1
|
Chen X, Gui W, Li H, Deng Z, Wang Y. Alterations of amygdala volume and functional connectivity in migraine patients comorbid with and without depression. Brain Behav 2024; 14:e3427. [PMID: 38361322 PMCID: PMC10869885 DOI: 10.1002/brb3.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE The comorbid relationship between migraine and depression has been well recognized, but its underlying pathophysiology is unclear. Here, we aimed to explore the structural changes of the amygdala and the abnormal functional connectivity of the centromedial amygdala (CMA) in migraineurs with depression. METHODS High-resolution T1-weighted and functional magnetic resonance images were acquired from 22 episodic migraineurs with comorbid depression (EMwD), 21 episodic migraineurs without depression (EM), and 17 healthy controls (HC). Voxel-based morphometry and resting-state functional connectivity (rsFC) were applied to examine the intergroup differences in amygdala volume. RESULTS The bilateral amygdala volume was increased in the EMwD and EM groups compared with the HC group, but there were no differences between the EMwD and EM groups. The right CMA exhibited decreased rsFC in the left dorsolateral prefrontal cortex (DLPFC) in the EMwD group compared with the EM group, while rsFC increased between the CMA and the contralateral DLPFC in the EM group compared with the HC group. In addition, the EM group showed decreased rsFC between the left CMA and the left pallidum compared with the HC group. CONCLUSIONS Enlarged amygdala is an imaging feature of EM and EMwD. The inconsistency of rsFC between CMA and DLPFC between migraineurs with and without depression might indicate that decreased rsFC between CMA and DLPFC is a neuropathologic marker for the comorbidity of migraine and depression. The core regions might be a potential intervention target for the treatment of EMwD in the future.
Collapse
Affiliation(s)
- Xin Chen
- Department of NeurologyFirst Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of NeurologyAnhui Public Health Clinical CenterHefeiChina
| | - Wei Gui
- Department of NeurologyFirst Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| | - Han‐Li Li
- Department of Neurology, Epilepsy and Headache GroupFirst Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Zi‐Ru Deng
- Department of Neurology, Epilepsy and Headache GroupFirst Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yu Wang
- Department of Neurology, Epilepsy and Headache GroupFirst Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
2
|
Schertz M, Karni-Visel Y, Genizi J, Manishevitch H, Lam M, Akawi A, Dudai M, Fenton AA, Bikson M. Transcranial Direct Current Stimulation (tDCS) in children with ADHD: A randomized, sham-controlled pilot study. J Psychiatr Res 2022; 155:302-312. [PMID: 36174365 DOI: 10.1016/j.jpsychires.2022.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND ADHD is a common neurodevelopmental disorder with a pediatric prevalence of 5.2%.While medication treatment for ADHD is effective, it does not address all symptoms and a small but notable subgroup does not respond to medications. Adverse effects limit its use and some parents and participants resist use of medication. Thus, limitations of medication treatment for ADHD motivate searching for other therapeutic options. Transcranial Direct Current Stimulation (tDCS) has been suggested as a treatment for children with ADHD, with mixed results to date. Protocol variables employed, including combined use of cognitive training (CT) and scheduling of sessions, may explain diverse findings to date. The aim of this study was to examine safety, feasibility and efficacy of tDCS combined with CT provided three-times-per week for one-month to treat children with ADHD. METHODS In a double blind, randomized, sham-controlled pilot study, 25 children with ADHD were randomized to receive 12 sessions of either anodal tDCS or sham-tDCS for 20 min combined with CT three-times-per-week for four weeks. The tDCS anode was over left dorsolateral prefrontal cortex (DLPFC) and cathode over vertex. Assessments were obtained prior to, after 6 sessions, 12 sessions and one-month after intervention. RESULTS No significant post-intervention differences were found between those receiving tDCS or sham-tDCS. Both groups demonstrated significant improvement on questionnaire measures of ADHD and executive function with mixed results seen on computerized performance measures. Overall, adverse effects were mild with no significant difference between groups. However, three children, all from the tDCS group, experienced headaches with two requiring temporary cessation and one requiring removal from the study. CONCLUSIONS Anodal tDCS to the DLPFC using the above protocol in children with ADHD did not demonstrate additional treatment benefits beyond that of CT.
Collapse
Affiliation(s)
- Mitchell Schertz
- Child Development and Pediatric Neurology Service, Meuhedet- Northern Region, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Yael Karni-Visel
- Child Development and Pediatric Neurology Service, Meuhedet- Northern Region, Haifa, Israel; Louis and Gabi Weisfeld School of Social Work, Bar Ilan University, Ramat Gan, Israel
| | - Jacob Genizi
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel; Bnai Zion Medical Center, Haifa, Israel
| | - Hofit Manishevitch
- Child Development and Pediatric Neurology Service, Meuhedet- Northern Region, Haifa, Israel
| | - Menachem Lam
- Child Development and Pediatric Neurology Service, Meuhedet- Northern Region, Haifa, Israel
| | - Ashraf Akawi
- Child Development and Pediatric Neurology Service, Meuhedet- Northern Region, Haifa, Israel
| | - Michal Dudai
- Child Development and Pediatric Neurology Service, Meuhedet- Northern Region, Haifa, Israel
| | - André A Fenton
- Center for Neural Science, New York University and Neuroscience Institute at the NYU Langone Medical Center, USA
| | | |
Collapse
|
3
|
Correlations between facial emotion processing and biochemical abnormalities in untreated adolescent patients with major depressive disorder: A proton magnetic resonance spectroscopy study. J Affect Disord 2022; 296:408-417. [PMID: 34638025 DOI: 10.1016/j.jad.2021.08.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Studies show that disturbances of the fronto-striato-thalamic-cerebellar circuit could be correlated to facial emotion processing (FEP) biases in major depressive disorder (MDD). Nevertheless, the underlying mechanism of natural metabolism-emotion relationships in adolescent MDD remains unclear. METHODS Thirty-seven adolescent patients with MDD and 30 healthy controls completed FEP tasks using the Chinese Facial Affective Picture System (CAFPS). Proton magnetic resonance spectroscopy (1H-MRS) was also used to obtain ratios of N-acetylaspartate (NAA) /creatine (Cr) and choline (Cho) /Cr ratios in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), putamen, thalamus and cerebellum. Correlations between abnormal neurometabolic ratios and FEP were also computed. RESULTS Compared with the control group, the MDD group had significantly lower accuracy and perception intensity of happiness, and significantly higher accuracy of disgust and perception intensity of sad and fearful faces in FEP tasks. Compared to healthy controls, adolescent patients with MDD showed significantly lower NAA/Cr ratios in the left PFC, higher NAA/Cr ratios in the right thalamus, and higher Cho/Cr ratios in the right putamen, although there were no significant differences in metabolites in the ACC and cerebellum between two groups. In the MDD group, NAA/Cr ratios of the right thalamus were negatively correlated with happy reaction time and positively correlated with sad, anger, and fear intensity; Cho/Cr ratios in the right putamen were positively correlated with fear reaction time. CONCLUSIONS Our findings suggest that FEP bias may exist in adolescents with MDD, while the impairment of FEP may be associated with abnormal metabolites in the fronto-striato-thalamic circuit.
Collapse
|
4
|
Saturation transfer MRI is sensitive to neurochemical changes in the rat brain due to chronic unpredictable mild stress. Sci Rep 2021; 11:19040. [PMID: 34561488 PMCID: PMC8463565 DOI: 10.1038/s41598-021-97991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) MRI was performed for the evaluation of cerebral metabolic changes in a rat model of depressive-like disease induced by chronic unpredictable mild stress (CUMS). CEST Z-spectra were acquired on a 7 T MRI with two saturation B1 amplitudes (0.5 and 0.75 µT) to measure the magnetization transfer ratio (MTR), CEST and relayed nuclear Overhauser effect (rNOE). Cerebral cortex and hippocampus were examined in two groups of animals: healthy control (n = 10) and stressed (n = 14), the latter of which was exposed to eight weeks of the CUMS protocol. The stressed group Z-spectrum parameters, primarily MTRs, were significantly lower than in controls, at all selected frequency offsets (3.5, 3.0, 2.0, - 3.2, - 3.6 ppm) in the cortex (the largest difference of ~ 3.5% at - 3.6 ppm, p = 0.0005) and the hippocampus (MTRs measured with a B1 = 0.5 µT). The hippocampal rNOE contributions decreased significantly in the stressed brains. Glutamate concentration (assessed using ELISA) and MTR at 3 ppm correlated positively in both brain regions. GABA concentration also correlated positively with CEST contributions in both cerebral areas, while such correlation with MTR was positive in hippocampus, and nonsignificant in cortex. Results indicate that CEST is sensitive to neurometabolic changes following chronic stress exposure.
