1
|
Liu Y, Zhang J, Wang B, Zheng F, Yan J. Epidemiological patterns and therapeutic approaches of toad toxin poisoning in a retrospective case study. Sci Rep 2025; 15:5586. [PMID: 39955382 PMCID: PMC11830051 DOI: 10.1038/s41598-025-89809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Toad toxin, a bioactive compound revered in traditional Chinese medicine, has been employed therapeutically for centuries. Recent studies have increasingly confirmed its pharmacological benefits, including cardioprotection, anesthetic effects, anti-inflammatory properties, enhancement of sexual function, and antineoplastic activities. This toxin is applied in the treatment of diverse medical conditions such as chronic bronchitis, pharyngitis, and colon cancer. Nonetheless, the consumption of toad-related substances-such as flesh, eggs, gallbladders-or the medicinal use of toad toxin frequently leads to poisoning incidents, some of which are fatal. This paper comprehensively reviews the principal features of toad toxin poisoning, encompassing clinical symptoms, therapeutic approaches, and other relevant factors to aid in the diagnosis and management, as well as the forensic evaluation of lethal cases. We advocate for further research into the cardiotoxic and neurotoxic effects of toad toxin to deepen our understanding of its poisoning mechanisms and pharmacological profile. Future efforts should focus on regulatory standardization of treatment practices and public education to mitigate the risks associated with toad toxin exposure.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Feifei Zheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Lu S, Li Y, Wang L, Xiong K, Yan J, Zhai Z, Yan W. Effects of Herpud1 in Methamphetamine-induced Neuronal Apoptosis. Curr Med Chem 2025; 32:1406-1422. [PMID: 38299291 DOI: 10.2174/0109298673277857231221110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is an illicit psychoactive substance that can damage various organs in the body, especially the nervous system. We hypothesized that expression of homocysteine-inducible endoplasmic reticulum-resident with ubiquitin-like domain member 1 (Herpud1) protein would alleviate the induction of apoptosis following METH administration. METHODS To test this hypothesis, we analysed the changes in Herpud1 expression and apoptosis in PC12 cells under different concentrations and exposure times of METH. Moreover, we examined the effects of Herpud1 knockdown on METH-induced neuronal apoptosis. Flow cytometry and Western blot analyses were used to evaluate apoptosis levels and the expression of apoptotic markers (cleaved caspase-3) in PC12 cells following Herpud1 knockdown by synthetic small interfering RNA (siRNA). RESULTS Our results showed that Herpud1 expression was upregulated in PC12 cells following METH treatment, while endoplasmic reticulum stress (ERS) and apoptosis were also increased. Conversely, Herpud1 knockdown reduced METH-induced ERS and apoptosis levels in vitro. CONCLUSION These results suggest that Herpud1 plays an essential role in METH-induced neuronal ERS and apoptosis and may represent a potential therapeutic gene target in METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Lewen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhihao Zhai
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangzhou, 518000, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
3
|
Zhang J, Yan J, Li S, Chen Q, Lin J, Peng Y, Liu Y, Wang B, Wei X, Sun C, Niu S. GPR55 activation improves anxiety- and depression-like behaviors of mice during methamphetamine withdrawal. Heliyon 2024; 10:e30462. [PMID: 38720745 PMCID: PMC11077030 DOI: 10.1016/j.heliyon.2024.e30462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Methamphetamine is a potent and highly addictive neurotoxic psychostimulant that triggers a spectrum of adverse emotional responses during withdrawal. G-protein coupled receptor 55 (GPR55), a novel endocannabinoid receptor, is closely associated with mood regulation. Herein, we developed a murine model of methamphetamine-induced anxiety- and depressive-like behavior during abstinence which showed a decreased GPR55 expression in the hippocampus. Activation of GPR55 mitigated these behavioral symptoms, concomitantly ameliorating impairments in hippocampal neurogenesis and reducing neuroinflammation. These findings underscore the pivotal role of GPR55 in mediating the neuropsychological consequences of methamphetamine withdrawal, potentially via mechanisms involving the modulation of hippocampal neurogenesis and inflammation.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Shuyue Li
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Xinrong Wei
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
| | - Chen Sun
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830011, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, China
| |
Collapse
|
4
|
