1
|
Moreno-Castillo M, Guertin PA, Manjarrez E. Acute effects of L-DOPA/carbidopa/buspirone (Spinalon™) on rhythmic electrical activity of the lumbosacral spinal cord in cats. Biomed Pharmacother 2024; 181:117687. [PMID: 39541791 DOI: 10.1016/j.biopha.2024.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Discovered by Guertin and colleagues in 2004, Spinalon™ is a fixed-drug combination (L-DOPA, carbidopa, and buspirone) that can acutely induce temporary episodes of rhythmic locomotor-like activity in complete or near-complete spinal cord-injured (SCI) subjects. However, little is known about the mechanisms of action or the direct effects of Spinalon™ on neural elements of the central pattern generators (CPGs). Our study aims at characterizing the effects of Spinalon™ on electrical activity of the spinal cord in segmental areas known to contain key rhythmogenic elements of the CPGs (i.e., lumbosacral) for scratching and locomotion. We recorded spinal cord dorsum signals from decerebrate cats using a multielectrode array placed over the lumbosacral region. We found that a single intravenous injection of 100/25/7.5 mg/kg L-DOPA/carbidopa/buspirone (Spinalon™) specifically reduced the amplitude of electrical sinusoidal waves associated with fictive scratching and promoted the appearance of electrical sinusoidal-like waves occurring at frequencies compatible with fictive locomotion. These observations suggest a profound impact of Spinalon™ on the lumbosacral CPGs.
Collapse
Affiliation(s)
- Mayra Moreno-Castillo
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla, Pue CP 72570, México
| | - Pierre A Guertin
- Department of Psychiatry and Neurosciences, Medical School, Laval University, Quebec City CP G1V 0A6, Canada
| | - Elias Manjarrez
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla, Pue CP 72570, México.
| |
Collapse
|
2
|
Khsime I, Boulain M, Fettah A, Chagraoui A, Courtand G, De Deurwaerdère P, Juvin L, Barrière G. Limiting Monoamines Degradation Increases L-DOPA Pro-Locomotor Action in Newborn Rats. Int J Mol Sci 2023; 24:14747. [PMID: 37834195 PMCID: PMC10572489 DOI: 10.3390/ijms241914747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
L-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively. At this early post-natal stage, the capacity of the drugs to trigger locomotion was investigated by monitoring the air-stepping activity expressed by the animals suspended in a harness above the ground. We show that nialamide (100 mg/kg) or tolcapone (100 mg/kg), without effect on their own promotes maximal expression of air-stepping sequences in the presence of a sub-effective dose of L-DOPA (25 mg/kg). Tissue measurements of monoamines (dopamine, noradrenaline, serotonin and some of their metabolites) in the cervical and lumbar spinal cord confirmed the regional efficacy of each inhibitor toward their respective enzyme. Our experiments support the idea that the raise of monoamines boost L-DOPA's locomotor action. Considering that both inhibitors differently altered the spinal monoamines levels in response to L-DOPA, our data also suggest that maximal locomotor response can be reached with different monoamines environment.
Collapse
Affiliation(s)
- Inès Khsime
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Marie Boulain
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abderrahman Fettah
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, UNIROUEN, INSERM U1239, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), F-76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, F-76000 Rouen, France
| | - Gilles Courtand
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | | | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Grégory Barrière
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| |
Collapse
|
3
|
Boulain M, Yuan W, Oueghlani Z, Khsime I, Salvi V, Courtand G, Halgand C, Morin D, de Deurwaerdere P, Barrière G, Juvin L. L-DOPA and 5-HTP modulation of air-stepping in newborn rats. J Physiol 2021; 599:4455-4476. [PMID: 34411301 DOI: 10.1113/jp281983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping. 5-HTP counteracts the pro-locomotor action of L-DOPA. Less dopamine and serotonin are synthesized when L-DOPA and 5-HTP are administered as a cocktail. ABSTRACT The catecholamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is a well-established pharmacological agent for promoting locomotor action in vertebrates, including triggering air-stepping activities in the neonatal rat. Serotonin is also a well-known neuromodulator of the rodent spinal locomotor networks. Here, using kinematic analysis, we compared locomotor-related activities expressed by newborn rats in response to varying doses of L-DOPA and the serotonin precursor 5-hydroxytryptophan (5-HTP) administered separately or in combination. L-DOPA alone triggered episodes of air-stepping in a dose-dependent manner (25-100 mg/kg), notably determining the duration of locomotor episodes, but without affecting step cycle frequency or amplitude. In contrast, 5-HTP (25-150 mg/kg) was ineffective in instigating air-stepping, but altered episode durations of L-DOPA-induced air-stepping, and decreased locomotor cycle frequency. High performance liquid chromatography revealed that L-DOPA, which was undetectable in control conditions, accumulated in a dose-dependent manner in the lumbar spinal cord 30 min after its administration. This was paralleled by an increase in dopamine levels, whereas the spinal content of noradrenaline and serotonin remained unaffected. In the same way, the spinal levels of serotonin increased in parallel with the dose of 5-HTP without affecting the levels of dopamine and noradrenaline. When both precursors are administrated, they counteract each other for the production of serotonin and dopamine. Our data thus indicate for the first time that both L-DOPA and 5-HTP exert opposing neuromodulatory actions on air-stepping behaviour in the developing rat, and we speculate that competition for the production of dopamine and serotonin occurs when they are administered as a cocktail.