Collapse
|
5
|
Abstract
RATIONALE Proton magnetic resonance spectroscopy (1H-MRS) is a cross-species neuroimaging technique that can measure concentrations of several brain metabolites, including glutamate and GABA. This non-invasive method has promise in developing centrally acting drugs, as it can be performed repeatedly within-subjects and be used to translate findings from the preclinical to clinical laboratory using the same imaging biomarker. OBJECTIVES This review focuses on the utility of single-voxel 1H-MRS in developing novel glutamatergic or GABAergic drugs for the treatment of psychiatric disorders and includes research performed in rodent models, healthy volunteers and patient cohorts. RESULTS Overall, these studies indicate that 1H-MRS is able to detect the predicted pharmacological effects of glutamatergic or GABAergic drugs on voxel glutamate or GABA concentrations, although there is a shortage of studies examining dose-related effects. Clinical studies have applied 1H-MRS to better understand drug therapeutic mechanisms, including the glutamatergic effects of ketamine in depression and of acamprosate in alcohol dependence. There is an emerging interest in identifying patient subgroups with 'high' or 'low' brain regional 1H-MRS glutamate levels for more targeted drug development, which may require ancillary biomarkers to improve the accuracy of subgroup discrimination. CONCLUSIONS Considerations for future research include the sensitivity of single-voxel 1H-MRS in detecting drug effects, inter-site measurement reliability and the interpretation of drug-induced changes in 1H-MRS metabolites relative to the known pharmacological molecular mechanisms. On-going technological development, in single-voxel 1H-MRS and in related complementary techniques, will further support applications within CNS drug discovery.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
6
|
Mana S, Paillère Martinot ML, Martinot JL. Brain imaging findings in children and adolescents with mental disorders: A cross-sectional review. Eur Psychiatry 2020; 25:345-54. [PMID: 20620025 DOI: 10.1016/j.eurpsy.2010.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/08/2010] [Accepted: 04/22/2010] [Indexed: 01/18/2023] Open
Abstract
AbstractBackgroundWhile brain imaging studies of juvenile patients has expanded in recent years to investigate the cerebral neurophysiologic correlates of psychiatric disorders, this research field remains scarce. The aim of the present review was to cluster the main mental disorders according to the differential brain location of the imaging findings recently reported in children and adolescents reports. A second objective was to describe the worldwide distribution and the main directions of the recent magnetic resonance imaging (MRI) and positron tomography (PET) studies in these patients.MethodsA survey of 423 MRI and PET articles published between 2005 and 2008 was performed. A principal component analysis (PCA), then an activation likelihood estimate (ALE) meta-analysis, were applied on brain regional information retrieved from articles in order to cluster the various disorders with respect to the cerebral structures where alterations were reported. Furthermore, descriptive analysis characterized the literature production.ResultsTwo hundred and seventy-four articles involving children and adolescent patients were analyzed. Both the PCA and ALE methods clustered, three groups of diagnosed psychiatric disorders, according to the brain structural and functional locations: one group of affective disorders characterized by abnormalities of the frontal-limbic regions; a group of mental disorders with “cognition deficits” mainly related to cortex abnormalities; and one psychomotor condition associated with abnormalities in the basal ganglia. The descriptive analysis indicates a focus on attention deficit hyperactivity disorders and autism spectrum disorders, a general steady rise in the number of annual reports, and lead of US research.ConclusionThis cross-sectional review of child and adolescent mental disorders based on neuroimaging findings suggests overlaps of brain locations that allow to cluster the diagnosed disorders into three sets with respectively marked affective, cognitive, and psychomotor phenomenology. Furthermore, the brain imaging research effort was unequally distributed across disorders, and did not reflect their prevalence.
Collapse
Affiliation(s)
- S Mana
- Service hospitalier central de médecine nucléaire et neurospin, INSERM-CEA, Research Unit 1000 Neuroimaging & psychiatry, University Paris Sud and University Paris Descartes, 4, place Gl.-Leclerc, 91401 Orsay, France.
| | | | | |
Collapse
|
7
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
8
|
Association between prefrontal glutamine levels and neuroticism determined using proton magnetic resonance spectroscopy. Transl Psychiatry 2019; 9:170. [PMID: 31213596 PMCID: PMC6581909 DOI: 10.1038/s41398-019-0500-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence for GABA and glutamate-glutamine dysfunction in the pathogenesis of mood and anxiety disorders. It is important to study this pathology in the early phases of the illness in order to develop new approaches to secondary prevention. New magnetic resonance spectroscopy (MRS) measures allow determining glutamine, the principal metabolite of synaptic glutamate that is directly related to glutamate levels in the synaptic cleft, as well as glutamate and GABA. In contrast to previous investigations, this study used community-based recruitment methods and a combined categorical and dimensional approach to psychopathology. In the study protocol, neuroticism was defined as the primary outcome. Neuroticism shares a large proportion of its genetic variance with mood and anxiety disorders. We examined young adult participants recruited from the general population in a cross-sectional study using 3-T 1H-MRS with one voxel in the left dorsolateral prefrontal cortex (DLPFC). The total sample of N = 110 (61 females) included 18 individuals suffering from MDD and 19 individuals suffering from DSM-IV anxiety disorders. We found that glutamine and glutamine-to-glutamate ratio were correlated with neuroticism in the whole sample (r = 0.263, p = 0.005, and n = 110; respectively, r = 0.252, p = 0.008, and n = 110), even when controlling for depression and anxiety disorder diagnoses (for glutamine: beta = 0.220, p = 0.047, and n = 110). Glutamate and GABA were not significantly correlated with neuroticism (r = 0.087, p = 0.365, and n = 110; r = -0.044, p = 0.645, and n = 110). Lack of self-confidence and emotional instability were the clinical correlates of glutamate-glutamine dysfunction. In conclusion, this study suggests that prefrontal glutamine is increased in early phases of mood and anxiety disorders. Further understanding of glutamate-glutamine dysfunction in stress-related disorders may lead to new therapeutic strategies to prevent and treat these disorders.
Collapse
|
9
|
Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, Plitman E, Sano Y, Tarumi R, ElSalhy M, Katayama N, Ogyu K, Miyazaki T, Kishimoto T, Graff-Guerrero A, Meyer JH, Blumberger DM, Daskalakis ZJ, Mimura M, Nakajima S. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 2019; 24:952-964. [PMID: 30315224 PMCID: PMC6755980 DOI: 10.1038/s41380-018-0252-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Alterations in glutamatergic neurotransmission are implicated in the pathophysiology of depression, and the glutamatergic system represents a treatment target for depression. To summarize the nature of glutamatergic alterations in patients with depression, we conducted a meta-analysis of proton magnetic resonance (1H-MRS) spectroscopy studies examining levels of glutamate. We used the search terms: depress* AND (MRS OR "magnetic resonance spectroscopy"). The search was performed with MEDLINE, Embase, and PsycINFO. The inclusion criteria were 1H-MRS studies comparing levels of glutamate + glutamine (Glx), glutamate, or glutamine between patients with depression and healthy controls. Standardized mean differences (SMD) were calculated to assess group differences in the levels of glutamatergic neurometabolites. Forty-nine studies met the eligibility criteria, which included 1180 patients and 1066 healthy controls. There were significant decreases in Glx within the medial frontal cortex (SMD = -0.38; 95% CI, -0.69 to -0.07) in patients with depression compared with controls. Subanalyses revealed that there was a significant decrease in Glx in the medial frontal cortex in medicated patients with depression (SMD = -0.50; 95% CI, -0.80 to -0.20), but not in unmedicated patients (SMD = -0.27; 95% CI, -0.76 to 0.21) compared with controls. Overall, decreased levels of glutamatergic metabolites in the medial frontal cortex are linked with the pathophysiology of depression. These findings are in line with the hypothesis that depression may be associated with abnormal glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Sho Moriguchi
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Akihiro Takamiya
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Nobuyuki Horita
- 0000 0001 1033 6139grid.268441.dDepartment of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- 0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Yasunori Sano
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Muhammad ElSalhy
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Nariko Katayama
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ariel Graff-Guerrero
- 0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Jeffrey H. Meyer
- 0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Daniel M. Blumberger
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Zafiris J. Daskalakis
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Neuro-metabolite profiles of rodent models of psychiatric dysfunctions characterised by MR spectroscopy. Neuropharmacology 2018; 146:109-116. [PMID: 30472272 DOI: 10.1016/j.neuropharm.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 11/22/2022]
Abstract
Neuroimaging endophenotypes in animal models provide an objective and translationally-relevant alternative to cognitive/behavioral traits in human psychopathologies. Metabolic alterations, such as those involved in the glutamate-cycle, have been proposed to play a preponderant role in both depression and schizophrenia. Chronic Mild Unpredictable Stress (CMUS) and sub-chronic administration of NMDA receptor antagonist generate animal models of depression and schizophrenia, respectively. The models are based on etiologically-relevant factors related to the induction and support of these psychopathologies. To test metabolic alterations within the glutamate-cycle and in other major neurochemicals, single-voxel Magnetic Resonance Spectroscopy was recorded within the hippocampus in both rat models and control animals. Surprisingly, altered glutamate-related metabolites were observed in the CMUS model, but not NMDA-based model, as indicated by decreased glutamine and increased GABA levels. However, both models presented elevated total visible choline and inositol levels relative to controls. These results indicate the presence cell membrane metabolic alterations and inflammatory processes shared in both models, comparable to evidence presented in schizophrenia and depression and other comparable animal models. These translationally-relevant biomarkers may thus form the basis for drug-development targets in both psychopathologies.
Collapse
|
11
|
Godfrey KEM, Gardner AC, Kwon S, Chea W, Muthukumaraswamy SD. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J Psychiatr Res 2018; 105:33-44. [PMID: 30144668 DOI: 10.1016/j.jpsychires.2018.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of gamma-aminobutyric acid (GABA) and/or glutamate neurotransmitter systems have increasingly been implicated in the aetiology of Major Depressive Disorder (MDD). It has been proposed that alterations in GABA and/or glutamate result in an imbalance of inhibition and excitation. In a review of the current literature, we identified studies using Magnetic Resonance Spectroscopy (MRS) to examine the neurotransmitters GABA, glutamate, and the composite glutamate/glutamine measure Glx in patients diagnosed with MDD and healthy controls. Results showed patients with MDD had significantly lower GABA levels compared to controls (-0.35 [-0.61,-0.10], p = 0.007). No significant difference was found between levels of glutamate. Sub-analyses were performed, including only studies where the Anterior Cingulate Cortex (ACC) was the region of interest. GABA and Glx levels were lower in the ACC of MDD patients (-0.56 [-0.93,-0.18] p = 0.004, and 0.40 [-0.81,0.01] p = 0.05). This review indicates widespread cortical reduction of GABA in MDD, with a trend towards a localised reduction of Glx in the ACC. However, given both GABA and glutamate appear decreased a simple interpretation in terms of an imbalance of overall excitation-inhibition is not feasible.
Collapse
Affiliation(s)
- Kate E M Godfrey
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand.
| | - Abby C Gardner
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | - Sarah Kwon
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | - William Chea
- The University of Auckland, School of Pharmacy, 85 Park Road, Auckland, 1023, New Zealand
| | | |
Collapse
|
12
|
Doruk Camsari D, Kirkovski M, Croarkin PE. Therapeutic Applications of Noninvasive Neuromodulation in Children and Adolescents. Psychiatr Clin North Am 2018; 41:465-477. [PMID: 30098658 PMCID: PMC6413505 DOI: 10.1016/j.psc.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances and growing evidence supporting the safety and efficacy of noninvasive neuromodulatory techniques in adults have facilitated the study of neuromodulation applications in children and adolescents. Noninvasive brain stimulation methods such as transcranial direct current stimulation and transcranial magnetic stimulation have been considered in children with depression, autism spectrum disorder, attention-deficit hyperactivity disorder, and other neuropsychiatric disorders. However, current clinical applications of neuromodulation techniques in children and adolescents are nascent. There is a great need for developmentally informed, large, double-blinded, randomized, controlled clinical trials to demonstrate efficacy and safety of noninvasive brain stimulation in children and adolescents.
