1
|
McSwiggin H, Wang R, Magalhães RDM, Zhu F, Doherty TA, Yan W, Jendzjowsky N. Comprehensive sequencing of the lung neuroimmune landscape in response to asthmatic induction. Front Immunol 2025; 16:1518771. [PMID: 40181989 PMCID: PMC11965707 DOI: 10.3389/fimmu.2025.1518771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/13/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Evidence demonstrates that sensory neurons respond to pathogenic/allergic infiltration and mediate immune responses, forming an integral part of host defense that becomes hypersensitized during allergy. Our objective was to investigate how asthmatic induction alters the pulmonary neuroimmune transcriptome. We hypothesized that asthmatic induction would upregulate genes in the vagal ganglia (nodose/jugular ganglia), which would be associated with asthmatic immunity, and that these would be clustered, primarily in nodose neurons. Furthermore, lungs would increase transcripts associated with nerve activation, and these would be centered in neural and neuroendocrine-like cells. Methods Standard RNA sequencing, single nucleus-RNA sequencing, and spatial RNA sequencing of vagal ganglia. Standard RNA-sequencing and spatial RNA-sequencing of lungs in naïve and mice that have undergone asthmatic induction with Alternaria alternata. Results Bulk RNA-seq revealed that genes related to allergen sensing were increased in asthmatic ganglia nodose/jugular ganglia compared to control ganglia. These genes were associated with nodose clusters as shown by single-nucleus RNA sequencing, and a distinct caudal-to-rostral spatial arrangement was presented as delineated by spatial transcriptomics. The distinct clusters closely match previous identification of nodose neuron clusters. Correspondingly, the lung transcriptome was altered with asthmatic induction such that transcripts associated with neural excitation were upregulated. The spatial distribution of these transcripts was revealed by spatial transcriptomics to illustrate that these were expressed in neuroendocrine-like cells/club cells, and neurons. Conclusions These results show that the neuroimmune transcriptome is altered in response to asthmatic induction in a cell cluster and spatially distinct manner.
Collapse
Affiliation(s)
- Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Rui Wang
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Rubens Daniel Miserani Magalhães
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Fengli Zhu
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
| | - Taylor A. Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA, United States
- Division of Respiratory and Critical Care Medicine and Physiology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
2
|
Salido EM. Critical Roles of SEA Domains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:477-481. [PMID: 39930241 DOI: 10.1007/978-3-031-76550-6_78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
This mini-review delves into the multifaceted roles of SEA (sea urchin sperm protein, enterokinase, and agrin) domains, ubiquitous protein modules critical to the structure, and function of a wide range of membrane-associated and secreted proteins in organisms from yeast to humans. We explore the structural and functional characteristics of SEA domains based on their two types of fundamental characteristics: proteolytic and non-proteolytic SEA domains. We also examine the significance of SEA domains in different protein families, particularly in mucins and extracellular matrix proteins, emphasizing their roles in glycosylation, cell adhesion, and signal transduction. The review also highlights the crucial impact of SEA domains in health and disease contexts, with a focus on their implications in cancer progression and retinal health. Mutations within these domains are linked to a range of pathologies, including various cancers and congenital disorders, underscoring their clinical importance. Through this review, we aim to provide a deeper understanding of SEA domains, shedding light on their diverse biological functions and their potential as targets for therapeutic interventions in diseases where they play a pivotal role.
Collapse
Affiliation(s)
- Ezequiel M Salido
- Department of Biochemistry and Molecular Medicine, Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
3
|
Ouidja MO, Biard DSF, Huynh MB, Laffray X, Gomez-Henao W, Chantepie S, Le Douaron G, Rebergue N, Maïza A, Merrick H, De Lichy A, Dady A, González-Velasco O, Rubio K, Barreto G, Baranger K, Cormier-Daire V, De Las Rivas J, Fernig DG, Papy-Garcia D. Genetic variability in proteoglycan biosynthetic genes reveals new facets of heparan sulfate diversity. Essays Biochem 2024; 68:555-578. [PMID: 39630030 PMCID: PMC11625870 DOI: 10.1042/ebc20240106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PG) consist of a core protein to which the glycosaminoglycan (GAG) chains, HS or CS, are attached through a common linker tetrasaccharide. In the extracellular space, they are involved in the regulation of cell communication, assuring development and homeostasis. The HSPG biosynthetic pathway has documented 51 genes, with many diseases associated to defects in some of them. The phenotypic consequences of this genetic variation in humans, and of genetic ablation in mice, and their expression patterns, led to a phenotypically centered HSPG biosynthetic pathway model. In this model, HS sequences produced by ubiquitous NDST1, HS2ST and HS6ST enzymes are essential for normal development and homeostasis, whereas tissue restricted HS sequences produced by the non-ubiquitous NDST2-4, HS6ST2-3, and HS3ST1-6 enzymes are involved in adaptative behaviors, cognition, tissue responsiveness to stimuli, and vulnerability to disease. The model indicates that the flux through the HSPG/CSPG pathways and its diverse branches is regulated by substrate preferences and protein-protein-interactions. This results in a privileged biosynthesis of HSPG over that of CSPGs, explaining the phenotypes of linkeropathies, disease caused by defects in genes involved in the biosynthesis of the common tetrasaccharide linker. Documented feedback loops whereby cells regulate HS sulfation, and hence the interactions of HS with protein partners, may be similarly implemented, e.g., protein tyrosine sulfation and other posttranslational modifications in enzymes of the HSPG pathway. Together, ubiquitous HS, specialized HS, and their biosynthesis model can facilitate research for a better understanding of HSPG roles in physiology and pathology.
Collapse
Affiliation(s)
- Mohand Ouidir Ouidja
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Denis S F Biard
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- CEA, Institut de Biologie François Jacob (IBFJ), SEPIA, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Minh Bao Huynh
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Xavier Laffray
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Wilton Gomez-Henao
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- Departamento de Bioquímica, Laboratorio Internacional Gly-CRRET-UNAM, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sandrine Chantepie
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Gael Le Douaron
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Nicolas Rebergue
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Auriane Maïza
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Heloise Merrick
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Aubert De Lichy
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Alwyn Dady
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| | - Oscar González-Velasco
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | - Karla Rubio
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Université De Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
| | - Guillermo Barreto
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
- Université De Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
| | | | - Valerie Cormier-Daire
- Department of Genomic Medicine for Rare Diseases, French Reference Center for Constitutional Bone Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), University of Salamanca (USAL), Salamanca, Spain
| | - David G Fernig
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | - Dulce Papy-Garcia
- Univ Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Creteil, France
| |
Collapse
|
4
|
Oppelaar JJ, Ferwerda B, Romman MA, Sahebdin GN, Zwinderman AH, Galenkamp H, Boekholdt SM, van den Born BJH, Olde Engberink RH, Vogt L. Genetic Variance in Heparan Sulfation Is Associated With Salt Sensitivity. Hypertension 2024; 81:2101-2112. [PMID: 39247955 PMCID: PMC11404764 DOI: 10.1161/hypertensionaha.124.23421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND High heritability of salt sensitivity suggests an essential role for genetics in the relationship between sodium intake and blood pressure (BP). The role of glycosaminoglycan genes, which are crucial for salinity tolerance, remains to be elucidated. METHODS Interactions between 54 126 variants in 130 glycosaminoglycan genes and daily sodium excretion on BP were explored in 20 420 EPIC-Norfolk (European Prospective Investigation Into Cancer in Norfolk) subjects. The UK Biobank (n=414 132) and the multiethnic HELIUS study (Healthy Life in an Urban Setting; n=2239) were used for validation. Afterward, the urinary glycosaminoglycan composition was studied in HELIUS participants (n=57) stratified by genotype and upon dietary sodium loading in a time-controlled crossover intervention study (n=12). RESULTS rs2892799 in NDST3 (heparan sulfate N-deacetylase/N-sulfotransferase 3) showed the strongest interaction with sodium on mean arterial pressure (false discovery rate 0.03), with higher mean arterial pressure for the C allele in high sodium conditions. Also, rs9654628 in HS3ST5 (heparan sulfate-glucosamine 3-sulfotransferase 5) showed an interaction with sodium on systolic BP (false discovery rate 0.03). These interactions were multiethnically validated. Stratifying for the rs2892799 genotype showed higher urinary expression of N-sulfated heparan sulfate epitope D0S0 for the T allele. Conversely, upon dietary sodium loading, urinary D0S0 expression was higher in participants with stable BP after sodium loading, and sodium-induced effects on this epitope were opposite in individuals with and without BP response to sodium. CONCLUSIONS The C allele of rs2892799 in NDST3 exhibits higher BP in high sodium conditions when compared with low sodium conditions, whereas no differences were detected for the T allele. Concomitantly, both alleles demonstrate distinct expressions of D0S0, which, in turn, correlates with sodium-mediated BP elevation. These findings underscore the potential significance of genetic glycosaminoglycan variation in human BP regulation.