Collapse
Affiliation(s)
- Marie Boulain
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Zied Oueghlani
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Inès Khsime
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Vianney Salvi
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Gilles Courtand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Christophe Halgand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Didier Morin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | | | - Grégory Barrière
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Laurent Juvin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| |
Collapse
|
4
|
Swann-Thomsen HE, Viall DD, Brumley MR. Acute intrathecal administration of quipazine elicits air-stepping behavior. Behav Pharmacol 2021; 32:259-264. [PMID: 33595953 PMCID: PMC8119288 DOI: 10.1097/fbp.0000000000000608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Serotonin plays a pivotal role in the initiation and modulation of locomotor behavior in the intact animal, as well as following spinal cord injury. Quipazine, a serotonin 2 receptor agonist, has been used successfully to initiate and restore motor behavior in rodents. Although evidence suggests that the effects of quipazine are spinally mediated, it is unclear whether intrathecal (IT) quipazine administration alone is enough to activate locomotor-like activity or whether additional stimulation is needed. Thus, the current study examined the effects of IT administration of quipazine in postnatal day 1 rats in two separate experiments. In experiment 1, quipazine (0.1, 0.3, or 1.0 mg/kg) was dissolved in saline and administered via IT injection to the thoracolumbar cord. There was no significant effect of drug on hindlimb alternating stepping. In experiment 2, quipazine (0.3 or 1.0 mg/kg) was dissolved in a polysorbate 80-saline solution (Tween 80) and administered via IT injection. Polysorbate 80 was used to disrupt the blood-brain barrier to facilitate absorption of quipazine. The injection was followed by tail pinch 5 minutes post-injection. A significant increase in the percentage of hindlimb alternating steps was found in subjects treated with 0.3 mg/kg quipazine, suggesting that IT quipazine when combined with sensory stimulation to the spinal cord, facilitates locomotor-like behavior. These findings indicate that dissolving the drug in polysorbate 80 rather than saline may heighten the effects of IT quipazine. Collectively, this study provides clarification on the role of quipazine in evoking spinally-mediated locomotor behavior.
Collapse
|
5
|
Khalki L, Sadlaoud K, Lerond J, Coq JO, Brezun JM, Vinay L, Coulon P, Bras H. Changes in innervation of lumbar motoneurons and organization of premotor network following training of transected adult rats. Exp Neurol 2018; 299:1-14. [DOI: 10.1016/j.expneurol.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
|
6
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
7
|
Ren LQ, Wienecke J, Hultborn H, Zhang M. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury. J Neurotrauma 2016; 33:1150-60. [PMID: 26830512 DOI: 10.1089/neu.2015.4037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Li-Qun Ren
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Jacob Wienecke
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,3 Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen, Denmark
| | - Hans Hultborn
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,2 Laboratory of Spinal Injury and Rehabilitation, Chengde Medical University , Chengde, China
| | - Mengliang Zhang
- 1 Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, Denmark .,4 Neuronano Research Center, Department of Experimental Medical Sciences, Lund University , Lund, Sweden
| |
Collapse
|
8
|
Minassian K, Hofstoetter US. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci Ther 2016; 22:262-70. [PMID: 26890324 DOI: 10.1111/cns.12530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Severe spinal cord injury is a devastating condition, tearing apart long white matter tracts and causing paralysis and disability of body functions below the lesion. But caudal to most injuries, the majority of neurons forming the distributed propriospinal system, the localized gray matter spinal interneuronal circuitry, and spinal motoneuron populations are spared. Epidural spinal cord stimulation can gain access to this neural circuitry. This review focuses on the capability of the human lumbar spinal cord to generate stereotyped motor output underlying standing and stepping, as well as full weight-bearing standing and rhythmic muscle activation during assisted treadmill stepping in paralyzed individuals in response to spinal cord stimulation. By enhancing the excitability state of the spinal circuitry, the stimulation can have an enabling effect upon otherwise "silent" translesional volitional motor control. Strategies for achieving functional movement in patients with severe injuries based on minimal translesional intentional control, task-specific proprioceptive feedback, and next-generation spinal cord stimulation systems will be reviewed. The role of spinal cord stimulation can go well beyond the immediate generation of motor output. With recently developed training paradigms, it can become a major rehabilitation approach in spinal cord injury for augmenting and steering trans- and sublesional plasticity for lasting therapeutic benefits.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
9
|
Swann HE, Kempe RB, Van Orden AM, Brumley MR. Serotonergic activation of locomotor behavior and posture in one-day old rats. Behav Brain Res 2016; 302:104-14. [PMID: 26795091 DOI: 10.1016/j.bbr.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/18/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to determine what dose of quipazine, a serotonergic agonist, facilitates air-stepping and induces postural control and patterns of locomotion in newborn rats. Subjects in both experiments were 1-day-old rat pups. In Experiment 1, pups were restrained and tested for air-stepping in a 35-min test session. Immediately following a 5-min baseline, pups were treated with quipazine (1.0, 3.0, or 10.0 mg/kg) or saline (vehicle control), administered intraperitoneally in a 50 μL injection. Bilateral alternating stepping occurred most frequently following treatment with 10.0 mg/kg quipazine, however the percentage of alternating steps, interlimb phase, and step period were very similar between the 3.0 and 10.0 mg/kg doses. For interlimb phase, the forelimbs and hindlimbs maintained a near perfect anti-phase pattern of coordination, with step period averaging about 1s. In Experiment 2, pups were treated with 3.0 or 10.0 mg/kg quipazine or saline, and then were placed on a surface (open field, unrestrained). Both doses of quipazine resulted in developmentally advanced postural control and locomotor patterns, including head elevation, postural stances, pivoting, crawling, and a few instances of quadrupedal walking. The 3.0 mg/kg dose of quipazine was the most effective at evoking sustained locomotion. Between the 2 experiments, behavior exhibited by the rat pup varied based on testing environment, emphasizing the role that environment and sensory cues exert over motor behavior. Overall, quipazine administered at a dose of 3.0 mg/kg was highly effective at promoting alternating limb coordination and inducing locomotor activity in both testing environments.