Collapse
Affiliation(s)
- Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Melissa Kirkovski
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC 3220, Australia
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
13
|
Urrila AS, Hakkarainen A, Castaneda A, Paunio T, Marttunen M, Lundbom N. Frontal Cortex Myo-Inositol Is Associated with Sleep and Depression in Adolescents: A Proton Magnetic Resonance Spectroscopy Study. Neuropsychobiology 2018; 75:21-31. [PMID: 28793304 DOI: 10.1159/000478861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/19/2017] [Indexed: 01/07/2023]
Abstract
AIM This study used proton magnetic resonance spectroscopy (1H MRS) to evaluate the neurochemistry of the frontal cortex in adolescents with symptoms of sleep and depression. METHODS Nineteen non-medicated adolescent boys (mean age 16.0 years; 9 clinical cases with depression/sleep symptoms and 10 healthy controls) underwent 1H MRS at 3 T. MR spectra were acquired from the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex, and frontal white matter. Concentrations of N-acetyl aspartate, total creatine, choline-containing compounds, total glutamine plus glutamate, and myo-inositol (mI) were compared in the 2 subgroups, and correlated with sleep and clinical measures in the total sample. Sleep was assessed with self-report questionnaires and ambulatory polysomnography recordings. RESULTS Concentrations of mI were lower in both frontal cortical regions among the depressed adolescents than in controls. No statistically significant differences in other metabolite concentrations were observed between the subgroups. Frontal cortex mI concentrations correlated negatively with depression severity, subjective daytime sleepiness, insomnia symptoms, and the level of anxiety, and correlated positively with total sleep time and overall psychosocial functioning. The correlations between mI in the ACC and total sleep time as well as daytime sleepiness remained statistically significant when depression severity was controlled in the analyses. CONCLUSION Lower frontal cortex mI may indicate a disturbed second messenger system. Frontal cortical mI may thus be linked to the pathophysiology of depression and concomitant sleep symptoms among maturing adolescents. Short sleep and daytime sleepiness may be associated with frontal cortex mI independently from depression.
Collapse
Affiliation(s)
- Anna S Urrila
- Unit of Mental Health, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
14
|
Ding XQ, Maudsley AA, Schweiger U, Schmitz B, Lichtinghagen R, Bleich S, Lanfermann H, Kahl KG. Effects of a 72 hours fasting on brain metabolism in healthy women studied in vivo with magnetic resonance spectroscopic imaging. J Cereb Blood Flow Metab 2018; 38:469-478. [PMID: 28273723 PMCID: PMC5851137 DOI: 10.1177/0271678x17697721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adaptive response of human brain to stress plays a key role in maintaining health. Knowledge about how stress affects neurometabolism may help to understand adaptive stress responses, and distinguish maladaptation in neuropsychiatric disorders. In this study, neurometabolic responses to fasting stress in healthy women were investigated. Fifteen healthy females were examined for mood and cognition and using whole-brain MR spectroscopic imaging before and immediately after a 72-h fasting. Results were compared to 15 age-matched healthy females who did not taken part in fasting (non-fasting). Maps of the distributions in the brain of N-acetylaspartate (NAA), total choline (tCho), total creatine (tCr), glutamine/glutamate (Glx), and myo-Inositol (mI) were derived. Metabolite concentrations of each brain lobe and cerebellum measured before fasting were compared to those of post-fasting and non-fasting by repeated-measures ANOVA. After fasting, mood scores significantly increased. Glx decreased in all nine brain regions, tCho in eight, NAA in four and tCr in one, with Glx having the greatest change and the frontal lobes being the most affected brain region. In conclusion, fasting directly influences neurometabolism, and the adaptive brain response to maintain energy homeostasis under food deprivation in healthy women is associated with metabolite-selective and region-dependent changes of metabolite contents.
Collapse
Affiliation(s)
- Xiao-Qi Ding
- 1 Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Andrew A Maudsley
- 2 Department of Radiology, University of Miami School of Medicine, Miami, FL, USA
| | - Ulrich Schweiger
- 3 Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Birte Schmitz
- 1 Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Stefan Bleich
- 5 Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- 1 Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Kai G Kahl
- 5 Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Riley CA, Renshaw PF. Brain choline in major depression: A review of the literature. Psychiatry Res Neuroimaging 2018; 271:142-153. [PMID: 29174766 DOI: 10.1016/j.pscychresns.2017.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
The focus of this review is to provide a synthesis of the current literature on the role of brain choline, as measured by proton magnetic resonance spectroscopy (1H-MRS), in major depressive disorder (MDD). The most recent 1H-MRS literature review took place over 10 years ago and, reflecting the high level of research on this topic, much has been learned since then. Higher brain choline levels have been linked to an increase in depression, and a cholinergic model for MDD development has been postulated. However, current 1H-MRS studies have been inconclusive regarding the role of choline in depression. Data from eighty-six peer-reviewed studies were analyzed for a random-effects model meta-analysis. Two significant findings are reported. Papers that did not report segmentation had a significant, moderate effect size. Higher choline concentrations in the frontal lobe were found in depressed patients, both in those who responded to treatment and those who did not, after treatment with psychiatric medication, repetitive transcranial magnetic stimulation, or electroconvulsive therapy. Findings from this review may add to existing information regarding the role of brain choline in MDD. This may provide a future target for treatment and drug development. It also may serve as a biomarker for treatment progress.
Collapse
Affiliation(s)
- Colin A Riley
- University of Utah, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT, USA; Rocky Mountain MIRECC, Department of Veterans Affairs, 500 Foothill Drive, Salt Lake City, UT, USA.
| | - Perry F Renshaw
- University of Utah, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT, USA; Rocky Mountain MIRECC, Department of Veterans Affairs, 500 Foothill Drive, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Mohamed RE, Aboelsafa AA. Multivoxel proton magnetic resonance spectroscopy detects thalamic neurochemical metabolic changes in patients with major depressive disorder. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Grandjean J, Azzinnari D, Seuwen A, Sigrist H, Seifritz E, Pryce CR, Rudin M. Chronic psychosocial stress in mice leads to changes in brain functional connectivity and metabolite levels comparable to human depression. Neuroimage 2016; 142:544-552. [DOI: 10.1016/j.neuroimage.2016.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
|
18
|
Yang XR, Langevin LM, Jaworska N, Kirton A, Lebel RM, Harris AD, Jasaui Y, Wilkes TC, Sembo M, Swansburg R, MacMaster FP. Proton spectroscopy study of the dorsolateral prefrontal cortex in youth with familial depression. Psychiatry Clin Neurosci 2016; 70:269-77. [PMID: 27059533 DOI: 10.1111/pcn.12392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
AIM Structural, functional, and metabolic changes in the dorsolateral prefrontal cortex (DLPFC) are implicated in the pathogenesis of major depressive disorder (MDD). We used proton magnetic resonance spectroscopy ((1) H-MRS) to examine the metabolite choline (glycerophosphocholine plus phosphocholine), which is used as an index of membrane integrity in the left DLPFC, in adolescents and young adults with MDD who were treatment-resistant and had a positive family history compared to healthy controls. Differences in the choline resonance indicate an imbalance between synthesis and degradation activity of neuronal and glia membrane phospholipids. METHODS Seventeen adolescents with MDD and 11 healthy controls underwent (1) H-MRS. A short echo point-resolved spectroscopy (echo time = 30 ms, repetition time = 2000 ms) protocol was used with a voxel (4.5cm(3) , 128 averages) placed within the left DLPFC. RESULTS There were significantly increased choline (P = 0.04) and creatine concentrations (P = 0.005) in the left DLPFC of the MDD group compared to controls. In MDD participants, choline concentration correlated with scores on the Beck Depression Inventory (r = 0.41, P = 0.03). CONCLUSION Increased left DLPFC choline and creatine levels in depressed adolescents may be biomarkers for the disorder. The increased choline levels may indicate abnormalities in neuronal membrane integrity, and the increased creatine could be reflective of altered energy demands and metabolism.
Collapse
Affiliation(s)
- Xiao-Ru Yang
- Department of Psychiatry, Cumming School of Medicine, Montreal, Canada.,Department of Pediatrics, Cumming School of Medicine, Montreal, Canada
| | - Lisa Marie Langevin
- Department of Psychiatry, Cumming School of Medicine, Montreal, Canada.,Department of Pediatrics, Cumming School of Medicine, Montreal, Canada
| | | | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, Montreal, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Montreal, Canada
| | - R Marc Lebel
- Department of Radiology, Cumming School of Medicine, Montreal, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Alberta Children's Hospital Research Institute for Child and Maternal Health, Montreal, Canada.,GE Healthcare, Montreal, Canada
| | - Ashley D Harris
- Department of Radiology, Cumming School of Medicine, Montreal, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Alberta Children's Hospital Research Institute for Child and Maternal Health, Montreal, Canada
| | - Yamile Jasaui
- Department of Psychiatry, Cumming School of Medicine, Montreal, Canada.,Department of Pediatrics, Cumming School of Medicine, Montreal, Canada
| | - T Christopher Wilkes
- Department of Psychiatry, Cumming School of Medicine, Montreal, Canada.,Department of Pediatrics, Cumming School of Medicine, Montreal, Canada.,Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Montreal, Canada
| | - Mariko Sembo
- Department of Psychiatry, Cumming School of Medicine, Montreal, Canada.,Department of Pediatrics, Cumming School of Medicine, Montreal, Canada
| | - Rose Swansburg
- Department of Psychiatry, Cumming School of Medicine, Montreal, Canada.,Department of Pediatrics, Cumming School of Medicine, Montreal, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Cumming School of Medicine, Montreal, Canada.,Department of Pediatrics, Cumming School of Medicine, Montreal, Canada.,Child and Adolescent Imaging Research (CAIR) Program, Alberta Children's Hospital Research Institute for Child and Maternal Health, Montreal, Canada.,Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Montreal, Canada.,Strategic Clinical Network for Addictions and Mental Health, Alberta Health Services, Calgary, Montreal, Canada
| |
Collapse
|
19
|
Khan AW, Corcoran SJ, Esler M, El-Osta A. Epigenomic changes associated with impaired norepinephrine transporter function in postural tachycardia syndrome. Neurosci Biobehav Rev 2016; 74:342-355. [PMID: 27345145 DOI: 10.1016/j.neubiorev.2016.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/05/2016] [Accepted: 06/15/2016] [Indexed: 01/20/2023]
Abstract
The postural tachycardia syndrome (POTS) is characterised clinically by symptoms of light-headedness, palpitations, fatigue and exercise intolerance occurring with standing and relieved by lying down. Symptoms occur in association with an inappropriate rise in heart rate in the absence of a fall in blood pressure with the assumption of standing. The pathophysiology of POTS is complicated and poorly understood. Plasma norepinephrine (NE) is often elevated in patients with POTS, resulting in consideration of dysfunction of the norepinephrine transporter (NET) encoded by SLC6A2 gene. Whilst some studies have implicated a defect in the SLC6A2 gene, the cause of reduced SLC6A2 expression and function remains unclear. The search to explain the molecular mechanism of NET dysfunction has focused on genetic variation in the SLC6A2 gene and remains inconclusive. More recent studies show epigenetic mechanisms implicated in the regulation of SLC6A2 expression. In this article, we discuss the epigenetic mechanisms involved in SLC6A2 repression and highlight the potential therapeutic application of targeting these mechanisms in POTS.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Susan J Corcoran
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia.