Collapse
Affiliation(s)
- Jetta J. Oppelaar
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics (B.F., A.H.Z.)
| | - Mohamed A. Romman
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
| | - Ghazalah N. Sahebdin
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
| | | | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam Public Health (H.G., B.-J.H.B.)
| | - S. Matthijs Boekholdt
- Department of Cardiology (S.M.B.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Bert-Jan H. van den Born
- Department of Public and Occupational Health, Amsterdam Public Health (H.G., B.-J.H.B.)
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam University Medical Center location University of Amsterdam, Meibergdreef 9, the Netherlands (B.-J.H.B.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Rik H.G. Olde Engberink
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology (J.J.O., M.A.R., G.N.S., R.H.G.O.E., L.V.)
- Amsterdam Cardiovascular Sciences, the Netherlands (J.J.O., R.H.G.O.E., L.V., S.M.B., B.-J.H.B.)
| |
Collapse
|
5
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Lv R, Duan L, Gao J, Si J, Feng C, Hu J, Zheng X. Bioinformatics-based analysis of the roles of basement membrane-related gene AGRN in systemic lupus erythematosus and pan-cancer development. Front Immunol 2023; 14:1231611. [PMID: 37841281 PMCID: PMC10570813 DOI: 10.3389/fimmu.2023.1231611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease involving many systems and organs, and individuals with SLE exhibit unique cancer risk characteristics. The significance of the basement membrane (BM) in the occurrence and progression of human autoimmune diseases and tumors has been established through research. However, the roles of BM-related genes and their protein expression mechanisms in the pathogenesis of SLE and pan-cancer development has not been elucidated. Methods In this study, we applied bioinformatics methods to perform differential expression analysis of BM-related genes in datasets from SLE patients. We utilized LASSO logistic regression, SVM-RFE, and RandomForest to screen for feature genes and construct a diagnosis model for SLE. In order to attain a comprehensive comprehension of the biological functionalities of the feature genes, we conducted GSEA analysis, ROC analysis, and computed levels of immune cell infiltration. Finally, we sourced pan-cancer expression profiles from the TCGA and GTEx databases and performed pan-cancer analysis. Results We screened six feature genes (AGRN, PHF13, SPOCK2, TGFBI, COL4A3, and COLQ) to construct an SLE diagnostic model. Immune infiltration analysis showed a significant correlation between AGRN and immune cell functions such as parainflammation and type I IFN response. After further gene expression validation, we finally selected AGRN for pan-cancer analysis. The results showed that AGRN's expression level varied according to distinct tumor types and was closely correlated with some tumor patients' prognosis, immune cell infiltration, and other indicators. Discussion In conclusion, BM-related genes play a pivotal role in the pathogenesis of SLE, and AGRN shows immense promise as a target in SLE and the progression of multiple tumors.
Collapse
Affiliation(s)
- Rundong Lv
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Duan
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jie Gao
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Jigang Si
- Department of Clinical Pharmacy, Zibo Central Hospital, Zibo, Shandong, China
| | - Chen Feng
- Department of Pharmacy, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Hu
- Department of Children’s Health, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiulan Zheng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
8
|
Deconstruction of Neurotrypsin Reveals a Multi-factorially Regulated Activity Affecting Myotube Formation and Neuronal Excitability. Mol Neurobiol 2022; 59:7466-7485. [PMID: 36197591 PMCID: PMC9616769 DOI: 10.1007/s12035-022-03056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Neurotrypsin (NT) is a highly specific nervous system multi-domain serine protease best known for its selective processing of the potent synaptic organizer agrin. Its enzymatic activity is thought to influence processes of synaptic plasticity, with its deregulation causing accelerated neuromuscular junction (NMJ) degeneration or contributing to forms of mental retardation. These biological effects are likely to stem from NT-based regulation of agrin signaling. However, dissecting the exact biological implications of NT-agrin interplay is difficult, due to the scarce molecular detail regarding NT activity and NT-agrin interactions. We developed a strategy to reliably produce and purify a catalytically competent engineered variant of NT called "NT-mini" and a library of C-terminal agrin fragments, with which we performed a thorough biochemical and biophysical characterization of NT enzyme functionality. We studied the regulatory effects of calcium ions and heparin, identified NT's heparin-binding domain, and discovered how zinc ions induce modulation of enzymatic activity. Additionally, we investigated myotube differentiation and hippocampal neuron excitability, evidencing a dose-dependent increase in neuronal activity alongside a negative impact on myoblast fusion when using the active NT enzyme. Collectively, our results provide in vitro and cellular foundations to unravel the molecular underpinnings and biological significance of NT-agrin interactions.
Collapse
|
9
|
del Olmo I, Verdes A, Álvarez‐Campos P. Distinct patterns of gene expression during regeneration and asexual reproduction in the annelid Pristina leidyi. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:405-420. [PMID: 35604322 PMCID: PMC9790225 DOI: 10.1002/jez.b.23143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/03/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Regeneration, the ability to replace lost body parts, is a widespread phenomenon in the animal kingdom often connected to asexual reproduction or fission, since the only difference between the two appears to be the stimulus that triggers them. Both developmental processes have largely been characterized; however, the molecular toolkit and genetic mechanisms underlying these events remain poorly unexplored. Annelids, in particular the oligochaete Pristina leidyi, provide a good model system to investigate these processes as they show diverse ways to regenerate, and can reproduce asexually through fission under laboratory conditions. Here, we used a comparative transcriptomics approach based on RNA-sequencing and differential gene expression analyses to understand the molecular mechanisms involved in anterior regeneration and asexual reproduction. We found 291 genes upregulated during anterior regeneration, including several regeneration-related genes previously reported in other annelids such as frizzled, paics, and vdra. On the other hand, during asexual reproduction, 130 genes were found upregulated, and unexpectedly, many of them were related to germline development during sexual reproduction. We also found important differences between anterior regeneration and asexual reproduction, with the latter showing a gene expression profile more similar to that of control individuals. Nevertheless, we identified 35 genes that were upregulated in both conditions, many of them related to cell pluripotency, stem cells, and cell proliferation. Overall, our results shed light on the molecular mechanisms that control anterior regeneration and asexual reproduction in annelids and reveal similarities with other animals, suggesting that the genetic machinery controlling these processes is conserved across metazoans.
