1
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
2
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
3
|
Schmitz J, Fraenz C, Schlüter C, Friedrich P, Kumsta R, Moser D, Güntürkün O, Genç E, Ocklenburg S. Schizotypy and altered hemispheric asymmetries: The role of cilia genes. Psychiatry Res Neuroimaging 2019; 294:110991. [PMID: 31683112 DOI: 10.1016/j.pscychresns.2019.110991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022]
Abstract
Schizophrenia patients have a higher probability of altered structural and functional differences between the left and right hemisphere. Schizotypy as its nonclinical manifestation has been related to a higher incidence of non-right-handedness and atypical right-hemispheric language dominance. It has been suggested that genes involved in cilia function might link brain asymmetry and neurodevelopmental disorders. We assessed DNA methylation in the promoter regions of seven candidate genes involved in cilia function and psychiatric disorders from buccal cells and investigated their association with schizotypy and language lateralization in 60 healthy adults. Moreover, we determined microstructural properties of the planum temporale in a subsample of 52 subjects using neurite orientation dispersion and density imaging (NODDI). We found a significant association between schizotypy and DNA methylation in the AHI1 promoter region. Moreover, AHI1 DNA methylation significantly predicted language lateralization and asymmetry in estimated planum temporale neurite density. Finally, stronger leftward asymmetry in estimated neurite density was associated with a more pronounced right ear advantage (left hemisphere dominance) in the forced-right condition of the dichotic listening task, measuring attentional modulation of language lateralization. Our results are in line with a shared molecular basis of schizotypy and functional hemispheric asymmetries that is based on cilia function.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany.
| | - Christoph Fraenz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Caroline Schlüter
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory (BCBLab), Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle (GIN), Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Erhan Genç
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
4
|
Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system. Sci Rep 2019; 9:1528. [PMID: 30728412 PMCID: PMC6365532 DOI: 10.1038/s41598-018-37990-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Genome editing technology greatly facilitates the genetic modification of various cells and animals. The common marmoset (Callithrix jacchus), a small non-human primate which exhibits high reproductive efficiency, is a widely used animal model in biomedical research. Developing genome editing techniques in the common marmoset will further enhance its utility. Here, we report the successful establishment of a knock-in (KI) method for marmoset embryonic stem cells (ESCs), which is based on the CRISPR-Cas9 system. The use of CRISPR-Cas9, mediated by homologous recombination (HR), enhanced the KI efficiency in marmoset ESCs. Furthermore, we succeeded in performing KI in early-stage marmoset embryos. In the course of the experiments, we found that HR in the marmoset ESCs is innately highly efficient. This suggested that the marmoset possesses a repair mechanism for DNA double-strand breaks. The current study will facilitate the generation of genetically modified marmosets and gene function analysis in the marmoset.
Collapse
|
5
|
Folsom TD, Higgins L, Markowski TW, Griffin TJ, Fatemi SH. Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia. Synapse 2018; 73:e22069. [PMID: 30176067 DOI: 10.1002/syn.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.
Collapse
Affiliation(s)
- Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
6
|
Abstract
In this paper we describe an open-access collection of multimodal neuroimaging data in schizophrenia for release to the community. Data were acquired from approximately 100 patients with schizophrenia and 100 age-matched controls during rest as well as several task activation paradigms targeting a hierarchy of cognitive constructs. Neuroimaging data include structural MRI, functional MRI, diffusion MRI, MR spectroscopic imaging, and magnetoencephalography. For three of the hypothesis-driven projects, task activation paradigms were acquired on subsets of ~200 volunteers which examined a range of sensory and cognitive processes (e.g., auditory sensory gating, auditory/visual multisensory integration, visual transverse patterning). Neuropsychological data were also acquired and genetic material via saliva samples were collected from most of the participants and have been typed for both genome-wide polymorphism data as well as genome-wide methylation data. Some results are also presented from the individual studies as well as from our data-driven multimodal analyses (e.g., multimodal examinations of network structure and network dynamics and multitask fMRI data analysis across projects). All data will be released through the Mind Research Network's collaborative informatics and neuroimaging suite (COINS).
