were reversed by the IDH1(R132H) inhibitor AGI-5198. Exposure of IDH1 wild-type cells to D-2-hydroxyglutarate was sufficient to reduce IDH-mediated NADPH production and increase IR sensitivity. Mechanistic investigations revealed that the radiosensitivity of heterozygous cells was independent of the well-described DNA hypermethylation phenotype in IDH1-mutated cancers. Thus, our results argue that altered oxidative stress responses are a plausible mechanism to understand the radiosensitivity of IDH1-mutated cancer cells. Further, they offer an explanation for the relatively longer survival of patients with IDH1-mutated tumors, and they imply that administration of IDH1(R132H) inhibitors in these patients may limit irradiation efficacy in this setting.
Collapse
Affiliation(s)
- Remco J Molenaar
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Dennis Botman
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Myrthe A Smits
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vashendriya V Hira
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sanne A van Lith
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan Stap
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mohammed Khurshed
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Krissie Lenting
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adri N Mul
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dionysia Dimitrakopoulou
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron A Hoebe
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Johanna W Wilmink
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - W Peter Vandertop
- Department of Neurosurgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. Department of Neurosurgery, VU Medical Center, Amsterdam, the Netherlands
| | - William P Leenders
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis J van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Mouton-Liger F, Rebillat AS, Gourmaud S, Paquet C, Leguen A, Dumurgier J, Bernadelli P, Taupin V, Pradier L, Rooney T, Hugon J. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model. Cell Death Dis 2015; 6:e1594. [PMID: 25590804 PMCID: PMC4669750 DOI: 10.1038/cddis.2014.552] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022]
Abstract
Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice).
Collapse
Affiliation(s)
- F Mouton-Liger
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France
| | | | - S Gourmaud
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France
| | - C Paquet
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [3] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| | - A Leguen
- Inserm UMR-S942, Paris 75010, France
| | - J Dumurgier
- 1] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [2] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| | - P Bernadelli
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - V Taupin
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - L Pradier
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - T Rooney
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - J Hugon
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [3] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| |
Collapse
|
20
|
Wolak N, Kowalska E, Kozik A, Rapala-Kozik M. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 2014; 14:1249-62. [PMID: 25331172 DOI: 10.1111/1567-1364.12218] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/09/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022] Open
Abstract
Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.
Collapse
Affiliation(s)
- Natalia Wolak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | |
Collapse
|
21
|
Ottinger CA, Honeyfield DC, Densmore CL, Iwanowicz LR. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush). FISH & SHELLFISH IMMUNOLOGY 2014; 38:211-220. [PMID: 24680830 DOI: 10.1016/j.fsi.2014.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP--biologically inactive form) to thiamine pyrophosphate (TPP--biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state.
Collapse
Affiliation(s)
- Christopher A Ottinger
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, Leetown, WV 25430, USA.
| | - Dale C Honeyfield
- U.S. Geological Survey, Leetown Science Center, Northern Appalachian Research Laboratory, Wellsboro, PA 16901, USA
| | - Christine L Densmore
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, Leetown, WV 25430, USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, Leetown, WV 25430, USA
| |
Collapse
|
22
|
Bunik VI, Tylicki A, Lukashev NV. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J 2013; 280:6412-42. [PMID: 24004353 DOI: 10.1111/febs.12512] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/29/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.