Collapse
Affiliation(s)
- Irene del Olmo
- Department of Biology (Zoology)Universidad Autónoma de MadridMadridSpain
| | - Aida Verdes
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales de MadridMadridSpain
| | | |
Collapse
|
10
|
Vitamin B12 as a Cholinergic System Modulator and Blood Brain Barrier Integrity Restorer in Alzheimer's Disease. Eur J Pharm Sci 2022; 174:106201. [PMID: 35523375 DOI: 10.1016/j.ejps.2022.106201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
So far, the cholinergic hypothesis of Alzheimer's disease (AD) remains the fundamental explanation for the complex etiopathology of AD. However, therapeutics raising synaptic acetylcholine (Ach) or having cholinergic receptors agonistic activity had shown limited clinical efficacy, possibly, due to lacking capability to aggregate cholinergic receptors within the degenerated cholinergic neurons. Vitamin-B12 (B12) is an epigenetic modifier. It has a specific CNS transport system via the cubam receptors. The later enclose a cholinergic aggregator; agrin protein, suggesting that B12 administration may cause cholinergic receptors aggregation. Further, B12 involvement in homocysteine (Hcy) metabolism may restore blood brain barrier (BBB) integrity disrupted by elevated Hcy levels in AD. Here in, using a pharmacological model of cholinergic amnesia, three different B12 doses were compared to the standard of care; donepezil (DON) regarding cholinergic system modulation, and Hcy metabolic pathways. Further, AD-associated cerebro-vascular pathology was assessed by morphometric analyses of cerebro-vasculature morphology and ultrastructure using scanning and transmission electron-microscopes, respectively. Consequent effect on key AD-hallmarks and behavioral cognitive tests was also examined. The highest B12-tested dose (B12-HD) showed the greatest hippocampal cholinergic modulation with dose-dependent preferential upregulation of one cholinergic receptor over the other. Altered Hcy metabolism was proved to be a consequence of cholinergic disruption that was variably reversed by different B12 doses. In spite of equipotent effect of DON and B12-HD therapies in decreasing β-amyloid synthesis, B12-HD-treated group revealed the greatest restoration of BBB integrity indicating superior capability of β-amyloid clearance. Therefore, B12-HD therapy may represent a promising AD-modifying agent with extra-ability over conventional cholinergic modulators to aggregate cholinergic receptors.
Collapse
|
11
|
Salazar IL, Lourenço AST, Manadas B, Baldeiras I, Ferreira C, Teixeira AC, Mendes VM, Novo AM, Machado R, Batista S, Macário MDC, Grãos M, Sousa L, Saraiva MJ, Pais AACC, Duarte CB. Posttranslational modifications of proteins are key features in the identification of CSF biomarkers of multiple sclerosis. J Neuroinflammation 2022; 19:44. [PMID: 35135578 PMCID: PMC8822857 DOI: 10.1186/s12974-022-02404-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Background Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system (CNS) characterized by demyelination and concomitant axonal loss. The lack of a single specific test, and the similarity to other inflammatory diseases of the central nervous system, makes it difficult to have a clear diagnosis of multiple sclerosis. Therefore, laboratory tests that allows a clear and definite diagnosis, as well as to predict the different clinical courses of the disease are of utmost importance. Herein, we compared the cerebrospinal fluid (CSF) proteome of patients with multiple sclerosis (in the relapse–remitting phase of the disease) and other diseases of the CNS (inflammatory and non-inflammatory) aiming at identifying reliable biomarkers of multiple sclerosis. Methods CSF samples from the discovery group were resolved by 2D-gel electrophoresis followed by identification of the protein spots by mass spectrometry. The results were analyzed using univariate (Student’s t test) and multivariate (Hierarchical Cluster Analysis, Principal Component Analysis, Linear Discriminant Analysis) statistical and numerical techniques, to identify a set of protein spots that were differentially expressed in CSF samples from patients with multiple sclerosis when compared with other two groups. Validation of the results was performed in samples from a different set of patients using quantitative (e.g., ELISA) and semi-quantitative (e.g., Western Blot) experimental approaches. Results Analysis of the 2D-gels showed 13 protein spots that were differentially expressed in the three groups of patients: Alpha-1-antichymotrypsin, Prostaglandin-H2-isomerase, Retinol binding protein 4, Transthyretin (TTR), Apolipoprotein E, Gelsolin, Angiotensinogen, Agrin, Serum albumin, Myosin-15, Apolipoprotein B-100 and EF-hand calcium-binding domain—containing protein. ELISA experiments allowed validating part of the results obtained in the proteomics analysis and showed that some of the alterations in the CSF proteome are also mirrored in serum samples from multiple sclerosis patients. CSF of multiple sclerosis patients was characterized by TTR oligomerization, thus highlighting the importance of analyzing posttranslational modifications of the proteome in the identification of novel biomarkers of the disease. Conclusions The model built based on the results obtained upon analysis of the 2D-gels and in the validation phase attained an accuracy of about 80% in distinguishing multiple sclerosis patients and the other two groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02404-2.
Collapse
Affiliation(s)
- Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana S T Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Anabela Claro Teixeira
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Novo
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rita Machado
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sónia Batista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria do Carmo Macário
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Mário Grãos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,Biocant-Associação de Transferência de Tecnologia, Cantanhede, Portugal
| | - Lívia Sousa
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Trombetta-Lima M, Rosa-Fernandes L, Angeli CB, Moretti IF, Franco YM, Mousessian AS, Wakamatsu A, Lerario AM, Oba-Shinjo SM, Pasqualucci CA, Marie SKN, Palmisano G. Extracellular Matrix Proteome Remodeling in Human Glioblastoma and Medulloblastoma. J Proteome Res 2021; 20:4693-4707. [PMID: 34533964 DOI: 10.1021/acs.jproteome.1c00251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Medulloblastomas (MBs) and glioblastomas (GBMs) are high-incidence central nervous system tumors. Different origin sites and changes in the tissue microenvironment have been associated with the onset and progression. Here, we describe differences between the extracellular matrix (ECM) signatures of these tumors. We compared the proteomic profiles of MB and GBM decellularized tumor samples between each other and their normal decellularized brain site counterparts. Our analysis revealed that 19, 28, and 11 ECM proteins were differentially expressed in MBs, GBMs, and in both MBs and GBMs, respectively. Next, we validated key findings by using a protein tissue array with 53 MB and 55 GBM cases and evaluated the clinical relevance of the identified differentially expressed proteins through their analysis on publicly available datasets, 763 MB samples from the GSE50161 and GSE85217 studies, and 115 GBM samples from RNAseq-TCGA. We report a shift toward a denser fibrillary ECM as well as a clear alteration in the glycoprotein signature, which influences the tumor pathophysiology. MS data have been submitted to the PRIDE repository, project accession: PXD023350.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo 01246-903, Brazil.,Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen 9713 AV, The Netherlands
| | - Livia Rosa-Fernandes
- Parasitology Department, Instituto de Ciências Biomédicas (ICBUSP), Universidade de Sao Paulo, Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Claudia B Angeli
- Parasitology Department, Instituto de Ciências Biomédicas (ICBUSP), Universidade de Sao Paulo, Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Isabele F Moretti
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Yollanda M Franco
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Adaliana S Mousessian
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Alda Wakamatsu
- Hepatic Pathology Laboratory (LIM 14), Pathology Department, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Sao Paulo 01246-903, Brazil
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sueli M Oba-Shinjo
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Carlos A Pasqualucci
- Brazilian Aging Brain Study Group, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Sao Paulo 01246-903, Brazil
| | - Suely K N Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Giuseppe Palmisano
- Parasitology Department, Instituto de Ciências Biomédicas (ICBUSP), Universidade de Sao Paulo, Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
13
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
14
|
Souza ATP, Lopes HB, Oliveira FS, Weffort D, Freitas GP, Adolpho LF, Fernandes RR, Rosa AL, Beloti MM. The extracellular matrix protein Agrin is expressed by osteoblasts and contributes to their differentiation. Cell Tissue Res 2021; 386:335-347. [PMID: 34223979 DOI: 10.1007/s00441-021-03494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
The extracellular matrix protein Agrin has been detected in chondrocytes and endosteal osteoblasts but its function in osteoblast differentiation has not been investigated yet. Thus, it is possible that Agrin contributes to osteoblast differentiation and, due to Agrin and wingless-related integration site (Wnt) sharing the same receptor, transmembrane low-density lipoprotein receptor-related protein 4 (Lrp4), and the crosstalk between Wnt and bone morphogenetic protein (BMP) signalling, both pathways could be involved in this Agrin-mediated osteoblast differentiation. Confirming this, Agrin and its receptors Lrp4 and α-dystroglycan (Dag1) were expressed during differentiation of osteoblasts from three different sources. Moreover, the disruption of Agrin impaired the expression of its receptors and osteoblast differentiation, and the treatment with recombinant Agrin slightly increase this process. In addition, whilst Agrin knockdown downregulated the expression of genes related to Wnt and BMP signalling pathways, the addition of Agrin had no effect on these genes. Altogether, these data uncover the contribution of Agrin to osteoblast differentiation and suggest that, at least in part, an Agrin-Wnt-BMP circuit is involved in this process. This makes Agrin a candidate as target for developing new therapeutic strategies to treat bone-related diseases and injuries.
