1
|
Wei DP, Jiang WW, Chen CX, Chen ZY, Zhou FQ, Zhang Y, Lu J. Identification and validation of autophagy-related genes in sepsis based on bioinformatics studies. Virol J 2025; 22:81. [PMID: 40114170 PMCID: PMC11924728 DOI: 10.1186/s12985-025-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
We identified 14 key genes associated with mitochondrial autophagy in sepsis through differential analysis of the dataset and then analysed the identified genes for functional enrichment. The analysis of key genes and deeper analysis of key genes by molecular typing, Weighted Gene Correlation Network Analysis (WGCNA) and ceRNA were also carried out. We have also validated these key genes with clinical data. Finally, sepsis diagnostic models are constructed by combining key genes with machine learning methods. In addition, we discuss the importance of the immune system in sepsis and its relationship with signature genes, which opens up new directions for studying the role of the immune system in sepsis. Overall, our study adds new ideas to the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Dong-Po Wei
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Wei-Wei Jiang
- Department of Emergency and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chang-Xing Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Zi-Yang Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Fang-Qing Zhou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Yu Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
- Department of Critical Care Medicine, Shanghai United Family Hospital, Shanghai, China.
| |
Collapse
|
2
|
Strope TA, Wilkins HM. The reciprocal relationship between amyloid precursor protein and mitochondrial function. J Neurochem 2024; 168:2275-2284. [PMID: 39022868 PMCID: PMC11648070 DOI: 10.1111/jnc.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Amyloid precursor protein (APP), secretase enzymes, and amyloid beta (Aβ) have been extensively studied in the context of Alzheimer's disease (AD). Despite this, the function of these proteins and their metabolism is not understood. APP, secretase enzymes, and APP processing products (Aβ and C-terminal fragments) localize to endosomes, mitochondria, endoplasmic reticulum (ER), and mitochondrial/ER contact sites. Studies implicate significant relationships between APP, secretase enzyme function, APP metabolism, and mitochondrial function. Mitochondrial dysfunction is a key pathological hallmark of AD and is intricately linked to proteostasis. Here, we review studies examining potential functions of APP, secretase enzymes, and APP metabolites in the context of mitochondrial function and bioenergetics. We discuss implications and limitations of studies and highlight knowledge gaps that remain in the field.
Collapse
Affiliation(s)
- Taylor A. Strope
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather M. Wilkins
- University of Kansas Alzheimer's Disease Research Center, Kansas City, Kansas, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Panahi M, Hase Y, Gallart-Palau X, Mitra S, Watanabe A, Low RC, Yamamoto Y, Sepulveda-Falla D, Hainsworth AH, Ihara M, Sze SK, Viitanen M, Behbahani H, Kalaria RN. ER stress induced immunopathology involving complement in CADASIL: implications for therapeutics. Acta Neuropathol Commun 2023; 11:76. [PMID: 37158955 PMCID: PMC10169505 DOI: 10.1186/s40478-023-01558-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023] Open
Abstract
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by NOTCH3 mutations. Typical CADASIL is characterised by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small arteries. Arteriolar vascular smooth muscle cells (VSMCs) are the key target in CADASIL, but the potential mechanisms involved in their degeneration are still unclear. Focusing on cerebral microvessels in the frontal and anterior temporal lobes and the basal ganglia, we used advanced proteomic and immunohistochemical methods to explore the extent of inflammatory and immune responses in CADASIL subjects compared to similar age normal and other disease controls. There was variable loss of VSMC in medial layers of arteries in white matter as well as the cortex, that could not be distinguished whether NOTCH3 mutations were in the epidermal growth factor (EGFr) domains 1-6 or EGFr7-34. Proteomics of isolated cerebral microvessels showed alterations in several proteins, many associated with endoplasmic reticulum (ER) stress including heat shock proteins. Cerebral vessels with sparsely populated VSMCs also attracted robust accrual of perivascular microglia/macrophages in order CD45+ > CD163+ > CD68+cells, with > 60% of vessel walls exhibiting intercellular adhesion molecule-1 (ICAM-1) immunoreactivity. Functional VSMC cultures bearing the NOTCH3 Arg133Cys mutation showed increased gene expression of the pro-inflammatory cytokine interleukin 6 and ICAM-1 by 16- and 50-fold, respectively. We further found evidence for activation of the alternative pathway of complement. Immunolocalisation of complement Factor B, C3d and C5-9 terminal complex but not C1q was apparent in ~ 70% of cerebral vessels. Increased complement expression was corroborated in > 70% of cultured VSMCs bearing the Arg133Cys mutation independent of N3ECD immunoreactivity. Our observations suggest that ER stress and other cellular features associated with arteriolar VSMC damage instigate robust localized inflammatory and immune responses in CADASIL. Our study has important implications for immunomodulation approaches to counter the characteristic arteriopathy of CADASIL.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area, University Hospital Arnau de Vilanova (HUAV) - Department of Psychology, University of Lleida (UdL), Lleida, Spain
| | - Sumonto Mitra
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Atsushi Watanabe
- Equipment Management Division, Center for Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430, Morioka-cho, Obu-shi, 474-8511, Aichi, Japan
| | - Roger C Low
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Yumi Yamamoto
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Masafumi Ihara
- Department of Molecular Innovation in Lipidemiology and Department of Neurology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, 564-8565, Osaka, Japan
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
- Department of Geriatrics, University of Turku, Turku City Hospital, Kunnallissairaalantie 20, Turku, 20700, Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Clinical Geriatrics, Karolinska Institutet, BioClinicum J9:20 Visionsgatan 4, Solna, 171 64, Sweden
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
4
|
Wilkins HM. Interactions between amyloid, amyloid precursor protein, and mitochondria. Biochem Soc Trans 2023; 51:173-182. [PMID: 36688439 PMCID: PMC9987971 DOI: 10.1042/bst20220518] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). Decades of research describe a relationship between mitochondrial function and Aβ production. Amyloid precursor protein (APP), of which Aβ is generated from, is found within mitochondria. Studies suggest Aβ can be generated in mitochondria and imported into mitochondria. APP and Aβ alter mitochondrial function, while mitochondrial function alters Aβ production from APP. The role these interactions contribute to AD pathology and progression are unknown. Here, we discuss prior research, the rigor of those studies, and the critical knowledge gaps of relationships between APP, Aβ, and mitochondria.