Collapse
|
7
|
Ocklenburg S, Gerding WM, Raane M, Arning L, Genç E, Epplen JT, Güntürkün O, Beste C. PLP1 Gene Variation Modulates Leftward and Rightward Functional Hemispheric Asymmetries. Mol Neurobiol 2018; 55:7691-7700. [PMID: 29435918 DOI: 10.1007/s12035-018-0941-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/28/2018] [Indexed: 01/03/2023]
Abstract
Molecular neurobiological factors determining corpus callosum physiology and anatomy have been suggested to be one of the major factors determining functional hemispheric asymmetries. Recently, it was shown that allelic variations in two myelin-related genes, the proteolipid protein 1 gene PLP1 and the contactin 1 gene CNTN1, are associated with differences in interhemispheric integration. Here, we investigated whether three single nucleotide polymorphisms that were associated with interhemispheric integration via the corpus callosum in a previous study also are relevant for functional hemispheric asymmetries. To this end, we tested more than 900 healthy adults with the forced attention dichotic listening task, a paradigm to assess language lateralization and its modulation by cognitive control processes. Moreover, we used the line bisection task, a paradigm to assess functional hemispheric asymmetries in spatial attention. We found that a polymorphism in PLP1, but not CNTN1, was associated with performance differences in both tasks. Both functional hemispheric asymmetries and their modulation by cognitive control processes were affected. These findings suggest that both left and right hemisphere dominant cognitive functions can be modulated by allelic variation in genes affecting corpus callosum structure. Moreover, higher order cognitive processes may be relevant parameters when investigating the molecular basis of hemispheric asymmetries.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany.
| | - Wanda M Gerding
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Maximilian Raane
- Faculty of Health, ZBAF, University of Witten/Herdecke, Witten, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
| | - Erhan Genç
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.,Faculty of Health, ZBAF, University of Witten/Herdecke, Witten, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,Experimental Neurobiology, National Institute of Mental Health, Topolova 748, 25067, Klecany, Czech Republic
| |
Collapse
|
8
|
Abstract
The etiology and pathophysiology of schizophrenia and related mental disorders such as bipolar disorder and major depression remain largely unclear. Recent advances in mRNA profiling techniques made it possible to perform genome-wide gene expression analysis in a hypothesis-free manner. It was thought that this large-scale data mining approach would reveal unknown molecular cascades involved in mental disorders. Contrary to this initial expectation, however, DNA microarray results in psychiatric fields have been notoriously discordant. Here the authors review the findings of DNA microarray analysis, focusing on systematic gene expression changes in schizophrenia, as well as alterations in the expression of specific genes, that have been reported and replicated. The authors also address the probable causes for the discordance among studies, possible ways to solve the problem, and their preferred approach for data interpretation.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Saitama, Japan.
| | | |
Collapse
|
9
|
Wang C, Aleksic B, Ozaki N. Glia-related genes and their contribution to schizophrenia. Psychiatry Clin Neurosci 2015; 69:448-61. [PMID: 25759284 DOI: 10.1111/pcn.12290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2015] [Indexed: 12/24/2022]
Abstract
Schizophrenia, a debilitating disease with 1% prevalence in the general population, is characterized by major neuropsychiatric symptoms, including delusions, hallucinations, and deficits in emotional and social behavior. Previous studies have directed their investigations on the mechanism of schizophrenia towards neuronal dysfunction and have defined schizophrenia as a 'neuron-centric' disorder. However, along with the development of genetics and systematic biology approaches in recent years, the crucial role of glial cells in the brain has also been shown to contribute to the etiopathology of schizophrenia. Here, we summarize comprehensive data that support the involvement of glial cells (including oligodendrocytes, astrocytes, and microglial cells) in schizophrenia and list several acknowledged glia-related genes or molecules associated with schizophrenia. Instead of purely an abnormality of neurons in schizophrenia, an additional 'glial perspective' provides us a novel and promising insight into the causal mechanisms and treatment for this disease.