Collapse
Affiliation(s)
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Weffort
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Rzepiński Ł, Zawadka-Kunikowska M, Newton JL, Zalewski P. Cardiac Autonomic Dysfunction in Myasthenia Gravis and Relapsing-Remitting Multiple Sclerosis-A Pilot Study. J Clin Med 2021; 10:2173. [PMID: 34069830 PMCID: PMC8157285 DOI: 10.3390/jcm10102173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
This study assessed cardiac autonomic response to head-up tilt test (HUTT) in 23 myasthenia gravis (MG) and 23 relapsing-remitting multiple sclerosis (RRMS) patients compared to 30 healthy controls (HC). Task Force® Monitor was used to evaluate cardiac inotropy parameters, baroreflex sensitivity (BRS), heart rate (HRV), and blood pressure variability (BPV) during HUTT. MG patients were characterized by reduced BRS (p < 0.05), post-HUTT decrease in high-frequency component (p < 0.05) and increase in sympathovagal ratio of HRV (p < 0.05) when compared to controls indicating parasympathetic deficiency with a shift of sympathovagal balance toward sympathetic predominance. Compared to HC, MG patients also showed lower cardiac inotropy parameters, specifically, left ventricular work index (LVWI) during supine rest (p < 0.05) as well as LVWI and cardiac index values in response to orthostatic stress (p < 0.01 and p < 0.05, respectively). Compared to controls, RRMS patients were characterized by lower HRV delta power spectral density (p < 0.05) and delta low-frequency HRV (p < 0.05) in response to HUTT suggesting combined sympathetic and parasympathetic dysfunction. There were no differences in cardiac autonomic parameters between MG and MS patients (p > 0.05). Our study highlights the possibility of cardiac and autonomic dysfunction in patients with MG and RRMS which should be considered in the pharmacological and rehabilitation approach to managing these conditions.
Collapse
Affiliation(s)
- Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Monika Zawadka-Kunikowska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland; (M.Z.-K.); (P.Z.)
| | - Julia L. Newton
- Population Health Science Institute, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK;
| | - Paweł Zalewski
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland; (M.Z.-K.); (P.Z.)
| |
Collapse
|
16
|
Amran A, Pigatto L, Pocock R, Gopal S. Functions of the extracellular matrix in development: Lessons from Caenorhabditis elegans. Cell Signal 2021; 84:110006. [PMID: 33857577 DOI: 10.1016/j.cellsig.2021.110006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Cell-extracellular matrix interactions are crucial for the development of an organism from the earliest stages of embryogenesis. The main constituents of the extracellular matrix are collagens, laminins, proteoglycans and glycosaminoglycans that form a network of interactions. The extracellular matrix and its associated molecules provide developmental cues and structural support from the outside of cells during development. The complex nature of the extracellular matrix and its ability for continuous remodeling poses challenges when investigating extracellular matrix-based signaling during development. One way to address these challenges is to employ invertebrate models such as Caenorhabditis elegans, which are easy to genetically manipulate and have an invariant developmental program. C. elegans also expresses fewer extracellular matrix protein isoforms and exhibits reduced redundancy compared to mammalian models, thus providing a simpler platform for exploring development. This review summarizes our current understanding of how the extracellular matrix controls the development of neurons, muscles and the germline in C. elegans.
Collapse
Affiliation(s)
- Aqilah Amran
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Lara Pigatto
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia; Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Abstract
Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Collapse
Affiliation(s)
- Linda M Hiebert
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
19
|
da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz E Silva OAB, Vieira SI. APP Binds to the EGFR Ligands HB-EGF and EGF, Acting Synergistically with EGF to Promote ERK Signaling and Neuritogenesis. Mol Neurobiol 2021; 58:668-688. [PMID: 33009641 DOI: 10.1007/s12035-020-02139-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Collapse
Affiliation(s)
- Joana F da Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Luísa Bastos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
- Roche Sistemas de Diagnósticos, Lda, 2720-413, Amadora, Portugal
| | - Sara C Domingues
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Ana R Bento
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal.
| |
Collapse
|
20
|
Modulatory properties of extracellular matrix glycosaminoglycans and proteoglycans on neural stem cells behavior: Highlights on regenerative potential and bioactivity. Int J Biol Macromol 2021; 171:366-381. [PMID: 33422514 DOI: 10.1016/j.ijbiomac.2021.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
Despite the poor regenerative capacity of the adult central nervous system (CNS) in mammals, two distinct regions, subventricular zone (SVZ) and the subgranular zone (SGZ), continue to generate new functional neurons throughout life which integrate into the pre-existing neuronal circuitry. This process is not fixed but highly modulated, revealing many intrinsic and extrinsic mechanisms by which this performance can be optimized for a given environment. The capacity for self-renewal, proliferation, migration, and multi-lineage potency of neural stem cells (NSCs) underlines the necessity of controlling stem cell fate. In this context, the native and local microenvironment plays a critical role, and the application of this highly organized architecture in the CNS has been considered as a fundamental concept in the generation of new effective therapeutic strategies in tissue engineering approaches. The brain extracellular matrix (ECM) is composed of biomacromolecules, including glycosaminoglycans, proteoglycans, and glycoproteins that provide various biological actions through biophysical and biochemical signaling pathways. Herein, we review predominantly the structure and function of the mentioned ECM composition and their regulatory impact on multiple and diversity of biological functions, including neural regeneration, survival, migration, differentiation, and final destiny of NSCs.
Collapse
|
21
|
Zhang P, Yang L, Li G, Jin Y, Wu D, Wang QM, Huang P. Agrin Involvement in Synaptogenesis Induced by Exercise in a Rat Model of Experimental Stroke. Neurorehabil Neural Repair 2020; 34:1124-1137. [PMID: 33135566 DOI: 10.1177/1545968320969939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Agrin is a proteoglycan that aggregates nicotinic acetylcholine receptors (AChRs) on neuromuscular junctions and takes part in synaptogenesis in the development of the central nervous system. However, its effects on neural repair and synaptogenesis after stroke are still unclear. OBJECTIVE This study aimed to investigate the effects of agrin on neural repair and synaptogenesis after stroke and the effects of exercise on this process in vivo and in vitro. METHODS Exercise with gradually increased intensity was initiated at 1 day after middle cerebral artery occlusion (MCAO) for a maximum of 14 days. Neurological deficit scores and foot fault tests were used to assess the behavioral recovery. Western blotting, immunofluorescence, and electron microscopic images were used to detect the expression of agrin, synaptogenesis-related proteins, and synaptic density in vivo. In vitro, the ischemic neuron model was established via oxygen-glucose deprivation (OGD). The lentivirus overexpressed agrin and CREB inhibitor were used to investigate the mechanism by which agrin promoted synaptogenesis. RESULTS Exercise promoted behavioral recovery and this beneficial role was linked to the upregulated expression of agrin and increased synaptic density. Overexpressed agrin promoted synaptogenesis in OGD neuron, CREB inhibitor downregulated the expression of agrin and hampered synaptogenesis in cultured neurons. CONCLUSIONS These results indicated that exercise poststroke improved the recovery of behavioral function after stroke. Synaptogenesis was an important and beneficial factor, and agrin played a critical role in this process and could be a potential therapeutic target for the treatment of stroke and other nervous system diseases.