Collapse
Affiliation(s)
- Heather M. Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, U.S.A
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
5
|
Zhang X, Wang L, Li B, Shi J, Xu J, Yuan M. Targeting Mitochondrial Dysfunction in Neurodegenerative Diseases: Expanding the Therapeutic Approaches by Plant-Derived Natural Products. Pharmaceuticals (Basel) 2023; 16:277. [PMID: 37259422 PMCID: PMC9961467 DOI: 10.3390/ph16020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 09/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in neurons, supporting the high energy consumption of the nervous system. Inefficient and dysfunctional mitochondria in the central nervous system have been implicated in neurodegenerative diseases. Therefore, targeting mitochondria offers a new therapeutic opportunity for neurodegenerative diseases. Many recent studies have proposed that plant-derived natural products, as pleiotropic, safe, and readily obtainable sources of new drugs, potentially treat neurodegenerative diseases by targeting mitochondria. In this review, we summarize recent advances in targeting mitochondria in neurotherapeutics by employing plant-derived natural products. We discuss the mechanism of plant-derived natural products according to their mechanism of action on mitochondria in terms of regulating biogenesis, fusion, fission, bioenergetics, oxidative stress, calcium homeostasis, membrane potential, and mitochondrial DNA stability, as well as repairing damaged mitochondria. In addition, we discuss the potential perspectives and challenges in developing plant-derived natural products to target mitochondria, highlighting the clinical value of phytochemicals as feasible candidates for future neurotherapeutics.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Longqin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Minlan Yuan
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Strope TA, Wilkins HM. Amyloid precursor protein and mitochondria. Curr Opin Neurobiol 2023; 78:102651. [PMID: 36462447 PMCID: PMC9845182 DOI: 10.1016/j.conb.2022.102651] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
Amyloid Precursor Protein (APP) processing to amyloid beta (Aβ) is a major hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis postulates that Aβ accumulation and aggregation causes AD, however many therapeutics targeting Aβ have failed recently. Decades of research describe metabolic deficits in AD. Mitochondrial dysfunction is observed in AD subjects within the brain and systemically. APP and γ-secretase are localized to mitochondria. APP can be processed within mitochondria and its localization to mitochondria affects function. Here we discuss the evidence showing APP and γ-secretase localize to mitochondria. We also discuss the implications for the function of APP and its cleavage products in regulating mitochondrial function.
Collapse
Affiliation(s)
- Taylor A Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA. https://twitter.com/OneDayDrTay
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
7
|
BACE1 Inhibition Increases Susceptibility to Oxidative Stress by Promoting Mitochondrial Damage. Antioxidants (Basel) 2021; 10:antiox10101539. [PMID: 34679674 PMCID: PMC8532805 DOI: 10.3390/antiox10101539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
BACE1 is a key enzyme facilitating the generation of neurotoxic β-amyloid (Aβ) peptide. However, given that BACE1 has multiple substrates we explored the importance of BACE1 in the maintenance of retinal pigment epithelial (RPE) cell homeostasis under oxidative stress. Inhibition of BACE1 reduced mitochondrial membrane potential, increased mitochondrial fragmentation, and increased cleaved caspase-3 expression in cells under oxidative stress. BACE1 inhibition also resulted in significantly lower levels of mitochondrial fusion proteins OPA1 and MFN1 suggesting a higher rate of mitochondrial fission while increasing the levels of mitophagic proteins Parkin and PINK1 and autophagosome numbers. In contrast, BACE2 had minimal effect on cellular response to oxidative stress. In summary, our results emphasize the importance of BACE1 in augmenting cellular defense against oxidative stress by protecting mitochondrial dynamics.
