1
|
Yadollahzadeh M, Rezaie N, Eskandari M, Farrokhpour M, Azimi M, Farasatinasab M. Variable Levels of Oxytocin During Sepsis: The Role of Oxytocin in Sepsis Pathophysiology. J Intensive Care Med 2023; 38:997-1002. [PMID: 37211665 DOI: 10.1177/08850666231177255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Although the role of oxytocin in the pathophysiology of sepsis is still unknown, rising preclinical evidence suggests that oxytocin is possibly involved. However, no direct clinical studies have measured the levels of oxytocin during sepsis. In this preliminary study, the serum oxytocin levels were evaluated throughout the duration of sepsis. METHOD Twenty-two male patients over 18 years of age with a SOFA score of 2 points or more who were admitted to the ICU were included. Patients with a history of neuroendocrine, psychiatric, and neurologic disorders, cancer, an infection caused by COVID-19, shock due to reasons other than sepsis, a history of psychiatric or neurologic medication use, and those who died during the study were excluded. The main endpoint included the measurement of serum oxytocin levels using radioimmunoassay at 6, 24, and 48 h of the ICU admission. RESULTS Mean serum oxytocin level was higher at 6 h of ICU admission (41.27 ± 13.14 ng/L) than after 24 and 48 h of ICU admission (22.63 ± 5.75 and 20.97 ± 7.61 ng/L respectively) (P-value < .001). CONCLUSION Our study, while reporting increased serum oxytocin levels in the initial phase of sepsis and decline afterward, supports the possible contribution of oxytocin in the pathophysiology of sepsis. Given that oxytocin seems to modulate the innate immune system, future investigations are necessary to assess the potential role of oxytocin in the pathophysiology of sepsis.
Collapse
Affiliation(s)
- Mahdi Yadollahzadeh
- Department of Internal Medicine, Firoozgar Medical & Educational Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Rezaie
- Department of Internal Medicine, Firoozgar Medical & Educational Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohana Eskandari
- Department of Internal Medicine, Firoozgar Medical & Educational Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Farrokhpour
- Department of Internal Medicine, Firoozgar Medical & Educational Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azimi
- Department of Internal Medicine, Firoozgar Medical & Educational Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farasatinasab
- Department of Clinical Pharmacy, School of Pharmacy-International Campus, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ueno H, Sanada K, Miyamoto T, Baba K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Oginosawa Y, Araki M, Sonoda S, Onaka T, Otsuji Y, Ueta Y. Oxytocin-monomeric red fluorescent protein 1 synthesis in the hypothalamus under osmotic challenge and acute hypovolemia in a transgenic rat line. Physiol Rep 2020; 8:e14558. [PMID: 32914562 PMCID: PMC7507703 DOI: 10.14814/phy2.14558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
We generated a transgenic rat line that expresses oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion gene to visualize the dynamics of OXT. In this transgenic rat line, hypothalamic OXT can be assessed under diverse physiological and pathophysiological conditions by semiquantitative fluorometry of mRFP1 fluorescence intensity as a surrogate marker for endogenous OXT. Using this transgenic rat line, we identified the changes in hypothalamic OXT synthesis under various physiological conditions. However, few reports have directly examined hypothalamic OXT synthesis under hyperosmolality or hypovolemia. In this study, hypothalamic OXT synthesis was investigated using the transgenic rat line after acute osmotic challenge and acute hypovolemia induced by intraperitoneal (i.p.) administration of 3% hypertonic saline (HTN) and polyethylene glycol (PEG), respectively. The mRFP1 fluorescence intensity in the paraventricular (PVN) and supraoptic nuclei (SON) was significantly increased after i.p. administration of HTN and PEG, along with robust Fos-like immunoreactivity (co-expression). Fos expression showed neuronal activation in the brain regions that are associated with the hypothalamus and/or are involved in maintaining water and electrolyte homeostasis in HTN- and PEG-treated rats. OXT and mRFP1 gene expressions were dramatically increased after HTN and PEG administration. The plasma OXT level was extremely increased after HTN and PEG administration. Acute osmotic challenge and acute hypovolemia induced upregulation of hypothalamic OXT in the PVN and SON. These results suggest that not only endogenous arginine vasopressin (AVP) but also endogenous OXT has a key role in maintaining body fluid homeostasis to cope with hyperosmolality and hypovolemia.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kenya Sanada
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Tetsu Miyamoto
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuhiko Baba
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kentaro Tanaka
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Haruki Nishimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuaki Nishimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Satomi Sonoda
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Mitsuhiro Yoshimura
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Takashi Maruyama
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Yasushi Oginosawa
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Masaru Araki
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Shinjo Sonoda
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsukeJapan
| | - Yutaka Otsuji
- Department of the Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Yoichi Ueta
- PhysiologySchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| |
Collapse
|
3
|
Nitric Oxide Modulates HCN Channels in Magnocellular Neurons of the Supraoptic Nucleus of Rats by an S-Nitrosylation-Dependent Mechanism. J Neurosci 2017; 36:11320-11330. [PMID: 27807172 DOI: 10.1523/jneurosci.1588-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022] Open
Abstract
The control of the excitability in magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus has been attributed mainly to synaptic inputs from circunventricular organs. However, nitric oxide (NO), a gaseous messenger produced in this nucleus during isotonic and short-term hypertonic conditions, is an example of a modulator that can act directly on MNCs to modulate their firing rate. NO inhibits the electrical excitability of MNCs, leading to a decrease in the release of vasopressin and oxytocin. Although the effects of NO on MNCs are well established, the mechanism by which this gas produces its effect is, so far, unknown. Because NO acts independently of synaptic inputs, we hypothesized that ion channels present in MNCs are the targets of NO. To investigate this hypothesis, we used the patch-clamp technique in vitro and in situ to measure currents carried by hyperpolarization-activated and nucleotide-gated cation (HCN) channels and establish their role in determining the electrical excitability of MNCs in rats. Our results show that blockade of HCN channels by ZD7288 decreases MNC firing rate with significant consequences on the release of OT and VP, measured by radioimmunoassay. NO induced a significant reduction in HCN currents by binding to cysteine residues and forming S-nitrosothiol complexes. These findings shed new light on the mechanisms that control the electrical excitability of MNCs via the nitrergic system and strengthen the importance of HCN channels in the control of hydroelectrolyte homeostasis. SIGNIFICANCE STATEMENT Cells in our organism live in a liquid environment whose composition and osmolality are maintained within tight limits. Magnocellular neurons (MNCs) of the supra optic nucleus can sense osmolality and control the synthesis and secretion of vasopressin (VP) and oxytocin (OT) by the neurohypophysis. OT and VP act on the kidneys controlling the excretion of water and sodium to maintain homeostasis. Here we combined electrophysiology, molecular biology, and radioimmunoassay to show that the electrical activity of MNCs can be controlled by nitric oxide (NO), a gaseous messenger. NO reacts with cysteine residues (S-nitrosylation) on hyperpolarization-activated and nucleotide-gated cation channels decreasing the firing rate of MNCs and the consequent secretion of VP and OT.
