1
|
Stanton JE, Hans S, Zabetakis I, Grabrucker AM. Zinc signaling controls astrocyte-dependent synapse modulation via the PAF receptor pathway. J Neurochem 2025; 169:e16252. [PMID: 39450676 PMCID: PMC11808829 DOI: 10.1111/jnc.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function. Accordingly, astrocyte activation has been linked to neurodegenerative and neurodevelopmental disorders. Therefore, the attenuation of astrocyte activation may be an important approach for preventing and treating these disorders. Since zinc deficiency has been consistently linked to increased pro-inflammatory signaling, we aimed to identify cellular zinc-dependent signaling pathways that may lead to astrocyte activation using techniques such as immunocytochemistry and protein biochemistry to detect astrocyte GFAP expression, fluorescent imaging to detect oxidative stress levels in activated astrocytes, cytokine profiling, and analysis of primary neurons subjected to astrocyte secretomes. Our results reveal a so far not well-described pathway in astrocytes, the platelet activation factor receptor (PAFR) pathway, as a critical zinc-dependent signaling pathway that is sufficient to control astrocyte reactivity. Low zinc levels activate PAFR signaling-driven crosstalk between astrocytes and neurons, which alters excitatory synapse formation during development in a PAFR-dependent manner. We conclude that zinc is a crucial signaling ion involved in astrocyte activation and an important dietary factor that controls astrocytic pro-inflammatory processes. Thus, targeting zinc homeostasis may be an important approach in several neuroinflammatory conditions.
Collapse
Affiliation(s)
- Janelle E. Stanton
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
| | - Sakshi Hans
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
| | - Ioannis Zabetakis
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| | - Andreas M. Grabrucker
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| |
Collapse
|
2
|
Mohammadi N, Franchin M, Girotto Pressete C, Maria Greggi Antunes L, Granato D. Green recovery and application of berry anthocyanins in functional gummies: Stability study, plasma and cellular antioxidant and anti-inflammatory activity. Food Res Int 2024; 196:115128. [PMID: 39614523 DOI: 10.1016/j.foodres.2024.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
This study investigates the comprehensive effects of extraction parameters, freeze-drying, and formulation on the chemical composition, colour properties, antioxidant and anti-inflammatory activities, and reactive oxygen species (ROS) generation of blackberry (BB) and elderberry (EB) extracts, as well as their incorporation into gummies. Using response surface methodology, optimal extraction conditions were identified: BB extracts showed optimal results at 325 W and 7.5 min, while EB extracts were optimal at 400 W and 5 min. The EB extracts consistently exhibited higher total phenolic content, total anthocyanin content, and antioxidant capacity than the BB extracts. Over 120 min, BB extracts demonstrated superior antioxidant potential to mitigate human plasma lipid oxidation. Both extracts displayed pH-dependent colour variations and antioxidant capacities, with EB extracts showing greater stability across a broader pH range. Freeze-drying effectively preserved antioxidant capacity, with EB extracts maintaining higher values than BB extracts. In a cellular model of oxidative stress using THP-1, both extracts were non-cytotoxic and reduced intracellular ROS generation, with EB extracts also more effectively inhibiting IL-6 secretion. When incorporated into gummies, these extracts resulted in higher phenolic and anthocyanin content than commercial counterparts, with EB gummies demonstrating superior antioxidant capacity. Sensory evaluations indicated no significant differences in taste, texture, or overall acceptability among the gummy formulations, though colour preferences tended to favour commercial gummies. This study addresses a gap by providing detailed chemical, biological, and sensory assessments of BB and EB extracts in food applications.
Collapse
Affiliation(s)
- Nima Mohammadi
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Marcelo Franchin
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Carolina Girotto Pressete
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Granato
- Bioactivity & Applications Laboratory, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland; Bernal Institute. University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
3
|
Liu D, Zhang H, Dai Y, Sun J, Sun H, Yu Z, Kong F, Feng X. Cyanidin-3-O-glucoside ameliorates hydrogen peroxide-induced oxidative stress by regulating HMGCR-mediated cholesterol anabolism in HEK-293T cells. Food Sci Nutr 2024; 12:6673-6689. [PMID: 39554373 PMCID: PMC11561815 DOI: 10.1002/fsn3.4231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 11/19/2024] Open
Abstract
Cyanidin-3-O-glucoside (C3G), as a typical anthocyanin, exhibits excellent antioxidant effects. This study aimed to demonstrate the role and mechanism of C3G in regulating 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR)-mediated cholesterol anabolism on H2O2-induced oxidative stress in HEK-293T cells. Firstly, the inhibitory effect of C3G on oxidative stress was confirmed by CCK-8, ROS, and mitochondrial membrane potential (MMP) experiments. Then, proteomics was used to investigate and screen differentially expressed proteins in inhibiting cellular oxidative stress by C3G. HMGCR was screened as a key differentially expressed protein by proteomic analysis. The results verified that C3G could reduce cholesterol levels by inhibiting sterol regulatory element-binding protein (SREBP2)/HMGCR pathway, increasing ATP, and reducing acetyl-CoA. Finally, HMGCR had been shown to positively increase ROS accumulation and decrease MMP, which were reversed by intervention of C3G through a series of knockdown and overexpression experiments. In conclusion, the results demonstrated that C3G could inhibit the disorder of cholesterol synthesis in oxidative stress cells by regulating the ROS/SREBP2/HMGCR pathway.
Collapse
Affiliation(s)
- Di Liu
- College of Basic MedicineJilin Medical UniversityJilinChina
| | - Hanxue Zhang
- College of Medical TechnologyBeihua UniversityJilinChina
- Department of Clinical LaboratorySuzhou Hospital of Traditional Chinese MedicineSuzhouChina
| | - Yu Dai
- College of Basic MedicineJilin Medical UniversityJilinChina
| | - Jie Sun
- College of Basic MedicineJilin Medical UniversityJilinChina
| | - Hongyu Sun
- College of Basic MedicineJilin Medical UniversityJilinChina
| | - Zixiang Yu
- College of Basic MedicineJilin Medical UniversityJilinChina
| | - Fanli Kong
- College of Medical TechnologyBeihua UniversityJilinChina
| | - Xianmin Feng
- College of Basic MedicineJilin Medical UniversityJilinChina
| |
Collapse
|
4
|
Lima LS, Ribeiro M, Cardozo LFMF, Moreira NX, Teodoro AJ, Stenvinkel P, Mafra D. Amazonian Fruits for Treatment of Non-Communicable Diseases. Curr Nutr Rep 2024; 13:611-638. [PMID: 38916807 DOI: 10.1007/s13668-024-00553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW The Amazon region has a high biodiversity of flora, with an elevated variety of fruits, such as Camu-Camu (Myrciaria dúbia), Açaí (Euterpe oleracea Mart.), Tucumã (Astrocaryum aculeatum and Astrocaryum vulgare), Fruta-do-conde (Annona squamosa L.), Cupuaçu (Theobroma grandiflorum), Graviola (Annona muricata L.), Guarana (Paullinia cupana Kunth var. sorbilis), and Pitanga (Eugenia uniflora), among many others, that are rich in phytochemicals, minerals and vitamins with prominent antioxidant and anti-inflammatory potential. RECENT FINDINGS Studies evaluating the chemical composition of these fruits have observed a high content of nutrients and bioactive compounds. Such components are associated with significant biological effects in treating various non-communicable diseases (NCDs) and related complications. Regular intake of these fruits from Amazonas emerges as a potential therapeutic approach to preventing and treating NCDs as a nutritional strategy to reduce the incidence or mitigate common complications in these patients, which are the leading global causes of death. As studies remain largely unexplored, this narrative review discusses the possible health-beneficial effects for patients with NCDs.