Collapse
|
8
|
Du F, Yu Q, Yan S, Zhang Z, Vangavaragu JR, Chen D, Yan SF, Yan SS. Gain of PITRM1 peptidase in cortical neurons affords protection of mitochondrial and synaptic function in an advanced age mouse model of Alzheimer's disease. Aging Cell 2021; 20:e13368. [PMID: 33951271 PMCID: PMC8135081 DOI: 10.1111/acel.13368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is one of the early pathological features of Alzheimer's disease (AD). Accumulation of cerebral and mitochondrial Aβ links to mitochondrial and synaptic toxicity. We have previously demonstrated the mechanism by which presequence peptidase (PITRM1)‐mediated clearance of mitochondrial Aβ contributes to mitochondrial and cerebral amyloid pathology and mitochondrial and synaptic stress in adult transgenic AD mice overexpressing Aβ up to 12 months old. Here, we investigate the effect of PITRM1 in an advanced age AD mouse model (up to 19–24 months) to address the fundamental unexplored question of whether restoration/gain of PITRM1 function protects against mitochondrial and synaptic dysfunction associated with Aβ accumulation and whether this protection is maintained even at later ages featuring profound amyloid pathology and synaptic failure. Using newly developed aged PITRM1/Aβ‐producing AD mice, we first uncovered reduction in PITRM1 expression in AD‐affected cortex of AD mice at 19–24 months of age. Increasing neuronal PITRM1 activity/expression re‐established mitochondrial respiration, suppressed reactive oxygen species, improved synaptic function, and reduced loss of synapses even at advanced ages (up to 19–24 months). Notably, loss of PITRM1 proteolytic activity resulted in Aβ accumulation and failure to rescue mitochondrial and synaptic function, suggesting that PITRM1 activity is required for the degradation and clearance of mitochondrial Aβ and Aβ deposition. These data indicate that augmenting PITRM1 function results in persistent life‐long protection against Aβ toxicity in an AD mouse model. Therefore, augmenting PITRM1 function may enhance Aβ clearance in mitochondria, thereby maintaining mitochondrial integrity and ultimately slowing the progression of AD.
Collapse
Affiliation(s)
- Fang Du
- Department of Surgery Columbia University New York NY USA
| | - Qing Yu
- Department of Surgery Columbia University New York NY USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Zhihua Zhang
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Jhansi Rani Vangavaragu
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Doris Chen
- Department of Pharmacology and Toxicology and Higuchi bioscience Center University of Kansas Lawrence KS USA
| | - Shi Fang Yan
- Department of Surgery Columbia University New York NY USA
| | - Shirley ShiDu Yan
- Department of Surgery Columbia University New York NY USA
- Department of Molecular Pharmacology & Therapeutics Columbia University New York NY USA
| |
Collapse
|
9
|
Leal NS, Martins LM. Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020227. [PMID: 33672391 PMCID: PMC7926795 DOI: 10.3390/biomedicines9020227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The way organelles are viewed by cell biologists is quickly changing. For many years, these cellular entities were thought to be unique and singular structures that performed specific roles. However, in recent decades, researchers have discovered that organelles are dynamic and form physical contacts. In addition, organelle interactions modulate several vital biological functions, and the dysregulation of these contacts is involved in cell dysfunction and different pathologies, including neurodegenerative diseases. Mitochondria–ER contact sites (MERCS) are among the most extensively studied and understood juxtapositioned interorganelle structures. In this review, we summarise the major biological and ultrastructural dysfunctions of MERCS in neurodegeneration, with a particular focus on Alzheimer’s disease as well as Parkinson’s disease, amyotrophic lateral sclerosis and frontotemporal dementia. We also propose an updated version of the MERCS hypothesis in Alzheimer’s disease based on new findings. Finally, we discuss the possibility of MERCS being used as possible drug targets to halt cell death and neurodegeneration.
Collapse
|
10
|
Panahi M, Rodriguez PR, Fereshtehnejad SM, Arafa D, Bogdanovic N, Winblad B, Cedazo-Minguez A, Rinne J, Darreh-Shori T, Hase Y, Kalaria RN, Viitanen M, Behbahani H. Insulin-Independent and Dependent Glucose Transporters in Brain Mural Cells in CADASIL. Front Genet 2020; 11:1022. [PMID: 33101365 PMCID: PMC7522350 DOI: 10.3389/fgene.2020.01022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Typical cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the human NOTCH3 gene. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy is characterized by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small vessels. Blood regulating vascular smooth muscle cells (VSMCs) appear as the key target in CADASIL but the pathogenic mechanisms remain unclear. With the hypothesis that brain glucose metabolism is disrupted in VSMCs in CADASIL, we investigated post-mortem tissues and VSMCs derived from CADASIL patients to explore gene expression and protein immunoreactivity of glucose transporters (GLUTs), particularly GLUT4 and GLUT2 using quantitative RT-PCR and immunohistochemical techniques. In vitro cell model analysis indicated that both GLUT4 and -2 gene expression levels were down-regulated in VSMCs derived from CADASIL patients, compared to controls. In vitro studies further indicated that the down regulation of GLUT4 coincided with impaired glucose uptake in VSMCs, which could be partially rescued by insulin treatment. Our observations on reduction in GLUTs in VSMCs are consistent with previous findings of decreased cerebral blood flow and glucose uptake in CADASIL patients. That impaired ability of glucose uptake is rescued by insulin is also consistent with previously reported lower proliferation rates of VSMCs derived from CADASIL subjects. Overall, these observations are consistent with the development of severe cerebral arteriopathy in CADASIL, in which VSMCs are replaced by widespread fibrosis.