Collapse
|
4
|
Coelho CH, Martins TF, Oliveira-Pelegrin GR, da Rocha MJA. Inhibition of neuronal nitric oxide synthase activity does not alter vasopressin secretion in septic rats. Pituitary 2017; 20:333-339. [PMID: 28091880 DOI: 10.1007/s11102-017-0786-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/PURPOSE During the early phase of sepsis, hypotension is accompanied by increase of plasma vasopressin hormone (AVP) levels, which decline during the late phase. This hypotension is due in part to increase of nitric oxide (NO) synthesis by nitric oxide synthase (NOS) enzyme. Neuronal isoform of this enzyme (nNOS) is present in vasopressinergics neurons of hypothalamus, but its role in vasopressin secretion during sepsis is unknown. METHODS We evaluated the role of nNOS in NO production and vasopressin secretion during sepsis. Wistar rats received 7-nitroindazole (50 mg/kg, i.p.), an inhibitor of nNOS activity, or vehicle and were submitted to septic stimulus by cecal ligation and puncture (CLP). At the time points 0, 4, 6, 18 and 24 h after sepsis induction the animals were decapitated and neurohypophysis and hypothalamus were removed for analysis of vasopressin content and NOS activity, respectively. Hematocrit, serum sodium, osmolality, proteins and plasmatic AVP were quantified. RESULTS Mortality was not affected by 7-nitroindazole (7-NI). Sodium and plasma proteins levels decreased after CLP and the treatment anticipated the protein loss, and delayed serum sodium decrease. Septic animals treated with 7-NI showed decrease of osmolality 4 h after CLP. Nitric oxide synthase activity in hypothalamus increased at 4 and 24 h after CLP and was reduced with 7-NI. Neurohypophysis content of AVP diminished after CLP and 7-NI did not alter this parameter. Plasma AVP levels increased at 6 h and decreased 18 and 24 h after CLP. Treatment with 7-NI did not alter plasma vasopressin levels. CONCLUSION We concluded that nNOS does not have a substantial role in vasopressin secretion during experimental sepsis.
Collapse
Affiliation(s)
- Camila Henriques Coelho
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café s/n CEP, Ribeirão Preto, São Paulo, 14040-904, Brazil.
| | - Thalita Freitas Martins
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Avenida do Café s/n CEP, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | | | - Maria José Alves da Rocha
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Greenwood MP, Greenwood M, Paton JFR, Murphy D. Control of Polyamine Biosynthesis by Antizyme Inhibitor 1 Is Important for Transcriptional Regulation of Arginine Vasopressin in the Male Rat Hypothalamus. Endocrinology 2015; 156:2905-17. [PMID: 25961839 PMCID: PMC4511134 DOI: 10.1210/en.2015-1074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The polyamines spermidine and spermine are small cations present in all living cells. In the brain, these cations are particularly abundant in the neurons of the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus, which synthesize the neuropeptide hormones arginine vasopressin (AVP) and oxytocin. We recently reported increased mRNA expression of antizyme inhibitor 1 (Azin1), an important regulator of polyamine synthesis, in rat SON and PVN as a consequence of 3 days of dehydration. Here we show that AZIN1 protein is highly expressed in both AVP- and oxytocin-positive magnocellular neurons of the SON and PVN together with antizyme 1 (AZ1), ornithine decarboxylase, and polyamines. Azin1 mRNA expression increased in the SON and PVN as a consequence of dehydration, salt loading, and acute hypertonic stress. In organotypic hypothalamic cultures, addition of the irreversible ornithine decarboxylase inhibitor DL-2-(difluoromethyl)-ornithine hydrochloride significantly increased the abundance of heteronuclear AVP but not heteronuclear oxytocin. To identify the function of Azin1 in vivo, lentiviral vectors that either overexpress or knock down Azin1 were stereotaxically delivered into the SON and/or PVN. Azin1 short hairpin RNA delivery resulted in decreased plasma osmolality and had a significant effect on food intake. The expression of AVP mRNA was also significantly increased in the SON by Azin1 short hairpin RNA. In contrast, Azin1 overexpression in the SON decreased AVP mRNA expression. We have therefore identified AZIN1, and hence by inference, polyamines as novel regulators of the expression of the AVP gene.