Collapse
Affiliation(s)
- Hillary E Swann
- Idaho State University, Department of Psychology, Pocatello, ID, United States
| | - R Blaine Kempe
- Idaho State University, Department of Psychology, Pocatello, ID, United States
| | - Ashley M Van Orden
- Idaho State University, Department of Psychology, Pocatello, ID, United States
| | - Michele R Brumley
- Idaho State University, Department of Psychology, Pocatello, ID, United States.
| |
Collapse
|
10
|
Serotonergic transmission after spinal cord injury. J Neural Transm (Vienna) 2014; 122:279-95. [PMID: 24866695 DOI: 10.1007/s00702-014-1241-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/06/2014] [Indexed: 12/27/2022]
Abstract
Changes in descending serotonergic innervation of spinal neural activity have been implicated in symptoms of paralysis, spasticity, sensory disturbances and pain following spinal cord injury (SCI). Serotonergic neurons possess an enhanced ability to regenerate or sprout after many types of injury, including SCI. Current research suggests that serotonine (5-HT) release within the ventral horn of the spinal cord plays a critical role in motor function, and activation of 5-HT receptors mediates locomotor control. 5-HT originating from the brain stem inhibits sensory afferent transmission and associated spinal reflexes; by abolishing 5-HT innervation SCI leads to a disinhibition of sensory transmission. 5-HT denervation supersensitivity is one of the key mechanisms underlying the increased motoneuron excitability that occurs after SCI, and this hyperexcitability has been demonstrated to underlie the pathogenesis of spasticity after SCI. Moreover, emerging evidence implicates serotonergic descending facilitatory pathways from the brainstem to the spinal cord in the maintenance of pathologic pain. There are functional relevant connections between the descending serotonergic system from the rostral ventromedial medulla in the brainstem, the 5-HT receptors in the spinal dorsal horn, and the descending pain facilitation after tissue and nerve injury. This narrative review focussed on the most important studies that have investigated the above-mentioned effects of impaired 5-HT-transmission in humans after SCI. We also briefly discussed the promising therapeutical approaches with serotonergic drugs, monoclonal antibodies and intraspinal cell transplantation.
Collapse
|
11
|
Abstract
Foraging- and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor behavior and cognition and reveal an evolutionary progression toward increasing internal connections between prefrontal cortex and striatum in moving from amphibian to primate. The basal ganglia in higher vertebrates show the ability to transfer dopaminergic activity from unconditioned stimuli to conditioned stimuli. The evolutionary role of dopamine in the modulation of goal-directed behavior and cognition is further supported by pathologies of human goal-directed cognition, which have motor and cognitive dysfunction and organize themselves, with respect to dopaminergic activity, along the gradient described by ARS, from perseverative to unfocused. The evidence strongly supports the evolution of goal-directed cognition out of mechanisms initially in control of spatial foraging but, through increasing cortical connections, eventually used to forage for information.
Collapse
Affiliation(s)
- Thomas T Hills
- Department of Psychological and Brain Sciences, Indiana University
| |
Collapse
|
12
|
Ung RV, Rouleau P, Guertin PA. Functional and Physiological Effects of Treadmill Training Induced by Buspirone, Carbidopa, and L-DOPA in Clenbuterol-Treated Paraplegic Mice. Neurorehabil Neural Repair 2011; 26:385-94. [DOI: 10.1177/1545968311427042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Roth-Visal Ung
- Laval University Medical Center (CHUL-CHUQ), Québec City, Québec, Canada
| | - Pascal Rouleau
- Laval University Medical Center (CHUL-CHUQ), Québec City, Québec, Canada
| | - Pierre A. Guertin
- Laval University Medical Center (CHUL-CHUQ), Québec City, Québec, Canada
- Laval University, Québec City, Québec, Canada
| |
Collapse
|
13
|
Filli L, Zörner B, Weinmann O, Schwab ME. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. ACTA ACUST UNITED AC 2011; 134:2261-73. [PMID: 21752788 DOI: 10.1093/brain/awr167] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cervical incomplete spinal cord injuries often lead to severe and persistent impairments of sensorimotor functions and are clinically the most frequent type of spinal cord injury. Understanding the motor impairments and the possible functional recovery of upper and lower extremities is of great importance. Animal models investigating motor dysfunction following cervical spinal cord injury are rare. We analysed the differential spontaneous recovery of fore- and hindlimb locomotion by detailed kinematic analysis in adult rats with unilateral C4/C5 hemisection, a lesion that leads to the Brown-Séquard syndrome in humans. The results showed disproportionately better performance of hindlimb compared with forelimb locomotion; hindlimb locomotion showed substantial recovery, whereas the ipsilesional forelimb remained in a very poor functional state. Such a differential motor recovery pattern is also known to occur in monkeys and in humans after similar spinal cord lesions. On the lesioned side, cortico-, rubro-, vestibulo- and reticulospinal tracts and the important modulatory serotonergic, dopaminergic and noradrenergic fibre systems were interrupted by the lesion. In an attempt to facilitate locomotion, different monoaminergic agonists were injected intrathecally. Injections of specific serotonergic and noradrenergic agonists in the chronic phase after the spinal cord lesion revealed remarkable, although mostly functionally negative, modulations of particular parameters of hindlimb locomotion. In contrast, forelimb locomotion was mostly unresponsive to these agonists. These results, therefore, show fundamental differences between fore- and hindlimb spinal motor circuitries and their functional dependence on remaining descending inputs and exogenous spinal excitation. Understanding these differences may help to develop future therapeutic strategies to improve upper and lower limb function in patients with incomplete cervical spinal cord injuries.
Collapse
Affiliation(s)
- Linard Filli
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
14
|
Tysseling VM, Sahni V, Pashuck ET, Birch D, Hebert A, Czeisler C, Stupp SI, Kessler JA. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res 2011; 88:3161-70. [PMID: 20818775 DOI: 10.1002/jnr.22472] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Injection into the injured spinal cord of peptide amphiphile (PA) molecules that self-assemble and display the laminin epitope IKVAV at high density improved functional recovery after spinal cord injury (SCI) in two different species, rat and mouse, and in two different injury models, contusion and compression. The improvement required the IKVAV epitope and was not observed with the injection of an amphiphile displaying a nonbioactive sequence. To explore the mechanisms underlying these improvements, the number of serotonergic fibers in the lesioned spinal cord was compared in animals receiving the IKVAV-PA, a nonbioactive PA (PA control), or sham injection. Serotonergic fibers were distributed equally in all three groups rostral to the injury but showed a significantly higher density caudal to the injury site in the IKVAV PA-injected group. Furthermore, this difference was not present in the subacute phase following injury but appeared in the chronically injured cord. The IKVAV PA-injected groups also trended higher both in the total number neurons adjacent to the lesion and in the number of long propriospinal tract connections from the thoracic to the lumbar cord. IKVAV PA injection did not alter myelin thickness, total axon number caudal to the lesion, axon size distribution, or total axon area. Serotonin can promote stepping even in complete transection models, so the improved function produced by the IKVAV PA treatment may reflect the increased serotonergic innervation caudal to the lesion in addition to the previously demonstrated regeneration of motor and sensory axons through the lesion.