Collapse
Affiliation(s)
- Mahmod Panahi
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez Rodriguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Seyed-Mohammad Fereshtehnejad
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Donia Arafa
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Neurogeriatric Clinic, Karolinska University Hospital, Huddinge, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Juha Rinne
- University of Turku, Turku University Hospital Kiinanmyllynkatu, Turku, Finland
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Yoshiki Hase
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matti Viitanen
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatrics, Turun Kaupunginsairaala, University Hospital of Turku, University of Turku, Turku,Finland
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 2020; 15:30. [PMID: 32471464 PMCID: PMC7257174 DOI: 10.1186/s13024-020-00376-6] [Citation(s) in RCA: 713] [Impact Index Per Article: 142.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by impaired cognitive function due to progressive loss of neurons in the brain. Under the microscope, neuronal accumulation of abnormal tau proteins and amyloid plaques are two pathological hallmarks in affected brain regions. Although the detailed mechanism of the pathogenesis of AD is still elusive, a large body of evidence suggests that damaged mitochondria likely play fundamental roles in the pathogenesis of AD. It is believed that a healthy pool of mitochondria not only supports neuronal activity by providing enough energy supply and other related mitochondrial functions to neurons, but also guards neurons by minimizing mitochondrial related oxidative damage. In this regard, exploration of the multitude of mitochondrial mechanisms altered in the pathogenesis of AD constitutes novel promising therapeutic targets for the disease. In this review, we will summarize recent progress that underscores the essential role of mitochondria dysfunction in the pathogenesis of AD and discuss mechanisms underlying mitochondrial dysfunction with a focus on the loss of mitochondrial structural and functional integrity in AD including mitochondrial biogenesis and dynamics, axonal transport, ER-mitochondria interaction, mitophagy and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| |
Collapse
|
12
|
Increased Active OMI/HTRA2 Serine Protease Displays a Positive Correlation with Cholinergic Alterations in the Alzheimer's Disease Brain. Mol Neurobiol 2018; 56:4601-4619. [PMID: 30361890 PMCID: PMC6657433 DOI: 10.1007/s12035-018-1383-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
OMI/HTRA2 (high-temperature requirement serine protease A2) is a mitochondrial serine protease involved in several cellular processes, including autophagy, chaperone activity, and apoptosis. Few studies on the role of OMI/HTRA2 in Alzheimer's disease (AD) are available, but none on its relationship with the cholinergic system and neurotrophic factors as well as other AD-related proteins. In this study, immunohistochemical analyses revealed that AD patients had a higher cytosolic distribution of OMI/HTRA2 protein compared to controls. Quantitative analyses on brain extracts indicated a significant increase in the active form of OMI/HTRA2 in the AD brain. Activated OMI/HTRA2 protein positively correlated with stress-associated read-through acetylcholinesterase activity. In addition, α7 nicotinic acetylcholine receptor gene expression, a receptor also known to be localized on the outer membrane of mitochondria, showed a strong correlation with OMI/HTRA2 gene expression in three different brain regions. Interestingly, the activated OMI/HTRA2 levels also correlated with the activity of the acetylcholine-biosynthesizing enzyme, choline acetyltransferase (ChAT); with levels of the neurotrophic factors, NGF and BDNF; with levels of the soluble fragments of amyloid precursor protein (APP); and with gene expression of the microtubule-associated protein tau in the examined brain regions. Overall, the results demonstrate increased levels of the mitochondrial serine protease OMI/HTRA2, and a coherent pattern of association between the activated form of OMI/HTRA2 and several key proteins involved in AD pathology. In this paper, we propose a new hypothetical model to highlight the importance and needs of further investigation on the role of OMI/HTRA2 in the mitochondrial function and AD.
Collapse
|
13
|
Audano M, Schneider A, Mitro N. Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. J Neurochem 2018; 147:291-309. [DOI: 10.1111/jnc.14471] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Matteo Audano
- DiSFeB; Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milano Italy
| | - Anja Schneider
- German Center for Neurodegenerative Diseases; DZNE; Bonn Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry; University Clinic; Bonn Germany
| | - Nico Mitro
- DiSFeB; Dipartimento di Scienze Farmacologiche e Biomolecolari; Università degli Studi di Milano; Milano Italy
| |
Collapse
|
14
|
Pavlov PF, Hutter‐Paier B, Havas D, Windisch M, Winblad B. Development of GMP-1 a molecular chaperone network modulator protecting mitochondrial function and its assessment in fly and mice models of Alzheimer's disease. J Cell Mol Med 2018; 22:3464-3474. [PMID: 29704317 PMCID: PMC6010752 DOI: 10.1111/jcmm.13624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/03/2018] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and may play an important role in the pathogenesis of disease. It has been shown that amyloid beta peptide (Aβ) and amyloid precursor protein (APP) interact with mitochondria contributing to the mitochondrial dysfunction in AD. Prevention of abnormal protein targeting to mitochondria can protect normal mitochondrial function, increase neuronal survival and at the end, ameliorate symptoms of AD and other neurodegenerative disorders. First steps of mitochondrial protein import are coordinated by molecular chaperones Hsp70 and Hsp90 that bind to the newly synthesized mitochondria-destined proteins and deliver them to the protein import receptors on the surface of organelle. Here, we have described the development of a novel compound named GMP-1 that disrupts interactions between Hsp70/Hsp90 molecular chaperones and protein import receptor Tom70. GMP-1 treatment of SH-SY5Y cells results in decrease in mitochondria-associated APP and protects SH-SY5Y cells from toxic effect of Aβ1-42 exposure. Experiments in drosophila and mice models of AD demonstrated neuroprotective effect of GMP-1 treatment, improvement in memory and behaviour tests as well as restoration of mitochondrial function.