Collapse
Affiliation(s)
- Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila F M F Cardozo
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nara Xavier Moreira
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
| | - Anderson Junger Teodoro
- Nutrition Faculty, Federal Fluminense University, Niterói-Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Unidade de Pesquisa Clínica-UPC. Rua Marquês de Paraná, Niterói-RJ, 303/4 Andar , Niterói, RJ, 24033-900, Brazil.
| |
Collapse
|
5
|
Guo S, Rezaei MJ. The benefits of ashwagandha ( Withania somnifera) supplements on brain function and sports performance. Front Nutr 2024; 11:1439294. [PMID: 39155932 PMCID: PMC11327513 DOI: 10.3389/fnut.2024.1439294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Ashwagandha or Withania somnifera is an herbal plant belonging to the Solanaceae family. Because of its wide range of phytochemicals, ashwagandha root extract has been used in numerous research studies, either alone or in conjunction with other natural plants, for various biomedical applications, which include its anti-microbial, anti-inflammatory, anti-stress, anti-tumor, cardioprotective, and neuroprotective properties. Additionally, it improves endothelial function, lowers reactive oxygen species, controls apoptosis, and improves mitochondrial function. These properties make it a useful treatment for a variety of conditions, including age-related symptoms, anxiety, neurodegenerative diseases, diabetes, stress, arthritis, fatigue, and cognitive/memory impairment. Despite the numerous benefits of ashwagandha supplementation, there have been just four meta-analyses on the herb's effectiveness in treating anxiety, neurobehavioral disorders, impotence, and infertility. Moreover, no reviews exist that examine how ashwagandha affects antioxidant response and physical sports performance. Consequently, the goal of this study was to analyze the scientific literature regarding the effects of ashwagandha consumption on antioxidant response and athletic performance.
Collapse
Affiliation(s)
- Shiyi Guo
- College of Physical Education, LiaoNing Petrochemical University, Fushun, Liaoning, China
| | | |
Collapse
|
6
|
Zhang L, Xu LY, Tang F, Liu D, Zhao XL, Zhang JN, Xia J, Wu JJ, Yang Y, Peng C, Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J Pharm Anal 2024; 14:100930. [PMID: 39005843 PMCID: PMC11245930 DOI: 10.1016/j.jpha.2023.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Da Silva IO, Crespo-Lopez ME, Augusto-Oliveira M, Arrifano GDP, Ramos-Nunes NR, Gomes EB, da Silva FRP, de Sousa AA, Leal ALAB, Damasceno HC, de Oliveira ACA, Souza-Monteiro JR. What We Know about Euterpe Genus and Neuroprotection: A Scoping Review. Nutrients 2023; 15:3189. [PMID: 37513607 PMCID: PMC10384735 DOI: 10.3390/nu15143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The Euterpe genus (mainly Euterpe oleracea Martius, Euterpe precatoria Martius, and Euterpe edulis Martius) has recently gained commercial and scientific notoriety due to the high nutritional value of its fruits, which are rich in polyphenols (phenolic acids and anthocyanins) and have potent antioxidant activity. These characteristics have contributed to the increased number of neuropharmacological evaluations of the three species over the last 10 years, especially açaí of the species Euterpe oleracea Martius. The fruits of the three species exert neuroprotective effects through the modulation of inflammatory and oxidative pathways and other mechanisms, including the inhibition of the mTOR pathway and protection of the blood-brain barrier, all of them intimately involved in several neuropathologies. Thus, a better understanding of the neuropharmacological properties of these three species may open new paths for the development of therapeutic tools aimed at preventing and treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Ilano Oliveira Da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Natália Raphaela Ramos-Nunes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Elielton Barreto Gomes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Felipe Rodolfo Pereira da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Aline Andrade de Sousa
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Alessandro Luiz Araújo Bentes Leal
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Helane Conceição Damasceno
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Ana Carolina Alves de Oliveira
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - José Rogério Souza-Monteiro
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| |
Collapse
|
8
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
9
|
Zarifi SH, Bagherniya M, Banach M, Johnston TP, Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin Nutr 2022; 41:2843-2857. [PMID: 36403384 DOI: 10.1016/j.clnu.2022.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Cachexia, a multifactorial and often irreversible wasting syndrome, is often associated with the final phase of several chronic disorders. Although cachexia is characterized by skeletal muscle wasting and adipose tissue loss, it is a syndrome affecting different organs, which ultimately results in systemic complications and impaired quality of life. The pathogenesis and underlying molecular mechanisms of cachexia are not fully understood, and currently there are no effective standard treatments or approved drug therapies to completely reverse cachexia. Moreover, adequate nutritional interventions alone cannot significantly improve cachexia. Other approaches to ameliorate cachexia are urgently needed, and thus, the role of medicinal plants has received considerable importance in this respect due to their beneficial health properties. Increasing evidence indicates great potential of medicinal plants and their phytochemicals as an alternative and promising treatment strategy to reduce the symptoms of many diseases including cachexia. This article reviews the current status of cachexia, the molecular mechanisms of primary events driving cachexia, and state-of-the-art knowledge that reports the preventive and therapeutic activities of multiple families of phytochemical compounds and their pharmacological mode of action, which may hold promise as an alternative treatment modality for the management of cachexia. Based on our review of various in vitro and in vivo models of cachexia, we would conclude that phytochemicals may have therapeutic potential to attenuate cachexia, although clinical trials are required to unequivocally confirm this premise.