Collapse
Affiliation(s)
- Victoria I Bunik
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
23
|
Graf A, Trofimova L, Loshinskaja A, Mkrtchyan G, Strokina A, Lovat M, Tylicky A, Strumilo S, Bettendorff L, Bunik VI. Up-regulation of 2-oxoglutarate dehydrogenase as a stress response. Int J Biochem Cell Biol 2012; 45:175-89. [PMID: 22814169 DOI: 10.1016/j.biocel.2012.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 01/08/2023]
Abstract
2-Oxoglutarate dehydrogenase multienzyme complex (OGDHC) operates at a metabolic cross-road, mediating Ca(2+)- and ADP-dependent signals in mitochondria. Here, we test our hypothesis that OGDHC plays a major role in the neurotransmitter metabolism and associated stress response. This possibility was assessed using succinyl phosphonate (SP), a highly specific and efficient in vivo inhibitor of OGDHC. Animals exposed to toxicants (SP, ethanol or MnCl(2)), trauma or acute hypoxia showed intrinsic up-regulation of OGDHC in brain and heart. The known mechanism of the SP action as OGDHC inhibitor pointed to the up-regulation triggered by the enzyme impairment. The animal behavior and skeletal muscle or heart performance were tested to correlate physiology with the OGDHC regulation and associated changes in the glutamate and cellular energy status. The SP-treated animals exhibited interdependent changes in the brain OGDHC activity, glutamate level and cardiac autonomic balance, suggesting the neurotransmitter role of glutamate to be involved in the changed heart performance. Energy insufficiency after OGDHC inhibition was detectable neither in animals up to 25 mg/kg SP, nor in cell culture during 24 h incubation with 0.1 mM SP. However, in animals subjected to acute ethanol intoxication SP did evoke energy deficit, decreasing muscular strength and locomotion and increasing the narcotic sleep duration. This correlated with the SP-induced decrease in NAD(P)H levels of the ethanol-exposed neurons. Thus, we show the existence of natural mechanisms to up-regulate mammalian OGDHC in response to stress, with both the glutamate neurotransmission and energy production potentially involved in the OGDHC impact on physiological performance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Anastasia Graf
- Department of Physiology of Biology Faculty of Lomonosov Moscow State University, Leninskije Gory 1, 119992 Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brown TM. A case of Shoshin Beriberi: lessons old and new for the psychiatrist. PSYCHOSOMATICS 2012; 54:175-80. [PMID: 22658327 DOI: 10.1016/j.psym.2012.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Thomas M Brown
- Dept. of Psychiatry, Audie L. Murphy Memorial VAMC, San Antonio, TX 78229, USA.
| |
Collapse
|
25
|
Lu'o'ng KVQ, Nguyên LTH. Thiamine and Parkinson's disease. J Neurol Sci 2012; 316:1-8. [PMID: 22385680 DOI: 10.1016/j.jns.2012.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is the second most common form of neurodegeneration in the elderly population. PD is clinically characterized by tremors, rigidity, slowness of movement and postural imbalance. A significant association has been demonstrated between PD and low levels of thiamine in the serum, which suggests that elevated thiamine levels might provide protection against PD. Genetic studies have helped identify a number of factors that link thiamine to PD pathology, including the DJ-1 gene, excitatory amino acid transporters (EAATs), the α-ketoglutarate dehydrogenase complex (KGDHC), coenzyme Q10 (CoQ10 or ubiquinone), lipoamide dehydrogenase (LAD), chromosome 7, transcription factor p53, the renin-angiotensin system (RAS), heme oxygenase-1 (HO-1), and poly(ADP-ribose) polymerase-1 gene (PARP-1). Thiamine has also been implicated in PD through its effects on L-type voltage-sensitive calcium channels (L-VSCC), matrix metalloproteinases (MMPs), prostaglandins (PGs), cyclooxygenase-2 (COX-2), reactive oxygen species (ROS), and nitric oxide synthase (NOS). Recent studies highlight a possible relationship between thiamine and PD. Genetic studies provide opportunities to determine which proteins may link thiamine to PD pathology. Thiamine can also act through a number of non-genomic mechanisms that include protein expression, oxidative stress, inflammation, and cellular metabolism. Further studies are needed to determine the benefits of using thiamine as a treatment for PD.
Collapse
|
26
|
Abstract
These experiments reveal for the first time that microRNAs (miRNAs) mediate oxidant regulated expression of a mitochondrial tricarboxylic acid cycle gene (mdh2). mdh2 encoded malate dehydrogenase (MDH) is elevated by an unknown mechanism in brains of patients that died with Alzheimer's disease. Oxidative stress, an early and pervasive event in Alzheimer's disease, increased MDH activity and mRNA level of mdh2 by 19% and 22%, respectively, in a mouse hippocampal cell line (HT22). Post-transcriptional events underlie the change in mRNA because actinomycin D did not block the elevated mdh2 mRNA. Since miRNAs regulate gene expression post-transcriptionally, the expression of miR-743a, a miRNA predicted to target mdh2, was determined and showed a 52% reduction after oxidant treatment. Direct interaction of miR-743a with mdh2 was demonstrated with a luciferase based assay. Over-expression or inhibition of miR-743a led to a respective reduction or increase in endogenous mRNA and MDH activity. The results demonstrate that miR-743a negatively regulates mdh2 at post-transcriptional level by directly targeting the mdh2 3'UTR. The findings are consistent with the suggestion that oxidative stress can elevate the activity of MDH through miR-743a, and provide new insights into possible roles of miRNA in oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology & Neuroscience, Weill Cornell Medical College/Burke Medical Research Institute, White Plains, New York, USA.