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia.
| | - Assam El-Osta
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia; Central Clinical School, Faculty of Medicine, Monash University, Victoria, Australia.
| |
Collapse
|
20
|
Guo Z, Zhang J, Liu X, Hou H, Cao Y, Wei F, Li J, Chen X, Shen Y, Chen W. Neurometabolic characteristics in the anterior cingulate gyrus of Alzheimer's disease patients with depression: a (1)H magnetic resonance spectroscopy study. BMC Psychiatry 2015; 15:306. [PMID: 26626864 PMCID: PMC4667526 DOI: 10.1186/s12888-015-0691-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Depression is a common comorbid psychiatric symptom in patients with Alzheimer's disease (AD), and the prevalence of depression is higher among people with AD compared with healthy older adults. Comorbid depression in AD may increase the risk of cognitive decline, impair patients' function, and reduce their quality of life. However, the mechanisms of depression in AD remain unclear. Here, our aim was to identify neurometabolic characteristics in the brain that are associated with depression in patients with mild AD. METHODS Thirty-seven patients were evaluated using the Neuropsychiatric Inventory (NPI) and Hamilton Depression Rating Scale (HAMD-17), and divided into two groups: 17 AD patients with depression (D-AD) and 20 non-depressed AD patients (nD-AD). Using proton magnetic resonance spectroscopy, we characterized neurometabolites in the anterior cingulate gyrus (ACG) of D-AD and nD-AD patients. RESULTS Compared with nD-AD patients, D-AD patients showed lower N-acetylaspartate/creatine (NAA/Cr) and higher myo-inositol/creatine (mI/Cr) in the left ACG. NPI score correlated with NAA/Cr and mI/Cr in the left ACG, while HAMD correlated with NAA/Cr. CONCLUSIONS Our findings show neurometabolic alterations in D-AD patients. Thus, D-AD pathogenesis may be attributed to abnormal activity of neurons and glial cells in the left ACG.
Collapse
Affiliation(s)
- Zhongwei Guo
- Tongde Hospital of Zhejiang Province and Zhejiang Mental Health Center, Hangzhou, Zhejiang, 310012, China.
| | - Jiangtao Zhang
- Tongde Hospital of Zhejiang Province and Zhejiang Mental Health Center, Hangzhou, Zhejiang, 310012, China.
| | - Xiaozheng Liu
- Center for Cognitive Brain Disorders and Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China.
| | - Hongtao Hou
- Tongde Hospital of Zhejiang Province and Zhejiang Mental Health Center, Hangzhou, Zhejiang, 310012, China.
| | - Yulin Cao
- Tongde Hospital of Zhejiang Province and Zhejiang Mental Health Center, Hangzhou, Zhejiang, 310012, China.
| | - Fuquan Wei
- Tongde Hospital of Zhejiang Province and Zhejiang Mental Health Center, Hangzhou, Zhejiang, 310012, China.
| | - Japeng Li
- Tongde Hospital of Zhejiang Province and Zhejiang Mental Health Center, Hangzhou, Zhejiang, 310012, China.
| | - Xingli Chen
- Tongde Hospital of Zhejiang Province and Zhejiang Mental Health Center, Hangzhou, Zhejiang, 310012, China.
| | - Yuedi Shen
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China.
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, No. 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China. .,Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
21
|
Lirng JF, Chen HC, Fuh JL, Tsai CF, Liang JF, Wang SJ. Increased myo-inositol level in dorsolateral prefrontal cortex in migraine patients with major depression. Cephalalgia 2014; 35:702-9. [DOI: 10.1177/0333102414557048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/04/2014] [Indexed: 11/17/2022]
Abstract
Background Although the comorbidity between migraine and major depressive disorder (MDD) has been recognized, the pathophysiology remains unclear. The dorsolateral prefrontal cortex (DLPFC) is a well-known neural substrate for MDD. We investigated the relationship between brain metabolites in DLPFC and comorbid MDD in migraine patients. Methods We recruited migraine patients from a tertiary headache clinic. A board-certified psychiatrist conducted a structured interview for MDD diagnosis. The severity of depression was evaluated by the Beck Depression Inventory (BDI). Thirty migraine patients (five men, 25 women; mean age: 40.4 ± 12.4 years) completed the study, and 16 of them were diagnosed with MDD. All patients underwent a magnetic resonance spectroscopy (MRS) examination focusing on bilateral DLPFC. The ratios of N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mI) to total creatine (tCr) were compared between migraine patients with and without MDD, and were correlated with BDI scores. Results Relative to patients without MDD, migraine patients with MDD had higher mI/tCr ratios in the bilateral DLPFC ( p = 0.02, left; p = 0.02, right, Mann-Whitney U test). The mI/tCr ratios in the right DLPFC were positively correlated with BDI scores ( r = 0.52, p = 0.003). The NAA/tCr and Cho/tCr ratios did not differ between migraine patients with and without MDD. Conclusion Increased mI/tCr within the DLPFC might be associated with the presence of MDD in migraine patients.
Collapse
Affiliation(s)
- Jiing-Feng Lirng
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taiwan
| | - Hung-Chieh Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Department of Radiology, Taichung Veterans General Hospital, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Brain Research Center, National Yang-Ming University, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan
| | - Chia-Fen Tsai
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taiwan
| | - Jen-Feng Liang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan
| | - Shuu-Jiun Wang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taiwan
- Brain Research Center, National Yang-Ming University, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taiwan
| |
Collapse
|
22
|
Acheson A, Wijtenburg SA, Rowland LM, Bray BC, Gaston F, Mathias CW, Fox PT, Lovallo WR, Wright SN, Hong LE, McGuire S, Kochunov P, Dougherty DM. Combining diffusion tensor imaging and magnetic resonance spectroscopy to study reduced frontal white matter integrity in youths with family histories of substance use disorders. Hum Brain Mapp 2014; 35:5877-87. [PMID: 25044331 DOI: 10.1002/hbm.22591] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/03/2014] [Accepted: 07/14/2014] [Indexed: 02/04/2023] Open
Abstract
Individuals with a family history of substance use disorder (FH+) show impaired frontal white matter as indicated by diffusion tensor imaging (DTI). This impairment may be due to impaired or delayed development of myelin in frontal regions, potentially contributing to this population's increased risk for developing substance use disorders. In this study, we examined high angular resolution DTI and proton magnetic resonance spectroscopy data from the anterior corona radiata were collected in 80 FH+ and 34 FH- youths (12.9 ± 1.0 years old). White matter integrity indices included fractional anisotropy (FA), N-acetylaspartate (NAA), and total choline (tCho). Lower FA suggests decreased myelination. Decreased NAA coupled with higher tCho suggests impaired build-up and maintenance of cerebral myelin and consequently greater breakdown of cellular membranes. We found FH+ youths had lower FA (P < 0.0001) and NAA (P = 0.017) and higher tCho (P = 0.04). FH density (number of parents and grandparents with substance use disorders) was negatively correlated with FA (P < 0.0001) and NAA (P = 0.011) and positively correlated with tCho (P = 0.001). FA was independently predicted by both FH density (P = 0.006) and NAA (P = 0.002), and NAA and tCho were both independent predictors of FH density (P < 0.001). Our finding of lower frontal FA in FH+ youths corresponding to lower NAA and increased tCho is consistent with delayed or impaired development of frontal white matter in FH+ youths. Longitudinal studies are needed to determine how these differences relate to substance use outcomes.
Collapse
Affiliation(s)
- Ashley Acheson
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Timoshanko A, Desmond P, Camfield D, Downey L, Stough C. A magnetic resonance spectroscopy (1H MRS) investigation into brain metabolite correlates of ability emotional intelligence. PERSONALITY AND INDIVIDUAL DIFFERENCES 2014. [DOI: 10.1016/j.paid.2014.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Biedermann SV, Weber-Fahr W, Demirakca T, Tunc-Skarka N, Hoerst M, Henn F, Sartorius A, Ende G. 31P RINEPT MRSI and VBM reveal alterations in brain aging associated with major depression. Magn Reson Med 2014; 73:1390-400. [PMID: 24798730 DOI: 10.1002/mrm.25278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/24/2014] [Accepted: 04/14/2014] [Indexed: 01/18/2023]
Abstract
PURPOSE Phosphomono- and diesters, the major components of the choline peak in (1) H magnetic resonance spectroscopy, are associated with membrane anabolic and catabolic mechanisms. With the refocused insensitive nuclei-enhanced polarization transfer technique, these phospholipids are edited and enhanced in the (31) P MR spectrum. In depressed patients, alterations of the choline peak and cerebral volume have been found, indicating a possible relation. Thus, combining MR phosphorous spectroscopy and volumetry in depressed patients seems to be a promising approach to detect underlying pathomechanisms. METHODS Depressed in-patients were either treated with antidepressive medication or with electroconvulsive therapy and compared to matched healthy controls. (31) P magnetic resonance spectroscopy imaging was conducted before and after the treatment phases. A 3D MRI dataset for volumetry was acquired in a dedicated (1) H head coil. RESULTS Phosphocholine and phosphoethanolamine were increased in depressed patients. Though patients responded to the treatments, phospholipids were not significantly altered. An increased age-related gray matter loss in fronto-limbic regions along with an altered relation of phosphomonoesters/phosphodiesters with age were found in depressed patients. DISCUSSION The findings of increased phosphomonoesthers and an age*group interaction for gray matter volumes need further research to define the role of phospholipids in major depression and possible associations to gray matter loss.