Collapse
Affiliation(s)
- Pavel F. Pavlov
- Division of NeurogeriatricsDepartment of Neuroscience Care and SocietyKarolinska InstitutetHuddingeSweden
- GreatMatterPharma ABSolnaSweden
| | | | | | | | - Bengt Winblad
- Division of NeurogeriatricsDepartment of Neuroscience Care and SocietyKarolinska InstitutetHuddingeSweden
- GreatMatterPharma ABSolnaSweden
| |
Collapse
|
15
|
A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 2018; 9:335. [PMID: 29491396 PMCID: PMC5832428 DOI: 10.1038/s41419-017-0215-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
In the last few years, increased emphasis has been devoted to understanding the contribution of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) to human pathology in general, and neurodegenerative diseases in particular. A major reason for this is the central role that this subdomain of the ER plays in metabolic regulation and in mitochondrial biology. As such, aberrant MAM function may help explain the seemingly unrelated metabolic abnormalities often seen in neurodegeneration. In the specific case of Alzheimer disease (AD), besides perturbations in calcium and lipid homeostasis, there are numerous documented alterations in mitochondrial behavior and function, including reduced respiratory chain activity and oxidative phosphorylation, increased free radical production, and altered organellar morphology, dynamics, and positioning (especially perinuclear mitochondria). However, whether these alterations are primary events causative of the disease, or are secondary downstream events that are the result of some other, more fundamental problem, is still unclear. In support of the former possibility, we recently reported that C99, the C-terminal processing product of the amyloid precursor protein (APP) derived from its cleavage by β-secretase, is present in MAM, that its level is increased in AD, and that this increase reduces mitochondrial respiration, likely via a C99-induced alteration in cellular sphingolipid homeostasis. Thus, the metabolic disturbances seen in AD likely arise from increased ER-mitochondrial communication that is driven by an increase in the levels of C99 at the MAM.
Collapse
|
16
|
Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:341-361. [PMID: 28253990 DOI: 10.1016/bs.pmbts.2016.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are well-known cellular organelles that play a vital role in cellular bioenergetics, heme biosynthesis, thermogenesis, calcium homeostasis, lipid catabolism, and other metabolic activities. Given the extensive role of mitochondria in cell function, mitochondrial dysfunction plays a part in many diseases, including diabetes and Alzheimer's disease (AD). In most cases, there is overwhelming evidence that impaired mitochondrial function is a causative factor in these diseases. Studying mitochondrial function in diseased cells vs healthy cells may reveal the modified mechanisms and molecular components involved in specific disease states. In this chapter, we provide a concise overview of the major recent findings on mitochondrial abnormalities and their link to synaptic dysfunction relevant to neurodegeneration and cognitive decline in AD and diabetes. Our increased understanding of the role of mitochondrial perturbation indicates that the development of specific small molecules targeting aberrant mitochondrial function could provide therapeutic benefits for the brain in combating aging-related dementia and neurodegenerative diseases by powering up brain energy and improving synaptic function and transmission.
Collapse
Affiliation(s)
- F Akhter
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - D Chen
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S F Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S S Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
17
|
Cardiac Specific Overexpression of Mitochondrial Omi/HtrA2 Induces Myocardial Apoptosis and Cardiac Dysfunction. Sci Rep 2016; 6:37927. [PMID: 27924873 PMCID: PMC5141441 DOI: 10.1038/srep37927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Myocardial apoptosis is a significant problem underlying ischemic heart disease. We previously reported significantly elevated expression of cytoplasmic Omi/HtrA2, triggers cardiomyocytes apoptosis. However, whether increased Omi/HtrA2 within mitochondria itself influences myocardial survival in vivo is unknown. We aim to observe the effects of mitochondria-specific, not cytoplasmic, Omi/HtrA2 on myocardial apoptosis and cardiac function. Transgenic mice overexpressing cardiac-specific mitochondrial Omi/HtrA2 were generated and they had increased myocardial apoptosis, decreased systolic and diastolic function, and decreased left ventricular remodeling. Transiently or stably overexpression of mitochondria Omi/HtrA2 in H9C2 cells enhance apoptosis as evidenced by elevated caspase-3, -9 activity and TUNEL staining, which was completely blocked by Ucf-101, a specific Omi/HtrA2 inhibitor. Mechanistic studies revealed mitochondrial Omi/HtrA2 overexpression degraded the mitochondrial anti-apoptotic protein HAX-1, an effect attenuated by Ucf-101. Additionally, transfected cells overexpressing mitochondrial Omi/HtrA2 were more sensitive to hypoxia and reoxygenation (H/R) induced apoptosis. Cyclosporine A (CsA), a mitochondrial permeability transition inhibitor, blocked translocation of Omi/HtrA2 from mitochondrial to cytoplasm, and protected transfected cells incompletely against H/R-induced caspase-3 activation. We report in vitro and in vivo overexpression of mitochondrial Omi/HtrA2 induces cardiac apoptosis and dysfunction. Thus, strategies to directly inhibit Omi/HtrA2 or its cytosolic translocation from mitochondria may protect against heart injury.