| | | |
Collapse
|
27
|
Parkhomenko YM, Kudryavtsev PA, Pylypchuk SY, Chekhivska LI, Stepanenko SP, Sergiichuk AA, Bunik VI. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels. J Neurochem 2011; 117:1055-65. [DOI: 10.1111/j.1471-4159.2011.07283.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Vödisch M, Scherlach K, Winkler R, Hertweck C, Braun HP, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O. Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J Proteome Res 2011; 10:2508-24. [PMID: 21388144 PMCID: PMC3091480 DOI: 10.1021/pr1012812] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Indexed: 01/01/2023]
Abstract
The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dimensional gel electrophoresis analysis of mycelial and mitochondrial proteins as well as two-dimensional Blue Native/SDS-gel separation of mitochondrial membrane proteins led to the identification of 117 proteins with an altered abundance under hypoxic in comparison to normoxic conditions. Hypoxia induced an increased activity of glycolysis, the TCA-cycle, respiration, and amino acid metabolism. Consistently, the cellular contents in heme, iron, copper, and zinc increased. Furthermore, hypoxia induced biosynthesis of the secondary metabolite pseurotin A as demonstrated at proteomic, transcriptional, and metabolite levels. The observed and so far not reported stimulation of the biosynthesis of a secondary metabolite by oxygen depletion may also affect the survival of A. fumigatus in hypoxic niches of the human host. Among the proteins so far not implicated in hypoxia adaptation, an NO-detoxifying flavohemoprotein was one of the most highly up-regulated proteins which indicates a link between hypoxia and the generation of nitrosative stress in A. fumigatus.
Collapse
Affiliation(s)
- Martin Vödisch
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology − Hans-Knöll-Institute (HKI) and Friedrich Schiller University, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology − Hans-Knöll-Institute (HKI) and Friedrich Schiller University, Jena, Germany
| | - Robert Winkler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology − Hans-Knöll-Institute (HKI) and Friedrich Schiller University, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology − Hans-Knöll-Institute (HKI) and Friedrich Schiller University, Jena, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz University, Hannover, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology − Hans-Knöll-Institute (HKI), Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck, Austria
| | - Ernst R. Werner
- Division of Biological Chemistry, Biocenter, Innsbruck, Austria
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology − Hans-Knöll-Institute (HKI) and Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology − Hans-Knöll-Institute (HKI) and Friedrich Schiller University, Jena, Germany
| |
Collapse
|
29
|
Yang G, Meng Y, Li W, Yong Y, Fan Z, Ding H, Wei Y, Luo J, Ke Z. Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 2011; 21:279-97. [PMID: 21029241 PMCID: PMC3046243 DOI: 10.1111/j.1750-3639.2010.00445.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/03/2010] [Indexed: 11/28/2022] Open
Abstract
Chemokines are implicated in the neuroinflammation of several chronic neurodegenerative disorders. However, the precise role of chemokines in neurodegeneration is unknown. Thiamine deficiency (TD) causes abnormal oxidative metabolism in the brain as well as a well-defined microglia activation and neurodegeneration in the submedial thalamus nucleus (SmTN), which are common features of neurodegenerative diseases. We evaluated the role of chemokines in neurodegeneration and the underlying mechanism in a TD model. Among the chemokines examined, TD selectively induced neuronal expression of monocyte chemoattractant protein-1 (MCP-1) in the SmTN prior to microglia activation and neurodegeneration. The conditioned medium collected from TD-induced neurons caused microglia activation. With a neuron/microglia co-culture system, we showed that MCP-1-induced neurotoxicity required the presence of microglia, and exogenous MCP-1 was able to activate microglia and stimulated microglia to produce cytokines. A MCP-1 neutralizing antibody inhibited MCP-1-induced microglia activation and neuronal death in culture and in the thalamus. MCP-1 knockout mice were resistant to TD-induced neuronal death in SmTN. TD selectively induced the accumulation of reactive oxygen species in neurons, and antioxidants blocked TD-induced MCP-1 expression. Together, our results indicated an induction of neuronal MCP-1 during mild impairment of oxidative metabolism caused by microglia recruitment/activation, which exacerbated neurodegeneration.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Ya Meng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Wenxia Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yue Yong