Collapse
Affiliation(s)
- Vicki M Tysseling
- Northwestern University's Feinberg School of Medicine, Department of Neurology, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Guertin PA, Ung RV, Rouleau P, Steuer I. Effects on Locomotion, Muscle, Bone, and Blood Induced by a Combination Therapy Eliciting Weight-Bearing Stepping in Nonassisted Spinal Cord–Transected Mice. Neurorehabil Neural Repair 2011; 25:234-242. [DOI: 10.1177/1545968310378753] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Background. The health benefits associated with physical activity–based rehabilitation in patients with no lower-extremity motor function after a spinal cord injury (SCI) is uncertain. Methods. The authors assessed signs of efficacy, safety, and utility associated with a novel pharmacological combination therapy to activate central pattern generator (CPG) activity and corresponding locomotor activity in complete thoracic Th9/10-transected mice. Results. Subcutaneous administration 4 times per week for 1 month of 1.5 mg/kg buspirone, 1.5 mg/kg apomorphine, 12.5 mg/kg benserazide, and 50 mg/kg L-DOPA induced episodes of weight-bearing stepping on a treadmill in nonassisted paraplegic mice for 45-minute sessions. Hindlimb muscle cross-sectional area and fiber area values as well as several blood cell constituent levels assessed at 30 days postinjury were positively affected by the combination therapy, as compared with controls. Episodes of locomotion remained effective on each treatment. Femoral bone mineral density loss was not prevented by triple therapy. Conclusion. Although translation of these findings needs further experimentation, similar pharmacological activation of the CPG offers a novel therapeutic target to provide some health benefits in motor-complete SCI patients.
Collapse
Affiliation(s)
- Pierre A. Guertin
- Laval University Medical Center, Québec City, QC, Canada
- Laval University, Québec City, QC, Canada
- Nordic Life Science Pipeline, Québec City, QC, Canada
| | - Roth-Visal Ung
- Laval University Medical Center, Québec City, QC, Canada
| | - Pascal Rouleau
- Laval University Medical Center, Québec City, QC, Canada
| | - Inge Steuer
- Laval University Medical Center, Québec City, QC, Canada
| |
Collapse
|
16
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα 1a or NEα 2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2011; 105:1835-49. [PMID: 21307324 DOI: 10.1152/jn.00342.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα(1A) and NEα(2B) receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10-40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα(1A) receptors. In contrast, NEα(2B) receptor immunoreactivity was observed in 70-90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα(2B) = 5-HT(2A) ≥ 5-HT(7) = 5-HT(1A) > NEα(1A). These results suggest that noradrenergic modulation of locomotion involves NEα(1A)/NEα(2B) receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
17
|
Guertin PA, Ung RV, Rouleau P. Oral administration of a tri-therapy for central pattern generator activation in paraplegic mice: proof-of-concept of efficacy. Biotechnol J 2010; 5:421-6. [PMID: 20349462 DOI: 10.1002/biot.200900278] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spinal cord injury (SCI) is a neurological condition, for which no cure exists, typically leading to an immediate and irreversible loss of sensory and voluntary motor functions accompanied by significant health problems. We conducted proof-of-concept experiments aimed at assessing efficacy upon oral administration of a novel combination therapy for central pattern generator (CPG) activation and corresponding locomotor movement generation in completely paraplegic animals. Co-administration orally (by gavage) of buspirone, levodopa and carbidopa was found to dose-dependently induce episodes of steady weight-bearing stepping in low-thoracic (Th9/10) spinal cord-transected (Tx) mice (with no other form of assistance or training). Robust hindlimb stepping with weight-bearing capabilities was induced with the tri-therapy but not with clinically relevant doses of these compounds administered separately. These results provide evidence suggesting that this drug combination may be ideally suited to constitute a first-in-class therapy (CPG activator) for locomotor activity induction in chronic SCI individuals, given that efficacy was shown using commercially available brain-permeable small molecules, already known as safe for the treatment of various neurological indications.
Collapse
Affiliation(s)
- Pierre A Guertin
- Laval University Medical Centre (CHUQ/CHUL), Quebec City, Canada.
| | | | | |
Collapse
|
18
|
Beare JE, Morehouse JR, DeVries WH, Enzmann GU, Burke DA, Magnuson DSK, Whittemore SR. Gait analysis in normal and spinal contused mice using the TreadScan system. J Neurotrauma 2010; 26:2045-56. [PMID: 19886808 DOI: 10.1089/neu.2009.0914] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Advances in spinal cord injury (SCI) research are dependent on quality animal models, which in turn rely on sensitive outcome measures able to detect functional differences in animals following injury. To date, most measurements of dysfunction following SCI rely either on the subjective rating of observers or the slow throughput of manual gait assessment. The present study compares the gait of normal and contusion-injured mice using the TreadScan system. TreadScan utilizes a transparent treadmill belt and a high-speed camera to capture the footprints of animals and automatically analyze gait characteristics. Adult female C57Bl/6 mice were introduced to the treadmill prior to receiving either a standardized mild, moderate, or sham contusion spinal cord injury. TreadScan gait analyses were performed weekly for 10 weeks and compared with scores on the Basso Mouse Scale (BMS). Results indicate that this software successfully differentiates sham animals from injured animals on a number of gait characteristics, including hindlimb swing time, stride length, toe spread, and track width. Differences were found between mild and moderate contusion injuries, indicating a high degree of sensitivity within the system. Rear track width, a measure of the animal's hindlimb base of support, correlated strongly both with spared white matter percentage and with terminal BMS. TreadScan allows for an objective and rapid behavioral assessment of locomotor function following mild-moderate contusive SCI, where the majority of mice still exhibit hindlimb weight support and plantar paw placement during stepping.