Hejnova L, Hronova A, Drastichova Z, Novotny J. Long-term administration of morphine specifically alters the level of protein expression in different brain regions and affects the redox state. Open Life Sci 2024; 19:20220858. [PMID: 38681734 PMCID: PMC11049758 DOI: 10.1515/biol-2022-0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 05/01/2024] Open
Abstract
We investigated the changes in redox state and protein expression in selected parts of the rat brain induced by a 4 week administration of morphine (10 mg/kg/day). We found a significant reduction in lipid peroxidation that mostly persisted for 1 week after morphine withdrawal. Morphine treatment led to a significant increase in complex II in the cerebral cortex (Crt), which was accompanied by increased protein carbonylation, in contrast to the other brain regions studied. Glutathione levels were altered differently in the different brain regions after morphine treatment. Using label-free quantitative proteomic analysis, we found some specific changes in protein expression profiles in the Crt, hippocampus, striatum, and cerebellum on the day after morphine withdrawal and 1 week later. A common feature was the upregulation of anti-apoptotic proteins and dysregulation of the extracellular matrix. Our results indicate that the tested protocol of morphine administration has no significant toxic effect on the rat brain. On the contrary, it led to a decrease in lipid peroxidation and activation of anti-apoptotic proteins. Furthermore, our data suggest that long-term treatment with morphine acts specifically on different brain regions and that a 1 week drug withdrawal is not sufficient to normalize cellular redox state and protein levels.
Collapse
Affiliation(s)
- Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Hronova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
He Z, Chen Q, Wang K, Lin J, Peng Y, Zhang J, Yan X, Jie Y. Single-cell transcriptomics analysis of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. Eur J Neurosci 2024; 59:333-357. [PMID: 38221677 DOI: 10.1111/ejn.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Single-cell transcriptomics analysis is an advanced technology that can describe the intracellular transcriptome in complex tissues. It profiles and analyses datasets by single-cell RNA sequencing. Neurodegenerative diseases are identified by the abnormal apoptosis of neurons in the brain with few or no effective therapy strategies at present, which has been a growing healthcare concern and brought a great burden to society. The transcriptome of individual cells provides deep insights into previously unforeseen cellular heterogeneity and gene expression differences in neurodegenerative disorders. It detects multiple cell subsets and functional changes during pathological progression, which deepens the understanding of the molecular underpinnings and cellular basis of neurodegenerative diseases. Furthermore, the transcriptome analysis of immune cells shows the regulation of immune response. Different subtypes of immune cells and their interaction are found to contribute to disease progression. This finding enables the discovery of novel targets and biomarkers for early diagnosis. In this review, we emphasize the principles of the technology, and its recent progress in the study of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. The application of single-cell transcriptomics analysis in neurodegenerative disorders would help explore the pathogenesis of these diseases and develop novel therapeutic methods.
Collapse
Affiliation(s)
- Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Kaiyue Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, China
| | - Yan Jie
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q, Xiong K. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 2022; 17:1761-1768. [PMID: 35017436 PMCID: PMC8820688 DOI: 10.4103/1673-5374.331539] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022] Open
Abstract
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis, apoptosis and necroptosis act in consort in a multimeric protein complex, PANoptosome. This allows all the components of PANoptosis to be regulated simultaneously. PANoptosis provides a new way to study the regulation of cell death, in that different types of cell death may be regulated at the same time. To test whether PANoptosis exists in diseases other than infectious diseases, we chose cerebral ischemia/reperfusion injury as the research model, collected articles researching cerebral ischemia/reperfusion from three major databases, obtained the original research data from these articles by bibliometrics, data mining and other methods, then integrated and analyzed these data. We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion. In the cell model simulating ischemic brain injury, pyroptosis, apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons. Pyroptosis, apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury. This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.