Collapse
Affiliation(s)
- Michael P Greenwood
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| | - Mingkwan Greenwood
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| | - Julian F R Paton
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| | - David Murphy
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| |
Collapse
|
6
|
Reis WL, Biancardi VC, Son S, Antunes-Rodrigues J, Stern JE. Carbon monoxide and nitric oxide interactions in magnocellular neurosecretory neurones during water deprivation. J Neuroendocrinol 2015; 27:111-22. [PMID: 25494574 DOI: 10.1111/jne.12245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/13/2014] [Accepted: 12/07/2014] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) and carbon monoxide (CO) are diffusible gas messengers in the brain. Previously, we have shown their independent involvement in central fluid/electrolyte homeostasis control. In the present study, we investigated a possible functional interaction between NO/CO in the regulation of vasopressin (VP) and oxytocin (OT) magnocellular neurosecretory cells (MNCs) activity in euhydrated (EU) and dehydrated [48-h water-deprived (48WD)] rats. Using brain slices from EU and 48WD rats, we measured, by immunohistochemistry, the expression of neuronal NO synthase (nNOS, which synthesises NO) and haeme-oxygenase (HO-1, which synthesises CO) in the hypothalamic supraoptic nucleus (SON). In addition, we used patch-clamp electrophysiology to investigate whether regulation of SON MNC firing activity by endogenous CO was dependent on NO bioavailability and GABAergic inhibitory synaptic function. We found a proportion of OT and VP SON MNCs in EU rats to co-express both of HO-1 and nNOS (33.2 ± 2.9% and 15.3 ± 1.4%, respectively), which was increased in 48WD rats (55.5 ± 0.9% and 21.0 ± 1.7%, respectively, P < 0.05 for both). Inhibition of endogenous HO activity [chromium mesoporphyrin IX chloride (CrMP) 20 μm] induced MNC membrane hyperpolarisation and decreased firing activity, and these effects were blunted by previous blockade of endogenous NOS activity (l-NAME, 2 mm) or blockade of inhibitory GABA function [Picrotoxin (Sigma-Aldrich, St Louis, MO, USA), 50 μm]. No significant changes in SON NO bioavailability (4,5 diaminofluorescein diacetate fluorescence) were observed after CrMP treatment. Taken together, our results support a state-dependent functional inter-relationship between NO and CO in MNCs, in which CO acts as an excitatory gas molecule, whose effects are largely dependent on interactions with the inhibitory SON signals NO and GABA.
Collapse
Affiliation(s)
- W L Reis
- Department of Physiology, Georgia Regents University, Augusta, GA, USA; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
7
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
8
|
St-Louis R, Parmentier C, Raison D, Grange-Messent V, Hardin-Pouzet H. Reactive oxygen species are required for the hypothalamic osmoregulatory response. Endocrinology 2012; 153:1317-29. [PMID: 22202167 DOI: 10.1210/en.2011-1350] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Free radicals, or reactive oxygen species (ROS), are highly reactive byproducts of oxygen degradation. They are well known for their cellular toxicity, but few studies have analyzed their potential role in homeostatic processes. We investigated ROS production and function during the arginine vasopressin (AVP) hypothalamic response to hyperosmolarity. Six-week-old male C3H/HeJ mice were subjected to salt loading for 2 or 8 d. The osmotic axis was progressively activated and reached a new steady-state status at 8 d as demonstrated by monitoring of plasmatic osmolality and c-Fos and AVP expression in the supraoptic nucleus (SON). Free radicals, visualized by dihydroethidine staining and measured by 2'-7'dichlorofluorescein diacetate assays, were detected after 2 d of salt loading. The activity and expression of superoxide dismutase 2 and catalase were concomitantly up-regulated in the SON, suggesting that free radicals are detoxified by endogenous antioxidant systems, thereby avoiding their deleterious effects. The early phase of the osmoregulatory response has been investigated using an acute hyperosmotic model; free radicals were produced 45 min after an ip injection of 1.5 m NaCl. This was followed by an increase in c-Fos and AVP expression and an increase in superoxide dismutase 2 and catalase activities. α-Lipoic acid, a ROS scavenger, administrated during the 3 d before the hypertonic ip injection, abolished the increase of AVP. These findings establish that hyperosmolarity causes ROS production in the SON, which is essential for AVP increase. This demonstrates the importance of free radicals as physiological signaling molecules in the regulation of body-fluid balance.