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Hanqing Ding
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Youzhen Wei
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Jia Luo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY
| | - Zun‐Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE. Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem 2011; 286:17640-8. [PMID: 21454586 DOI: 10.1074/jbc.m110.203018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reduced brain metabolism is an invariant feature of Alzheimer Disease (AD) that is highly correlated to the decline in brain functions. Decreased activities of key tricarboxylic acid cycle (TCA) cycle enzymes may underlie this abnormality and are highly correlated to the clinical state of the patient. The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), an arguably rate-limiting enzyme of the TCA cycle, declines with AD, but the mechanism of inactivation and whether it can be reversed remains unknown. KGDHC consists of multiple copies of three subunits. KGDHC is sensitive to oxidative stress, which is pervasive in AD brain. The present studies tested the mechanism for the peroxynitrite-induced inactivation and subsequent reactivation of purified and cellular KGDHC. Peroxynitrite inhibited purified KGDHC activity in a dose-dependent manner and reduced subunit immunoreactivity and increased nitrotyrosine immunoreactivity. Nano-LC-MS/MS showed that the inactivation was related to nitration of specific tyrosine residues in the three subunits. GSH diminished the nitrotyrosine immunoreactivity of peroxynitrite-treated KGDHC, restored the activity and the immunoreactivity for KGDHC. Nano-LC-MS/MS showed this was related to de-nitration of specific tyrosine residues, suggesting KGDHC may have a denitrase activity. Treatment of N2a cells with peroxynitrite for 5 min followed by recovery of cells for 24 h reduced KGDHC activity and increased nitrotyrosine immunoreactivity. Increasing cellular GSH in peroxynitrite-treated cells rescued KGDHC activity to the control level. The results suggest that restoring KGDHC activity is possible and may be a useful therapeutic approach in neurodegenerative diseases.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology & Neuroscience, Weill Cornell Medical College/Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Jankowska-Kulawy A, Bielarczyk H, Pawełczyk T, Wróblewska M, Szutowicz A. Acetyl-CoA deficit in brain mitochondria in experimental thiamine deficiency encephalopathy. Neurochem Int 2010; 57:851-6. [PMID: 20850489 DOI: 10.1016/j.neuint.2010.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
Several pathologic conditions are known to cause thiamine deficiency, which induce energy shortages in all tissues, due to impairment of pyruvate decarboxylation. Brain is particularly susceptible to these conditions due to its high rate of glucose to pyruvate-driven energy metabolism. However, cellular compartmentalization of a key energy metabolite, acetyl-CoA, in this pathology remains unknown. Pyrithiamine-evoked thiamine deficiency caused no significant alteration in pyruvate dehydrogenase and 30% inhibition of α-ketoglutarate dehydrogenase activities in rat whole forebrain mitochondria. It also caused 50% reduction of the metabolic flux of pyruvate through pyruvate dehydrogenase, 78% inhibition of its flux through α-ketoglutarate dehydrogenase steps, and nearly 60% decrease of intramitochondrial acetyl-CoA content, irrespective of the metabolic state. State 3 caused a decrease in citrate and an increase in α-ketoglutarate accumulation. These alterations were more evident in thiamine-deficient mitochondria. Simultaneously thiamine deficiency caused no alteration of relative, state 3-induced increases in metabolic fluxes through pyruvate and α-ketoglutarate dehydrogenase steps. These data indicate that a shortage of acetyl-CoA in the mitochondrial compartment may be a primary signal inducing impairment of neuronal and glial cell functions and viability in the thiamine-deficient brain.