Collapse
Affiliation(s)
- Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Yuvaraj S, Sasikumar S, Puhari SSM, Ramprasath T, Baskaran N, Vasudevan V, Selvam GS. Chrysin reduces hypercholesterolemia-mediated atherosclerosis through modulating oxidative stress, microflora, and apoptosis in experimental rats. J Food Biochem 2022; 46:e14349. [PMID: 35892244 DOI: 10.1111/jfbc.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Chrysin (Chy) is known for various biological proprieties such as inhibitory effects on inflammation, cancer, oxidative stress, aging, and atherosclerosis. However, the hypolipidemic activity of Chy and its mechanistic action remains unclear in cardiovascular diseases (CVD). In this study, we focused on the hypolipidemic proprieties of Chy in hypercholesterolemia-induced atherosclerosis. Male Wistar rats (150-220 g) were divided into four groups as follows: Group I control was fed with standard laboratory chow. Rats in Group II were fed a high-fat diet (HFD) for 60 days. After 60 days of HFD, Group III rats received Chy (100 mg/kg body weight); Group IV rats received Atorvastatin (Atv; 10 mg/kg body weight) for 30 days. Biochemical studies showed Chy, Atv treatment decreased the activities of liver marker enzymes and the levels of Reactive Oxygen Species (ROS) and lipid profile. Gene expression analysis on nuclear factor erythroid 2-related factor 2 (Nrf2) and its regulated genes were significantly reduced in the intestine and increased in the aorta by Chy and Atv. Gut microbial species such as Bacteroidetes, Lactobacillus, Enterococcus, and Clostridium leptum copy numbers were significantly increased by Chy and Atv treatment. In addition, Chy and Atv modulated the expression of inflammatory genes including TLR4, TNFα, NLRP3, and IL-17 in the aorta and intestine compared with hypercholesterolemic control rats. Chy and Atv effectively increased the caspase-3 mRNA expression in the intestine, but these decreased in the aorta. The present study concludes that by reducing oxidative stress and increasing gut microbial colonization, Chy may provide an effective therapeutic approach for the prevention of hypercholesterolemia-mediated atherosclerosis. PRACTICAL APPLICATIONS: Our study focused on a therapeutic model representing the clinical presentation of atherosclerosis in humans. Statins are commonly used in the treatment of cardiovascular complications, patients with hypercholesterolemia face difficulties in the continuation of statin therapy. The reason for statin discontinuation has been associated with toxicological effects. It is necessary to investigate the potentiality of the natural compound as an alternative medicine to statin with fewer side effects. The main theme of our study is to compare the therapeutic potential of Chy and Atv. Chy is a natural bioflavonoid that could be considered as an alternative medicinal compound to statins and to avoid toxicity problems associated with statins. Chy is a bioflavonoid present in Passiflora caerulea (blue passion flower), Oroxylum indicum (Indian trumpet flower), Pelargonium crispum, propolis, and honey. Consuming Chy-rich foods will reduce hypercholesterolemia-mediated cardiovascular complications. Overall, the present studies provided a key to developing bioactive compounds-based foods for CVD patients.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Sundrasen Sasikumar
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Nagarethinam Baskaran
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Thanjavur, Tamil Nadu, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
11
|
ALNasser MN, Mellor IR. Neuroprotective activities of acai berries (Euterpe sp.): A review. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dietary interventions rich in fruits and vegetables in aging people can reverse or mitigate age-related cognitive declines, delay the onset of neurodegenerative diseases (NDDs), and provide long-term health dividends. The novel food, popularly known as "Acai", is a berry belonging to the Euterpe genus of tropical palms trees and natively found in South America. Euterpe oleracea has been given much attention among scientists due to its high antioxidant capacity compared to other fruits and berries. Additionally, acai pulp composition analysis found that it contains various biologically active phytochemicals. In this review, we focused on current evidence relating to acai berry neuroprotection mechanisms and its efficacy in preventing or reversing neurodegeneration and age-related cognitive decline. A number of studies have illustrated the potential neuroprotective properties of acai berries. They have shown that their chemical extracts have antioxidant and anti-inflammatory properties and maintain proteins, calcium homeostasis, and mitochondrial function. Moreover, acai berry extract offers other neuromodulatory mechanisms, including anticonvulsant, antidepressant, and anti-aging properties. This neuromodulation gives valuable insights into the acai pulp and its considerable pharmacological potential on critical brain areas involved in memory and cognition. The isolated chemical matrix of acai berries could be a new substitute in research for NDD medicine development. However, due to the limited number of investigations, there is a need for further efforts to establish studies that enable progressing to clinical trials to consequently prove and ratify the therapeutic potential of this berry for several incurable NDDs.
Collapse
Affiliation(s)
- Maryam N. ALNasser
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biological Sciences, College of Science, King Faisal University, Saudi Arabia
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Mossine VV, Waters JK, Gu Z, Sun GY, Mawhinney TP. Bidirectional Responses of Eight Neuroinflammation-Related Transcriptional Factors to 64 Flavonoids in Astrocytes with Transposable Insulated Signaling Pathway Reporters. ACS Chem Neurosci 2022; 13:613-623. [PMID: 35147416 DOI: 10.1021/acschemneuro.1c00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is implicated in a variety of pathologies and is mechanistically linked to hyperactivation of glial cells in the central nervous system (CNS), predominantly in response to external stimuli. Multiple dietary factors were reported to alter neuroinflammation, but their actions on the relevant transcription factors in glia are not sufficiently understood. Here, an in vitro protocol employing cultured astroglial cells, which carry reporters of multiple signaling pathways associated with inflammation, was developed for screening environmental factors and synthetic drugs. Immortalized rat astrocyte line DI TNC1 was stably transfected with piggyBac transposon vectors containing a series of insulated reporters for the transcriptional activity of NF-κB, AP-1, signal transducer and activator of transcription 1 (STAT1), signal transducer and activator of transcription 3 (STAT3), aromatic hydrocarbon receptor (AhR), Nrf2, peroxisome proliferator-activated receptor γ (PPARγ), and HIF-1α, which is quantified via luciferase assay. Concatenated green fluorescent protein (GFP) expression was employed for simultaneous evaluation of cellular viability. Responses to a set of 64 natural and synthetic monomeric flavonoids representing six main structural classes (flavan-3-ols, flavanones, flavones, flavonols, isoflavones, and anthocyan(id)ins) were obtained at 10 and 50 μM concentrations. Except for HIF-1α, the activity of NF-κB and other transcription factors (TFs) in astrocytes was predominantly inhibited by flavan-3-ols and anthocyan(id)ins, while flavones and isoflavones generally activated these TFs. In addition, we obtained dose-response profiles for 11 flavonoids (apigenin, baicalein, catechin, cyanidin, epigallocatechin gallate, genistein, hesperetin, kaempferol, luteolin, naringenin, and quercetin) within the 1-100 μM range and in the presence of immune-stimulants and immune-suppressors. The flavonoid concentration profiles for TF-activation reveal biphasic response curves from the astrocytes. Apart from epigallocatechin gallate (EGCG), flavonoids failed to inhibit the NF-κB activation by proinflammatory agents [lipopolysaccharide (LPS), cytokines], but most of the tested polyphenols synergized with STAT3 inhibitors (stattic, ruxolitinib) against the activation of this TF in the astrocytes. We conclude that transposable insulated reporters of transcriptional activation represent a convenient neurochemistry tool in screening for activators/inhibitors of signaling pathways.