Collapse
Affiliation(s)
- Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Di Yang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Ning
- Department of Human Resources, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lyu-Shuang Liao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Shuang Lu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wen-Juan Zhao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Liao LS, Lu S, Yan WT, Wang SC, Guo LM, Yang YD, Huang K, Hu XM, Zhang Q, Yan J, Xiong K. The Role of HSP90α in Methamphetamine/Hyperthermia-Induced Necroptosis in Rat Striatal Neurons. Front Pharmacol 2021; 12:716394. [PMID: 34349659 PMCID: PMC8326403 DOI: 10.3389/fphar.2021.716394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is one of the most widely abused synthetic drugs in the world. The users generally present hyperthermia (HT) and psychiatric symptoms. However, the mechanisms involved in METH/HT-induced neurotoxicity remain elusive. Here, we investigated the role of heat shock protein 90 alpha (HSP90α) in METH/HT (39.5°C)-induced necroptosis in rat striatal neurons and an in vivo rat model. METH treatment increased core body temperature and up-regulated LDH activity and the molecular expression of canonical necroptotic factors in the striatum of rats. METH and HT can induce necroptosis in primary cultures of striatal neurons. The expression of HSP90α increased following METH/HT injuries. The specific inhibitor of HSP90α, geldanamycin (GA), and HSP90α shRNA attenuated the METH/HT-induced upregulation of receptor-interacting protein 3 (RIP3), phosphorylated RIP3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated MLKL. The inhibition of HSP90α protected the primary cultures of striatal neurons from METH/HT-induced necroptosis. In conclusion, HSP90α plays an important role in METH/HT-induced neuronal necroptosis and the HSP90α-RIP3 pathway is a promising therapeutic target for METH/HT-induced neurotoxicity in the striatum.
Collapse
Affiliation(s)
- Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kai Huang
- Department of Human Anatomy and Histoembryolog, School of Basic Medical Sciences, Shaoyang University, Shaoyang, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
8
|
Zhao XY, Li JF, Li TZ, Pan CX, Xue FS, Wang GY. Morphine pretreatment protects against cerebral ischemic injury via a cPKCγ-mediated anti-apoptosis pathway. Exp Ther Med 2021; 22:1016. [PMID: 34373702 DOI: 10.3892/etm.2021.10448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
It has been reported that morphine pretreatment (MP) can exert neuroprotective effects, and that protein kinase C (PKC) participates in the initiation and development of ischemic/hypoxic preconditioning in the brain. However, it remains unknown whether PKC is involved in MP-induced neuroprotection. The aim of the present study, which included in vivo and in vitro experiments, was to determine whether the conventional γ isoform of PKC (cPKCγ) was involved in the protective effects of MP against cerebral ischemic injury. The present study included an in vivo experiment using a mouse model of middle cerebral artery occlusion and an in vitro experiment using neuroblastoma N2a cells with oxygen-glucose deprivation (OGD). Furthermore, a cPKCγ antagonist, Go6983, was used to determine the involvement of cPKCγ in the protective effects of MP against cerebral ischemic injury. In the in vivo experiment, neurological deficits, ischemic infarct volume, neural cell damage, apoptosis and caspase-3 activation were evaluated. In the in vitro experiment, flow cytometry was used to determine the activation of caspase-3 in N2a cells with OGD. It was found that MP protected against cerebral ischemic injury. However, intracerebroventricular injection of the cPKCγ antagonist before MP attenuated the neuroprotective effect of MP and increased the activation of cleaved caspase-3. These findings suggested that MP may provide protection against cerebral ischemic injury via a cPKCγ-mediated anti-apoptosis pathway.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jun-Fa Li
- Department of Neurobiology, Capital Medical University; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Tian-Zuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Chu-Xiong Pan
- Department of Anesthesiology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Gu-Yan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
9
|