Collapse
Affiliation(s)
- Ronald St-Louis
- Université Pierre et Marie Curie Institut National de la Santé et de la Recherche Médicale Unité 952, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7224, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
9
|
Vacher CM, Grange-Messent V, St-Louis R, Raison D, Lacorte JM, Hardin-Pouzet H. Architecture of the hypothalamo-posthypophyseal complex is controlled by monoamines. J Neurosci Res 2011; 89:1711-22. [PMID: 21805494 DOI: 10.1002/jnr.22726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/24/2011] [Accepted: 05/31/2011] [Indexed: 02/03/2023]
Abstract
The hypothalamo-neurohypophyseal system displays significant plasticity when subjected to physiological stimuli, such as dehydration, parturition, or lactation. This plasticity arises at the neurochemical and electrophysiological levels but also at a structural level. Several studies have demonstrated the role of monoaminergic afferents in controlling neurochemical and electrophysiological plasticity of the supraoptic nucleus (SON) and of the neurohypophysis (NH), but little is known about how the changes in structural plasticity are triggered. We used Tg8 mice, disrupted for the monoamine oxidase A gene, to study monamine involvement in the architecture of the SON and of the NH. SON astrocytes in Tg8 mice displayed an active status, characterized by an increase in S100β expression and a significant decrease in vimentin expression, with no modification in glial fibrillary acidic protein (GFAP) levels. Astrocytes showed a decrease in glutamate dehydrogenase (GDH) levels, whereas glutamine synthetase (GS) levels remained constant, suggesting a reduction in astrocyte glutamate catabolism. Tenascin C and polysialic acid-neural cell adhesion molecule (PSA-NCAM) expressions were also elevated in the SON of Tg8 mice, suggesting an increased capacity for structural remodelling in the SON. In the NH, similar date were obtained with a stability in GFAP expression and an increase in PSA-NCAM immunostaining. These results establish monoamine (serotonin and noradrenaline) involvement in SON and NH structural arrangement. Monoamines therefore appear to be crucial for the coordination of the neurochemical and structural aspects of neuroendocrine plasticity, allowing the hypothalamo-neurohypopyseal system to respond appropriately when stimulated.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Laboratoire de Neuroendocrinologie Moléculaire de la Prise Alimentaire, Centre de Neurosciences Paris-Sud, UMR 8195, Université Paris-Sud, CNRS Orsay, France
| | | | | | | | | | | |
Collapse
|
10
|
Vega C, Moreno-Carranza B, Zamorano M, Quintanar-Stéphano A, Méndez I, Thebault S, Martínez de la Escalera G, Clapp C. Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1701-R1708. [PMID: 20943859 DOI: 10.1152/ajpregu.00575.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prolactin (PRL) stimulates the secretion of oxytocin (OXT) and arginine AVP as part of the maternal adaptations facilitating parturition and lactation. Both neurohormones are under the regulation of nitric oxide. Here, we investigate whether the activation of neuronal nitric oxide synthase (nNOS) in the hypothalamo-neurohypophyseal system mediates the effect of PRL on OXT and AVP release and whether these effects operate in males. Plasma levels of OXT and AVP were measured in male rats after the intracerebroventricular injection of PRL or after inducing hyperprolactinemia by placing two anterior pituitary glands under the kidney capsule. NOS activity was evaluated in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei by NADPH-diaphorase histochemistry and in hypothalamic extracts by the phosphorylation/inactivation of nNOS at Ser(847). Elevated central and systemic PRL correlated with increased NOS activity in the PVN and SON and with higher OXT and AVP circulating levels. Notably, treatment with 7-nitroindazole, a selective inhibitor of nNOS, prevented PRL-induced stimulation of the release of both neurohormones. Also, phosphorylation of nNOS was reduced in hyperprolactinemic rats, and treatment with bromocriptine, an inhibitor of anterior pituitary PRL secretion, suppressed this effect. These findings suggest that PRL enhances nNOS activity in the PVN and SON, thereby contributing to the regulation of OXT and AVP release. This mechanism likely contributes to the regulation of processes beyond those of female reproduction.
Collapse
Affiliation(s)
- Claudia Vega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Carbon monoxide and nitric oxide modulate hyperosmolality-induced oxytocin secretion by the hypothalamus in vitro. Biosci Rep 2010. [DOI: 10.1042/bsr20090010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OT (oxytocin) is secreted from the posterior pituitary gland, and its secretion has been shown to be modulated by NO (nitric oxide). In rats, OT secretion is also stimulated by hyperosmolarity of the extracellular fluid. Furthermore, NOS (nitric oxide synthase) is located in hypothalamic areas involved in fluid balance control. In the present study, we evaluated the role of the NOS/NO and HO (haem oxygenase)/CO (carbon monoxide) systems in the osmotic regulation of OT release from rat hypothalamus in vitro. We conducted experiments on hypothalamic fragments to determine the following: (i) whether NO donors and NOS inhibitors modulate OT release and (ii) whether the changes in OT response occur concurrently with changes in NOS or HO activity in the hypothalamus. Hyperosmotic stimulation induced a significant increase in OT release that was associated with a reduction in nitrite production. Osmotic stimulation of OT release was inhibited by NO donors. NOS inhibitors did not affect either basal or osmotically stimulated OT release. Blockade of HO inhibited both basal and osmotically stimulated OT release, and induced a marked increase in NOS activity. These results indicate the involvement of CO in the regulation of NOS activity. The present data demonstrate that hypothalamic OT release induced by osmotic stimuli is modulated, at least in part, by interactions between NO and CO.