Collapse
|
18
|
Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants. PLoS One 2016; 11:e0161526. [PMID: 27571206 PMCID: PMC5003398 DOI: 10.1371/journal.pone.0161526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not allow to explain an increased activity of HtrA2V226K.
Collapse
|
19
|
Völgyi K, Háden K, Kis V, Gulyássy P, Badics K, Györffy BA, Simor A, Szabó Z, Janáky T, Drahos L, Dobolyi Á, Penke B, Juhász G, Kékesi KA. Mitochondrial Proteome Changes Correlating with β-Amyloid Accumulation. Mol Neurobiol 2016; 54:2060-2078. [PMID: 26910821 DOI: 10.1007/s12035-015-9682-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of β-amyloid (Aβ) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aβ progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aβ accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aβ-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aβ accumulation as a prodromal stage of human AD.
Collapse
Affiliation(s)
- Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary.
| | - Krisztina Háden
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Badics
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Balázs András Györffy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP B Neuroimmunology Research Group, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Szabó
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Botond Penke
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
20
|
Jarzab M, Wenta T, Zurawa-Janicka D, Polit A, Gieldon AJ, Wysocka M, Glaza P, Skorko-Glonek J, Ciarkowski J, Lesner A, Lipinska B. Intra- and intersubunit changes accompanying thermal activation of the HtrA2(Omi) protease homotrimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:283-296. [PMID: 26702898 DOI: 10.1016/j.bbapap.2015.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
Abstract
HtrA2(Omi) protease is involved in the maintenance of mitochondrial homeostasis and stimulation of apoptosis as well as in development of cancer and neurodegenerative disorders. The protein is a homotrimer whose subunits comprise serine protease domain (PD) and PDZ regulatory domain. In the basal, inactive state, a tight interdomain interface limits access both to the PDZ peptide (carboxylate) binding site and to the PD catalytic center. The molecular mechanism of activation is not well understood. To further the knowledge of HtrA2 thermal activation we monitored the dynamics of the PDZ-PD interactions during temperature increase using tryptophan-induced quenching (TrIQ) method. The TrIQ results suggested that during activation the PDZ domain changed its position versus PD inside a subunit, including a prominent change affecting the L3 regulatory loop of PD, and also changed its interactions with the PD of the adjacent subunit (PD*), specifically with its L1* regulatory loop containing the active site serine. The α5 helix of PDZ was involved in both, the intra- and intersubunit changes of interactions and thus seems to play an important role in HtrA2 activation. The amino acid substitutions designed to decrease the PDZ interactions with the PD or PD* promoted protease activity at a wide range of temperatures, which supports the conclusions based on the TrIQ analysis. The model presented in this work describes PDZ movement in relation to PD and PD*, resulting in an increased access to the peptide binding and active sites, and conformational changes of the L3 and L1* loops.
Collapse
Affiliation(s)
- Miroslaw Jarzab
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Tomasz Wenta
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Zurawa-Janicka
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Agnieszka Polit
- Department of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Artur J Gieldon
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Przemyslaw Glaza
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jerzy Ciarkowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Barbara Lipinska
- Department of Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| |
Collapse
|
21
|
Fang D, Wang Y, Zhang Z, Du H, Yan S, Sun Q, Zhong C, Wu L, Vangavaragu JR, Yan S, Hu G, Guo L, Rabinowitz M, Glaser E, Arancio O, Sosunov AA, McKhann GM, Chen JX, Yan SS. Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model. Hum Mol Genet 2015; 24:5198-210. [PMID: 26123488 DOI: 10.1093/hmg/ddv241] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022] Open
Abstract
Accumulation of amyloid-β (Aβ) in synaptic mitochondria is associated with mitochondrial and synaptic injury. The underlying mechanisms and strategies to eliminate Aβ and rescue mitochondrial and synaptic defects remain elusive. Presequence protease (PreP), a mitochondrial peptidasome, is a novel mitochondrial Aβ degrading enzyme. Here, we demonstrate for the first time that increased expression of active human PreP in cortical neurons attenuates Alzheimer disease's (AD)-like mitochondrial amyloid pathology and synaptic mitochondrial dysfunction, and suppresses mitochondrial oxidative stress. Notably, PreP-overexpressed AD mice show significant reduction in the production of proinflammatory mediators. Accordingly, increased neuronal PreP expression improves learning and memory and synaptic function in vivo AD mice, and alleviates Aβ-mediated reduction of long-term potentiation (LTP). Our results provide in vivo evidence that PreP may play an important role in maintaining mitochondrial integrity and function by clearance and degradation of mitochondrial Aβ along with the improvement in synaptic and behavioral function in AD mouse model. Thus, enhancing PreP activity/expression may be a new therapeutic avenue for treatment of AD.