Collapse
Affiliation(s)
- Pengyue Zhang
- Yunnan University of Traditional Chinese Medicine, Kunming, China.,Kunming University of Science and Technology, Kunming, China
| | - Liqiang Yang
- Kunming University of Science and Technology, Kunming, China
| | - Guangxiang Li
- Kunming University of Science and Technology, Kunming, China
| | - Yaju Jin
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qing Mei Wang
- Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Peidong Huang
- Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
22
|
Osimanjiang W, Roballo KCS, Houck BD, Ito M, Antonopoulos A, Dell A, Haslam SM, Bushman JS. Analysis of N- and O-Linked Glycosylation: Differential Glycosylation after Rat Spinal Cord Injury. J Neurotrauma 2020; 37:1954-1962. [PMID: 32316850 DOI: 10.1089/neu.2019.6974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated. We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI. The N- and O-linked glycosylation was assessed at 3 and 14 days post-injury (DPI), and compared with uninjured control and time-matched sham spinal tissue. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS/MS) were performed to analyze carbohydrate structures. Results revealed diverse and abundant glycosylation in all groups, with some carbohydrate structures differentially produced in SCI animals compared with uninjured controls and shams. One such change occurred in the abundance of the Sda structure, Neu5Ac-α-(2,3)-[GalNAc-β-(1,4)-]Gal-β-(1,4)-GlcNAc, which was increased in SCI samples compared with shams and non-injured controls. Immunohistochemistry (IHC) and western blot were performed on SCI and sham samples using the CT1 antibody, which recognizes the terminal trisaccharide of Sda with high specificity. Both of these metrics confirmed elevated Sda structure in SCI tissue, where IHC further showed that Sda is expressed mainly by microglia. The results of these studies suggest that SCI causes a significant alteration in N- and O-linked glycosylation.
Collapse
Affiliation(s)
- Wupu Osimanjiang
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | | | - Brenda D Houck
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | - Mai Ito
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
23
|
Mendonça LS, Nóbrega C, Tavino S, Brinkhaus M, Matos C, Tomé S, Moreira R, Henriques D, Kaspar BK, Pereira de Almeida L. Ibuprofen enhances synaptic function and neural progenitors proliferation markers and improves neuropathology and motor coordination in Machado-Joseph disease models. Hum Mol Genet 2020; 28:3691-3703. [PMID: 31127937 DOI: 10.1093/hmg/ddz097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Machado-Joseph disease or spinocerebellar ataxia type 3 is an inherited neurodegenerative disease associated with an abnormal glutamine over-repetition within the ataxin-3 protein. This mutant ataxin-3 protein affects several cellular pathways, leading to neuroinflammation and neuronal death in specific brain regions resulting in severe clinical manifestations. Presently, there is no therapy able to modify the disease progression. Nevertheless, anti-inflammatory pharmacological intervention has been associated with positive outcomes in other neurodegenerative diseases. Thus, the present work aimed at investigating whether ibuprofen treatment would alleviate Machado-Joseph disease. We found that ibuprofen-treated mouse models presented a significant reduction in the neuroinflammation markers, namely Il1b and TNFa mRNA and IKB-α protein phosphorylation levels. Moreover, these mice exhibited neuronal preservation, cerebellar atrophy reduction, smaller mutant ataxin-3 inclusions and motor performance improvement. Additionally, neural cultures of Machado-Joseph disease patients' induced pluripotent stem cells-derived neural stem cells incubated with ibuprofen showed increased levels of neural progenitors proliferation and synaptic markers such as MSI1, NOTCH1 and SYP. These findings were further confirmed in ibuprofen-treated mice that display increased neural progenitor numbers (Ki67 positive) in the subventricular zone. Furthermore, interestingly, ibuprofen treatment enhanced neurite total length and synaptic function of human neurons. Therefore, our results indicate that ibuprofen reduces neuroinflammation and induces neuroprotection, alleviating Machado-Joseph disease-associated neuropathology and motor impairments. Thus, our findings demonstrate that ibuprofen treatment has the potential to be used as a neuroprotective therapeutic approach in Machado-Joseph disease.
Collapse
Affiliation(s)
- Liliana S Mendonça
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Clévio Nóbrega
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Silvia Tavino
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maximilian Brinkhaus
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carlos Matos
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra Tomé
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ricardo Moreira
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Henriques
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Brian K Kaspar
- The Research Institute at Nationwide Children's Hospital, Ohio State University School of Medicine, Columbus, Ohio 43205, USA
| | - Luís Pereira de Almeida
- Vectors and Gene Therapy Group, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
24
|
Guarino SR, Canciani A, Forneris F. Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Front Mol Biosci 2020; 6:156. [PMID: 31998752 PMCID: PMC6966886 DOI: 10.3389/fmolb.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Synapse formation is a very elaborate process dependent upon accurate coordination of pre and post-synaptic specialization, requiring multiple steps and a variety of receptors and signaling molecules. Due to its relative structural simplicity and the ease in manipulation and observation, the neuromuscular synapse or neuromuscular junction (NMJ)-the connection between motor neurons and skeletal muscle-represents the archetype junction system for studying synapse formation and conservation. This junction is essential for survival, as it controls our ability to move and breath. NMJ formation requires coordinated interactions between motor neurons and muscle fibers, which ultimately result in the formation of a highly specialized post-synaptic architecture and a highly differentiated nerve terminal. Furthermore, to ensure a fast and reliable synaptic transmission following neurotransmitter release, ligand-gated channels (acetylcholine receptors, AChRs) are clustered on the post-synaptic muscle cell at high concentrations in sites opposite the presynaptic active zone, supporting a direct role for nerves in the organization of the post-synaptic membrane architecture. This organized clustering process, essential for NMJ formation and for life, relies on key signaling molecules and receptors and is regulated by soluble extracellular molecules localized within the synaptic cleft. Notably, several mutations as well as auto-antibodies against components of these signaling complexes have been related to neuromuscular disorders. The recent years have witnessed strong progress in the understanding of molecular identities, architectures, and functions of NMJ macromolecules. Among these, prominent roles have been proposed for neural variants of the proteoglycan agrin, its receptor at NMJs composed of the lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific kinase (MuSK), as well as the regulatory soluble synapse-specific protease Neurotrypsin. In this review we summarize the current state of the art regarding molecular structures and (agrin-dependent) canonical, as well as (agrin-independent) non-canonical, MuSK signaling mechanisms that underscore the formation of neuromuscular junctions, with the aim of providing a broad perspective to further stimulate molecular, cellular and tissue biology investigations on this fundamental intercellular contact.
Collapse
Affiliation(s)
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Handara G, Kröger S. Alternative Splicing and the Intracellular Domain Mediate TM-agrin's Ability to Differentially Regulate the Density of Excitatory and Inhibitory Synapse-like Specializations in Developing CNS Neurons. Neuroscience 2019; 419:60-71. [PMID: 31672640 DOI: 10.1016/j.neuroscience.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/26/2023]
Abstract
Agrin is a multi-domain protein best known for its essential function during formation of the neuromuscular junction. Alternative mRNA splicing at sites named y and z in the C-terminal part of agrin regulates its interaction with a receptor complex consisting of the agrin-binding low-density lipoprotein receptor-related protein 4 (Lrp4) and the muscle-specific kinase (MuSK). Isoforms with inserts at both splice sites bind to Lrp4, activate MuSK and are synaptogenic at the neuromuscular junction. Agrin is also expressed as a transmembrane protein in the central nervous system (CNS) but its function during interneuronal synapse formation is unclear. Recently we demonstrated that transfection of a full-length cDNA coding for transmembrane agrin (TM-agrin) in cultured embryonic cortical neurons induced an Lrp4-dependent but MuSK-independent increase in dendritic glutamatergic synapses and an Lrp4- and MuSK-independent reduction of inhibitory synapses. Here we show that presynaptic specializations were similarly affected by TM-agrin overexpression. In addition, we mapped the regions within TM-agrin responsible for TM-agrin's effects on dendritic aggregates of synapse-associated proteins. We show that the presence of a four amino acid insert at splice site y is essential for the increase in the density of puncta containing the postsynaptic density protein 95 kDa. This effect was independent of splice site z. The reduction of the gephyrin puncta density was independent of the entire extracellular part of TM-agrin but required a highly conserved serine residue in the intracellular domain of TM-agrin. These results provide further evidence for a function of TM-agrin during CNS synaptogenesis and demonstrate that different domains and alternative splicing of TM-agrin differentially affect excitatory and inhibitory synapse formation in cultured embryonic CNS neurons.