Mazumder AH, Barnett J, Lindberg N, Torniainen-Holm M, Lähteenvuo M, Lahdensuo K, Kerkelä M, Hietala J, Isometsä ET, Kampman O, Kieseppä T, Jukuri T, Häkkinen K, Cederlöf E, Haaki W, Kajanne R, Wegelius A, Männynsalo T, Niemi-Pynttäri J, Suokas K, Lönnqvist J, Niemelä S, Tiihonen J, Paunio T, Palotie A, Suvisaari J, Veijola J. Reaction Time and Visual Memory in Connection with Alcohol Use in Schizophrenia and Schizoaffective Disorder. Brain Sci 2021; 11:brainsci11060688. [PMID: 34071123 PMCID: PMC8224767 DOI: 10.3390/brainsci11060688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to explore the association between cognition and hazardous drinking and alcohol use disorder in schizophrenia and schizoaffective disorder. Cognition is more or less compromised in schizophrenia, and schizoaffective disorder and alcohol use might aggravate this phenomenon. The study population included 3362 individuals from Finland with diagnoses of schizophrenia or schizoaffective disorder. Hazardous drinking was screened with the AUDIT-C (Alcohol Use Disorders Identification Test for Consumption) screening tool. Alcohol use disorder (AUD) diagnoses were obtained from national registrar data. Participants performed two computerized tasks from the Cambridge Automated Neuropsychological Test Battery (CANTAB) on a tablet computer: The Five-Choice Serial Reaction Time Task (5-CSRTT) or the reaction time (RT) test and the Paired Associative Learning (PAL) test. The association between alcohol use and the RT and PAL tests was analyzed with log-linear regression and logistic regression, respectively. After adjustment for age, education, housing status, and the age at which the respondents had their first psychotic episodes, hazardous drinking was associated with a lower median RT in females and less variable RT in males, while AUD was associated with a poorer PAL test performance in terms of the total errors adjusted scores (TEASs) in females. Our findings of positive associations between alcohol and cognition in schizophrenia and schizoaffective disorder are unique.
Collapse
Affiliation(s)
- Atiqul Haq Mazumder
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Correspondence: or
| | - Jennifer Barnett
- Cambridge Cognition, University of Cambridge, Cambridge CB25 9TU, UK;
| | - Nina Lindberg
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
| | - Minna Torniainen-Holm
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Kaisla Lahdensuo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
| | - Martta Kerkelä
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
- Department of Psychiatry, Turku University Hospital, 20521 Turku, Finland
| | - Erkki Tapio Isometsä
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
| | - Olli Kampman
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
- Department of Psychiatry, Pirkanmaa Hospital District, 33521 Tampere, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
| | - Tuomas Jukuri
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Katja Häkkinen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Erik Cederlöf
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Willehard Haaki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
| | - Risto Kajanne
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Asko Wegelius
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Teemu Männynsalo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Social Services and Health Care Sector, City of Helsinki, 00099 Helsinki, Finland
| | - Jussi Niemi-Pynttäri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Social Services and Health Care Sector, City of Helsinki, 00099 Helsinki, Finland
| | - Kimmo Suokas
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
| | - Jouko Lönnqvist
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Department of Psychiatry, University of Helsinki, 00014 Helsinki, Finland
| | - Solja Niemelä
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
- Department of Psychiatry, Turku University Hospital, 20521 Turku, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, 11364 Stockholm, Sweden
| | - Tiina Paunio
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Department of Psychiatry, University of Helsinki, 00014 Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
- Stanley Center for Psychiatric Research, The Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jaana Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Juha Veijola
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Department of Psychiatry, Oulu University Hospital, 90220 Oulu, Finland
| |
Collapse
|
10
|
Wang Y, Wei T, Zhao W, Ren Z, Wang Y, Zhou Y, Song X, Zhou R, Zhang X, Jiao D. MicroRNA-181a Is Involved in Methamphetamine Addiction Through the ERAD Pathway. Front Mol Neurosci 2021; 14:667725. [PMID: 34025353 PMCID: PMC8137846 DOI: 10.3389/fnmol.2021.667725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
The regulation of microRNA (miRNA) is closely related to methamphetamine (METH) addiction. Past studies have reported that miR-181a is associated with METH addiction, but the mechanism pathways remain elusive. On the basis of our past studies, which reported the endoplasmic reticulum-associated protein degradation (ERAD) mediated ubiquitin protein degradation of GABAAα1, which was involved in METH addiction. The present study, using qRT-PCR and bioinformatics analysis, further revealed that miR-181a may be indirectly responsible for the METH addiction and downregulation of GABAAα1 through the regulation of ERAD.