Collapse
Affiliation(s)
- Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - James K. Waters
- Agriculture Experiment Station Chemical Laboratories, University of Missouri, Columbia, Missouri 65211, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Child Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
13
|
Begum SMFM, Hemalatha S. Gelidiella acerosa Compounds Target NFκB Cascade in Lung Adenocarcinoma. Appl Biochem Biotechnol 2021; 194:1566-1579. [PMID: 34811638 DOI: 10.1007/s12010-021-03761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
In carcinogenesis, increased metabolism, abnormal functioning of mitochondria, peroxisomes, aberrant cell signaling, and prolonged inflammation can result in the overproduction of reactive oxygen species (ROS). In turn, excess ROS can upregulate the expression of various signaling pathways including the MAP kinase, PI3K/Akt, and NFκB cascades in cancer. The constitutive expression of NFκB causes drug resistance in lung cancer. Hence, drugs that can enhance the antioxidant activity of enzymes and regulate the NFκB activity are of prime target to manage the drug resistance and inflammation in cancer. This study evaluated the effect of compounds present in ethyl acetate extract of Gelidiella acerosa on inflammation and on antioxidant enzymes in lung cancer. The anti-inflammatory activity was determined under in silico and in vitro conditions. The in silico analysis showed that the phyto-constituents of G. acerosa inhibit the IKBα-NFκB-p65-p50 complex in a similar way as that of doxorubicin and dexamethasone. Similarly, G. acerosa treatment enhanced the efficiency of antioxidant enzymes peroxidases and superoxide dismutase in A549 lung cancer cells. Furthermore, the results of in vitro analysis showed that G. acerosa can decrease the activation of NFκB and production of pro-inflammatory cytokines and upregulate the expression of IL 10. As inflammation causes cancer progression, the inhibition of inflammation inhibits tumorigenesis. Hence, based on the results of the study, it can be concluded that G. acerosa exerts anti-inflammatory activity by decreasing the expression of NFκB cascade and moreover, the phyto-constituents of G. acerosa may have the potential to regulate the inflammatory response.
Collapse
Affiliation(s)
- S M Fazeela Mahaboob Begum
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.,Department of Biochemistry, New Prince Shri Bhavani Arts and Science College, Chennai, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
14
|
Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci Technol 2021; 117:74-91. [DOI: 10.1016/j.tifs.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capó X, Cabot J, Sanadgol N, Giampieri F, Tenore GC, Kashani HRK, Silva AS, Habtemariam S, Nabavi SF, Nabavi SM. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 2021; 128:437-453. [PMID: 34245757 DOI: 10.1016/j.neubiorev.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders, particularly in the elderly population, represent one of the most pressing social and health-care problems in the world. Besides the well-established role of both oxidative stress and inflammation, alterations of the immune response have been found to be closely linked to the development of neurodegenerative diseases. Interestingly, various scientific evidence reported that an altered gut microbiota composition may contribute to the development of neuroinflammatory disorders. This leads to the proposal of the concept of the gut-brain-immune axis. In this scenario, polyphenols play a pivotal role due to their ability to exert neuroprotective, immunomodulatory and microbiota-remodeling activities. In the present review, we summarized the available literature to provide a scientific evidence regarding this neuroprotective and immunomodulatory effects and the interaction with gut microbiota of polyphenols and, the main signaling pathways involved that can explain their potential therapeutic application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Istituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain.
| | - Joan Cabot
- Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | | | - Ana Sanches Silva
- National Institute of Agrarian and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Oporto, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Charham-Maritime, Kent, ME4 4TB, UK.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
17
|
Hydrogen Peroxide-Preconditioned Human Adipose-Derived Stem Cells Enhance the Recovery of Oligodendrocyte-Like Cells after Oxidative Stress-Induced Damage. Int J Mol Sci 2020; 21:ijms21249513. [PMID: 33327653 PMCID: PMC7765141 DOI: 10.3390/ijms21249513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress associated with neuroinflammation is a key process involved in the pathophysiology of neurodegenerative diseases, and therefore, has been proposed as a crucial target for new therapies. Recently, the therapeutic potential of human adipose-derived stem cells (hASCs) has been investigated as a novel strategy for neuroprotection. These cells can be preconditioned by exposing them to mild stress in order to improve their response to oxidative stress. In this study, we evaluate the therapeutic potential of hASCs preconditioned with low doses of H2O2 (called HC016 cells) to overcome the deleterious effect of oxidative stress in an in vitro model of oligodendrocyte-like cells (HOGd), through two strategies: i, the culture of oxidized HOGd with HC016 cell-conditioned medium (CM), and ii, the indirect co-culture of oxidized HOGd with HC016 cells, which had or had not been exposed to oxidative stress. The results demonstrated that both strategies had reparative effects, oxidized HC016 cell co-culture being the one associated with the greatest recovery of the damaged HOGd, increasing their viability, reducing their intracellular reactive oxygen species levels and promoting their antioxidant capacity. Taken together, these findings support the view that HC016 cells, given their reparative capacity, might be considered an important breakthrough in cell-based therapies.
Collapse
|
18
|
Pavel TI, Chircov C, Rădulescu M, Grumezescu AM. Regenerative Wound Dressings for Skin Cancer. Cancers (Basel) 2020; 12:cancers12102954. [PMID: 33066077 PMCID: PMC7601961 DOI: 10.3390/cancers12102954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Skin cancer is considered the most prevalent cancer type globally, with a continuously increasing prevalence and mortality growth rate. Additionally, the high risk of recurrence makes skin cancer treatment among the most expensive of all cancers, with average costs estimated to double within 5 years. Although tumor excision is the most effective approach among the available strategies, surgical interventions could be disfiguring, requiring additional skin grafts for covering the defects. In this context, post-surgery management should involve the application of wound dressings for promoting skin regeneration and preventing tumor recurrence and microbial infections, which still represents a considerable clinical challenge. Therefore, this paper aims to provide an up-to-date overview regarding the current status of regenerative wound dressings for skin cancer therapy. Specifically, the recent discoveries in natural biocompounds as anti-cancer agents for skin cancer treatment and the most intensively studied biomaterials for bioactive wound dressing development will be described.