Collapse
Affiliation(s)
- Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Mehta SM, Banerjee SM, Chowdhary AS. Postgenomics biomarkers for rabies—the next decade of proteomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:67-79. [PMID: 25611201 DOI: 10.1089/omi.2014.0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies is one of the oldest diseases known to mankind. The pathogenic mechanisms by which rabies virus infection leads to development of neurological disease and death are still poorly understood. Analysis of rabies-infected proteomes may help identify novel biomarkers for antemortem diagnosis of the disease and target molecules for therapeutic intervention. This article offers a literature synthesis and critique of the differentially expressed proteins that have been previously reported from various in vitro/in vivo model systems and naturally infected clinical specimens. The emerging data collectively indicate that, in addition to the obvious alterations in proteins involved in synapse and neurotransmission, a majority of cytoskeletal proteins are relevant as well, providing evidence of neuronal degeneration. An interesting observation is that certain molecules, such as KPNA4, could be potential diagnostic markers for rabies. Importantly, proteomic studies with body fluids such as cerebrospinal fluid provide newer insights into antemortem diagnosis. In order to develop a complete integrative biology picture, it is essential to analyze the entire CNS (region-wise) and in particular, the brain. We suggest the use of laboratory animal models over cell culture systems using a combinatorial proteomics approach, as the former is a closer match to the actual host response. While most studies have focused on the terminal stages of the disease in mice, a time-series analysis could provide deeper insights for therapy. Postgenomics technologies such as proteomics warrant more extensive applications in rabies and similar diseases impacting public health around the world.
Collapse
Affiliation(s)
- Shraddha M Mehta
- Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Parel, Mumbai, India
| | | | | |
Collapse
|
11
|
Chen XS, Huang N, Michael N, Xiao L. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells. Front Cell Neurosci 2015; 9:451. [PMID: 26696822 PMCID: PMC4667081 DOI: 10.3389/fncel.2015.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.
Collapse
Affiliation(s)
- Xing-Shu Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Namaka Michael
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
- *Correspondence: Lan Xiao
| |
Collapse
|
12
|
Roussos P, Haroutunian V. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 2014; 8:5. [PMID: 24478629 PMCID: PMC3896818 DOI: 10.3389/fncel.2014.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022] Open
Abstract
Given that the genetic risk for schizophrenia is highly polygenic and the effect sizes, even for rare or de novo events, are modest at best, it has been suggested that multiple biological pathways are likely to be involved in the etiopathogenesis of the disease. Most efforts in understanding the cellular basis of schizophrenia have followed a “neuron-centric” approach, focusing on alterations in neurotransmitter systems and synapse cytoarchitecture. However, multiple lines of evidence coming from genetics and systems biology approaches suggest that apart from neurons, oligodendrocytes and potentially other glia are affected from schizophrenia risk loci. Neurobiological abnormalities linked with genetic association signal could identify abnormalities that are more likely to be primary, versus environmentally induced changes or downstream events. Here, we summarize genetic data that support the involvement of oligodendrocytes in schizophrenia, providing additional evidence for a causal role with the disease. Given the undeniable evidence of both neuronal and glial abnormalities in schizophrenia, we propose a neuro-glial model that invokes abnormalities at the node of Ranvier as a functional unit in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Panos Roussos
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Vahram Haroutunian
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
13
|
Mistry M, Gillis J, Pavlidis P. Meta-analysis of gene coexpression networks in the post-mortem prefrontal cortex of patients with schizophrenia and unaffected controls. BMC Neurosci 2013; 14:105. [PMID: 24070017 PMCID: PMC3849476 DOI: 10.1186/1471-2202-14-105] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/23/2013] [Indexed: 11/30/2022] Open
Abstract
Background Gene expression profiling of the postmortem human brain is part of the effort to understand the neuropathological underpinnings of schizophrenia. Existing microarray studies have identified a large number of genes as candidates, but efforts to generate an integrated view of molecular and cellular changes underlying the illness are few. Here, we have applied a novel approach to combining coexpression data across seven postmortem human brain studies of schizophrenia. Results We generated separate coexpression networks for the control and schizophrenia prefrontal cortex and found that differences in global network properties were small. We analyzed gene coexpression relationships of previously identified differentially expressed ‘schizophrenia genes’. Evaluation of network properties revealed differences for the up- and down-regulated ‘schizophrenia genes’, with clustering coefficient displaying particularly interesting trends. We identified modules of coexpressed genes in each network and characterized them according to disease association and cell type specificity. Functional enrichment analysis of modules in each network revealed that genes with altered expression in schizophrenia associate with modules representing biological processes such as oxidative phosphorylation, myelination, synaptic transmission and immune function. Although a immune-function enriched module was found in both networks, many of the genes in the modules were different. Specifically, a decrease in clustering of immune activation genes in the schizophrenia network was coupled with the loss of various astrocyte marker genes and the schizophrenia candidate genes. Conclusion Our novel network-based approach for evaluating gene coexpression provides results that converge with existing evidence from genetic and genomic studies to support an immunological link to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Meeta Mistry
- Department of Psychiatry, University of British Columbia, Vancouver BC, Canada.