Collapse
Affiliation(s)
- Jason E Beare
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Takeoka A, Kubasak MD, Zhong H, Kaplan J, Roy RR, Phelps PE. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia. Exp Neurol 2009; 222:59-69. [PMID: 20025875 DOI: 10.1016/j.expneurol.2009.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/23/2009] [Accepted: 12/05/2009] [Indexed: 02/06/2023]
Abstract
Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons.
Collapse
Affiliation(s)
- Aya Takeoka
- Department of Physiological Science, UCLA, Box 951606, Los Angeles, CA 90095-1606, USA
| | | | | | | | | | | |
Collapse
|
20
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2009; 102:1560-76. [PMID: 19571190 DOI: 10.1152/jn.91179.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT(7)/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80-100%) of locomotor cells, which were most abundant in lumbar segments L3-7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7-L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5-L7 segments (>90%) and decreased rostrally (to approximately 50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60-80 and 35-80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT(7)/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
21
|
Fong AJ, Roy RR, Ichiyama RM, Lavrov I, Courtine G, Gerasimenko Y, Tai Y, Burdick J, Edgerton VR. Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face. PROGRESS IN BRAIN RESEARCH 2009; 175:393-418. [PMID: 19660669 PMCID: PMC2904312 DOI: 10.1016/s0079-6123(09)17526-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past 20 years, tremendous advances have been made in the field of spinal cord injury research. Yet, consumed with individual pieces of the puzzle, we have failed as a community to grasp the magnitude of the sum of our findings. Our current knowledge should allow us to improve the lives of patients suffering from spinal cord injury. Advances in multiple areas have provided tools for pursuing effective combination of strategies for recovering stepping and standing after a severe spinal cord injury. Muscle physiology research has provided insight into how to maintain functional muscle properties after a spinal cord injury. Understanding the role of the spinal networks in processing sensory information that is important for the generation of motor functions has focused research on developing treatments that sharpen the sensitivity of the locomotor circuitry and that carefully manage the presentation of proprioceptive and cutaneous stimuli to favor recovery. Pharmacological facilitation or inhibition of neurotransmitter systems, spinal cord stimulation, and rehabilitative motor training, which all function by modulating the physiological state of the spinal circuitry, have emerged as promising approaches. Early technological developments, such as robotic training systems and high-density electrode arrays for stimulating the spinal cord, can significantly enhance the precision and minimize the invasiveness of treatment after an injury. Strategies that seek out the complementary effects of combination treatments and that efficiently integrate relevant technical advances in bioengineering represent an untapped potential and are likely to have an immediate impact. Herein, we review key findings in each of these areas of research and present a unified vision for moving forward. Much work remains, but we already have the capability, and more importantly, the responsibility, to help spinal cord injury patients now.
Collapse
Affiliation(s)
- Andy J. Fong
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Roland R. Roy
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Igor Lavrov
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yury Gerasimenko
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - Y.C. Tai
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering, Mechanical Engineering Options, California Institute of Technology, Pasadena, CA, USA
| | - Joel Burdick
- Division of Engineering, Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering, Mechanical Engineering Options, California Institute of Technology, Pasadena, CA, USA
| | - V. Reggie Edgerton
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Plotnik M, Hausdorff JM. The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson's disease. Mov Disord 2008; 23 Suppl 2:S444-50. [PMID: 18668626 DOI: 10.1002/mds.21984] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Freezing of gait (FOG) is a disabling episodic gait disturbance that is common among patients with Parkinson's disease (PD). In this review, we describe a new approach for understanding the mechanisms underlying this puzzling phenomenon. We propose that impairments in the ongoing regulation of gait, even during periods in which freezing is not present, set the stage for the occurrence of a FOG episode. More specifically, three "interictal" walking attributes are associated with FOG: gait rhythmicity, gait asymmetry, and bilateral dyscoordination of left-right stepping. Gait is less rhythmic, more asymmetric, and less coordinated among PD patients with FOG, when compared with PD patients without FOG. We describe the relationship between these changes and other features of patients with FOG and discuss whether these gait changes may predispose to FOG or if they also cause FOG, perhaps, when they are altered beyond a certain threshold or exacerbated by another trigger.
Collapse
Affiliation(s)
- Meir Plotnik
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.
| | | |
Collapse
|
23
|
Ung RV, Landry ES, Rouleau P, Lapointe NP, Rouillard C, Guertin PA. Role of spinal 5-HT2receptor subtypes in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection. Eur J Neurosci 2008; 28:2231-42. [DOI: 10.1111/j.1460-9568.2008.06508.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Guertin PA. A technological platform to optimize combinatorial treatment design and discovery for chronic spinal cord injury. J Neurosci Res 2008; 86:3039-51. [DOI: 10.1002/jnr.21761] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Abstract
Recent findings in animal models of paraplegia suggest that specific nonbenzodiazepine anxiolytics may temporarily restore locomotor functions after spinal cord injury (SCI). Experiments using in vitro models have revealed, indeed, that selective serotonin receptor (5-HTR) ligands such as 5-HTR(1A) agonists, known as relatively safe anxiolytics, can acutely elicit episodes of rhythmic neuronal activity refered to as fictive locomotion in isolated spinal cord preparations. Along the same line, in vivo studies have recently shown that this subclass of anxiolytics can induce, shortly after systemic administration (eg, orally or subcutaneously), some locomotor-like hindlimb movements during 45-60 minutes in completely spinal cord-transected (Tx) rodents. Using 'knock-out' mice (eg, 5-HTR(7)-/-) and selective antagonists, it has been clearly established that both 5-HTR(1A) and 5-HTR(7) were critically involved in mediating the pro-locomotor effects induced by 8-OH-DPAT (typically referred to as a 5-HTR(1A) agonist) in Tx animals. Taken together, these in vitro and in vivo data strongly support the idea that 5-HTR(1A) agonists may eventually become constitutive elements of a novel first-in-class combinatorial treatment aimed at periodically inducing short episodes of treadmill stepping in SCI patients.