Collapse
|
12
|
Carbon monoxide and nitric oxide modulate hyperosmolality-induced oxytocin secretion by the hypothalamus in vitro. Biosci Rep 2010; 30:351-7. [PMID: 20518746 DOI: 10.1042/bsr2009010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OT (oxytocin) is secreted from the posterior pituitary gland, and its secretion has been shown to be modulated by NO (nitric oxide). In rats, OT secretion is also stimulated by hyperosmolarity of the extracellular fluid. Furthermore, NOS (nitric oxide synthase) is located in hypothalamic areas involved in fluid balance control. In the present study, we evaluated the role of the NOS/NO and HO (haem oxygenase)/CO (carbon monoxide) systems in the osmotic regulation of OT release from rat hypothalamus in vitro. We conducted experiments on hypothalamic fragments to determine the following: (i) whether NO donors and NOS inhibitors modulate OT release and (ii) whether the changes in OT response occur concurrently with changes in NOS or HO activity in the hypothalamus. Hyperosmotic stimulation induced a significant increase in OT release that was associated with a reduction in nitrite production. Osmotic stimulation of OT release was inhibited by NO donors. NOS inhibitors did not affect either basal or osmotically stimulated OT release. Blockade of HO inhibited both basal and osmotically stimulated OT release, and induced a marked increase in NOS activity. These results indicate the involvement of CO in the regulation of NOS activity. The present data demonstrate that hypothalamic OT release induced by osmotic stimuli is modulated, at least in part, by interactions between NO and CO.
Collapse
|
13
|
Stabile AM, Moreto V, Antunes-Rodrigues J, Carnio EC. Central but not systemic inhibition of inducible nitric oxide synthase modulates oxytocin release during endotoxemic shock. Peptides 2010; 31:706-11. [PMID: 19932725 DOI: 10.1016/j.peptides.2009.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 11/05/2009] [Accepted: 11/08/2009] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by i.v. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6h post-injection. LPS significantly increased plasma OT concentration at 2 and 4h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock.
Collapse
Affiliation(s)
- Angelita Maria Stabile
- Department of General and Specialized Nursing, University of São Paulo, College of Nursing, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
14
|
Pressor response to fluid resuscitation in endotoxic shock: Involvement of vasopressin*. Crit Care Med 2009; 37:2968-72. [DOI: 10.1097/ccm.0b013e3181b02e3b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Scordalakes EM, Yue C, Gainer H. Experimental approaches for the study of oxytocin and vasopressin gene expression in the central nervous system. PROGRESS IN BRAIN RESEARCH 2009; 170:43-51. [PMID: 18655870 DOI: 10.1016/s0079-6123(08)00404-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Intron-specific probes measure heteronuclear RNA (hnRNA) levels and thus approximate the transcription rates of genes, in part because of the rapid turnover of this intermediate form of RNA in the cell nucleus. Previously, we used oxytocin (Oxt)- and vasopressin (Avp)- intron-specific riboprobes to measure changes in Oxt and Avp hnRNA levels in the supraoptic nucleus (SON) by quantitative in situ hybridization (ISH) after various classical physiological perturbations, including acute and chronic salt loading, and lactation. In the present experiments, we used a novel experimental model to study the neurotransmitter regulation of Oxt and Avp gene expression in the rat SON in vivo. Bilateral cannulae connected via tubing to Alzet osmotic mini-pumps were positioned over the SON. In every experiment, one SON was infused with PBS and served as the control SON in each animal, and the contralateral SON received infusions of various neurotransmitter agonists and antagonists. Using this approach, we found that Avp but not Oxt gene expression increased after acute (2-5h) combined excitatory amino acid agonist and GABA antagonist treatment, similar to what we found after an acute hyperosmotic stimulus. Since both OXT and AVP are known to be comparably and robustly secreted in response to acute osmotic stimuli in vivo and glutamate agonists in vitro, our results indicate a dissociation between OXT secretion and Oxt gene transcription in vivo.
Collapse
Affiliation(s)
- Elka M Scordalakes
- Laboratory of Neurochemistry, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
16
|
Ventura R, Aguiar J, Antunes-Rodrigues J, Varanda W. Nitric oxide modulates the firing rate of the rat supraoptic magnocellular neurons. Neuroscience 2008; 155:359-65. [DOI: 10.1016/j.neuroscience.2008.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
|
17
|
Ryu V, Lee JH, Um JW, Yoo SB, Lee J, Chung KC, Jahng JW. Water-deprivation-induced expression of neuronal nitric oxide synthase in the hypothalamic paraventricular nucleus of rat. J Neurosci Res 2008; 86:1371-9. [PMID: 18092361 DOI: 10.1002/jnr.21598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study was conducted to define the molecular mechanism by which dehydration induces expression of neuronal nitric oxide synthase (nNOS) in the hypothalamic paraventricular nucleus (PVN). Rats were deprived from water for 48 hr and then sacrificed immediately or 1 hr after ad libitum access to water. Another group of rats had free access to food and water and was included as euhydrate control group. The PVN sections fixed with 4% paraformaldehyde were processed for nNOS immunohistochemistry and NADPH-diaphorase (NADPH-d)/pCREB or NADPH-d/c-Fos double staining. nNOS-ir neurons significantly increased with water deprivation and decreased with rehydration, both in the posterior magnocellular (pM)- and the medial parvocellular (mP)-PVN. Most NADPH-d histostained neurons in the PVN appeared to exhibit pCREB-ir as well. Water deprivation markedly increased, and rehydration decreased, NADPH-d/pCREB neurons both in the pM- and in the mP-PVN. Gel shift assay demonstrated that dehydration may promote CREB binding to nNOS promoter in the PVN neurons. Significant amounts of NADPH-d-stained neurons in the PVN of water-deprived rats (67-68% in both the mP and the pM) exhibited c-Fos-ir. NADPH-d/c-Fos neurons in the pM-PVN were increased by water deprivation but not changed by rehydration. NADPH-d/c-Fos double-stained neurons in the mP-PVN did not significantly change depending on different water conditions. These results suggest that pCREB may play a role in dehydration-induced nNOS gene expression in the PVN neurons, and c-Fos might not be implicated in the regulatory pathway.