| | | | | |
Collapse
|
14
|
Takahashi N, Sakurai T. Roles of glial cells in schizophrenia: possible targets for therapeutic approaches. Neurobiol Dis 2012; 53:49-60. [PMID: 23146995 DOI: 10.1016/j.nbd.2012.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/30/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022] Open
Abstract
Glial cells consisting of oligodendrocytes, astrocytes, microglia, and NG2 positive cells are major cell populations in the central nervous system, number-wise. They function as effectors and modulators of neurodevelopment through a wide variety of neuron-glial cell interactions in brain development and functions. Glial cells can be affected by both genetic and environmental factors, leading to their dysfunctions in supporting neuronal development and functions. These in turn can affect neuronal cells, causing alterations at the circuitry level that manifest as behavioral characteristics associated with schizophrenia in late teens-early twenties. Glial cells are also involved in neuroinflammatory processes, which sometimes have deleterious effects on the normal brain development. If the glial involvement plays significant roles in schizophrenia, the processes involving glial cells can become possible therapeutic targets for schizophrenia. A number of known antipsychotics are shown to have beneficial effects on glial cells, but other drugs targeting glial cell functions may also have therapeutic effects on schizophrenia. The latter can be taken into consideration for future drug development for schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | |
Collapse
|
15
|
Walterfang M, Velakoulis D, Whitford TJ, Pantelis C. Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 2011; 11:971-87. [PMID: 21721915 DOI: 10.1586/ern.11.76] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although historically gray matter changes have been the focus of neuropathological and neuroradiological studies in schizophrenia, in recent years an increasing body of research has implicated white matter structures and its constituent components (axons, their myelin sheaths and supporting oligodendrocytes). This article summarizes this body of literature, examining neuropathological, neurogenetic and neuroradiological evidence for white matter pathology in schizophrenia. We then look at the possible role that antipsychotic medication may play in these studies, examining both its role as a potential confounder in studies examining neuronal density and brain volume, but also the possible role that these medications may play in promoting myelination through their effects on oligodendrocytes. Finally, the role of potential novel therapies is discussed.
Collapse
Affiliation(s)
- Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
16
|
Xu H, Li XM. White matter abnormalities and animal models examining a putative role of altered white matter in schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:826976. [PMID: 22937274 PMCID: PMC3420616 DOI: 10.1155/2011/826976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022]
Abstract
Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-related genes in patients with schizophrenia and will consider abnormal behaviors reported in patients with white matter diseases. Following these, we will selectively introduce some animal models examining a putative role of white matter abnormalities in schizophrenia. The emphasis will be put on the cuprizone (CPZ) model. CPZ-fed mice show demyelination and OLs loss, display schizophrenia-related behaviors, and have higher DA levels in the prefrontal cortex. These features suggest that the CPZ model is a novel animal model of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- Department of Anatomy, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
17
|
Schijndel JEV, Martens GJM. Gene expression profiling in rodent models for schizophrenia. Curr Neuropharmacol 2011; 8:382-93. [PMID: 21629445 PMCID: PMC3080594 DOI: 10.2174/157015910793358132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 04/15/2010] [Accepted: 04/30/2010] [Indexed: 12/12/2022] Open
Abstract
The complex neurodevelopmental disorder schizophrenia is thought to be induced by an interaction between predisposing genes and environmental stressors. In order to get a better insight into the aetiology of this complex disorder, animal models have been developed. In this review, we summarize mRNA expression profiling studies on neurodevelopmental, pharmacological and genetic animal models for schizophrenia. We discuss parallels and contradictions among these studies, and propose strategies for future research.