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Zhihua Zhang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA, School of Life Sciences, Beijing Normal University, Beijing 100871, China
| | - Heng Du
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shiqiang Yan
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Qinru Sun
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Changjia Zhong
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Jhansi Rani Vangavaragu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Molly Rabinowitz
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA and
| | - Guy M McKhann
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA and
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA,
| |
Collapse
|
22
|
Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells. Mol Neurobiol 2014; 52:1077-1092. [DOI: 10.1007/s12035-014-8906-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
23
|
Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1295-307. [PMID: 24709290 DOI: 10.1016/j.bbamcr.2014.03.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Abstract
Omi/HtrA2 is a nuclear encoded mitochondrial serine protease with dual and opposite functions that depend entirely on its subcellular localization. During apoptosis, Omi/HtrA2 is released into the cytoplasm where it participates in cell death. While confined in the inter-membrane space of the mitochondria, Omi/HtrA2 has a pro-survival function that may involve the regulation of protein quality control (PQC) and mitochondrial homeostasis. Loss of Omi/HtrA2's protease activity causes the neuromuscular disorder of the mnd2 (motor neuron degeneration 2) mutant mice. These mice develop multiple defects including neurodegeneration with parkinsonian features. Loss of Omi/HtrA2 in non-neuronal tissues has also been shown to cause premature aging. The normal function of Omi/HtrA2 in the mitochondria and how its deregulation causes neurodegeneration or premature aging are unknown. Here we report that the mitochondrial Mulan E3 ubiquitin ligase is a specific substrate of Omi/HtrA2. During exposure to H(2)O(2), Omi/HtrA2 degrades Mulan, and this regulation is lost in cells that carry the inactive protease. Furthermore, we show accumulation of Mulan protein in various tissues of mnd2 mice as well as in Omi/HtrA2(-/-) mouse embryonic fibroblasts (MEFs). This causes a significant decrease of mitofusin 2 (Mfn2) protein, and increased mitophagy. Our work describes a new stress-signaling pathway that is initiated in the mitochondria and involves the regulation of Mulan by Omi/HtrA2 protease. Deregulation of this pathway, as it occurs in mnd2 mutant mice, causes mitochondrial dysfunction and mitophagy, and could be responsible for the motor neuron disease and the premature aging phenotype observed in these animals.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Camilla T Ambivero
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Nathan Ward
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA
| | - Emad S Alnemri
- Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Doris Germain
- Tisch Cancer Institute, Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY 10129, USA
| | - Antonis S Zervos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL32826, USA.
| |
Collapse
|
24
|
Vijayaraghavan S, Karami A, Aeinehband S, Behbahani H, Grandien A, Nilsson B, Ekdahl KN, Lindblom RPF, Piehl F, Darreh-Shori T. Regulated Extracellular Choline Acetyltransferase Activity- The Plausible Missing Link of the Distant Action of Acetylcholine in the Cholinergic Anti-Inflammatory Pathway. PLoS One 2013; 8:e65936. [PMID: 23840379 PMCID: PMC3686815 DOI: 10.1371/journal.pone.0065936] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer's disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer's disease and multiple sclerosis in particular.
Collapse
Affiliation(s)
- Swetha Vijayaraghavan
- Division of Alzheimer Neurobiology Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
| | - Azadeh Karami
- Division of Alzheimer Neurobiology Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
| | - Shahin Aeinehband
- Department of Clinical Neuroscience, Unit for Neuroimmunology, Solna, Stockholm, Sweden
| | - Homira Behbahani
- Division of Alzheimer Disease Research Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
| | - Alf Grandien
- Department of Medicine, Center for Hematology and Regenerative Medicine, Huddinge, Stockholm, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Division of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Division of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | | | - Fredrik Piehl
- Department of Clinical Neuroscience, Unit for Neuroimmunology, Solna, Stockholm, Sweden
| | - Taher Darreh-Shori
- Division of Alzheimer Neurobiology Center, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Huddinge, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
25
|
Function and characteristics of PINK1 in mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:601587. [PMID: 23533695 PMCID: PMC3600171 DOI: 10.1155/2013/601587] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/24/2022]
Abstract
Mutations in phosphatase and tensin homologue-induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease, a neurodegenerative disorder linked to mitochondrial dysfunction. Studies support the notion of neuroprotective roles for the PINK1, as it protects cells from damage-mediated mitochondrial dysfunction, oxidative stress, and cell apoptosis. PARL is a mitochondrial resident rhomboid serine protease, and it has been reported to mediate the cleavage of the PINK1. Interestingly, impaired mitophagy, an important autophagic quality control mechanism that clears the cells of damaged mitochondria, may also be an underlying mechanism of disease pathogenesis in patients for Parkinson's disease with the PARL mutations. Functional studies have revealed that PINK1 recruits Parkin to mitochondria to initiate the mitophagy. PINK1 is posttranslationally processed, whose level is definitely regulated in healthy steady state of mitochondria. As a consequence, PINK1 plays a pivotal role in mitochondrial healthy homeostasis.
Collapse
|
26
|
Zurawa-Janicka D, Jarzab M, Polit A, Skorko-Glonek J, Lesner A, Gitlin A, Gieldon A, Ciarkowski J, Glaza P, Lubomska A, Lipinska B. Temperature-induced changes of HtrA2(Omi) protease activity and structure. Cell Stress Chaperones 2013; 18:35-51. [PMID: 22851136 PMCID: PMC3508124 DOI: 10.1007/s12192-012-0355-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 01/17/2023] Open
Abstract
HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ-protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ-protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ-protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.