Collapse
Affiliation(s)
- Teodor Iulian Pavel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| |
Collapse
|
19
|
Ganesan K, Ramkumar KM, Xu B. Vitexin restores pancreatic β-cell function and insulin signaling through Nrf2 and NF-κB signaling pathways. Eur J Pharmacol 2020; 888:173606. [PMID: 32980348 DOI: 10.1016/j.ejphar.2020.173606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
Chronic hyperglycemia induces pancreatic β-cell dysfunction through several cell signaling pathways. The β-cell loss by apoptosis appears to play a crucial role in the onset and progression of diabetes. This study was aimed to investigate the role of vitexin against high glucose-induced β-cells apoptosis and the underlying mechanisms involved therein. INS-1 cells were pretreated with vitexin (20 and 40 μM) followed by high glucose (33 mM) exposure and the cytotoxicity was assessed by MTT. The effect of vitexin on nuclear factor erythroid 2-related factor 2 (Nrf2) and NF-kB signaling molecules have been studied. Vitexin-mediated stimulation of Nrf2 was assessed. Vitexin protected the cells against high glucose toxicity in a concentration-dependent manner. Vitexin improved insulin signaling as analyzed by the levels of functional proteins in the insulin pathways, viz., insulin receptor (IR), insulin receptor substrate (IRS)-1 and IRS-2, glucose transporter -2, and glucose-stimulated insulin secretion. Vitexin improved the high glucose-induced nuclear transcription factor system by suppressing Rel A, Rel B, P50/p105, and IκB expression resulting in decreased cell apoptosis, further confirmed by the reduction in the percentage of Annexin-V positive cells. Our data suggest that vitexin improves insulin secretion by activating key proteins, including NF-κB and Nrf2 in β-cells regulating apoptosis.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China; Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603 203, India.
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China.
| |
Collapse
|
20
|
Menezes R, Foito A, Jardim C, Costa I, Garcia G, Rosado-Ramos R, Freitag S, Alexander CJ, Outeiro TF, Stewart D, Santos CN. Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9090789. [PMID: 32858836 PMCID: PMC7576474 DOI: 10.3390/antiox9090789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.
Collapse
Affiliation(s)
- Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Alexandre Foito
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
| | - Carolina Jardim
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Gonçalo Garcia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rita Rosado-Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sabine Freitag
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
| | | | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettinge, 37073 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Derek Stewart
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
21
|
24-Epibrassinolide protects against ethanol-induced behavioural teratogenesis in zebrafish embryo. Chem Biol Interact 2020; 328:109193. [PMID: 32668205 DOI: 10.1016/j.cbi.2020.109193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Embryonic studies have demonstrated the neurotoxic, teratogenic, and neurobehavioral toxicity of ethanol (EtOH). Although multiple mechanisms may contribute to these effects, oxidative stress has been described as the major damage pathway. In this regard, natural antioxidants have the potential to counteract oxidative stress-induced cellular damage. Therefore, the present study aimed to investigate the potential protective role of 24-epibrassinolide (24-EPI), a natural brassinosteroid with proved antioxidant properties, in EtOH-induced teratogenic effects during early zebrafish development. Embryos (~2 h post-fertilization - hpf) were exposed to 1 % EtOH, co-exposed to 24-EPI (0.01, 0.1 and 1 μM) and to 24-EPI alone (1 μM) for 24 h. Following exposure, biochemical evaluations were made at 26 hpf, developmental analysis was made throughout the embryo-larval period, and behavioural responses were evaluated at 120 hpf. Exposure to 1 % EtOH caused an increase in the number of malformations, which were diminished by 24-EPI. In addition, EtOH induced an accumulation of GSSG and consequent reduction of GSH:GSSG ratio, indicating the involvement of oxidative mechanisms in the EtOH-induced effects. These were reverted by 24-EPI as proved by the GSSG levels and GSH:GSSG ratio that returned to control values. Furthermore, exposure to EtOH resulted in behavioural deficits at 120 hpf as observed by the disrupted response to an aversive stimulus, suggesting the involvement of neurotoxic mechanisms. 24-EPI restored the behavioural deficits observed in a dose-dependent manner. The absence of effects in the embryos exposed solely to 24-EPI showed its safety during the exposure period. In conclusion, EtOH caused developmental teratogenicity and behavioural toxicity by inducing glutathione changes, which were prevented by 24-EPI.
Collapse
|
22
|
Alegre P, Mathias L, Lourenço MA, Santos PPD, Gonçalves A, Fernandes AA, Gaiolla PSA, Minicucci MF, Zornoff L, Paiva SAR, Polegato BF. Euterpe Oleracea Mart. (Açaí) Reduces Oxidative Stress and Improves Energetic Metabolism in Myocardial Ischemia-Reperfusion Injury in Rats. Arq Bras Cardiol 2020; 114:78-86. [PMID: 31751439 PMCID: PMC7025309 DOI: 10.36660/abc.20180140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Euterpe oleracea Mart. (açaí) is a fruit with high antioxidant capacity and could be an adjuvant strategy to attenuate ischemia-reperfusion injury. Objective To evaluate the influence of açaí in global ischemia-reperfusion model in rats. Methods Wistar rats were assigned to 2 groups: Control (C: receiving standard chow; n = 9) and Açaí (A: receiving standard chow supplemented with 5% açaí; n = 10). After six weeks, the animals were subjected to the global ischemia-reperfusion protocol and an isolated heart study to evaluate left ventricular function. Level of significance adopted: 5%. Results There was no difference between the groups in initial body weight, final body weight and daily feed intake. Group A presented lower lipid hydroperoxide myocardial concentration and higher catalase activity, superoxide dismutase and glutathione peroxidase than group C. We also observed increased myocardial activity of b-hydroxyacyl coenzyme-A dehydrogenase, pyruvate dehydrogenase, citrate synthase, complex I, complex II and ATP synthase in the A group as well as lower activity of the lactate dehydrogenase and phosphofructokinase enzymes. The systolic function was similar between the groups, and the A group presented poorer diastolic function than the C group. We did not observe any difference between the groups in relation to myocardial infarction area, total and phosphorylated NF-kB, total and acetylated FOXO1, SIRT1 and Nrf-2 protein expression. Conclusion despite improving energy metabolism and attenuating oxidative stress, açai supplementation did not decrease the infarcted area or improve left ventricular function in the global ischemia-reperfusion model.