Collapse
Affiliation(s)
- Jessica E Van Schijndel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience & Nijmegen Centre for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | | |
Collapse
|
18
|
Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 2011; 93:13-24. [PMID: 20950668 PMCID: PMC3622281 DOI: 10.1016/j.pneurobio.2010.09.004] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/03/2010] [Accepted: 09/30/2010] [Indexed: 01/05/2023]
Abstract
Multiple lines of evidence in schizophrenia, from brain imaging, studies in postmortem brains, and genetic association studies, have implicated oligodendrocyte and myelin dysfunction in this disease. Recent studies suggest that oligodendrocyte and myelin dysfunction leads to changes in synaptic formation and function, which could lead to cognitive dysfunction, a core symptom of schizophrenia. Furthermore, there is accumulating data linking oligodendrocyte and myelin dysfunction with dopamine and glutamate abnormalities, both of which are found in schizophrenia. These findings implicate oligodendrocyte and myelin dysfunction as a primary change in schizophrenia, not only as secondary consequences of the illness or treatment. Strategies targeting oligodendrocyte and myelin abnormalities could therefore provide therapeutic opportunities for patients suffering from schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Conte Center for the Neuroscience of Mental Disorders and the Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
19
|
Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron-glia interactions and decreased conduction velocities. J Neurosci 2009; 29:8363-71. [PMID: 19571127 DOI: 10.1523/jneurosci.3216-08.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conduction velocity (CV) of myelinated axons has been shown to be regulated by oligodendrocytes even after myelination has been completed. However, how myelinating oligodendrocytes regulate CV, and what the significance of this regulation is for normal brain function remain unknown. To address these questions, we analyzed a transgenic mouse line harboring extra copies of the myelin proteolipid protein 1 (plp1) gene (plp1(tg/-) mice) at 2 months of age. At this stage, the plp1(tg/-) mice have an unaffected myelin structure with a normally appearing ion channel distribution, but the CV in all axonal tracts tested in the CNS is greatly reduced. We also found decreased axonal diameters and slightly abnormal paranodal structures, both of which can be a cause for the reduced CV. Interestingly the plp1(tg/-) mice showed altered anxiety-like behaviors, reduced prepulse inhibitions, spatial learning deficits and working memory deficit, all of which are schizophrenia-related behaviors. Our results implicate that abnormalities in the neuron-glia interactions at the paranodal junctions can result in reduced CV in the CNS, which then induces behavioral abnormalities related to schizophrenia.
Collapse
|
20
|
Höistad M, Segal D, Takahashi N, Sakurai T, Buxbaum JD, Hof PR. Linking white and grey matter in schizophrenia: oligodendrocyte and neuron pathology in the prefrontal cortex. Front Neuroanat 2009; 3:9. [PMID: 19636386 PMCID: PMC2713751 DOI: 10.3389/neuro.05.009.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/16/2009] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malin Höistad
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Devorah Segal
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Nagahide Takahashi
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Takeshi Sakurai
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
21
|
Fatemi SH, Folsom TD, Reutiman TJ, Abu-Odeh D, Mori S, Huang H, Oishi K. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res 2009; 112:46-53. [PMID: 19487109 PMCID: PMC2735410 DOI: 10.1016/j.schres.2009.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 01/26/2023]
Abstract
Prenatal viral infection has been associated with the development of schizophrenia and autism. Our laboratory has previously shown that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and late second trimester (E18) administration of influenza virus. We hypothesized that middle second trimester infection (E16) in mice may lead to a different pattern of brain gene expression and structural defects in the developing offspring. C57BL6 mice were infected on E16 with a sublethal dose of human influenza virus or sham-infected using vehicle solution. Male offspring of the infected mice were collected at P0, P14, P35, and P56, their brains removed and cerebella dissected and flash frozen. Microarray, DTI and MRI scanning, as well as qRT-PCR and SDS-PAGE and western blotting analyses were performed to detect differences in gene expression and brain atrophy. Expression of several genes associated with myelination, including Mbp, Mag, and Plp1 were found to be altered, as were protein levels of Mbp, Mag, and DM20. Brain imaging revealed significant atrophy in cerebellum at P14, reduced fractional anisotropy in white matter of the right internal capsule at P0, and increased fractional anisotropy in white matter in corpus callosum at P14 and right middle cerebellar peduncle at P56. We propose that maternal infection in mouse impacts myelination genes.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
- Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
- Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
| | - Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Teri J. Reutiman
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Desiree Abu-Odeh
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Susumu Mori
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Hao Huang
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Kenichi Oishi
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| |
Collapse
|
22
|
No association between the oligodendrocyte-related gene PLP1 and schizophrenia in the Japanese population. J Hum Genet 2008; 53:863-866. [PMID: 18604471 DOI: 10.1007/s10038-008-0318-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/21/2008] [Indexed: 10/21/2022]
Abstract
PLP1 is one of the major myelin-related genes. A large body of expression-based studies showed significantly lower levels of the PLP1 messenger ribonucleic acid (mRNA) transcripts in schizophrenia. Moreover, one family-based study identified a weak association signal in a male subset using 487 Chinese family trios. We carried out a population-based association study between PLP1 and schizophrenia in 1,640 subjects. Our data does not support genetic variation in close vicinity or within PLP1 locus as a susceptibility factor.
Collapse
|
23
|
A family-based association study of the myelin-associated glycoprotein and 2′,3′-cyclic nucleotide 3′-phosphodiesterase genes with schizophrenia. Psychiatr Genet 2008; 18:143-6. [DOI: 10.1097/ypg.0b013e3282fa1874] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
|
25
|
Karoutzou G, Emrich HM, Dietrich DE. The myelin-pathogenesis puzzle in schizophrenia: a literature review. Mol Psychiatry 2008; 13:245-60. [PMID: 17925796 DOI: 10.1038/sj.mp.4002096] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Schizophrenia is a serious and disabling mental disorder with symptoms such as auditory hallucinations, disordered thinking and delusions, avolition, anhedonia, blunted affect and apathy. In this review article we seek to present the current scientific findings from linkage studies and susceptible genes and the pathophysiology of white matter in schizophrenia. The article has been reviewed in two parts. The first part deals with the linkage studies and susceptible genes in schizophrenia in order to have a clear-cut picture of the involvement of chromosomes and their genes in schizophrenia. The genetic linkage results seem to be replicated in some cases but in others are not. From these results, we cannot draw a fine map to a single locus or gene, leading to the conclusion that schizophrenia is not caused by a single factor/gene. In the second part of the article we present the oligodendrocyte-related genes that are associated with schizophrenia, as we hypothesize a potential role of oligodendrocyte-related genes in the pathology of the disorder.
Collapse
Affiliation(s)
- G Karoutzou
- Department of Clinical Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
26
|
Iwamoto K, Ueda J, Bundo M, Nakano Y, Kato T. Effect of a functional single nucleotide polymorphism in the 2',3'-cyclic nucleotide 3'-phosphodiesterase gene on the expression of oligodendrocyte-related genes in schizophrenia. Psychiatry Clin Neurosci 2008; 62:103-8. [PMID: 18289148 DOI: 10.1111/j.1440-1819.2007.01786.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS Although the expression of oligodendrocyte-related genes in post-mortem brains of patients with schizophrenia is consistently reported to be downregulated, the cause of the change remains unclear. The A-allele of rs2070106 within the 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), an oligodendrocyte-related gene, was reported to show reduced expression compared with the G-allele, and proposed to be associated with schizophrenia. METHODS The effect of the rs2070106 genotype on the expression of CNP and other oligodendrocyte-related genes was examined using data previously obtained from DNA microarray studies of post-mortem brains. RESULTS It was found that the effect of rs2070106 genotype on the CNP expression was transcript specific, and that the genotype was not associated with the expression of other oligodendrocyte-related genes. CONCLUSIONS The rs207016 genotype is not likely to contribute to the reported coordinated down-regulation of oligodendrococyte-related genes in schizophrenia.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | | | | | |
Collapse
|
27
|
Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE, Lipska BK. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 2008; 98:129-38. [PMID: 17964117 PMCID: PMC2259271 DOI: 10.1016/j.schres.2007.09.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/20/2007] [Accepted: 09/24/2007] [Indexed: 11/28/2022]
Abstract