Collapse
Affiliation(s)
- Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL), 2705 Laurier Blvd, Neuroscience Unit, RC-9800, Quebec City, Quebec, Canada.
| |
Collapse
|
26
|
Lapointe NP, Guertin PA. Synergistic Effects of D1/5 and 5-HT1A/7 Receptor Agonists on Locomotor Movement Induction in Complete Spinal Cord–Transected Mice. J Neurophysiol 2008; 100:160-8. [DOI: 10.1152/jn.90339.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines are well known to modulate locomotion in several vertebrate species. Coapplication of dopamine (DA) and serotonin (5-HT) has also been shown to potently induce fictive locomotor rhythms in isolated spinal cord preparations. However, a synergistic contribution of these monoamines to locomotor rhythmogenesis in vivo has never been examined. Here, we characterized the effects induced by selective DA and 5-HT receptor agonists on hindlimb movement induction in completely spinal cord transected (adult) mice. Administration of the lowest effective doses of SKF-81297 (D1/5 agonist, 1–2 mg/kg, ip) or 8-OH-DPAT (5-HT1A/7 agonist, 0.5 mg/kg, ip) acutely elicited some locomotor-like movements (LM) (5.85 ± 1.22 and 3.67 ± 1.44 LM/min, respectively). Coadministration of the same doses of SKF-81297 and 8-OH-DPAT led to a significant increase (7- to 10-fold) of LM (37.70 ± 5.01 LM/min). Weight-bearing and plantar foot placement capabilities were also found with the combination treatment only (i.e., with no assistance or other forms of stimulation). These results clearly show that D1/5 and 5-HT1A/7 receptor agonists can synergistically activate spinal locomotor networks and thus generate powerful basic stepping movements in complete paraplegic animals. Although previous work from this laboratory has reported the partial rhythmogenic potential of monoamines in vivo, the present study shows that drug combinations such as SKF-81297 and 8-OH-DPAT can elicit weight-bearing stepping.
Collapse
|
27
|
Preliminary evidence of safety following administration of L-DOPA and buspirone in an incomplete monoplegic patient. Spinal Cord 2008; 47:91-2. [PMID: 18542088 DOI: 10.1038/sc.2008.70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Case report. OBJECTIVES To report a case where a monoplegic patient received L-DOPA and/or buspirone. These compounds, normally used in the treatment of Parkinson's disease and anxiety respectively, were recently shown to induce spinal locomotor network activity and reflex stepping-like movements in animal models of spinal cord injury (SCI). However, the safety of these drugs as potential treatments for Central Pattern Generator (CPG) activation in paralyzed individuals remain unclear. SETTING St-Jean-Chrysostome, Quebec, Canada. METHOD The acute effects induced by these compounds were qualitatively assessed by the patient, a 38-year-old man who underwent surgery 17 years ago to remove an intracavernous angioma located at the mid-thoracic level (T5-T6) of the spinal cord. RESULTS Self-administration every 2 days of L-DOPA (200, 400 and 600 mg, p.o.) and buspirone (5, 10 and 15 mg, p.o.) either separately or combined led to no atypical side effects (that is, occasional sleepiness, nervousness, insomnia or mild headaches). No movement was induced ipsilaterally although some sensations referred to by the patient as an increased blood flow in the lower back and upper leg regions were reported shortly after administration of the combined treatment. CONCLUSION The results show no significant side effects following acute administration of L-DOPA and/or buspirone. This constitutes the first report providing preliminary evidence of safety following administration of these drugs in incompletely paralyzed individuals. The sensations of increased blood flow ipsilaterally with the combined treatment may also suggest that the dose regimen was not optimal or sub-threshold for inducing detectable CPG-mediated leg movements.
Collapse
|
28
|
Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of walking and freezing of gait in Parkinson’s disease. Eur J Neurosci 2008; 27:1999-2006. [DOI: 10.1111/j.1460-9568.2008.06167.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Picard S, Lapointe NP, Brown JP, Guertin PA. Histomorphometric and Densitometric Changes in the Femora of Spinal Cord Transected Mice. Anat Rec (Hoboken) 2008; 291:303-7. [DOI: 10.1002/ar.20645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJK, Burdick JW, Roy RR. Training locomotor networks. ACTA ACUST UNITED AC 2007; 57:241-54. [PMID: 18022244 DOI: 10.1016/j.brainresrev.2007.09.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 12/16/2022]
Abstract
For a complete adult spinal rat to regain some weight-bearing stepping capability, it appears that a sequence of specific proprioceptive inputs that are similar, but not identical, from step to step must be generated over repetitive step cycles. Furthermore, these cycles must include the activation of specific neural circuits that are intrinsic to the lumbosacral spinal cord segments. For these sensorimotor pathways to be effective in generating stepping, the spinal circuitry must be modulated to an appropriate excitability level. This level of modulation is sustained from supraspinal input in intact, but not spinal, rats. In a series of experiments with complete spinal rats, we have shown that an appropriate level of excitability of the spinal circuitry can be achieved using widely different means. For example, this modulation level can be acquired pharmacologically, via epidural electrical stimulation over specific lumbosacral spinal cord segments, and/or by use-dependent mechanisms such as step or stand training. Evidence as to how each of these treatments can "tune" the spinal circuitry to a "physiological state" that enables it to respond appropriately to proprioceptive input will be presented. We have found that each of these interventions can enable the proprioceptive input to actually control extensive details that define the dynamics of stepping over a range of speeds, loads, and directions. A series of experiments will be described that illustrate sensory control of stepping and standing after a spinal cord injury and the necessity for the "physiological state" of the spinal circuitry to be modulated within a critical window of excitability for this control to be manifested. The present findings have important consequences not only for our understanding of how the motor pattern for stepping is formed, but also for the design of rehabilitation intervention to restore lumbosacral circuit function in humans following a spinal cord injury.