Collapse
Affiliation(s)
- Gerry Handara
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152 Planegg-Martinsried, Germany; Institute for Stem Cell Research, German Research Center for Environmental Health, Helmholtz Centre Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Großhaderner Str. 9, D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
26
|
Rauti R, Renous N, Maoz BM. Mimicking the Brain Extracellular Matrix
in Vitro
: A Review of Current Methodologies and Challenges. Isr J Chem 2019. [DOI: 10.1002/ijch.201900052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Noa Renous
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Ben M. Maoz
- Department of Biomedical Engineering Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
- The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
27
|
LaRese TP, Rheaume BA, Abraham R, Eipper BA, Mains RE. Sex-Specific Gene Expression in the Mouse Nucleus Accumbens Before and After Cocaine Exposure. J Endocr Soc 2019; 3:468-487. [PMID: 30746506 PMCID: PMC6364626 DOI: 10.1210/js.2018-00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
The nucleus accumbens plays a major role in the response of mammals to cocaine. In animal models and human studies, the addictive effects of cocaine and relapse probability have been shown to be greater in females. Sex-specific differential expression of key transcripts at baseline and after prolonged withdrawal could underlie these differences. To distinguish between these possibilities, gene expression was analyzed in four groups of mice (cycling females, ovariectomized females treated with estradiol or placebo, and males) 28 days after they had received seven daily injections of saline or cocaine. As expected, sensitization to the locomotor effects of cocaine was most pronounced in the ovariectomized mice receiving estradiol, was greater in cycling females than in males, and failed to occur in ovariectomized/placebo mice. After the 28-day withdrawal period, RNA prepared from the nucleus accumbens of the individual cocaine- or saline-injected mice was subjected to RNA sequencing analysis. Baseline expression of 3% of the nucleus accumbens transcripts differed in the cycling female mice compared with the male mice. Expression of a similar number of transcripts was altered by ovariectomy or was responsive to estradiol treatment. Nucleus accumbens transcripts differentially expressed in cycling female mice withdrawn from cocaine exhibited substantial overlap with those differentially expressed in cocaine-withdrawn male mice. A small set of transcripts were similarly affected by cocaine in the placebo- or estradiol-treated ovariectomized mice. Sex and hormonal status have profound effects on RNA expression in the nucleus accumbens of naive mice. Prolonged withdrawal from cocaine alters the expression of a much smaller number of common and sex hormone-specific transcripts.
Collapse
Affiliation(s)
- Taylor P LaRese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Ron Abraham
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
28
|
The role of agrin, Lrp4 and MuSK during dendritic arborization and synaptogenesis in cultured embryonic CNS neurons. Dev Biol 2019; 445:54-67. [DOI: 10.1016/j.ydbio.2018.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023]
|
29
|
Huang ML, Tota EM, Lucas TM, Godula K. Influencing Early Stages of Neuromuscular Junction Formation through Glycocalyx Engineering. ACS Chem Neurosci 2018; 9:3086-3093. [PMID: 30095249 PMCID: PMC6395550 DOI: 10.1021/acschemneuro.8b00295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Achieving molecular control over the formation of synaptic contacts in the nervous system can provide important insights into their regulation and can offer means for creating well-defined in vitro systems to evaluate modes of therapeutic intervention. Agrin-induced clustering of acetylcholine receptors (AChRs) at postsynaptic sites is a hallmark of the formation of the neuromuscular junction, a synapse between motoneurons and muscle cells. In addition to the cognate agrin receptor LRP4 (low-density lipoprotein receptor related protein-4), muscle cell heparan sulfate (HS) glycosaminoglycans (GAGs) have also been proposed to contribute to AChR clustering by acting as agrin co-receptors. Here, we provide direct evidence for the role of HS GAGs in agrin recruitment to the surface of myotubes, as well as their functional contributions toward AChR clustering. We also demonstrate that engineering of the myotube glycocalyx using synthetic HS GAG polymers can replace native HS structures to gain control over agrin-mediated AChR clustering.
Collapse
Affiliation(s)
| | - Ember M. Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
30
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
31
|
Mosca TJ, Luginbuhl DJ, Wang IE, Luo L. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. eLife 2017; 6. [PMID: 28606304 PMCID: PMC5469616 DOI: 10.7554/elife.27347] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecule. In the Drosophila brain, LRP4 localizes to the nerve terminals at or near active zones. Loss of presynaptic LRP4 reduces excitatory (not inhibitory) synapse number, impairs active zone architecture, and abolishes olfactory attraction - the latter of which can be suppressed by reducing presynaptic GABAB receptors. LRP4 overexpression increases synapse number in excitatory and inhibitory neurons, suggesting an instructive role and a common downstream synapse addition pathway. Mechanistically, LRP4 functions via the conserved kinase SRPK79D to ensure normal synapse number and behavior. This highlights a presynaptic function for LRP4, enabling deeper understanding of how synapse organization is coordinated.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, United States.,Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - David J Luginbuhl
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Irving E Wang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
32
|
Stölting MNL, Arnold AS, Haralampieva D, Handschin C, Sulser T, Eberli D. Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle Nerve 2016. [PMID: 26202157 DOI: 10.1002/mus.24780] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Magnetic stimulation (MS) has the ability to induce muscle twitch and has long been proposed as a therapeutic modality for skeletal muscle diseases. However, the molecular mechanisms underlying its means of action have not been defined. METHODS Muscle regeneration after trauma was studied in a standard muscle injury mouse model. The influence of MS on the formation of motor units, posttrauma muscle/nerve regeneration, and vascularization was investigated. RESULTS We found that MS does not cause systemic or muscle damage but improves muscle regeneration by significantly minimizing the presence of inflammatory infiltrate and formation of scars after trauma. It avoids posttrauma muscle atrophy, induces muscle hypertrophy, and increases the metabolism and turnover of muscle. It triples the expression of muscle markers and significantly improves muscle functional recovery after trauma. CONCLUSIONS Our results indicate that MS supports muscle and nerve regeneration by activating muscle-nerve cross-talk and inducing the maturation of neuromuscular junctions.