Collapse
Affiliation(s)
- Yujing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Tao Wei
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Zixuan Ren
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yiding Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Ruidong Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xiaochu Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongliang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Lu S, Yang Y, Liao L, Yan W, Xiong K, Yan J. iTRAQ-based proteomic analysis of the rat striatum in response to methamphetamine preconditioning. Acta Biochim Biophys Sin (Shanghai) 2021; 53:636-639. [PMID: 33742667 DOI: 10.1093/abbs/gmab024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yandi Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jie Yan
- School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
- Forensic Science, School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
12
|
Yan W, Wang Z, Lu S, Li J, Chen Q, Wang L, Chen S, Wang X, Xiong K, Yan J. Analysis of factors related to prognosis and death of fish bile poisoning in China: A retrospective study. Basic Clin Pharmacol Toxicol 2020; 127:419-428. [PMID: 32441465 DOI: 10.1111/bcpt.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/19/2020] [Indexed: 01/25/2023]
Abstract
Fish bile has long been considered to have therapeutic benefits in folk medicine in some Asian countries. However, poisoning incidents and even death sporadically occurred when people consumed fish bile. Herein, we summarize the main characteristics of fish bile poisoning in China including clinical symptoms, treatment strategies and factors being associated with death and affecting prognosis, hoping to provide a reference for the diagnosis and treatment of fish bile poisoning, as well as forensic identification of death cases induced by fish bile poisoning. We suggest that the health authorities should make an effort to enhance people's awareness of the safety of traditional medicine like fish bile so as to reduce the incidence of adverse events.
Collapse
Affiliation(s)
- Weitao Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhen Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shuang Lu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, China
| | - Jingyu Li
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Lan Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Siqi Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiao Wang
- Urumqi General Hospital of Xinjiang Military Region, Urumqi, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
13
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
14
|
Wang S, Zhang C, Chen W, Ren L, Ling J, Shang Y, Guo Y. Effects of Methamphetamine on the Development and Its Determination in Aldrichina grahami (Diptera: Calliphoridae). JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:691-696. [PMID: 31819957 DOI: 10.1093/jme/tjz239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Age determination of necrophagous flies serves as an important tool for postmortem interval (PMI) estimation in forensic investigations. Drugs or toxins in cadavers may alter the developmental time of larvae, and lead to deviation in PMI estimation. Methamphetamine (MA), as one of the most abused psychostimulant drugs in Asia and North America, is often involved in forensic entomotoxicological cases. This study investigated the effects of MA (0, 45, 90, and 180 ng/mg) on the developmental rate, morphology, and survival of Aldrichina grahami (Aldrich, 1930). The results showed that 1) the developmental time to reach the pupal instar was statistically slower for the larvae reared on rabbit mince containing MA than for the control; 2) the mean length of the larvae exposed to MA concentrations was longer than those of the control; 3) the mean weight of the pupae exposed to the highest concentration of MA was significantly lighter than those of the control; 4) the GC-MS method can detect the content of MA in A. grahami immatures and empty puparia (EP).