Collapse
Affiliation(s)
- Sarah V Biedermann
- Department Neuroimaging, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bogdanova OV, Abdullah O, Kanekar S, Bogdanov VB, Prescot AP, Renshaw PF. Neurochemical alterations in frontal cortex of the rat after one week of hypobaric hypoxia. Behav Brain Res 2014; 263:203-9. [PMID: 24486259 PMCID: PMC4699295 DOI: 10.1016/j.bbr.2014.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Abstract
Residing at high altitude may lead to reduced blood oxygen saturation in the brain and altered metabolism in frontal cortical brain areas, probably due to chronic hypobaric hypoxia. These changes may underlie the increased rates of depression and suicidal behavior that have been associated with life at higher altitudes. To test the hypothesis that hypobaric hypoxia is responsible for development of mood disorders due to alterations in neurochemistry, we assessed depression-like behavior in parallel to levels of brain metabolites in rats housed at simulated altitude. 32 female Sprague Dawley rats were housed either in a hypobaric hypoxia chamber at 10,000 ft of simulated altitude for 1 week or at local conditions (4500 ft of elevation in Salt Lake City, Utah). Depression-like behavior was assessed using the forced swim test (FST) and levels of neurometabolites were estimated by in vivo proton magnetic resonance spectroscopy in the frontal cortex, the striatum and the hippocampus at baseline and after a week of exposure to hypobaric hypoxia. After hypoxia exposure the animals demonstrated increased immobility behavior and shortened latency to immobility in the FST. Elevated ratios of myo-inositol, glutamate, and the sum of myo-inositol and glycine to total creatine were observed in the frontal cortex of hypoxia treated rats. A decrease in the ratio of alanine to total creatine was also noted. This study shows that hypoxia induced alterations in frontal lobe brain metabolites, aggravated depression-like behavior and might be a factor in increased rates of psychiatric disorders observed in populations living at high altitudes.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA.
| | - Osama Abdullah
- Department of Bioengineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City 84112, UT USA
| | - Shami Kanekar
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA
| | - Volodymyr B Bogdanov
- INRA, Nutrition et Neurobiologie Intégrée and University Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Andrew P Prescot
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Department of Radiology, University of Utah, 30 North 1900 East, Salt Lake City 84132, UT USA
| | - Perry F Renshaw
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; VISN19 MIRECC Salt Lake City UAMC, 500 Foothill Drive, Salt Lake City 84148, UT USA
| |
Collapse
|
26
|
Reynolds S, Carrey N, Jaworska N, Langevin LM, Yang XR, MacMaster FP. Cortical thickness in youth with major depressive disorder. BMC Psychiatry 2014; 14:83. [PMID: 24645731 PMCID: PMC3994552 DOI: 10.1186/1471-244x-14-83] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies in adults with major depressive disorder (MDD) have implicated dysregulation of frontal-limbic circuits in the symptomology of this disorder. We hypothesized that the middle frontal gyrus (MFG; a core portion of the dorsolateral prefrontal cortex or DLPFC) and the anterior cingulate (caudal), regions implicated in emotive and cognitive control, would display a reduced cortical thickness in youth with MDD as compared to healthy, non-depressed adolescents. METHODS Sixteen healthy control adolescents (17.19 ± 1.87 years; 7 males, 9 females) and thirty MDD participants (16.89 ± 2.01 years; 9 males, 21 females) underwent magnetic resonance imaging (MRI). Cortical thickness analysis was carried out using FreeSurfer software. RESULTS Counter to our hypothesis, we observed thicker right and left rostral MFG in MDD adolescents as compared to controls (p = 0.004 and p = 0.005, respectively). Furthermore, the left caudal anterior cingulate cortex was thicker in MDD subjects as compared to controls (p = 0.009). In MDD subjects, there was a significant inverse correlation between age and left MFG thickness (r = -0.45, p = 0.001). CONCLUSIONS These results have implications for the developmental trajectory of the frontal lobe in adolescent MDD. The MFG is implicated in the frontal-limbic circuits underlying executive functioning and their interaction with affective processing. Alterations in this region are likely involved with the symptoms of MDD. Limitations include a small sample size and cross sectional design.
Collapse
Affiliation(s)
- Stephanie Reynolds
- Department of Psychiatry, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada,Department of Pediatrics, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada
| | - Normand Carrey
- Department of Psychiatry, Dalhousie University, Halifax NS, Canada
| | - Natalia Jaworska
- Department of Psychiatry, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada,Department of Pediatrics, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada
| | - Lisa Marie Langevin
- Department of Psychiatry, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada,Department of Pediatrics, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada
| | - Xiao-Ru Yang
- Department of Psychiatry, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada,Department of Pediatrics, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada
| | - Frank P MacMaster
- Department of Psychiatry, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada,Department of Pediatrics, University of Calgary, Behavioral Research Unit, Alberta Children’s Hospital, 2888 Shaganappi Trail NW, Calgary, AB T3B 6A8, Canada
| |
Collapse
|
27
|
Sözeri-Varma G, Kalkan-Oğuzhanoglu N, Efe M, Kıroglu Y, Duman T. Neurochemical metabolites in prefrontal cortex in patients with mild/moderate levels in first-episode depression. Neuropsychiatr Dis Treat 2013; 9:1053-9. [PMID: 23976854 PMCID: PMC3747025 DOI: 10.2147/ndt.s42627] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous studies have determined the neurochemical metabolite abnormalities in major depressive disorder (MDD). The results of studies are inconsistent. Severity of depression may relate to neurochemical metabolic changes. The aim of this study is to investigate neurochemical metabolite levels in the prefrontal cortex (PFC) of patients with mild/moderate MDD. METHODS Twenty-one patients with mild MDD, 18 patients with moderate MDD, and 16 matched control subjects participated in the study. Patients had had their first episode. They had not taken treatment. The severity of depression was assessed by the Hamilton Rating Scale for Depression (HAM-D). Levels of N-acetyl aspartate (NAA), choline-containing compounds (Cho), and creatine-containing compounds (Cr) were measured using proton magnetic resonance spectroscopy (1H-MRS) at 1.5 T, with an 8-cm(3) single voxel placed in the right PFC. RESULTS The moderate MDD patients had lower NAA/Cr levels than the control group. No differences were found in neurochemical metabolite levels between the mild MDD and control groups. No correlation was found between the patients' neurochemical metabolite levels and HAM-D scores. CONCLUSION Our findings suggest that NAA/Cr levels are low in moderate-level MDD in the PFC. Neurochemical metabolite levels did not change in mild depressive disorder. Our results suggest that the severity of depression may affect neuronal function and viability. Studies are needed to confirm this finding, including studies on severely depressive patients.
Collapse
|
28
|
Allen PJ. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 2012; 36:1442-62. [PMID: 22465051 PMCID: PMC3340488 DOI: 10.1016/j.neubiorev.2012.03.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington's Disease and Parkinson's Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies.
Collapse
Affiliation(s)
- Patricia J Allen
- Department of Psychology, Tufts University, Psychology Building, 490 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
29
|
Hemanth Kumar BS, Mishra SK, Rana P, Singh S, Khushu S. Neurodegenerative evidences during early onset of depression in CMS rats as detected by proton magnetic resonance spectroscopy at 7 T. Behav Brain Res 2012; 232:53-9. [PMID: 22449862 DOI: 10.1016/j.bbr.2012.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 01/11/2023]
Abstract
Depression is a complex psychiatric disorder characterized by anhedonia and feeling of sadness and chronic mild stress (CMS) seems to be a valuable animal model of depression. CMS animal model was induced and validated using behavioral studies. In the present study we investigated the neuro-metabolite changes occurring in prefrontal cortex and hippocampus during the onset of depression, in CMS rat model using in vivo proton magnetic resonance spectroscopy ((1)H MRS) at field strength of 7 T. Results showed that CMS caused depression-like behavior in rats, as indicated by the decrease in sucrose consumption and locomotor activity. (1)H MRS was performed in both control and CMS rats (n=10, in each group) and the quantitative assessment of the neurometabolites was done using LC model. Relative concentrations of all the metabolites along with the macromolecules were calculated for analysis. The results revealed a significant decrease of glutamate (Glu), glutamine (Gln), NAA+NAAG, Glx and GABA levels in both hippocampus and prefrontal cortex of CMS animals and an elevated level of myo-ionisitol (mI) and taurine (Tau) was observed only in hippocampus. These metabolite fluctuations revealed by proton MRS indicate that there might be change in the neuronal integrity of the glial cells and neurons within prefrontal cortex and hippocampus in CMS model of depression. The present study also suggests that there may be a degenerative process concerning the brain morphology in the CMS rats. The overall finding using (1)H MRS suggests that, there might be a major role of the glia and neuron in the onset of depression.
Collapse
Affiliation(s)
- B S Hemanth Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India
| | | | | | | | | |
Collapse
|
30
|
Hulvershorn LA, Cullen K, Anand A. Toward dysfunctional connectivity: a review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging Behav 2012; 5:307-28. [PMID: 21901425 DOI: 10.1007/s11682-011-9134-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Child and adolescent psychiatric neuroimaging research typically lags behind similar advances in adult disorders. While the pediatric depression imaging literature is less developed, a recent surge in interest has created the need for a synthetic review of this work. Major findings from pediatric volumetric and functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and resting state functional connectivity studies converge to implicate a corticolimbic network of key areas that work together to mediate the task of emotion regulation. Imaging the brain of children and adolescents with unipolar depression began with volumetric studies of isolated brain regions that served to identify key prefrontal, cingulate and limbic nodes of depression-related circuitry elucidated from more recent advances in DTI and functional connectivity imaging. Systematic review of these studies preliminarily suggests developmental differences between findings in youth and adults, including prodromal neurobiological features, along with some continuity across development.