Collapse
|
32
|
Jankowska-Kulawy A, Bielarczyk H, Pawełczyk T, Wróblewska M, Szutowicz A. Acetyl-CoA and acetylcholine metabolism in nerve terminal compartment of thiamine deficient rat brain. J Neurochem 2010; 115:333-42. [PMID: 20649840 DOI: 10.1111/j.1471-4159.2010.06919.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The decrease of pyruvate and ketoglutarate dehydrogenase complex activities is the main cause of energy and acetyl-CoA deficits in thiamine deficiency-evoked cholinergic encephalopathies. However, disturbances in pathways of acetyl-CoA metabolism leading to appearance of cholinergic deficits remain unknown. Therefore, the aim of this work was to investigate alterations in concentration and distribution of acetyl-CoA and in acetylcholine metabolism in brain nerve terminals, caused by thiamine deficits. They were induced by the pyrithiamine, a potent inhibitor of thiamine pyrophosphokinase. The thiamine deficit reduced metabolic fluxes through pyruvate and ketoglutarate dehydrogenase steps, yielding deficits of acetyl-CoA in mitochondrial and cytoplasmic compartments of K-depolarized nerve terminals. It also inhibited indirect transport of acetyl-CoA though ATP-citrate lyase pathway being without effect on its direct Ca-dependent transport to synaptoplasm. Resulting suppression of synaptoplasmic acetyl-CoA correlated with inhibition of quantal acetylcholine release (r = 0.91, p = 0.012). On the other hand, thiamine deficiency activated non-quantal acetylcholine release that was independent of shifts in intraterminal distribution of acetyl-CoA. Choline acetyltransferase activity was not changed by these conditions. These data indicate that divergent alterations in the release of non-quantal and quantal acetylcholine pools from thiamine deficient nerve terminals could be caused by the inhibition of acetyl-CoA and citrate synthesis in their mitochondria. They in turn, caused inhibition of acetyl-CoA transport to the synaptoplasmic compartment through ATP-citrate lyase pathway yielding deficits of cholinergic functions.
Collapse
|
33
|
Irreversible Optic Neuropathy in Wernicke Encephalopathy and Leber Hereditary Optic Neuropathy. J Neuroophthalmol 2010; 30:49-53. [DOI: 10.1097/wno.0b013e3181ce80c6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 2009; 422:405-21. [PMID: 19698086 DOI: 10.1042/bj20090722] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanism-based inhibitors and both forward and reverse genetics have proved to be essential tools in revealing roles for specific enzymatic processes in cellular function. Here, we review experimental studies aimed at assessing the impact of OG (2-oxoglutarate) oxidative decarboxylation on basic cellular activities in a number of biological systems. After summarizing the catalytic and regulatory properties of the OGDHC (OG dehydrogenase complex), we describe the evidence that has been accrued on its cellular role. We demonstrate an essential role of this enzyme in metabolic control in a wide range of organisms. Targeting this enzyme in different cells and tissues, mainly by its specific inhibitors, effects changes in a number of basic functions, such as mitochondrial potential, tissue respiration, ROS (reactive oxygen species) production, nitrogen metabolism, glutamate signalling and survival, supporting the notion that the evolutionary conserved reaction of OG degradation is required for metabolic adaptation. In particular, regulation of OGDHC under stress conditions may be essential to overcome glutamate excitotoxicity in neurons or affect the wound response in plants. Thus, apart from its role in producing energy, the flux through OGDHC significantly affects nitrogen assimilation and amino acid metabolism, whereas the side reactions of OGDHC, such as ROS production and the carboligase reaction, have biological functions in signalling and glyoxylate utilization. Our current view on the role of OGDHC reaction in various processes within complex biological systems allows us a far greater fundamental understanding of metabolic regulation and also opens up new opportunities for us to address both biotechnological and medical challenges.