Collapse
Affiliation(s)
- V Reggie Edgerton
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Engesser-Cesar C, Ichiyama RM, Nefas AL, Hill MA, Edgerton VR, Cotman CW, Anderson AJ. Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fiber growth. Eur J Neurosci 2007; 25:1931-9. [PMID: 17439482 DOI: 10.1111/j.1460-9568.2007.05469.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exercise, through manual step training, robotic step training or voluntary wheel running, is emerging as a promising therapy after spinal cord injury (SCI). Animal models provide a tool to investigate the mechanisms by which physical activity influences recovery from SCI. In the present study, we extend previous experiments showing improved recovery after SCI with both pre- and post-injury running in a flat-surface running wheel and investigate mechanisms of recovery. We tested a clinically relevant model using post-injury wheel running, in which we provided mice with access to wheels either 3 days or 7 days/week. Open field behavior, observed for 15 weeks following moderate T9 contusion injury, showed a significant linear increase in locomotor improvements across groups, sedentary, 3-day runners and 7-day runners. Kinematic analysis of treadmill walking revealed that both wheel-running groups, 3 and 7 days/week, improved stepping ability compared with sedentary controls. Stereological quantification of neuron number in the injured segment of the spinal cord revealed no differences between the groups. However, stereological quantification of serotonin immunostaining using isotropic virtual planes showed increases in serotonin fiber length caudal to the lesion in the running groups. These observations suggest that improvement in function may be related to changes in serotonin fibers immediately caudal to the injury epicenter.
Collapse
|
32
|
Rossignol S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 2006; 361:1647-71. [PMID: 16939980 PMCID: PMC1664667 DOI: 10.1098/rstb.2006.1889] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review discusses some aspects of plasticity of connections after spinal injury in adult animal models as a basis for functional recovery of locomotion. After reviewing some pitfalls that must be avoided when claiming functional recovery and the importance of a conceptual framework for the control of locomotion, locomotor recovery after spinal lesions, mainly in cats, is summarized. It is concluded that recovery is partly due to plastic changes within the existing spinal locomotor networks. Locomotor training appears to change the excitability of simple reflex pathways as well as more complex circuitry. The spinal cord possesses an intrinsic capacity to adapt to lesions of central tracts or peripheral nerves but, as a rule, adaptation to lesions entails changes at both spinal and supraspinal levels. A brief summary of the spinal capacity of the rat, mouse and human to express spinal locomotor patterns is given, indicating that the concepts derived mainly from work in the cat extend to other adult mammals. It is hoped that some of the issues presented will help to evaluate how plasticity of existing connections may combine with and potentiate treatments designed to promote regeneration to optimize remaining motor functions.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
33
|
Lapointe NP, Ung RV, Bergeron M, Cote M, Guertin PA. Strain-dependent recovery of spontaneous hindlimb movement in spinal cord transected mice (CD1, C57BL/6, BALB/c). Behav Neurosci 2006; 120:826-34. [PMID: 16893288 DOI: 10.1037/0735-7044.120.4.826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reorganization and plasticity after spinal cord injury have been recently shown to take place in sublesional neuronal networks, but the possibility of strain-dependent changes at that level has never been explored. The authors studied the spontaneous return of hindlimb movement in low-thoracic spinal cord transected (Tx) mice from 3 commonly used strains. Without intervention, most CD1, C57BL/6, and BALB/c mice displayed some hindlimb movement recovery after Tx. Although all assessment methods unanimously reported that CD1 displayed higher recovery levels than did the C57BL/6 and BALB/c, higher scores were generally found with the Antri-Orsal-Barthe (M. Antri, D. Orsal, & J. Y. Barthe, 2002) and the Average Combined Score (P. A. Guertin, 2005a) methods. Such spontaneous recovery in low-thoracic Tx mice is likely the result of neuronal plasticity at the lumbosacral spinal cord level, suggesting that these sublesional changes are strain dependent.
Collapse
Affiliation(s)
- Nicolas P Lapointe
- Neuroscience Unit, Laval University Medical Center, Quebec City, PQ, Canada
| | | | | | | | | |
Collapse
|
34
|
Ung RV, Lapointe NP, Tremblay C, Larouche A, Guertin PA. Spontaneous recovery of hindlimb movement in completely spinal cord transected mice: a comparison of assessment methods and conditions. Spinal Cord 2006; 45:367-79. [PMID: 16955071 DOI: 10.1038/sj.sc.3101970] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
STUDY DESIGN To compare results obtained with a variety of locomotor rating scales in Th9/10 spinal cord transected (Tx) mice. OBJECTIVES To assess spontaneous recovery with a variety of rating scales to find the most sensitive methods for assessing recovery levels in Tx mice and differences associated with gender and condition. SETTING Laval University Medical Center, Neuroscience Unit & Laval University, Department of Anatomy and Physiology, Quebec City, Quebec, Canada. METHODS Scales including the Basso, Beattie and Bresnahan (BBB), the Basso Mouse Score (BMS), the Antri, Orsal and Barthe (AOB), the Motor Function Score (MFS) and the Averaged Combined Score (ACOS) were used to assess, in open-field and treadmill conditions, spontaneous locomotor recovery in male and female Tx mice. RESULTS The ACOS scale revealed a progressive increase of spontaneous recovery during 5-weeks post-Tx. The other methods detected a progressive increase for the first 2-3 weeks post-Tx without any significant progress in weeks 4 and 5. Generally, scores obtained with each method were nonsignificantly different between males and females or between open-field and treadmill conditions. CONCLUSION These results further confirm the existence of a limited but significant increase of locomotor function recovery, occurring without intervention, in Tx animals. Although each method could detect small levels of recovery, the ACOS method was discriminative enough to detect progressive changes up to 5 weeks post-Tx. In conclusion, the ACOS rating scale was the most discriminative method for assessing the spontaneous return of hindlimb movements found in Tx mice, both in open-field and treadmill conditions.