Collapse
Affiliation(s)
- Leslie A Hulvershorn
- Mood and Emotional Disorders Across the Lifespan Center, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | |
Collapse
|
31
|
Wang Y, Jia Y, Xu G, Ling X, Liu S, Huang L. Frontal white matter biochemical abnormalities in first-episode, treatment-naive patients with major depressive disorder: a proton magnetic resonance spectroscopy study. J Affect Disord 2012; 136:620-6. [PMID: 22129769 DOI: 10.1016/j.jad.2011.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous neuroimaging studies found evidence of brain functional and structural abnormalities in patients with major depressive disorder (MDD), but they rarely excluded compounding effects of some important factors, such as medication and brain degeneration. This study sought to explore the brain biochemical changes of first-episode, treatment-naive, non-late-life adult patients with MDD in the frontal white matter and gray matter by using proton magnetic resonance spectroscopy (1H MRS). METHODS Twenty-four first-episode, treatment-naive, non-late-life adult depressed patients and 13 healthy controls were enrolled in this study. Subjects underwent two-dimensional multivoxel 1H MRS at 1.5 T to obtain bilateral metabolite levels from the dorsolateral prefrontal white matter and anterior cingulate gray matter. RESULTS Patients with MDD showed significantly lower N-acetylaspartate/creatine (NAA/Cr) and choline/creatine (Cho/Cr) ratios in the left dorsolateral prefrontal white matter, and lower NAA/Cr ratios in the right dorsolateral prefrontal white matter when compared with the control subjects. There were no significant differences in the metabolite ratios in the bilateral anterior cingulate gray matter. CONCLUSIONS These findings suggest that biochemical abnormalities in prefrontal white matter may occur early in the course of MDD and may be related to the neuropathology of depression.
Collapse
Affiliation(s)
- Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Magnetic Resonance Spectroscopy (MRS) is a unique technique that can directly assess the concentration of various biochemical metabolites in the brain. Thus, it is used in the study of molecular pathophysiology of different neuropsychiatric disorders, such as, the major depressive disorder and has been an area of active research. We conducted a computer-based literature search using the Pubmed database with 'magnetic resonance spectroscopy', 'MRS', 'depression', and 'major depressive disorder' as the key words, supplemented by a manual search of bibliographic cross-referencing. Studies in depression report abnormalities in the frontal cortex, basal ganglia, hippocampus, anterior cingulate cortex, and the occipital cortex. These abnormalities improve after treatment with selective serotonin reuptake inhibitor, electroconvulsive therapy, and yoga, and thus, are possibly state-dependent. The findings are consistent with other morphometric and clinical studies and support the proposed pathophysiological theory of dysfunction in the neuronal circuits involving the frontal cortex, limbic cortex, and basal ganglia. Spectroscopy also has potential implications in predicting the response to treatment and formulating individualized pharmacotherapy.
Collapse
Affiliation(s)
- Naren P Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| | | | | |
Collapse
|
33
|
Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 2011; 36:198-205. [PMID: 21672551 DOI: 10.1016/j.neubiorev.2011.05.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/22/2011] [Accepted: 05/28/2011] [Indexed: 12/14/2022]
Abstract
For major depressive disorder (MDD), magnetic resonance spectroscopy ((1)H-MRS) studies of glutamate, glutamine and Glx (the composite measure of mainly glutamate and glutamine) have yielded inconclusive or seemingly inconsistent results. We therefore systematically reviewed whether in vivo concentrations of glutamate, glutamine and Glx measured with (1)H-MRS differ between MDD patients and controls. Meta-analysis including meta-regression, sensitivity, statistical heterogeneity, and publication bias analyses were conducted. Glutamate and Glx concentrations were found to be lower in the anterior cingulate cortex (ACC) in patients compared to controls (standardized mean difference (SMD) for glutamate with 95% CIs: -0.86, -1.55 to -0.17; and for Glx: -1.15, -1.86 to -0.44). In addition, Glx was decreased in all brain regions together in current episode patients (SMD: -0.62, -1.17 to -0.07). We conclude that in MDD, glutamate and possibly glutamine are downregulated primarily in the ACC and during depressive states. These results fit the central role of the ACC in depressive symptomatology and suggest that in MDD changes in glutamatergic neurotransmission are state-dependent.
Collapse
|
34
|
Bédard MJ, Chantal S. Brain magnetic resonance spectroscopy in obsessive-compulsive disorder: the importance of considering subclinical symptoms of anxiety and depression. Psychiatry Res 2011; 192:45-54. [PMID: 21377338 DOI: 10.1016/j.pscychresns.2010.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
Brain metabolite concentrations have recently been assessed in different cerebral regions presumably targeted in patients with obsessive-compulsive disorder (OCD) using magnetic resonance spectroscopy (MRS). However, results have been divergent. Possible confounding variables, such as the cerebral localisation of investigated regions and metabolites considered, as well as subclinical symptoms of anxiety and depression, could have affected these MRS profiles. The main goal of this study was to assess MRS metabolite differences between 13 individuals with OCD and 12 matched healthy controls in seven brain regions potentially involved in OCD. The secondary objective was to assess the relationships between levels of anxiety and depression and brain metabolite concentrations. No difference was found for N-acetylaspartate, glutamate-glutamine, myo-inositol (mI) and choline relative to creatine (Cr) concentration in either the left or right orbitofrontal area, left or right median temporal lobe, left or right thalamus or the anterior cingulate cortex. A significant negative correlation between the mI/Cr in the left orbitofrontal area and the severity of OCD symptomatology was observed while subclinical anxiety and depression were closely related to brain metabolite ratios. Thus, these subclinical symptoms, commonly associated with OCD, should be considered in assessing brain metabolite concentrations and may be central to the comprehension of this disorder.
Collapse
Affiliation(s)
- Marie-Josée Bédard
- Département de Psychologie, Université du Québec à Trois-Rivières, Trois-Rivieres, Quebec, Canada
| | | |
Collapse
|
35
|
Hui J, Zhang Z, Liu S, Xi G, Zhang X, Teng G, Chan KC, Wu EX, Nie B, Shan B, Li L, Reynolds GP. Adolescent escitalopram administration modifies neurochemical alterations in the hippocampus of maternally separated rats. Eur Neuropsychopharmacol 2010; 20:875-83. [PMID: 20888191 DOI: 10.1016/j.euroneuro.2010.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/03/2010] [Accepted: 08/27/2010] [Indexed: 01/02/2023]
Abstract
Early life stress is a potential precursor of eventual neuropsychiatric diseases and may result in altered neurodevelopment and function of the hippocampus, which thus provides a site at which potential interventions to modify the effects of early life stress may act. In this study, Sprague-Dawley rat pups comprising male and female animals underwent maternal separation (MS) for 180 min from postnatal days (PND) 2 to 14, or were left with their dams. They subsequently received daily administration of saline (0.9%), escitalopram (10 mg/kg), or no treatment during adolescence (PND 43-60). All adult animals underwent brain magnetic resonance imaging (MRI) and bilateral hippocampal proton magnetic resonance spectroscopy ((1)H-MRS). Neither MS nor escitalopram treatment had a significant effect on hippocampal volume. Adult rats that experienced MS displayed significantly increased choline-containing compounds (Cho) and decreased N-acetylaspartate (NAA), glutamate (Glu) and Myo-inositol (MI) relative to the stable neurometabolite creatine (Cr) in hippocampus. Administration of escitalopram during adolescence could modify the alterations of NAA/Cr, Glu/Cr and MI/Cr. The effects of MS on hippocampal neurochemistry were most significant in the right hippocampus. These results indicate that MS in rats has long-term consequences on hippocampal neurochemistry reflective of neural density/functional integrity, especially on the right hippocampus, and adolescent administration with escitalopram can at least partially ameliorate these neurochemical alterations. Furthermore, these metabolite changes seem to be more sensitive indicators of the results from early life stress than volume changes.
Collapse
Affiliation(s)
- Jiaojie Hui
- School of Clinical Medicine, Southeast University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA. Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord 2010; 127:230-40. [PMID: 20580095 PMCID: PMC2975814 DOI: 10.1016/j.jad.2010.06.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/03/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alteration of glutamatergic neurotransmission in the prefrontal cortex (PFC) may contribute to the pathophysiology of alcoholism and major depressive disorder (MDD). Among glial cells, astrocytes are mostly responsible for recycling synaptic glutamate by uptake through excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2), and conversion to glutamine with glutamine synthetase (GS). Low density of astrocytes in the PFC of "uncomplicated' alcoholics and MDD subjects may parallel altered glutamate transporters and GS in the PFC. METHODS Immunohistochemistry and Western blotting for glutamate transporters, GS and glial fibrillary acidic protein (GFAP) were applied to postmortem tissue of the left orbitofrontal cortex from 13 subjects with MDD, 13 with alcoholism, 10 with comorbid alcoholism plus MDD (MDA), and 13 non-psychiatric controls. Area fraction of immunoreactivity was measured in sections, and protein levels in Western blots. RESULTS EAAT2 immunoreactivity was significantly lower in MDD and MDA subjects than in controls. EAAT1 levels were lower in MDA and MDD subjects as compared to controls, while GS levels in MDA were significantly lower than in alcoholics and controls, and lower in MDD subjects than in alcoholics. Area fraction of GFAP was lower in MDD, but not in MDA subjects as compared to controls or alcoholics. LIMITATIONS High variability of protein levels in some groups and effects of antidepressant treatment, although appearing to be limited, cannot be fully evaluated. CONCLUSIONS There are differential changes in the expression of glial glutamatergic markers in depression and alcoholism, suggesting a depletion of certain aspects of glutamatergic processing in depression.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kim SY, Choi CB, Lee HS, Lee SH, Woo DC, Kim HY, Hong KS, Lee CH, Choe BY. Reversal of myo-inositol metabolic level in the left dorsolateral prefrontal cortex of rats exposed to forced swimming test following desipramine treatment: an in vivo localized 1H-MRS study at 4.7 T. Magn Reson Imaging 2010; 28:1461-7. [DOI: 10.1016/j.mri.2010.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 05/11/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
38
|
Olvera RL, Caetano SC, Stanley JA, Chen HH, Nicoletti M, Hatch JP, Fonseca M, Pliszka SR, Soares JC. Reduced medial prefrontal N-acetyl-aspartate levels in pediatric major depressive disorder: a multi-voxel in vivo(1)H spectroscopy study. Psychiatry Res 2010; 184:71-6. [PMID: 20864319 PMCID: PMC2963721 DOI: 10.1016/j.pscychresns.2010.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 05/10/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
There is increasing evidence of a reciprocal fronto-limbic network in the pathogenesis of mood disorders. Prior in vivo proton ((1)H) spectroscopy studies provide evidence of abnormal neurochemical levels in the cingulate and dorsolateral prefrontal cortex (DLPFC) of adult subjects with major depressive disorder (MDD). We examined whether similar abnormalities occur in children and adolescents with MDD. We collected two-dimensional multi-voxel in vivo (1)H spectroscopy data at 1.5 Tesla to quantify levels of N-acetyl-aspartate (NAA), glycerolphosphocholine plus phosphocholine (GPC+PC), and phosphocreatine plus creatine (PCr+Cr) in the DLPFC, medial prefrontal cortex (MPFC), and anterior cingulate (AC) of children and adolescents aged 8-17 years with MDD (n=16) compared with healthy control subjects (n=38). Analysis of covariance with age and gender as covariates was performed. MDD subjects showed significantly lower levels of NAA in the right MPFC and right AC than controls. MDD subjects also had significantly lower levels of GPC+PC in the right AC than control subjects. There were no significant differences in other metabolites in the studied regions. Pediatric patients with MDD exhibit neurochemical alterations in prefrontal cortex regions that are important in the monitoring and regulation of emotional states.