Collapse
Affiliation(s)
- Dorota Zurawa-Janicka
- Present Address: Department of Biochemistry, University of Gdansk, Kladki 24, 80-952 Gdansk, Poland
| | - Miroslaw Jarzab
- Present Address: Department of Biochemistry, University of Gdansk, Kladki 24, 80-952 Gdansk, Poland
| | - Agnieszka Polit
- Present Address: Department of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Joanna Skorko-Glonek
- Present Address: Department of Biochemistry, University of Gdansk, Kladki 24, 80-952 Gdansk, Poland
| | - Adam Lesner
- Present Address: Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdansk, Poland
| | - Agata Gitlin
- Present Address: Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdansk, Poland
| | - Artur Gieldon
- Present Address: Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdansk, Poland
| | - Jerzy Ciarkowski
- Present Address: Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdansk, Poland
| | - Przemyslaw Glaza
- Present Address: Department of Biochemistry, University of Gdansk, Kladki 24, 80-952 Gdansk, Poland
| | - Agnieszka Lubomska
- Present Address: Department of Biochemistry, University of Gdansk, Kladki 24, 80-952 Gdansk, Poland
| | - Barbara Lipinska
- Present Address: Department of Biochemistry, University of Gdansk, Kladki 24, 80-952 Gdansk, Poland
| |
Collapse
|
27
|
Viitanen M, Sundström E, Baumann M, Poyhonen M, Tikka S, Behbahani H. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells. Exp Cell Res 2012; 319:134-43. [PMID: 23036509 DOI: 10.1016/j.yexcr.2012.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 12/26/2022]
Abstract
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ(m)) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology.
Collapse
Affiliation(s)
- Matti Viitanen
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Dehvari N, Mahmud T, Persson J, Bengtsson T, Graff C, Winblad B, Rönnbäck A, Behbahani H. Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor. Neurochem Int 2012; 60:533-42. [PMID: 22366649 DOI: 10.1016/j.neuint.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Aggresomes are cytoplasmic inclusions which are localized at the microtubule organizing center (MTOC) as a result of induced proteasome inhibition, stress or over-expression of certain proteins. Aggresomes are linked to the pathogenesis of many neurodegenerative diseases. Here we studied whether amyloid precursor protein (APP), a type-I transmembrane glycoprotein, is localized in aggresomes after exposure to stress condition. Using confocal microscopy we found that APP is located in aggresomes and co-localized with vimentin, γ-tubulin, 20S and ubiquitin at the MTOC in response to proteasome dysfunction. An interaction between vimentin and APP was found after proteasome inhibition suggesting that APP is an additional protein constituent of aggresomes. Suppression of the proteasome system in APP-HEK293 cells overexpressing APP or transfected with APP Swedish mutation caused an accumulation of stable, detergent-insoluble forms of APP containing poly-ubiquitinated proteins. In addition, brain homogenates from transgenic mice expressing human APP with the Arctic mutation demonstrated an interaction between APP and the aggresomal-marker vimentin. These data suggest that malfunctioning of the proteasome system caused by mutation or overexpression of pathological or non-pathological proteins may lead to the accumulation of stable aggresomes, perhaps contributing to the neurodegeneration.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Physiology, The Wenner-Gren Institute Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mitochondrial Importance in Alzheimer’s, Huntington’s and Parkinson’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:205-21. [DOI: 10.1007/978-1-4614-0653-2_16] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Westerlund M, Behbahani H, Gellhaar S, Forsell C, Belin AC, Anvret A, Zettergren A, Nissbrandt H, Lind C, Sydow O, Graff C, Olson L, Ankarcrona M, Galter D. Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease. FASEB J 2010; 25:1345-52. [PMID: 21163861 DOI: 10.1096/fj.10-163402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The serine-protease OMI/HTRA2, required for several cellular processes, including mitochondrial function, autophagy, chaperone activity, and apoptosis, has been implicated in the pathogenesis of both Alzheimer's disease (AD) and Parkinson's disease (PD). Western blot quantification of OMI/HTRA2 in frontal cortex of patients with AD (n=10) and control subjects (n=10) in two separate materials indicated reduced processed (active, 35 kDa) OMI/HTRA2 levels, whereas unprocessed (50 kDa) enzyme levels were not significantly different between the groups. Interestingly, the specific protease activity of OMI/HTRA2 was found to be significantly increased in patients with AD (n=10) compared to matched control subjects (n=10) in frontal cortex in two separate materials. Comparison of OMI/HTRA2 mRNA levels in frontal cortex and hippocampus, two brain areas particularly affected by AD, indicated similar levels in patients with AD (n=10) and matched control subjects (n=10). In addition, we analyzed the occurrence of the OMI/HTRA2 variants A141S and G399S in Swedish case-control materials for AD and PD and found a weak association of A141S with AD, but not with PD. In conclusion, our genetic, histological, and biochemical findings give further support to an involvement of OMI/HTRA2 in the pathology of AD; however, further studies are needed to clarify the role of this gene in neurodegeneration.
Collapse
Affiliation(s)
- Marie Westerlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|