Collapse
Affiliation(s)
- Vitaly Ryu
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 2008; 35:17-27. [DOI: 10.1007/s00726-007-0630-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/31/2007] [Indexed: 02/04/2023]
|
19
|
Yue C, Mutsuga N, Sugimura Y, Verbalis J, Gainer H. Differential kinetics of oxytocin and vasopressin heteronuclear RNA expression in the rat supraoptic nucleus in response to chronic salt loading in vivo. J Neuroendocrinol 2008; 20:227-32. [PMID: 18088359 DOI: 10.1111/j.1365-2826.2007.01640.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that the secretion of oxytocin and vasopressin from the posterior pituitary always accompanies systemic hyperosmotic stimuli in rats, and that oxytocin and vasopressin mRNAs consistently increase in response to prolonged hyperosmotic stimuli. Hence, it has been widely interpreted that oxytocin and vasopressin secretion and gene expression are closely coupled. In the present study, we used both vasopressin and oxytocin intron- specific probes to measure vasopressin and oxytocin heteronuclear RNA (hnRNA) levels, respectively, by in situ hybridisation in the rat supraoptic nucleus (SON) in conjunction with radioimmunoassays of vasopressin and oxytocin peptide levels in plasma and in the posterior pituitary in normally hydrated rats and after 1-5 days of salt loading. Increased oxytocin secretion in response to hyperosmotic stimuli exceeded vasopressin secretion at every time point studied. Vasopressin hnRNA in the SON increased to near maximal levels within minutes after the hyperosmotic stimulus, and was maintained throughout all 5 days of salt loading. By contrast, oxytocin hnRNA did not significantly change from control levels until approximately 2 days after hyperosmotic stimulation, and was not maximal until 3 days. In summary, increases in oxytocin gene transcription in response to osmotic stimuli are dramatically delayed compared to increases in vasopressin gene transcription under the same conditions. These data indicate that oxytocin gene transcription is not as closely correlated with pituitary peptide secretion as is vasopressin gene transcription, and suggests that there is a fundamental difference in excitation-secretion-transcription coupling mechanisms that regulate these two closely related genes in the rat magnocellular neurones in the SON.
Collapse
Affiliation(s)
- C Yue
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
20
|
de Magalhães-Nunes AP, Badauê-Passos D, Ventura RR, Guedes DDS, Araújo JP, Granadeiro PC, Milanez-Barbosa HK, da Costa-e-Sousa RH, de Medeiros MA, Antunes-Rodrigues J, Reis LC. Sertraline, a selective serotonin reuptake inhibitor, affects thirst, salt appetite and plasma levels of oxytocin and vasopressin in rats. Exp Physiol 2007; 92:913-22. [PMID: 17573416 DOI: 10.1113/expphysiol.2007.037358] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effects of chronic administration of sertraline (SERT; approximately 20 mg kg(-1) day(-1) in drinking water), a selective serotonin reuptake inhibitor, on water and sodium intake and on plasma levels of oxytocin (OT) and vasopressin (AVP) in basal and stimulated conditions. Basal water intake was reduced in SERT-treated rats. After 24 h of water deprivation, rats treated with SERT for 21 days ingested less water than the control rats (9.7 +/- 0.5 versus 20.0 +/- 0.9 ml, respectively, at 300 min after water presentation, P < 0.0001). Subcutaneous injection of 2 m NaCl or isoproterenol evoked a lower dipsogenic response in rats treated with SERT for 21 days. Fluid and food deprivation also induced a weaker dipsogenic response in SERT-treated rats (1.6 +/- 0.5 versus 10.2 +/- 1.2 ml, at 300 min, P < 0.0001) but had no effect on saline intake. Sodium depletion induced a higher natriorexigenic response in the SERT group (5.6 +/- 1.3 versus 1.2 +/- 0.3 ml, at 300 min, P < 0.0002). Higher urinary density and lower plasma sodium levels were observed after SERT treatment. Sertraline also increased plasma levels of vasopressin and oxytocin (AVP, 2.65 +/- 0.36 versus 1.31 +/- 0.16 pg ml(-1), P < 0.005; OT, 17.16 +/- 1.06 versus 11.3 +/- 1.03 pg ml(-1), P < 0.0009, at the third week post-treatment). These data constitute the first evidence that chronic SERT treatment affects water and sodium intake in rats. These effects seem to be related to the hyponatraemia caused by the higher plasma levels of AVP and OT.