Collapse
Affiliation(s)
- Patricia Alegre
- Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, São Paulo, SP - Brazil
| | - Livia Mathias
- Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, São Paulo, SP - Brazil
| | | | | | - Andrea Gonçalves
- Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, São Paulo, SP - Brazil
| | | | | | | | - Leonardo Zornoff
- Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, São Paulo, SP - Brazil
| | | | | |
Collapse
|
23
|
Gao X, He D, Liu D, Hu G, Zhang Y, Meng T, Su Y, Zhou A, Huang B, Du J, Fu S. Beta-naphthoflavone inhibits LPS-induced inflammation in BV-2 cells via AKT/Nrf-2/HO-1-NF-κB signaling axis. Immunobiology 2020; 225:151965. [PMID: 32747020 DOI: 10.1016/j.imbio.2020.151965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 01/15/2023]
Abstract
Numerous studies have shown that over-activation of microglia could cause neuroinflammation and release pro-inflammatory mediators, which could result in neurodegenerative diseases, like Parkinson's disease, Alzheimer's disease etc. Beta-naphthoflavone (BNF) has anti-oxidant and anti-inflammatory effects in borderline tissues, but BNF has not been reported the effect associated with neuroinflammation. Therefore, the purpose of this experiment is to inquiry the impact and mechanism of BNF on neuroinflammation. The results indicated that BNF significantly inhibited the production of pro-inflammatory mediators (inducible nitric-oxide synthase (iNOS), Cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) andinterleukin-6 (IL-6)) in LPS-exposed BV-2 cells. Analysis of western blot results found that BNF accelerated the activation of AKT/Nrf-2/HO-1 signaling pathway and suppressed NF-κB pathway activation. Further study showed that BNF inhibited activation of NF-κB pathway via promoting HO-1, and SnPP IX (a HO-1 inhibitor) could inhibit anti-inflammatory function of BNF. We also found that BNF reduced the apoptosis rate of Human neuroblastoma cells (SHSY5Y) and mouse hippocampal neuron cell line (HT22) by inhibiting release of inflammatory mediators in LPS-exposed BV2 cells. In a word, our results suggested that BNF could inhibit inflammatory response via AKT/Nrf-2/HO-1-NF-κB signaling axis in BV-2 cells and exerts neuroprotective impact via inhibiting the activation of BV2 cells.
Collapse
Affiliation(s)
- Xiyu Gao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Dewei He
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Yufei Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Tianyu Meng
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Yingchun Su
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Ang Zhou
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Bingxu Huang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Jian Du
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
24
|
Smith RE. The Effects of Dietary Supplements that Overactivate the Nrf2/ARE System. Curr Med Chem 2020; 27:2077-2094. [DOI: 10.2174/0929867326666190517113533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 01/31/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Background:
Inflammation is one of the most misunderstood aspects of human
health. People have been encouraged to eat foods that have a high antioxidant capacity, and in
vitro tests for total antioxidant capacity emerged. They were based on measuring the destruction
of oxidized test compounds in direct reactions with the antioxidants in foods. Many dietary
supplements arrived in the market. They contained purified antioxidants, such as resveratrol
and EGCG that were and still are widely assumed by many to be quite healthy at any
dose.
Methods:
The literature on inflammation and the Nrf2/ARE antioxidant system was searched
systematically. Articles from prestigious, peer-reviewed journals were obtained and read. The
information obtained from them was used to write this review article.
Results:
Over 150 articles and books were read. The information obtained from them showed
that very few dietary antioxidants exert their effects by reacting directly with Reactive Oxygen
and Nitrogen Species (RONS). Instead, most of the effective antioxidants activate the endogenous
Nrf2/ARE antioxidant system. This helps prevent smoldering inflammation and the
diseases that it can cause. However, when overactivated or activated constitutively, the
Nrf2/ARE antioxidant system can cause some of these diseases, including many types of
multidrug resistant cancer, autoimmune, neurodegenerative and cardiovascular diseases.
Conclusion:
Even though green tea, as well as many fruits, vegetables and spices are quite
healthy, dietary supplements that deliver much higher doses of antioxidants may not be. People
who are diagnosed with cancer and plan to start chemotherapy and/or radiotherapy should
probably avoid such supplements. This is because multidrug resistant tumors can hijack and
overactivate the Nrf2/ARE antioxidant system.
Collapse
|
25
|
Abilev SK, Sviridova DA, Grebenyuk AN, Igonina EV, Smirnova SV. Study of the Prooxidant and Antioxidant Activity of Anti-Radiation Agents with LUX-Biosensors. BIOL BULL+ 2020. [DOI: 10.1134/s106235901912001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Chen M, Vial ML, Gee L, Davis RA, St John JA, Ekberg JAK. The plant natural product 2-methoxy-1,4-naphthoquinone stimulates therapeutic neural repair properties of olfactory ensheathing cells. Sci Rep 2020; 10:951. [PMID: 31969642 PMCID: PMC6976649 DOI: 10.1038/s41598-020-57793-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are crucial for promoting the regeneration of the primary olfactory nervous system that occurs throughout life. Transplantation of OECs has emerged as a promising therapy for nervous system injuries, in particular for spinal cord injury repair. Functional outcomes in both animals and humans are, however, highly variable, primarily because it is difficult to rapidly obtain enough OECs for transplantation. Compounds which can stimulate OEC proliferation without changing the phenotype of the cells are therefore highly sought after. Additionally, compounds which can stimulate favourable cell behaviours such as migration and phagocytic activity are desirable. We conducted a medium-throughput screen testing the Davis open access natural product-based library (472 compounds) and subsequently identified the known plant natural product 2-methoxy-1,4-naphthoquinone as a stimulant of OEC viability. We showed that 2-methoxy-1,4-naphthoquinone: (i) strongly stimulates proliferation over several weeks in culture whilst maintaining the OEC phenotype; (ii) stimulates the phagocytic activity of OECs, and (iii) modulates the cell cycle. We also identified the transcription factor Nrf2 as the compound’s potential molecular target. From these extensive investigations we conclude that 2-methoxy-1,4-naphthoquinone may enhance the therapeutic potential of OECs by stimulating proliferation prior to transplantation.