Collapse
Affiliation(s)
- Rene Luis Olvera
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, DelMastro KK, Shi X, Renshaw PF. Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. DEPRESSION RESEARCH AND TREATMENT 2010; 2011:650450. [PMID: 21197097 PMCID: PMC3003951 DOI: 10.1155/2011/650450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS) to the study of Major Depressive Disorder (MDD) in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.
Collapse
Affiliation(s)
- Douglas G. Kondo
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Tracy L. Hellem
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Young-Hoon Sung
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Namkug Kim
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Kristen K. DelMastro
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Xianfeng Shi
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Perry F. Renshaw
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| |
Collapse
|
40
|
Abstract
OBJECTIVE To review the literature on the involvement of glutamate (Glu), including its interactions with other neurochemical systems, in the pathophysiology of depression. METHOD A MEDLINE search using the terms glutamate, depression and major depressive disorder, was performed. RESULTS Alterations in proteins involved in glutamatergic signalling are implicated in variations in behaviour in animal models of depression. Drugs acting at Glu receptors appear to have antidepressant-like effects in these models, and traditional antidepressant pharmacotherapies act on the glutamatergic system. Recent evidence from genetic studies and in vivo spectroscopy also correlate glutamatergic dysfunction with depression. Trials of N-methyl-d-aspartate receptor antagonists in humans have provided mixed results. CONCLUSION A growing body of evidence indicates that the glutamatergic system is involved in the pathophysiology of depression, and may represent a target for intervention.
Collapse
Affiliation(s)
- Nicholas D Mitchell
- Department of Psychiatry, University of Alberta Hospital, Edmonton, AB, Canada.
| | | |
Collapse
|
41
|
Kim SY, Lee YJ, Kim H, Lee DW, Woo DC, Choi CB, Chae JH, Choe BY. Desipramine attenuates forced swim test-induced behavioral and neurochemical alterations in mice: an in vivo(1)H-MRS study at 9.4T. Brain Res 2010; 1348:105-13. [PMID: 20542016 DOI: 10.1016/j.brainres.2010.05.097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/27/2010] [Accepted: 05/30/2010] [Indexed: 11/30/2022]
Abstract
The forced swim test (FST) is a behavioral paradigm that is predicative of antidepressant activity in rodents. The objective of this study was to examine the effects of desipramine (DMI) pretreatment on behavioral and regional neurochemical responses in the left dorsolateral prefrontal cortex (DLPFC) and hippocampus of mice exposed to the FST using proton magnetic resonance spectroscopy ((1)H-MRS). An ultra short echo stimulated echo acquisition (STEAM) localization sequence (TR/TM/TE=5000/20/2.2ms) was used to measure in vivo proton spectra from the left DLPFC (voxel volume: 7microl) and hippocampus (6microl) of C57BL/6 mice at 9.4T and acquired proton spectra post-processed offline with LCModel. The FST induced significant increase of glutamate (Glu) and myo-inositol (mIns) concentrations in the left DLPFC and hippocampus, respectively. In addition, creatine+phosphocreatine (Cr+PCr) concentrations in the left DLPFC were significantly decreased as compared to control. The metabolic alterations induced by the FST were reverted to level similar to control by acute DMI administration. Our results suggest that glutamatergic activity and glial cell dysfunction may contribute to the pathophysiological mechanisms underlying depression and that modulation of synaptic neurotransmitter concentrations represents a potential target for antidepressant drug development.
Collapse
Affiliation(s)
- Sang-Young Kim
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gabbay V, Liebes L, Katz Y, Liu S, Mendoza S, Babb JS, Klein RG, Gonen O. The kynurenine pathway in adolescent depression: preliminary findings from a proton MR spectroscopy study. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:37-44. [PMID: 19778568 PMCID: PMC2815014 DOI: 10.1016/j.pnpbp.2009.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytokine induction of the enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in the development of major depressive disorder (MDD). IDO metabolizes tryptophan (TRP) into kynurenine (KYN), thereby decreasing TRP availability to the brain. KYN is further metabolized into several neurotoxins. The aims of this pilot were to examine possible relationships between plasma TRP, KYN, and 3-hydroxyanthranilic acid (3-HAA, neurotoxic metabolite) and striatal total choline (tCho, cell membrane turnover biomarker) in adolescents with MDD. We hypothesized that MDD adolescents would exhibit: i) positive correlations between KYN and 3-HAA and striatal tCho and a negative correlation between TRP and striatal tCho; and, ii) the anticipated correlations would be more pronounced in the melancholic subtype group. METHODS Fourteen adolescents with MDD (seven with melancholic features) and six healthy controls were enrolled. Minimums of 6 weeks MDD duration and a severity score of 40 on the Children's Depression Rating Scale-Revised were required. All were scanned at 3T with MRI, multi-voxel 3-dimensional, high, 0.75 cm(3), spatial resolution proton magnetic resonance spectroscopic imaging. Striatal tCho concentrations were assessed using phantom replacement. Spearman correlation coefficients were Bonferroni-corrected. RESULTS Positive correlations were found only in the melancholic group, between KYN and 3-HAA and tCho in the right caudate (r=0.93, p=0.03) and the left putamen (r=0.96, p=.006), respectively. CONCLUSIONS These preliminary findings suggest a possible role of the KYN pathway in adolescent melancholic MDD. Larger studies should follow.
Collapse
Affiliation(s)
- Vilma Gabbay
- NYU Child Study Center, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York, USA.
| | - Leonard Liebes
- Cancer Institute, New York University School of Medicine, Tisch Hospital, 550 First Avenue, New York, NY, 10016, United States
| | - Yisrael Katz
- NYU Child Study Center, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York. 577 First Avenue, New York, NY, 10016, United States
| | - Songtao Liu
- Radiology, Research, New York University School of Medicine, Bellevue C&D Building 122, 462 First Avenue, New York, NY, 10016, United States
| | - Sandra Mendoza
- Cancer Institute, New York University School of Medicine, Tisch Hospital, 550 First Avenue, New York, NY, 10016, United States
| | - James S. Babb
- Radiology, Research, New York University School of Medicine, Bellevue C&D Building 122, 462 First Avenue, New York, NY, 10016, United States
| | - Rachel G. Klein
- NYU Child Study Center, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York. 577 First Avenue, New York, NY, 10016, United States
| | - Oded Gonen
- Radiology, Research, New York University School of Medicine, Bellevue C&D Building 122, 462 First Avenue, New York, NY, 10016, United States
| |
Collapse
|
43
|
Nery FG, Stanley JA, Chen HH, Hatch JP, Nicoletti MA, Monkul ES, Matsuo K, Caetano SC, Peluso MA, Najt P, Soares JC. Normal metabolite levels in the left dorsolateral prefrontal cortex of unmedicated major depressive disorder patients: a single voxel (1)H spectroscopy study. Psychiatry Res 2009; 174:177-83. [PMID: 19910168 DOI: 10.1016/j.pscychresns.2009.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/06/2009] [Accepted: 05/15/2009] [Indexed: 02/02/2023]
Abstract
Few proton magnetic resonance spectroscopy ((1)H spectroscopy) studies have investigated the dorsolateral prefrontal cortex (DLPFC), a key region in the pathophysiology of major depressive disorder (MDD). We used (1)H spectroscopy to verify whether MDD patients differ from healthy controls (HC) in metabolite levels in this brain area. Thirty-seven unmedicated DSM-IV MDD patients were compared with 40 HC. Subjects underwent a short echo-time (1)H spectroscopy examination at 1.5 T, with an 8-cm(3) single voxel placed in the left DLPFC. Reliable absolute metabolite levels of N-acetyl aspartate (NAA), phosphocreatine plus creatine (PCr+Cr), choline-containing compounds (GPC+PC), myo-inositol, glutamate plus glutamine (Glu+Gln), and glutamate were obtained using the unsuppressed water signal as an internal reference. Metabolite levels in the left DLPFC did not statistically differ between MDD patients and HC. We found an interaction between gender and diagnosis on PCr+Cr levels. Male MDD patients presented lower levels of PCr+Cr than male HC, and female MDD patients presented higher levels of PCr+Cr than female HC. Moreover, length of illness was inversely correlated with NAA levels. These findings suggest that there is not an effect of diagnosis on the left DLPFC neurochemistry. Possible effects of gender on PCr+Cr levels of MDD patients need to be further investigated.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Byun MS, Choi JS, Yoo SY, Kang DH, Choi CH, Jang DP, Jung WH, Jung MH, Jang JH, Lee JM, Kwon JS. Depressive Symptoms and Brain Metabolite Alterations in Subjects at Ultra-high Risk for Psychosis: A Preliminary Study. Psychiatry Investig 2009; 6:264-71. [PMID: 20140124 PMCID: PMC2808795 DOI: 10.4306/pi.2009.6.4.264] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Recent neuroimaging studies have suggested that brain changes occur in subjects at ultra-high risk (UHR) for psychosis while experiencing prodromal symptoms, among which depression may increase the risk of developing a psychotic disorder. The goal of this study is to examine brain metabolite levels in the anterior cingulate cortex, the left dorsolateral prefrontal cortex and the left thalamus in subjects at UHR for psychosis and to compare brain metabolite levels between the UHR subjects with comorbid major depressive disorder and healthy controls. METHODS Proton magnetic resonance spectroscopy was used to examine brain metabolite levels. Twenty UHR subjects and 20 age- and intelligence quotient (IQ)-matched healthy controls were included in this study. RESULTS Overall, no significant differences were observed in any metabolite between the UHR and healthy control group. However, UHR subjects with major depressive disorder showed significantly higher myo-inositol (Ins) levels in the left thalamus, compared to the healthy control. CONCLUSION Our results demonstrate that increased thalamic Ins level is associated with prodromal depressive symptoms. Further longitudinal follow-up studies with larger UHR sample sizes are required to investigate the function of Ins concentrations as a biomarker of vulnerability to psychosis.