Collapse
Affiliation(s)
- Meline N L Stölting
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Division of Urology, University of Zurich, Frauenklinikstrasse 10, CH 8091, Zurich, Switzerland
| | - Anne Sophie Arnold
- Biozentrum, Focal Area Growth and Development, University of Basel, Basel, Switzerland
| | - Deana Haralampieva
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Division of Urology, University of Zurich, Frauenklinikstrasse 10, CH 8091, Zurich, Switzerland
| | - Christoph Handschin
- Biozentrum, Focal Area Growth and Development, University of Basel, Basel, Switzerland
| | - Tullio Sulser
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Division of Urology, University of Zurich, Frauenklinikstrasse 10, CH 8091, Zurich, Switzerland
| | - Daniel Eberli
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Division of Urology, University of Zurich, Frauenklinikstrasse 10, CH 8091, Zurich, Switzerland
| |
Collapse
|
33
|
Krencik R, Hokanson KC, Narayan AR, Dvornik J, Rooney GE, Rauen KA, Weiss LA, Rowitch DH, Ullian EM. Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci Transl Med 2016; 7:286ra66. [PMID: 25947161 DOI: 10.1126/scitranslmed.aaa5645] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astrocytes produce an assortment of signals that promote neuronal maturation according to a precise developmental timeline. Is this orchestrated timing and signaling altered in human neurodevelopmental disorders? To address this question, the astroglial lineage was investigated in two model systems of a developmental disorder with intellectual disability caused by mutant Harvey rat sarcoma viral oncogene homolog (HRAS) termed Costello syndrome: mutant HRAS human induced pluripotent stem cells (iPSCs) and transgenic mice. Human iPSCs derived from patients with Costello syndrome differentiated to astroglia more rapidly in vitro than those derived from wild-type cell lines with normal HRAS, exhibited hyperplasia, and also generated an abundance of extracellular matrix remodeling factors and proteoglycans. Acute treatment with a farnesyl transferase inhibitor and knockdown of the transcription factor SNAI2 reduced expression of several proteoglycans in Costello syndrome iPSC-derived astrocytes. Similarly, mice in which mutant HRAS was expressed selectively in astrocytes exhibited experience-independent increased accumulation of perineuronal net proteoglycans in cortex, as well as increased parvalbumin expression in interneurons, when compared to wild-type mice. Our data indicate that astrocytes expressing mutant HRAS dysregulate cortical maturation during development as shown by abnormal extracellular matrix remodeling and implicate excessive astrocyte-to-neuron signaling as a possible drug target for treating mental impairment and enhancing neuroplasticity.
Collapse
Affiliation(s)
- Robert Krencik
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kenton C Hokanson
- Neuroscience Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aditi R Narayan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jill Dvornik
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gemma E Rooney
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine A Rauen
- Department of Pediatrics, University of California, Davis, Sacramento, CA 95817, USA
| | - Lauren A Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Institute for Regenerative Medicine and Stem Cell Research, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA. Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Baghy K, Tátrai P, Regős E, Kovalszky I. Proteoglycans in liver cancer. World J Gastroenterol 2016; 22:379-393. [PMID: 26755884 PMCID: PMC4698501 DOI: 10.3748/wjg.v22.i1.379] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects.
Collapse
|
35
|
The Basement Membrane Proteoglycans Perlecan and Agrin: Something Old, Something New. CURRENT TOPICS IN MEMBRANES 2015; 76:255-303. [PMID: 26610917 DOI: 10.1016/bs.ctm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several members of the proteoglycan family are integral components of basement membranes; other proteoglycan family members interact with or bind to molecular residents of the basement membrane. Proteoglycans are polyfunctional molecules, for they derive their inherent bioactivity from the amino acid motifs embedded in the core protein structure as well as the glycosaminoglycan (GAG) chains that are covalently attached to the core protein. The presence of the covalently attached GAG chains significantly expands the "partnering" potential of proteoglycans, permitting them to interact with a broad spectrum of targets, including growth factors, cytokines, chemokines, and morphogens. Thus proteoglycans in the basement membrane are poised to exert diverse effects on the cells intimately associated with basement membranes.
Collapse
|
36
|
Zhang BGX, Quigley AF, Bourke JL, Nowell CJ, Myers DE, Choong PFM, Kapsa RMI. Combination of agrin and laminin increase acetylcholine receptor clustering and enhance functional neuromuscular junction formation In vitro. Dev Neurobiol 2015; 76:551-65. [PMID: 26251299 DOI: 10.1002/dneu.22331] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 08/01/2015] [Indexed: 01/07/2023]
Abstract
Clustering of acetylcholine receptors (AChR) at the postsynaptic membrane is a crucial step in the development of neuromuscular junctions (NMJ). During development and after denervation, aneural AChR clusters form on the sarcolemma. Recent studies suggest that these receptors are critical for guiding and initiating synaptogenesis. The aim of this study is to investigate the effect of agrin and laminin-1; agents with known AChR clustering activity; on NMJ formation and muscle maturation. Primary myoblasts were differentiated in vitro on collagen, laminin or collagen and laminin-coated surfaces in the presence or absence of agrin and laminin. The pretreated cells were then subject to innervation by PC12 cells. The number of neuromuscular junctions was assessed by immunocytochemical co-localization of AChR clusters and the presynaptic marker synaptophysin. Functional neuromuscular junctions were quantitated by analysis of the level of spontaneous as well as neuromuscular blocker responsive contractile activity and muscle maturation was assessed by the degree of myotube striation. Agrin alone did not prime muscle for innervation while a combination of agrin and laminin pretreatment increased the number of neuromuscular junctions formed and enhanced acetylcholine based neurotransmission and myotube striation. This study has direct clinical relevance for treatment of denervation injuries and creating functional neuromuscular constructs for muscle tissue repair.
Collapse
Affiliation(s)
- Bill G X Zhang
- Department of Orthopaedics, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anita F Quigley
- Department of Medicine, the University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Justin L Bourke
- Department of Medicine, the University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC, 3065, Australia
| | - Cameron J Nowell
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
| | - Damian E Myers
- Department of Orthopaedics, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Peter F M Choong
- Department of Orthopaedics, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital Melbourne and the University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
37
|
Meireles M, Marques C, Norberto S, Fernandes I, Mateus N, Rendeiro C, Spencer JPE, Faria A, Calhau C. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet. J Nutr Biochem 2015; 26:1166-73. [PMID: 26315997 DOI: 10.1016/j.jnutbio.2015.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022]
Abstract
Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on neuroinflammation.
Collapse
Affiliation(s)
- Manuela Meireles
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Department of Food Biosciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Cláudia Marques
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sónia Norberto
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Iva Fernandes
- REQUIMTE - Rede de Química e Tecnologia, Faculdade de Ciências, Universidade do Porto, 4169-009 Porto, Portugal
| | - Nuno Mateus
- REQUIMTE - Rede de Química e Tecnologia, Faculdade de Ciências, Universidade do Porto, 4169-009 Porto, Portugal
| | - Catarina Rendeiro
- Department of Food Biosciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Jeremy P E Spencer
- Department of Food Biosciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Ana Faria
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; REQUIMTE - Rede de Química e Tecnologia, Faculdade de Ciências, Universidade do Porto, 4169-009 Porto, Portugal; Faculdade Ciências da Nutrição e Alimentação, Universidade do Porto, 4200-465 Porto, Portugal
| | - Conceição Calhau
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; CINTESIS - Center for Research in Health Technologies and Information Systems, Centro de Investigação Médica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal.