Collapse
Affiliation(s)
- M Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - M L Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - L Gee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - R A Davis
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - J A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - J A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
27
|
Ungerer G, Cui J, Ndam T, Bekemeier M, Song H, Li R, Siedhoff HR, Yang B, Appenteng MK, Greenlief CM, Miller DK, Sun GY, Folk WR, Gu Z. Harpagophytum procumbens Extract Ameliorates Allodynia and Modulates Oxidative and Antioxidant Stress Pathways in a Rat Model of Spinal Cord Injury. Neuromolecular Med 2020; 22:278-292. [PMID: 31900786 DOI: 10.1007/s12017-019-08585-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a deliberating disorder with impairments in locomotor deficits and incapacitating sensory abnormalities. Harpagophytum procumbens (Hp) is a botanical widely used for treating inflammation and pain related to various inflammatory and musculoskeletal conditions. Using a modified rodent contusion model of SCI, we explored the effects of this botanical on locomotor function and responses to mechanical stimuli, and examined possible neurochemical changes associated with SCI-induced allodynia. Following spinal cord contusion at T10 level, Hp (300 mg/kg, p.o.) or vehicle (water) was administered daily starting 24 h post-surgery, and behavioral measurements made every-other day until sacrifice (Day 21). Hp treatment markedly ameliorated the contusion-induced decrease in locomotor function and increased sensitivity to mechanical stimuli. Determination of Iba1 expression in spinal cord tissues indicated microglial infiltration starting 3 days post-injury. SCI results in increased levels of 4-hydroxynonenal, an oxidative stress product and proalgesic, which was diminished at 7 days by treatment with Hp. SCI also enhanced antioxidant heme oxygenase-1 (HO-1) expression. Concurrent studies of cultured murine BV-2 microglial cells revealed that Hp suppressed oxidative/nitrosative stress and inflammatory responses, including production of nitric oxide and reactive oxygen species, phosphorylation of cytosolic phospholipases A2, and upregulation of the antioxidative stress pathway involving the nuclear factor erythroid 2-related factor 2 and HO-1. These results support the use of Hp for management of allodynia by providing resilience against the neuroinflammation and pain associated with SCI and other neuropathological conditions.
Collapse
Affiliation(s)
- Garrett Ungerer
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Tina Ndam
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mikeala Bekemeier
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Runting Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Bo Yang
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael K Appenteng
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - C Michael Greenlief
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - William R Folk
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
28
|
Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv Ther 2020; 37:113-139. [PMID: 31782132 PMCID: PMC6979458 DOI: 10.1007/s12325-019-01148-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Introduction Neurodegeneration is the term describing the death of neurons both in the central nervous system and periphery. When affecting the central nervous system, it is responsible for diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disorders, amyotrophic lateral sclerosis, and other less frequent pathologies. There are several common pathophysiological elements that are shared in the neurodegenerative diseases. The common denominators are oxidative stress (OS) and inflammatory responses. Unluckily, these conditions are difficult to treat. Because of the burden caused by the progression of these diseases and the simultaneous lack of efficacious treatment, therapeutic approaches that could target the interception of development of the neurodegeneration are being widely investigated. This review aims to highlight the most recent proposed novelties, as most of the previous approaches have failed. Therefore, older approaches may currently be used by healthcare professionals and are not being presented. Methods This review was based on an electronic search of existing literature, using PubMed as primary source for important review articles, and important randomized clinical trials, published in the last 5 years. Reference lists from the most recent reviews, as well as additional sources of primary literature and references cited by relevant articles, were used. Results Eighteen natural pharmaceutical substances and 24 extracted or recombinant products, and artificial agents that can be used against OS, inflammation, and neurodegeneration were identified. After presenting the most common neurodegenerative diseases and mentioning some of the basic mechanisms that lead to neuronal loss, this paper presents up to date information that could encourage the development of better therapeutic strategies. Conclusions This review shares the new potential pharmaceutical and not pharmaceutical options that have been recently introduced regarding OS and inflammatory responses in neurodegenerative diseases.
Collapse
|
29
|
Rusu ME, Simedrea R, Gheldiu AM, Mocan A, Vlase L, Popa DS, Ferreira IC. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
de Oliveira NKS, Almeida MRS, Pontes FMM, Barcelos MP, de Paula da Silva CHT, Rosa JMC, Cruz RAS, da Silva Hage-Melim LI. Antioxidant Effect of Flavonoids Present in Euterpe oleracea Martius and Neurodegenerative Diseases: A Literature Review. Cent Nerv Syst Agents Med Chem 2019; 19:75-99. [PMID: 31057125 DOI: 10.2174/1871524919666190502105855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Neurodegenerative diseases (NDDs) are progressive, directly affecting the central nervous system (CNS), the most common and recurrent are Alzheimer's disease (AD) and Parkinson's disease (PD). One factor frequently mentioned in the etiology of NDDs is the generation of free radicals and oxidative stress, producing cellular damages. Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been related to the low risk in the development of several diseases. Due to the antioxidant properties present in the food, a fruit that has been gaining prominence among these foods is the Euterpe oleracea Mart. (açaí), because it presents in its composition significant amounts of a subclass of the flavonoids, the anthocyanins. METHODS In the case review, the authors receive a basic background on the most common NDDs, oxidative stress and antioxidants. In addition, revisiting the various studies related to NDDs, including flavonoids and consumption of açaí. RESULTS Detailed analysis of the recently reported case studies reveal that dietary consumption of flavonoid-rich foods, such as açaí fruits, suggests the efficacy to attenuate neurodegeneration and prevent or reverse the age-dependent deterioration of cognitive function. CONCLUSION This systematic review points out that flavonoids presenting in açaí have the potential for the treatment of diseases such as PD and AD and are candidates for drugs in future clinical research. However, there is a need for in vitro and in vivo studies with polyphenol that prove and ratify the therapeutic potential of this fruit for several NDDs.