Collapse
|
21
|
Lauand F, Ruginsk SG, Rodrigues HLP, Reis WL, de Castro M, Elias LLK, Antunes-Rodrigues J. Glucocorticoid modulation of atrial natriuretic peptide, oxytocin, vasopressin and Fos expression in response to osmotic, angiotensinergic and cholinergic stimulation. Neuroscience 2007; 147:247-57. [PMID: 17524563 DOI: 10.1016/j.neuroscience.2007.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/04/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
The regulation of fluid and electrolyte homeostasis involves the participation of several neuropeptides and hormones that utilize hypothalamic cholinergic, alpha-adrenergic and angiotensinergic neurotransmitters and pathways. Additionally, it has been suggested that hypothalamus-pituitary-adrenal axis activity modulates hormonal responses to blood volume expansion. In the present study, we evaluated the effect of dexamethasone on atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) responses to i.c.v. microinjections of 0.15 M and 0.30 M NaCl, angiotensin-II (ANG-II) and carbachol. We also evaluated the Fos protein immunoreactivity in the median preoptic (MnPO), paraventricular (PVN) and supraoptic (SON) nuclei. Male Wistar rats received an i.p. injection of dexamethasone (1 mg/kg) or vehicle (0.15 M NaCl) 2 h before the i.c.v. microinjections. Blood samples for plasma ANP, OT, AVP and corticosterone determinations were collected at 5 and 20 min after stimulus. Another set of rats was perfused 120 min after stimulation. A significant increase in plasma ANP, OT, AVP and corticosterone levels was observed at 5 and 20 min after each central stimulation compared with isotonic saline-injected group. Pre-treatment with dexamethasone decreased plasma corticosterone and OT levels, with no changes in the AVP secretion. On the other hand, dexamethasone induced a significant increase in plasma ANP levels. A significant increase in the number of Fos immunoreactive neurons was observed in the MnPO, PVN and SON after i.c.v. stimulations. Pre-treatment with dexamethasone induced a significant decrease in Fos immunoreactivity in these nuclei compared with the vehicle. These results indicate that central osmotic, cholinergic, and angiotensinergic stimuli activate MnPO, PVN and SON, with a subsequent OT, AVP, and ANP release. The present data also suggest that these responses are modulated by glucocorticoids.
Collapse
Affiliation(s)
- F Lauand
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida dos Bandeirantes, 3900 Monte Alegre, CEP 14049-900 Ribeirao Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Giusti-Paiva A, Martinez MR, Bispo-da-Silva LB, Salgado MCO, Elias LLK, Antunes-Rodrigues J. VASOPRESSIN MEDIATES THE PRESSOR EFFECT OF HYPERTONIC SALINE SOLUTION IN ENDOTOXIC SHOCK. Shock 2007; 27:416-21. [PMID: 17414425 DOI: 10.1097/01.shk.0000239759.05583.fd] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The administration of lipopolysaccharide (LPS) to experimental animals results in a septic shock-like syndrome characterized by hypotension, and the hemodynamic management includes the restoration of adequate tissue perfusion by administration of resuscitation fluids to achieve an effective circulating volume. In the present study, we sought to investigate the effects of hypertonic saline solution administration on vasopressin secretion and mean arterial pressure in endotoxic shock. The pressor response to isotonic saline solution (0.9% sodium chloride) or hypertonic saline (7.5% sodium chloride, 4 mL/kg i.v.) was evaluated 4 h after LPS (1.5 mg/kg) administration. At this moment, plasma vasopressin did not differ from control; however, the blood pressure was lower in the LPS-treated group. The hypertonic saline administration was followed by an immediate recovery of blood pressure and also by an increase in plasma vasopressin levels compared with isotonic saline solution. The vasopressin V1 receptor antagonist (10 microg/kg, i.v., 5 min before infusion) blocked the pressor response to hypertonic saline solution. These data suggest that the recovery of blood pressure after hypertonic saline solution administration during endotoxic shock is mediated by vasopressin secretion.
Collapse
|
23
|
Vargas F, Moreno JM, Wangensteen R, Rodríguez-Gómez I, García-Estañ J. The endocrine system in chronic nitric oxide deficiency. Eur J Endocrinol 2007; 156:1-12. [PMID: 17218720 DOI: 10.1530/eje.1.02314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The experimental model of chronic inhibition of nitric oxide (NO) production has proven to be a useful tool to study cardiovascular and renal lesions produced by this type of hypertension, which are similar to those found in human hypertension. It also offers a unique opportunity to study the interaction of NO with the humoral systems, known to have a role in the normal physiology of vascular tone and renal function. This review provides a thorough and updated analysis of the interactions of NO with the endocrine system. There is special focus on the main vasoactive factors, including the renin-angiotensin-aldosterone system, catecholamines, vasopressin, and endothelin among others. Recent discoveries of crosstalk between the endocrine system and NO are also reported. Study of these humoral interactions indicates that NO is a molecule with ubiquitous function and that its inhibition alters virtually to all other known regulatory systems. Thus, hypothyroidism attenuates the pressor effect of NO inhibitor N-nitro-L-arginine methyl ester, whereas hyperthyroidism aggravates the effects of NO synthesis inhibition; the sex hormone environment determines the blood pressure response to NO blockade; NO may play a homeostatic role against the prohypertensive effects of mineralocorticoids, thyroid hormones and insulin; and finally, NO deficiency affects not only blood pressure but also glucose and lipid homeostasis, mimicking the human metabolic syndrome X, suggesting that NO deficiency may be a link between metabolic and cardiovascular disease.
Collapse
Affiliation(s)
- Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, E-18012 Granada, Spain.
| | | | | | | | | |
Collapse
|
24
|
Maolood N, Grange-Messent V, Raison D, Hardin-Pouzet H. Noradrenergic regulation in mouse supraoptic nucleus involves a nitric oxide pathway only to regulate arginine-vasopressin expression and not oxytocin expression. J Neurosci Res 2007; 85:2991-9. [PMID: 17628500 DOI: 10.1002/jnr.21394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Noradrenalin (NA) regulates the expression of arginine-vasopressin (AVP) and oxytocin (OT) by magnocellular neurons in the supraoptic nucleus (SON) of the hypothamalus. Nitric oxide (NO) may be one of the factors involved in the NA signaling pathway regulating AVP and OT expression. To test this possibility, we used an ex vivo experimental model of mouse hypothalamus slices. Increases in AVP and OT levels in the SON were detected by immunohistochemistry and immunoenzyme assays after 1 hr and 4 hr incubations with NA (10(-4) M). There was also an increase in the expression and activity of neuronal NOS and inducible NOS in the SON as assessed by immunohistochemical and histoenzymological analysis of NADPH-diaphorase, whereas endothelial NOS was undetectable. To specify the role of NO, the slices were treated with NA and L-arginine methyl ester (L-NAME, an NOS inhibitor; 3 microM). This treatment for 1 hr abolished the NA-induced increase in AVP. Treatment with sodium nitroprusside (SNP, an NO donor; 0.1 mM) increased AVP levels, confirming that NO regulates AVP expression. Addition of 1 mM EGTA during the incubation with NA reduced the AVP increase by half, indicating that both nNOS and iNOS activities are involved in the regulation. A 1-hr treatment with L-NAME did not prevent the increase in OT induced by NA; similarly, treatment with SNP had no effect. These findings show that NO is involved in the regulation of AVP expression by NA and that NA control of OT expression is independent of NO.