| |
Collapse
|
38
|
Pohlkamp T, Durakoglugil M, Lane-Donovan C, Xian X, Johnson EB, Hammer RE, Herz J. Lrp4 domains differentially regulate limb/brain development and synaptic plasticity. PLoS One 2015; 10:e0116701. [PMID: 25688974 PMCID: PMC4331535 DOI: 10.1371/journal.pone.0116701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer’s Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- * E-mail: (TP); (JH)
| | - Murat Durakoglugil
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Xunde Xian
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Eric B. Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
- * E-mail: (TP); (JH)
| |
Collapse
|
39
|
Saroja SR, Sase A, Kircher SG, Wan J, Berger J, Höger H, Pollak A, Lubec G. Hippocampal proteoglycans brevican and versican are linked to spatial memory of Sprague-Dawley rats in the morris water maze. J Neurochem 2014; 130:797-804. [DOI: 10.1111/jnc.12783] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/22/2014] [Accepted: 06/01/2014] [Indexed: 01/21/2023]
Affiliation(s)
| | - Ajinkya Sase
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Susanne G. Kircher
- Department of Medical Chemistry; Medical University of Vienna; Vienna Austria
| | - Jia Wan
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System; Center for Brain Research; Medical University of Vienna; Vienna Austria
| | - Harald Höger
- Core Unit of Biomedical Research; Division of Laboratory Animal Science and Genetics; Medical University of Vienna; Himberg Austria
| | - Arnold Pollak
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Gert Lubec
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| |
Collapse
|
40
|
Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses. Proc Natl Acad Sci U S A 2014; 111:6810-5. [PMID: 24753587 DOI: 10.1073/pnas.1321774111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dystroglycan (DG), a cell adhesion molecule well known to be essential for skeletal muscle integrity and formation of neuromuscular synapses, is also present at inhibitory synapses in the central nervous system. Mutations that affect DG function not only result in muscular dystrophies, but also in severe cognitive deficits and epilepsy. Here we demonstrate a role of DG during activity-dependent homeostatic regulation of hippocampal inhibitory synapses. Prolonged elevation of neuronal activity up-regulates DG expression and glycosylation, and its localization to inhibitory synapses. Inhibition of protein synthesis prevents the activity-dependent increase in synaptic DG and GABAA receptors (GABAARs), as well as the homeostatic scaling up of GABAergic synaptic transmission. RNAi-mediated knockdown of DG blocks homeostatic scaling up of inhibitory synaptic strength, as does knockdown of like-acetylglucosaminyltransferase (LARGE)--a glycosyltransferase critical for DG function. In contrast, DG is not required for the bicuculline-induced scaling down of excitatory synaptic strength or the tetrodotoxin-induced scaling down of inhibitory synaptic strength. The DG ligand agrin increases GABAergic synaptic strength in a DG-dependent manner that mimics homeostatic scaling up induced by increased activity, indicating that activation of this pathway alone is sufficient to regulate GABAAR trafficking. These data demonstrate that DG is regulated in a physiologically relevant manner in neurons and that DG and its glycosylation are essential for homeostatic plasticity at inhibitory synapses.
Collapse
|
41
|
Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. J Neurosci 2013; 33:17278-89. [PMID: 24174661 DOI: 10.1523/jneurosci.1085-13.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Netrin-1 is a secreted protein that directs long-range axon guidance during early stages of neural circuit formation and continues to be expressed in the mammalian forebrain during the postnatal period of peak synapse formation. Here we demonstrate a synaptogenic function of netrin-1 in rat and mouse cortical neurons and investigate the underlying mechanism. We report that netrin-1 and its receptor DCC are widely expressed by neurons in the developing mammalian cortex during synapse formation and are enriched at synapses in vivo. We detect DCC protein distributed along the axons and dendrites of cultured cortical neurons and provide evidence that newly translated netrin-1 is selectively transported to dendrites. Using gain and loss of function manipulations, we demonstrate that netrin-1 increases the number and strength of excitatory synapses made between developing cortical neurons. We show that netrin-1 increases the complexity of axon and dendrite arbors, thereby increasing the probability of contact. At sites of contact, netrin-1 promotes adhesion, while locally enriching and reorganizing the underlying actin cytoskeleton through Src family kinase signaling and m-Tor-dependent protein translation to locally cluster presynaptic and postsynaptic proteins. Finally, we demonstrate using whole-cell patch-clamp electrophysiology that netrin-1 increases the frequency and amplitude of mEPSCs recorded from cortical pyramidal neurons. These findings identify netrin-1 as a synapse-enriched protein that promotes synaptogenesis between mammalian cortical neurons.
Collapse
|
42
|
Gill LC, Ross HH, Lee KZ, Gonzalez-Rothi EJ, Dougherty BJ, Judge AR, Fuller DD. Rapid diaphragm atrophy following cervical spinal cord hemisection. Respir Physiol Neurobiol 2013; 192:66-73. [PMID: 24341999 DOI: 10.1016/j.resp.2013.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/07/2013] [Accepted: 12/06/2013] [Indexed: 01/20/2023]
Abstract
A cervical (C2) hemilesion (C2Hx), which disrupts ipsilateral bulbospinal inputs to the phrenic nucleus, was used to study diaphragm plasticity after acute spinal cord injury. We hypothesized that C2Hx would result in rapid atrophy of the ipsilateral hemidiaphragm and increases in mRNA expression of proteolytic biomarkers. Diaphragm tissue was harvested from male Sprague-Dawley rats at 1 or 7 days following C2Hx. Histological analysis demonstrated reduction in cross-sectional area (CSA) of type I and IIa fibers in the ipsilateral hemidiaphragm at 1 but not 7 days. Type IIb/x fibers, however, had reduced CSA at 1 and 7 days. A targeted gene array was used to screen mRNA changes for genes associated with skeletal muscle myopathy and myogenesis; this was followed by qRT-PCR validation. Changes in diaphragm gene expression suggested that profound myoplasticity is initiated immediately following C2Hx including activation of both proteolytic and myogenic pathways. We conclude that an immediate myoplastic response occurs in the diaphragm after C2Hx with atrophy occurring in ipsilateral myofibers within 1 day.
Collapse
Affiliation(s)
- L C Gill
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - H H Ross
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - K Z Lee
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - E J Gonzalez-Rothi
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - B J Dougherty
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - A R Judge
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States
| | - D D Fuller
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Drive, Gainesville, FL 32610, United States.
| |
Collapse
|
43
|
Almenar-Queralt A, Kim SN, Benner C, Herrera CM, Kang DE, Garcia-Bassets I, Goldstein LSB. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation. J Biol Chem 2013; 288:35222-36. [PMID: 24145027 DOI: 10.1074/jbc.m113.513705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.
Collapse
|
44
|
Uddin RK, Singh SM. Hippocampal gene expression meta-analysis identifies aging and age-associated spatial learning impairment (ASLI) genes and pathways. PLoS One 2013; 8:e69768. [PMID: 23874995 PMCID: PMC3715497 DOI: 10.1371/journal.pone.0069768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
A number of gene expression microarray studies have been carried out in the past, which studied aging and age-associated spatial learning impairment (ASLI) in the hippocampus in animal models, with varying results. Data from such studies were never integrated to identify the most significant ASLI genes and to understand their effect. In this study we integrated these data involving rats using meta-analysis. Our results show that proper removal of batch effects from microarray data generated from different laboratories is necessary before integrating them for meta-analysis. Our meta-analysis has identified a number of significant differentially expressed genes across age or across ASLI. These genes affect many key functions in the aged compared to the young rats, which include viability of neurons, cell-to-cell signalling and interaction, migration of cells, neuronal growth, and synaptic plasticity. These functional changes due to the altered gene expression may manifest into various neurodegenerative diseases and disorders, some of which leading into syndromic memory impairments. While other aging related molecular changes can result into altered synaptic plasticity simply causing normal aging related non-syndromic learning or spatial learning impairments such as ASLI.
Collapse
Affiliation(s)
- Raihan K. Uddin
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Shiva M. Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
45
|
Opposing effects of dexamethasone, agrin and sugammadex on functional innervation and constitutive secretion of IL-6 in in vitro innervated primary human muscle cells. Neurosci Lett 2013; 549:186-90. [PMID: 23791923 DOI: 10.1016/j.neulet.2013.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 11/24/2022]
Abstract
Neuromuscular junction development is the key process required for successful neuromuscular transmission and functional innervation of skeletal muscle fibres. Various substances can influence these processes, some of which are in common use in clinical practice. In the present study, the effects of the potentially new therapeutic agent agrin were followed, along with the widely used glucocorticoid dexamethasone. The in vitro experimental model used was functional innervation and constitutive interleukin 6 (IL-6) secretion of human muscle cells. Additionally, the selective relaxant binding agent sugammadex and its possible interaction with dexamethasone were followed. Dexamethasone impaired functional innervation while agrin had opposing effects. Furthermore, based on interference with IL-6 secretion, we show potential (chemical) interactions between dexamethasone and sugammadex. The physiological effects of this interaction should be taken into consideration under clinical conditions where these two drugs might be applied simultaneously.
Collapse
|
46
|
|