Prior studies have found decreased mRNA expression of oligodendrocyte-associated genes in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. However, it is unclear which specific genes are affected and whether the changes occur in the cortical white or grey matter. We assessed the mRNA expression levels of four oligodendrocyte-related genes: myelin-associated basic protein (MOBP), myelin-associated glycoprotein (MAG), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and oligodendrocyte-lineage transcription factor 2 (OLIG2) in DLPFC white and grey matter using quantitative-PCR (approximately 70 controls and approximately 30 patients with schizophrenia). We also examined the effects of high-risk polymorphisms in CNP and OLIG2 on mRNA levels of these genes. We found that genetic polymorphisms in CNP (rs2070106) and OLIG2 (rs1059004 and rs9653711), previously associated with schizophrenia, predicted low expression of these genes. Expression of MAG, CNP and OLIG2 did not differ between patients with schizophrenia and controls in the grey or white matter but MOBP mRNA levels were increased in the DLPFC white matter in patients with a history of substance abuse. MOBP and CNP protein in the white matter was not altered. Although previously reported reductions in the expression of myelin-related genes in the DLPFC were not detected, we show that individuals carrying risk-associated alleles in oligodendrocyte-related genes had relatively lower transcript levels. These data illustrate the importance of genetic background in gene expression studies in schizophrenia.
Collapse
Affiliation(s)
- Shruti N. Mitkus
- Clinical Brain Disorders Branch, Section on Neuropathology, DIRP/NIMH/NIH, Bethesda, MD, 20892-1385
| | - Thomas M. Hyde
- Clinical Brain Disorders Branch, Section on Neuropathology, DIRP/NIMH/NIH, Bethesda, MD, 20892-1385
| | - Radhakrishna Vakkalanka
- Clinical Brain Disorders Branch, Section on Neuropathology, DIRP/NIMH/NIH, Bethesda, MD, 20892-1385
| | - Bhaskar Kolachana
- Clinical Brain Disorders Branch, Section on Neuropathology, DIRP/NIMH/NIH, Bethesda, MD, 20892-1385
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch, Section on Neuropathology, DIRP/NIMH/NIH, Bethesda, MD, 20892-1385
| | - Joel E. Kleinman
- Clinical Brain Disorders Branch, Section on Neuropathology, DIRP/NIMH/NIH, Bethesda, MD, 20892-1385
| | - Barbara K. Lipska
- Clinical Brain Disorders Branch, Section on Neuropathology, DIRP/NIMH/NIH, Bethesda, MD, 20892-1385
| |
Collapse
|
28
|
Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI, Faraone SV, Tsuang MT, Niculescu AB. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:129-58. [PMID: 17266109 DOI: 10.1002/ajmg.b.30481] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama Y, Yoshikawa T, Kato T. A family-based and case-control association study of SOX10 in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:477-81. [PMID: 16741945 DOI: 10.1002/ajmg.b.30304] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Downregulation of oligodendrocyte-related genes in postmortem brains of patients with schizophrenia has been reported by several DNA microarray studies. We recently reported that enhanced DNA methylation of SOX10, which encodes a transcription factor responsible for terminal differentiation of oligodendrocyte, correlated with lower expression of SOX10 and other oligodendrocyte-related genes. Although we ruled out the possible role of SNPs of SOX10 in the altered expression and epigenetic status of oligodendrocyte genes by mutation screening of the SOX10 gene, it is not known whether its genetic polymorphisms contribute to susceptibility to schizophrenia. Here we performed a case-control and family-based association study of SOX10 in Japanese patients with schizophrenia using six SNPs and one microsatellite marker. None of these markers showed significant associations with schizophrenia by case-control or family-based association study. Haplotype analysis did not reveal significant associations between the two groups. We concluded that genetic variations in the SOX10 gene do not contribute to susceptibility to Japanese schizophrenia.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wan C, Yang Y, Feng G, Gu N, Liu H, Zhu S, He L, Wang L. Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci Lett 2006; 388:126-31. [PMID: 16039057 DOI: 10.1016/j.neulet.2005.06.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 12/15/2022]
Abstract
Results of gene expression microarray and quantitative PCR studies have suggested abnormalities in the expression of myelin-related genes including myelin-associated glycoprotein (MAG) in schizophrenic patients. Research provides strong evidence for oligodendrocyte dysfunction in schizophrenics. In order to further assess the role of MAG in schizophrenia, we examined four single nucleotide polymorphisms (SNPs), namely rs2301600, rs3746248, rs720309 and rs720308, of this gene in Chinese schizophrenic patients (n=470) and healthy controls (n=470). The distribution of rs720309 T/A genotypes showed a strong association with schizophrenia (chi(2)=14.58, d.f.=2, P=0.0008). A haplotype constructed of rs720309-rs720308 also revealed a significant association with schizophrenia (chi(2)=11.914, d.f.=3, P=0.0084). Our findings of a significant associations between schizophrenia and the MAG gene suggest that this gene may be involved in susceptibility to schizophrenia in the Chinese Han population.