Collapse
Affiliation(s)
- Shiwen Wang
- Department of Forensic Science, School of Basic Medical Sciences, Xinjiang Medical University, Ürümqi, China
| | - Changquan Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
15
|
Guo LM, Wang Z, Li SP, Wang M, Yan WT, Liu FX, Wang CD, Zhang XD, Chen D, Yan J, Xiong K. RIP3/MLKL-mediated neuronal necroptosis induced by methamphetamine at 39°C. Neural Regen Res 2020; 15:865-874. [PMID: 31719251 PMCID: PMC6990769 DOI: 10.4103/1673-5374.268902] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Methamphetamine is one of the most prevalent drugs abused in the world. Methamphetamine abusers usually present with hyperpyrexia (39°C), hallucination and other psychiatric symptoms. However, the detailed mechanism underlying its neurotoxic action remains elusive. This study investigated the effects of methamphetamine + 39°C on primary cortical neurons from the cortex of embryonic Sprague-Dawley rats. Primary cortex neurons were exposed to 1 mM methamphetamine + 39°C. Propidium iodide staining and lactate dehydrogenase release detection showed that methamphetamine + 39°C triggered obvious necrosis-like death in cultured primary cortical neurons, which could be partially inhibited by receptor-interacting protein-1 (RIP1) inhibitor Necrostatin-1 partially. Western blot assay results showed that there were increases in the expressions of receptor-interacting protein-3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the primary cortical neurons treated with 1 mM methamphetamine + 39°C for 3 hours. After pre-treatment with RIP3 inhibitor GSK'872, propidium iodide staining and lactate dehydrogenase release detection showed that neuronal necrosis rate was significantly decreased; RIP3 and MLKL protein expression significantly decreased. Immunohistochemistry staining results also showed that the expressions of RIP3 and MLKL were up-regulated in brain specimens from humans who had died of methamphetamine abuse. Taken together, the above results suggest that methamphetamine + 39°C can induce RIP3/MLKL regulated necroptosis, thereby resulting in neurotoxicity. The study protocol was approved by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University, China (approval numbers: 2017-S026 and 2017-S033) on March 7, 2017.
Collapse
Affiliation(s)
- Li-Min Guo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Zhen Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Shi-Ping Li
- Department of Neurology, People's Hospital of Lianhua, Pingxiang, Jiangxi Province, China
| | - Mi Wang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Feng-Xia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chu-Dong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xu-Dong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
16
|
Li Y, Li S, Xia Y, Li X, Chen T, Yan J, Wang Y. Alteration of liver immunity by increasing inflammatory response during co-administration of methamphetamine and atazanavir. Immunopharmacol Immunotoxicol 2020; 42:237-245. [PMID: 32249638 DOI: 10.1080/08923973.2020.1745829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Use of methamphetamine (METH) is prevalent among HIV-infected individuals. Previous research has shown that both METH and HIV protease inhibitors exert influences on mitochondrial respiratory metabolism and hepatic nervous system. This study aims to study the joint effect of METH and HIV protease inhibitors on hepatic immune function.Materials and methods: Based on the differentially expressed genes obtained from RNA-seq of the liver from mouse model, the expression levels of CD48 and Macrophage Receptor with Collagenous Structure (MARCO) were examined using qRT-PCR and flow cytometry, and the expression and secretion of cytokines IL-1β, IL-6, IL-8, IL-10, IFN-γ, IFN-β, and TNF-α were determined using qRT-PCR and ELISA in THP-1-derived macrophages.Results: Our results indicated that compared with the control group, CD48 molecules were significantly down-regulated by METH-atazanavir co-treatment, and the expression level of CD48 decreased as METH concentration increases. MARCO molecules were increased, especially at larger doses of METH and atazanavir treatment. In addition, in the presence of METH-atazanavir, the expression and secretion of a series of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 increased while the expression and secretion of anti-inflammatory cytokine IL-10 decreased.Conclusion: These results demonstrated that METH and atazanavir had a combined impact on the liver immunity, suggesting that the co-treatment could enhance inflammatory response and suppress NK cell activation via CD48.
Collapse
Affiliation(s)
- Yanfei Li
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China.,Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Sangsang Li
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Yang Xia
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Xiangrong Li
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Tingjun Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|