Collapse
Affiliation(s)
- R V Ung
- Neuroscience Unit, Laval University Medical Center (CHUL--CHUQ), Laval University, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Landry ES, Lapointe NP, Rouillard C, Levesque D, Hedlund PB, Guertin PA. Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur J Neurosci 2006; 24:535-46. [PMID: 16836640 DOI: 10.1111/j.1460-9568.2006.04917.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Growing evidence from in vitro studies suggests that spinal serotonin (5-HT) receptor subtypes 5-HTR(1A) and 5-HTR(7) are associated with an induction of central pattern generator activity. However, the possibility of a specific role for these receptor subtypes in locomotor rhythmogenesis in vivo remains unclear. Here, we studied the effects of a single dose (1 mg/kg, i.p.) of 8-hydroxy-2-(di-N-propylamino)-tetralin (8-OH-DPAT), a potent and selective 5-HTR(1A/7) agonist, in mice spinal cord transected at the low-thoracic level (Th9/10). The results show that 8-OH-DPAT acutely induced, within 15 min, hindlimb movements that share some characteristics with normal locomotion. Paraplegic mice pretreated with the selective 5-HTR(1A) antagonists, WAY100,135 or WAY100,635, displayed significantly less 8-OH-DPAT-induced movement. A similar reduction of 8-OH-DPAT-induced movements was found in animals pretreated with SB269970, a selective 5-HTR(7) antagonist. Moreover, a near complete blockade of 8-OH-DPAT-induced movement was obtained in wild-type mice pretreated with 5-HTR(1A) and 5-HTR(7) antagonists, and in 5-HTR(7)-/- mice pretreated with 5-HTR(1A) antagonists. Overall, these results clearly demonstrate that 8-OH-DPAT potently induces locomotor-like movement in the previously paralysed hindlimbs of low-thoracic-transected mice. The results, with selective antagonists and knockout animals, provide compelling evidence of a specific contribution of both receptor subtypes to spinal locomotor rhythmogenesis in vivo.
Collapse
|
36
|
Lapointe NP, Guertin PA. La souris paraplégique : Un modèle offrant de nouvelles perspectives de recherche sur les lésions de la moëlle épinière. Med Sci (Paris) 2006; 22:102-3. [PMID: 16457740 DOI: 10.1051/medsci/2006222102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Guertin PA, Steuer I. Ionotropic 5-HT3 Receptor Agonist-Induced Motor Responses in the Hindlimbs of Paraplegic Mice. J Neurophysiol 2005; 94:3397-405. [PMID: 16049141 DOI: 10.1152/jn.00587.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Centrally expressed 5-HT3 receptors (5-HTR3) are well known for their role in wakefulness, cognition, and nociception. However, clear evidence of their participation in motor control is still lacking despite specific 5-HTR3 expression in hindlimb motor areas of the spinal cord (i.e., lumbar laminae VII-IX). Here, we studied the acute effects of 4-amino-(6-chloro-2-pyridyl)-1-piperidine hydrochloride (SR 57227A), a potent and selective 5-HTR3 agonist, on hindlimb movement generation in complete paraplegic mice. The induced movements were assessed in open-field, air-stepping, and treadmill conditions using a combination of qualitative and quantitative methods. The results revealed that SR 57227A (1–4 mg/kg ip) produced hindlimb movements corresponding to scores ranging from 1 to 5 on the motor scales of Basso, Beattie, and Bresnahan and of Antri, Orsal, and Barthe. Additional analyses revealed that one-third of the movements displayed on a treadmill were “locomotor-like” (i.e., bilateral alternation), whereas only nonlocomotor movements were observed in the other testing conditions suggesting a task-dependent contribution of peripheral afferent inputs to these effects. Locomotor-like movements could also be induced in open field and air stepping if SR 57227A was combined with subthreshold doses of 5-carboxytryptamine (5-HT1A/7 receptor agonist), suggesting synergistic actions of these drugs on central neurons. These results demonstrate that 5-HTR3 activation can induce motor activity and, under some conditions, rhythmic locomotor-like movements in the hindlimbs of paraplegic mice providing evidence of an unsuspected role for this receptor subtype in hindlimb motor control.
Collapse
Affiliation(s)
- Pierre A Guertin
- Department of Anatomy and Physiology, Laval University and Laval University Medical Center, Quebec City, Quebec, Canada .
| | | |
Collapse
|
38
|
Landry ES, Guertin PA. Differential effects of 5-HT1 and 5-HT2 receptor agonists on hindlimb movements in paraplegic mice. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:1053-60. [PMID: 15380867 DOI: 10.1016/j.pnpbp.2004.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 11/17/2022]
Abstract
The effects induced by serotonergic (5-HT) agonists of the 5-HT1 and 5-HT2 subclasses were examined on hindlimb movement generation in adult mice completely spinal cord transected at the low thoracic level. One week postspinalization, intraperitoneal injection (0.5-10 mg/kg) of meta-chlorophenylpiperazine (m-CPP; 5-HT(2B/2C) agonist) or trifluoromethylpiperazine (TFMPP; 5-HT(1B) agonist) failed to induce locomotor-like movements. However, dose-dependent nonlocomotor movements were induced in air-stepping condition or on a motor-driven treadmill. In contrast, hindlimb locomotor-like movements were found after the injection of quipazine (5-HT(2A/2C) agonist; 1-2 mg/kg). Combined with L-DOPA (50 mg/kg, i.p.), low doses of quipazine but not of m-CPP and TFMPP produced locomotor-like and nonlocomotor movements in air-stepping condition or on the treadmill. Subsequent administration of m-CPP or TFMPP significantly reduced and often completely abolished the hindlimb movements induced by quipazine and L-DOPA. Altogether, these results demonstrate that 5-HT(2A/2C) receptor agonists promote locomotion while 5-HT(1B) and 5-HT(2B/2C) receptor agonists interfere with locomotor genesis in the hindlimbs of complete paraplegic mice. These results suggest that only subsets of spinal 5-HT receptors are specific to locomotor rhythmogenesis and should be activated to successfully induce stepping movements after spinal cord injury.
Collapse
Affiliation(s)
- Eric S Landry
- Department of Anatomy and Physiology, Laval University, Research Centre of the Laval University Research Hospital (CRCHUL-CHUQ), 2705 Bld Laurier, RC-9800, Quebec City, Quebec, G1V4G2, Canada
| | | |
Collapse
|