Collapse
Affiliation(s)
- Chunling Wan
- Center for Human and Animal Genetics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Gender differences in susceptibility to complex disease such as asthma, diabetes, lupus, autism and major depression, among numerous other disorders, represent one of the hallmarks of non-Mendelian biology. It has been generally accepted that endocrinological differences are involved in the sexual dimorphism of complex disease; however, specific molecular mechanisms of such hormonal effects have not been elucidated yet. This paper will review evidence that sex hormone action may be mediated via gene-specific epigenetic modifications of DNA and histones. The epigenetic modifications can explain sex effects at DNA sequence polymorphisms and haplotypes identified in gender-stratified genetic linkage and association studies. Hormone-induced DNA methylation and histone modification changes at specific gene regulatory regions may increase or reduce the risk of a disease. The epigenetic interpretation of sexual dimorphism fits well into the epigenetic theory of complex disease, which argues for the primary pathogenic role of inherited and/or acquired epigenetic misregulation rather than DNA sequence variation. The new experimental strategies, especially the high throughput microarray-based epigenetic profiling, can be used for testing the epigenetic hypothesis of gender effects in complex diseases.
Collapse
Affiliation(s)
- Zachary Kaminsky
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | | | | |
Collapse
|
32
|
Yang YF, Qin W, Shugart YY, He G, Liu XM, Zhou J, Zhao XZ, Chen Q, La YJ, Xu YF, Li XW, Gu NF, Feng GY, Song H, Wang P, He L. Possible association of the MAG locus with schizophrenia in a Chinese Han cohort of family trios. Schizophr Res 2005; 75:11-19. [PMID: 15820319 DOI: 10.1016/j.schres.2004.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 11/19/2004] [Accepted: 11/22/2004] [Indexed: 12/15/2022]
Abstract
Neurotransmitter-based hypotheses have so far led to only moderate success in predicting new pathogenetic findings in etiology of schizophrenia. On the other hand, the more recent oligodendroglia hypotheses of this disorder have been supported by an increasing body of evidence. For example, the expression level of the myelin associated glycoprotein (MAG) gene has been shown to be significantly lower in schizophrenia patient groups compared to control groups. Such an effect might be a result of genetic variations of the MAG gene. In order to test this hypothesis, we genotyped four markers within the MAG locus in 413 trios sample of the Han Chinese using allele-specific PCR. None of the four markers revealed noticeable allelic significance. However, the four-marker and two-marker haplotypes covering components rs720309 and rs720308 were observed to be significantly associated with schizophrenia (P < 0.0001) in this study. In addition, we identified one common risk haplotype TA (rs720309-rs720308, present in 78.5% of the general population) that showed increased evidence of overtransmission from parents to affected offspring (P = 0.0001). The results demonstrated MAG might play a role in genetic susceptibility to schizophrenia. Furthermore, our finding of a possible association between the MAG locus and schizophrenia is in agreement with the hypotheses of oligodendrltic and myelination dysfunction.
Collapse
Affiliation(s)
- Y F Yang
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|