Collapse
Affiliation(s)
- Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Seok Choi
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Department of Psychiatry, Seoul National University College of Medicine, Boramae Hospital, Seoul, Korea
| | - So Young Yoo
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Hyung Kang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Chi-Hoon Choi
- Department of Radiology, National Medical Center, Seoul, Korea
| | - Dong Pyo Jang
- Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Wi Hoon Jung
- Interdisciplinary Program in Brain Science, Seoul National University, Seoul, Korea
| | - Myung Hun Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea
- Interdisciplinary Program in Brain Science, Seoul National University, Seoul, Korea
| |
Collapse
|
45
|
Ozturk A, Degaonkar M, Matson MA, Wells CT, Mahone EM, Horská A. Proton MR spectroscopy correlates of frontal lobe function in healthy children. AJNR Am J Neuroradiol 2009; 30:1308-14. [PMID: 19357380 PMCID: PMC2782857 DOI: 10.3174/ajnr.a1576] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/03/2009] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Neuroimaging methods have been used to improve our understanding of the topographic organization of the brain. In our study, proton (1)H-MR spectroscopic imaging was used to evaluate frontal lobe function. The goal was to determine the relationship between neuropsychological measures of frontal lobe function and levels of a surrogate neuronal marker, N-acetylaspartate (NAA), in typically developing healthy children and adolescents. MATERIALS AND METHODS Fifty-one healthy children (25 girls; 6.2-18.3 years of age; mean age, 12.3 +/- 3.6 years) were examined. All children completed a neuropsychological assessment including measures of attention, executive function, memory, language, and visual and motor skills. (1)H-MR spectroscopic imaging was performed by using a multisection spin-echo sequence at 1.5T. General linear model analysis of covariance was used to examine the relationship between the neuropsychological test scores and NAA/creatine (Cr) ratios, controlling for age and sex. RESULTS A positive relationship between frontal lobe white matter NAA/Cr ratio and performance on 2 neuropsychological tests associated with frontal lobe function was detected. The Purdue Pegboard right-hand scores were higher with increasing NAA/Cr in the left frontal white matter (P = .047), and Stanford-Binet-IV "Bead Memory" scores improved with increasing NAA/Cr ratio in the right frontal white matter (P = .032). CONCLUSIONS An association between frontal white matter NAA/Cr ratios and 1) measures of manual speed and dexterity, and 2) visual working memory was detected. Our data may provide a quantitative basis for assessment of frontal lobe impairments in disease states.
Collapse
Affiliation(s)
- A Ozturk
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
46
|
Milne A, MacQueen GM, Yucel K, Soreni N, Hall GB. Hippocampal metabolic abnormalities at first onset and with recurrent episodes of a major depressive disorder: A proton magnetic resonance spectroscopy study. Neuroimage 2009; 47:36-41. [DOI: 10.1016/j.neuroimage.2009.03.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/01/2009] [Accepted: 03/10/2009] [Indexed: 02/05/2023] Open
|
47
|
Kaymak SU, Demir B, Oğuz KK, Sentürk S, Uluğ B. Antidepressant effect detected on proton magnetic resonance spectroscopy in drug-naïve female patients with first-episode major depression. Psychiatry Clin Neurosci 2009; 63:350-6. [PMID: 19566767 DOI: 10.1111/j.1440-1819.2009.01951.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Recent neuroimaging studies support functional and structural alterations in the dorsolateral prefrontal cortex (DLPFC), particularly on the left side in patients with major depressive disorders (MDD). The aim of the present study was to examine the biochemical characteristics of left DLPFC as measured on proton ((1)H) magnetic resonance spectroscopy (MRS) in patients with drug-naïve first-episode MDD and a healthy control group. A second aim was to assess the effect of antidepressant treatment on the metabolites of DLPFC. METHODS Short-echo single-voxel (1)H-MRS was done for the left DLPFC in 17 female drug-free MDD patients (mean age +/- SD, 30.9 +/- 6.9 years) and 13 matched control subjects (mean age +/- SD, 29.1 +/- 6.2 years) and was repeated at 8 weeks following antidepressant treatment. RESULTS Comparison of baseline values indicated that there were no significant differences in any of the metabolite ratios (N-acetyl aspartate/creatine [NAA/Cr], myoinositol [Ino]/Cr, and choline [Cho]/Cr) between patients and controls. Significant differences were detected between pre- and post-treatment Ino/Cr ratios (0.67 +/- 0.13, 0.58 +/- 0.22, P = 0.032, respectively), although there was no difference in NAA/Cr and Cho/Cr ratios. CONCLUSION Although no significant metabolic alterations exist in female patients with drug-naïve first-episode MDD as evaluated on (1)H-MRS, an increase in Ino/Cr was observed following 8-week antidepressant treatment. These findings give rise to the possibility that non-neuronal cells, particularly glial cells that are probably damaged, play a role in the action of antidepressant treatment.
Collapse
Affiliation(s)
- Semra Ulusoy Kaymak
- Psychiatry Clinic, Ankara Oncology Training and Research Hospital, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
48
|
Michael N, Erfurth A, Pfleiderer B. Elevated metabolites within dorsolateral prefrontal cortex in rapid cycling bipolar disorder. Psychiatry Res 2009; 172:78-81. [PMID: 19239983 DOI: 10.1016/j.pscychresns.2009.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/27/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
Metabolites within the left dorsolateral prefrontal cortex (DLPFC) of six inpatients with bipolar II rapid cycling (RC) during various mood states (depressed, hypomanic, and euthymic), six depressed inpatients with non-RC bipolar disorder (BIPD), and six healthy controls (HC) were assessed by proton magnetic resonance spectroscopy (MRS). We hypothesized that glutamate/glutamine levels should be altered in RC compared with HC. Patients with RC in contrast to BIPD and HC exhibited elevated levels of N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and glutamate/glutamine (Glx) during all mood states. The Glx levels of BIPD compared with HC did not differ significantly; the other metabolites were increased, though less than in RC patients. Our findings of elevated metabolites in patients with RC, especially Glx as a possible marker of cortical activity, indicate that increased neuronal activity may constitute an important neurobiological feature of RC.
Collapse
|
49
|
Capizzano AA, Jorge RE, Acion LC, Robinson RG. In vivo proton magnetic resonance spectroscopy in patients with mood disorders: a technically oriented review. J Magn Reson Imaging 2008; 26:1378-89. [PMID: 17968885 DOI: 10.1002/jmri.21144] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proton MR spectroscopy (1HMRS) has been extensively used among mood disorders patients. A review of the published literature in 1HMRS studies of mood disorders was carried out for the period 1991 to July 2006. Of 71 1HMRS studies, 77.5% were done at 1.5T and 66.2% used single voxel sequences (SVS), implying limitations of spectral resolution and anatomic coverage, respectively. In all, 47.9% of studies relied on creatine (Cr) as internal signal standard, although Cr changes were reported in major depression (MD). Most reported metabolic alterations related to mood state affected the left frontal lobe. Depressed adult and pediatric MD patients had reduced glutamate (Glu) in frontal lobe regions, which reversed with successful treatment. A consistent reduction of N-acetyl-aspartate (NAA) was reported in the hippocampal formation among bipolar disorder (BD) patients, along with an increment in frontal Glu. The differences in results of 1HMRS studies in mood disorders reflect heterogeneity of technical factors and subject selection. Future studies should benefit from higher spectral resolution and more extensive anatomic coverage as well as standardized data-processing protocols and subject selection criteria.
Collapse
Affiliation(s)
- Aristides A Capizzano
- Psychiatry Department, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
50
|
Gabbay V, Hess DA, Liu S, Babb JS, Klein RG, Gonen O. Lateralized caudate metabolic abnormalities in adolescent major depressive disorder: a proton MR spectroscopy study. Am J Psychiatry 2007; 164:1881-9. [PMID: 18056244 PMCID: PMC2774821 DOI: 10.1176/appi.ajp.2007.06122032] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Proton magnetic resonance spectroscopy ((1)H-MRS) has been increasingly used to examine striatal neurochemistry in adult major depressive disorder. This study extends the use of this modality to pediatric major depression to test the hypothesis that adolescents with major depression have elevated concentrations of striatal choline and creatine and lower concentrations of N-acetylaspartate. METHOD Fourteen adolescents (ages 12-19 years, eight female) who had major depressive disorder for at least 8 weeks and a severity score of 40 or higher on the Children's Depression Rating Scale-Revised and 10 healthy comparison adolescents (six female) group-matched for gender, age, and handedness were enrolled. All underwent three-dimensional 3-T (1)H-MRS at high spatial resolution (0.75-cm(3) voxels). Relative levels of choline, creatine, and N-acetylaspartate in the left and right caudate, putamen, and thalamus were scaled into concentrations using phantom replacement, and levels were compared for the two cohorts. RESULTS Relative to comparison subjects, adolescents with major depressive disorder had significantly elevated concentrations of choline (2.11 mM versus 1.56 mM) and creatine (6.65 mM versus 5.26 mM) in the left caudate. No other neurochemical differences were observed between the groups. CONCLUSIONS These findings most likely reflect accelerated membrane turnover and impaired metabolism in the left caudate. The results are consistent with prior imaging reports of focal and lateralized abnormalities in the caudate in adult major depression.
Collapse
Affiliation(s)
- Vilma Gabbay
- NYU Child Study Center, Department of Psychiatry, New York University School of Medicine, 557 First Avenue, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|