Collapse
Affiliation(s)
| | - Marcos Rafael Silva Almeida
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapa, Macapa, Brazil
| | - Franco Márcio Maciel Pontes
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapa, Macapa, Brazil
| | - Mariana Pegrucci Barcelos
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joaquín María Campos Rosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain, Instituto de Investigación, Biosanitaria ibs, Granada, Universidad de Granada, Granada, Spain
| | | | | |
Collapse
|
31
|
Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf DQ. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids 2018; 136:3-13. [PMID: 28314621 PMCID: PMC9087135 DOI: 10.1016/j.plefa.2017.03.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Dennis Y Chuang
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, United States
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | | | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - David Q Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
32
|
Lampiasi N, Montana G. An in vitro inflammation model to study the Nrf2 and NF-κB crosstalk in presence of ferulic acid as modulator. Immunobiology 2017; 223:349-355. [PMID: 29096944 DOI: 10.1016/j.imbio.2017.10.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022]
Abstract
The aim of this study was to evaluate the crosstalk between Nrf2 and NF-κB signaling pathways and to explore the modulating activity actuated by ferulic acid. In the inflammation process, a key player is the nuclear factor-κB (NF-κB) transcription factor pathway. On the contrary, the activation of Nrf2 inhibits inflammation and impairs degenerative disease providing an interface between redox and anti-inflammatory responses. Recent studies have demonstrated that protein phosphorylation of IKK complex is a potential mechanism for the activation of both Nrf2 and NF-κB pathways. The IKK complex is as an integration point for signals emanating from these different pathways. In this study, we demonstrated that ferulic acid is able to regulate NF-κB and Nrf2 activities. Interestingly, we showed that ferulic acid mimics the potent IKK inhibitor such as BMS, down-regulating the NF-κB response, TAK 1 activation and turning off Nrf2 activities in LPS-stimulated RAW 264.7 cells. Immunoblot data showed that the release of Nrf2 from Keap1 is maintained at low levels also in the presence of LPS stimulus. Nrf2 controls the expression of many antioxidant and detoxification genes, by binding to antioxidant response elements (AREs) that are commonly found in the promoter region of antioxidant (and other) genes. We demonstrated that in the pARE-Luc transfected cells the pre-treatment with FA significantly reduced LPS-induced (p<0.01) and BMS-induced (p<0.01) transcriptional activities. Analysis of well-known Nrf2 transcriptional targets showed that mRNAs expression of Nrf2-dependent antioxidant and phase II enzymes such as dehydrogenase quinone1 (NQO1) and glutathione S-transferase A2 (GSTA2) were up-regulated by BMS and significantly increase more by association with LPS, but are down-regulated in the presence of FA. Interestingly, cells depleted of Keap1 showed increased response of the Nrf2 transcriptional activity also in the presence of FA, strongly suggesting its modulating role in Keap1-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Giovanna Montana
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
33
|
Sthijns MM, Schiffers PM, Janssen GM, Lemmens KJ, Ides B, Vangrieken P, Bouwman FG, Mariman EC, Pader I, Arnér ES, Johansson K, Bast A, Haenen GR. Rutin protects against H 2 O 2 -triggered impaired relaxation of placental arterioles and induces Nrf2-mediated adaptation in Human Umbilical Vein Endothelial Cells exposed to oxidative stress. Biochim Biophys Acta Gen Subj 2017; 1861:1177-1189. [DOI: 10.1016/j.bbagen.2017.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/06/2023]
|
34
|
Sergeant CA, Africander D, Swart P, Swart AC. Sutherlandia frutescens modulates adrenal hormone biosynthesis, acts as a selective glucocorticoid receptor agonist (SEGRA) and displays anti-mineralocorticoid properties. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:290-301. [PMID: 28323049 DOI: 10.1016/j.jep.2017.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sutherlandia frutescens is a traditional African medicinal plant used in the treatment of stress and anxiety, while also exhibiting anti-inflammatory properties. AIM OF STUDY The study aimed at linking anti-stress and anti-inflammatory properties of S. frutescens to its influence on glucocorticoid biosynthesis and the inflammatory response via steroid receptor interaction. MATERIALS AND METHODS The influence of S. frutescens extracts and sutherlandioside B (SUB),10 and 30µM, on key steroidogenic enzymes was assayed in COS-1 cells. Effects were also assayed on basal and stimulated hormone levels in the adrenal H295R cell model. Agonist activity for transactivation and transrepression of the extract and SUB with the glucocorticoid- (GR) and mineralocorticoid receptor (MR) was subsequently investigated. RESULTS Inhibitory effects of the extract towards progesterone conversion by CYP17A1 and CYP21A2 were significant. SUB inhibited CYP17A1 and 3β-HSD2, while not affecting CYP21A2. In H295R cells, SUB decreased cortisol and androgen precursors significantly. The extract decreased total steroid production (basal and stimulated) with cortisol and its precursor, deoxycortisol, together with mineralocorticoid metabolites significantly decreased under forskolin stimulated conditions. S. frutescens extracts and SUB repressed NF-κB-driven gene expression without activating GRE-driven gene expression and while neither activated MR mediated gene transcription, both antagonized the effects of aldosterone via the MR. CONCLUSION Data provide evidence linking anti-stress, anti-inflammatory and anti-hypertensive properties of S. frutescens to inhibition of steroidogenic enzymes and modulation of adrenal hormone biosynthesis. Findings suggesting S. frutescens and SUB exhibit dissociated glucocorticoid characteristics underline potential therapeutic applications in the treatment of inflammation and hypertension.
Collapse
Affiliation(s)
- C A Sergeant
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - D Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - P Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - A C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
35
|
Smith RE, Tran K, Smith CC, McDonald M, Shejwalkar P, Hara K. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases. Diseases 2016; 4:diseases4040034. [PMID: 28933413 PMCID: PMC5456329 DOI: 10.3390/diseases4040034] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
Abstract
It is widely believed that consuming foods and beverages that have high concentrations of antioxidants can prevent cardiovascular diseases and many types of cancer. As a result, many articles have been published that give the total antioxidant capacities of foods in vitro. However, many antioxidants behave quite differently in vivo. Some of them, such as resveratrol (in red wine) and epigallocatechin gallate or EGCG (in green tea) can activate the nuclear erythroid-2 like factor-2 (Nrf2) transcription factor. It is a master regulator of endogenous cellular defense mechanisms. Nrf2 controls the expression of many antioxidant and detoxification genes, by binding to antioxidant response elements (AREs) that are commonly found in the promoter region of antioxidant (and other) genes, and that control expression of those genes. The mechanisms by which Nrf2 relieves oxidative stress and limits cardiac injury as well as the progression to heart failure are described. Also, the ability of statins to induce Nrf2 in the heart, brain, lung, and liver is mentioned. However, there is a negative side of Nrf2. When over-activated, it can cause (not prevent) cardiovascular diseases and multi-drug resistance cancer.
Collapse
Affiliation(s)
- Robert E Smith
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Kevin Tran
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Cynthia C Smith
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Miranda McDonald
- US Food & Drug Administration, 11510 W 80th Street, Lenexa, KS 66214, USA.
| | - Pushkar Shejwalkar
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Kenji Hara
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
36
|
Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy. Front Nutr 2016; 3:48. [PMID: 27843913 PMCID: PMC5086580 DOI: 10.3389/fnut.2016.00048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase – a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes feasible a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables, and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated antiproliferative and proapoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anticancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review, we explore the potential of quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a “four-focus area strategy” to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to (i) modulate cellular bioreduction potential and associated signaling cascades, (ii) affect transcription of relevant genes, (iii) regulate epigenetic processes, and (iv) develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.
Collapse
Affiliation(s)
- Zoey Harris
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| | - Micah G Donovan
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| | | | - Kirsten H Limesand
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| | - Randy Burd
- Department of Nutritional Sciences, University of Arizona , Tucson, AZ , USA
| |
Collapse
|