Collapse
Affiliation(s)
- Nasren Maolood
- NSI, CNRS UMR 7101, Université Pierre et Marie Curie--Paris VI, Paris, France
| | | | | | | |
Collapse
|
25
|
Fujio T, Fujihara H, Shibata M, Yamada S, Onaka T, Tanaka K, Morita H, Dayanithi G, Kawata M, Murphy D, Ueta Y. Exaggerated response of arginine vasopressin-enhanced green fluorescent protein fusion gene to salt loading without disturbance of body fluid homeostasis in rats. J Neuroendocrinol 2006; 18:776-85. [PMID: 16965296 DOI: 10.1111/j.1365-2826.2006.01476.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined the effects of chronic salt loading on the hypothalamic expressions of the enhanced green fluorescent protein (eGFP), arginine vasopressin (AVP) and oxytocin (OXT) genes in AVP-eGFP transgenic rats that expressed eGFP in the hypothalamic AVP-containing neurones. In these rats, salt loading for 5 days caused a marked increase of the eGFP fluorescence in the magnocellular divisions of the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the internal layer of the median eminence. Expression of the eGFP gene was increased seven- to eight-fold in the PVN and SON of salt-loaded rats in comparison with euhydrated rats. By contrast, none of these changes were observed in the suprachiasmatic nucleus. The expression of the AVP and OXT genes was increased 1.5- to two-fold in the PVN and SON of salt-loaded nontransgenic (control) and transgenic rats. There were no differences in the expression levels of the AVP and OXT genes in the PVN and SON between nontransgenic (control) and transgenic animals under normal conditions and after salt loading. In the posterior pituitary gland, the intensity of the eGFP fluorescence did not change after salt loading for 5 days, but increased after 10 days of salt loading. Upon salt loading, significant increases in the plasma AVP concentrations, plasma osmolality and plasma Na+ were observed. Furthermore, there were no significant differences in changes of water intake, food intake, urine volume, urine osmolality, urine Na+ concentrations, and the body weights in both models under normal or salt-loaded conditions. Our results show that the response of the AVP-eGFP fusion gene to chronic salt loading is exaggerated, and humoral responses such as AVP and OXT and the body fluid homeostasis are maintained in AVP-eGFP transgenic rats. The AVP-eGFP transgenic rat gives us a new opportunity to study the dynamics of the AVP system in vivo.
Collapse
Affiliation(s)
- T Fujio
- Department of Occupational Health, Matsushita Science Center of Industrial Hygiene, Kadoma, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wangensteen R, Rodríguez-Gómez I, Moreno JM, Alvarez-Guerra M, Osuna A, Vargas F. Effects of chronic treatment with 7-nitroindazole in hyperthyroid rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1376-82. [PMID: 16778061 DOI: 10.1152/ajpregu.00722.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study analyzed the contribution of neuronal nitric oxide synthase (nNOS) to the hemodynamic manifestations of hyperthyroidism. The effects on hyperthyroid rats of the chronic administration of 7-nitroindazole (7-NI), an inhibitor of nNOS, were studied. Six groups of male Wistar rats were used: control, 7-NI (30 mg.kg-1.day-1 by gavage), T(4)50, T(4)75 (50 or 75 microg thyroxine.rat-1.day-1, respectively), T(4)50+7-NI, and T(4)75+7-NI. All treatments were maintained for 4 wk. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, SBP, pulse pressure (PP), and HR were measured in conscious rats, and morphological, metabolic, plasma, and renal variables were determined. Expression of nNOS in the hypothalamus of T(4)75 and control rats was analyzed by Western blot analysis. The response of mean arterial pressure (MAP) to pentolinium (10 mg/kg iv) was used to evaluate the sympathetic contribution to BP in T(4)75 and T(4)75+7-NI rats. T(4) produced an increased hypothalamic nNOS expression and dose-related increases in blood pressure (BP), HR, and PP vs. control rats. 7-NI did not modify BP or any other hemodynamic variable in normal rats. However, 7-NI produced a marked reduction in BP, HR, PP, and food and water intake in both hyperthyroid groups and improved creatinine clearance in the T(4)75 group. Pentolinium produced a greater MAP decrease in the T(4)75+7-NI than in the T(4)75 group. In conclusion, administration of 7-NI attenuates the hemodynamic and metabolic manifestations of hyperthyroidism, suggesting that nNOS contributes to the hyperdynamic circulation of this endocrine disease by modulating sympathetic activity.
Collapse
Affiliation(s)
- Rosemary Wangensteen
- Departamento de Ciencias de la Salud, Universidad de Jaén, and Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | |
Collapse
|