Collapse
|
35
|
Yang L, Shi Q, Ho DJ, Starkov AA, Wille EJ, Xu H, Chen HL, Zhang S, Stack CM, Calingasan NY, Gibson GE, Beal MF. Mice deficient in dihydrolipoyl succinyl transferase show increased vulnerability to mitochondrial toxins. Neurobiol Dis 2009; 36:320-30. [PMID: 19660549 DOI: 10.1016/j.nbd.2009.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/08/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022] Open
Abstract
The activity of a key mitochondrial tricarboxylic acid cycle enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC), declines in many neurodegenerative diseases. KGDHC consists of three subunits. The dihydrolipoyl succinyl transferase (DLST) component is unique to KGDHC. DLST(+/-) mice showed reduced mRNA and protein levels and decreased brain mitochondrial KGDHC activity. Neurotoxic effects of mitochondrial toxins were exacerbated in DLST(+/-) mice. MPTP produced a significantly greater reduction of striatal dopamine and tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta of DLST(+/-) mice. DLST deficiency enhanced the severity of lipid peroxidation in the substantia nigra after MPTP treatment. Striatal lesions induced by either malonate or 3-nitropropionic acid (3-NP) were significantly larger in DLST(+/-) mice than in wildtype controls. DLST deficiency enhanced the 3-NP inhibition of mitochondria enzymes, and 3-NP induced protein and DNA oxidations. These observations support the hypothesis that reductions in KGDHC may impair the adaptability of the brain and contribute to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lichuan Yang
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bettendorff L, Wins P. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. FEBS J 2009; 276:2917-25. [DOI: 10.1111/j.1742-4658.2009.07019.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Zhang Q, Ding H, Li W, Fan Z, Sun A, Luo J, Ke ZJ. Senescence accelerated mouse strain is sensitive to neurodegeneration induced by mild impairment of oxidative metabolism. Brain Res 2009; 1264:111-8. [PMID: 19232329 DOI: 10.1016/j.brainres.2009.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/01/2009] [Accepted: 02/04/2009] [Indexed: 01/22/2023]
Abstract
Neuronal loss and impairment of oxidative metabolism are frequently observed in aging associated neurodegenerative diseases. Thiamine deficiency (TD) induces the region selective neuronal loss in the brain, which has been used to model neurodegeneration, accompanied by mild impairment of oxidative metabolism. C57BL/6 mice were commonly used animals for TD experiments; however, the individual variations among C57BL/6 mice in response to TD limited the consistence of brain pathology. The senescence accelerated prone 8 (SAMP8) mouse strain exhibits age-related morphological changes in the brain and deficits in learning and memory. In this study, we compared the effects of TD on SAMP8 mice, senescence accelerated resistant 1 (SAMR1) mice and C57BL/6 mice. TD-induced body weight loss in SAMP8 mice was much greater than in SAMR1 and C57BL/6 mice. In addition, earlier and more severe loss of neurons in the submedial thalamic nucleus (SmTN) of the thalamus was detected in the SAMP8 mice. After 8 days of TD (TD8), the loss of NeuN-positive neurons in the SmTN of SAMP8, SAMR1 and C57BL/6 mice was 65%, 50%, and 36%, respectively. TD also caused accumulation of amyloid precursor protein (APP) in the thalamus. After TD10, APP immunoreactivity in the thalamus of SAMP8 was much more intense than that of SAMR1 and C57BL/6 mice. These results suggest that SAMP8 mice are sensitive to TD and therefore offer a useful model for studying aging related neurodegeneration caused by the impairment of oxidative metabolism.
Collapse
Affiliation(s)
- Qipeng Zhang
- Institute of Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Alzheimer disease (AD) is defined by progressive impairments in memory and cognition and by the presence of extracellular neuritic plaques and intracellular neurofibrillary tangles. However, oxidative stress and impaired mitochondrial function always accompany AD. Mitochondria are a major site of production of free radicals [ie, reactive oxygen species (ROS)] and primary targets of ROS. ROS are cytotoxic, and evidence of ROS-induced damage to cell membranes, proteins, and DNA in AD is overwhelming. Nevertheless, therapies based on antioxidants have been disappointing. Thus, alternative strategies are necessary. ROS also act as signaling molecules including for transcription. Thus, chronic exposure to ROS in AD could activate cascades of genes. Although initially protective, prolonged activation may be damaging. Thus, therapeutic approaches based on modulation of these gene cascades may lead to effective therapies. Genes involved in several pathways including antioxidant defense, detoxification, inflammation, etc, are induced in response to oxidative stress and in AD. However, genes that are associated with energy metabolism, which is necessary for normal brain function, are mostly down-regulated. Redox-sensitive transcription factors such as activator protein-1, nuclear factor-kappaB, specificity protein-1, and hypoxia-inducible factor are important in redox-dependent gene regulation. Peroxisome proliferators-activated receptor-gamma coactivator (PGC-1alpha) is a coactivator of several transcription factors and is a potent stimulator of mitochondrial biogenesis and respiration. Down-regulated expression of PGC-1alpha has been implicated in Huntington disease and in several Huntington disease animal models. PGC-1alpha role in regulation of ROS metabolism makes it a potential candidate player between ROS, mitochondria, and neurodegenerative diseases. This review summarizes the current progress on how oxidative stress regulates the expression of genes that might contribute to AD pathophysiology and the implications of the transcriptional modifications for AD. Finally, potential therapeutic strategies based on the updated understandings of redox state-dependent gene regulation in AD are proposed to overcome the lack of efficacy of antioxidant therapies.
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | |
Collapse
|