1
|
Yang T, Wang W, Li Z, Cai J, Feng N, Xu S, Wang L, Wang X. Evaluating the Neuroprotective Effects of the Novel Kv2.1 Blocker Zj7923 against Ischemic Stroke In Vitro and In Vivo. Neuropharmacology 2025:110537. [PMID: 40449617 DOI: 10.1016/j.neuropharm.2025.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/19/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The voltage-dependent potassium channel Kv2.1 correlates closely to the regulation of neuronal excitability and cellular apoptosis. Ischemia or oxidative treatment were known to stimulate the surge of Kv2.1-mediated current to activate neuronal apoptosis pathways, while inhibiting excessive Kv2.1 K+ current efflux could reduce neuronal apoptosis and exhibit neuroprotective effects. Here, we found a novel Kv2.1 selective blocker Zj7923 and investigated whether it produces neuroprotective function after ischemic stroke animal model. We demonstrate that Zj7923 potently inhibits Kv2.1 current with an IC50 of 0.12 μM. Zj7923 had no obvious effect on the activation process of Kv2.1 channels, but could significantly accelerate the inactivation process of Kv2.1 channels. The mutations at Y380 and K356 in the outer vestibule of Kv2.1 channels weakened the inhibitory effect of Zj7923, and the IC50 value of Zj7923 on the mutation channels increased to 3.66 μM and 3.20 μM, respectively, indicating that the compound may act on the above two positions. Zj7923 could increase the spontaneous firing rate of normal hippocampal pyramidal neurons and ameliorate OGD-induced impairment of neuronal excitability. Kv2.1 channel inhibition by Zj7923 provides protection against DTDP-induced apoptosis and its mechanism might be related to the modulation of the expression of apoptosis-related proteins, such as Bcl-2, Bax and cleaved caspase-3 proteins. In vivo pharmacodynamics evaluation, intravenous administration of Zj7923 in rats following transient middle cerebral artery occlusion significantly reduced infarct volume and improved neurological deficits. Our results indicate that Zj7923 exerts a neuronal protection from cerebral ischemia in vitro and in vivo by inhibiting Kv2.1 current and validate the potential value of developing drugs targeting Kv2.1 for ischemic stroke.
Collapse
Affiliation(s)
- Tianjiao Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiping Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Cai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Feng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaofeng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Forzisi E, Sesti F. Non-conducting functions of ion channels: The case of integrin-ion channel complexes. Channels (Austin) 2022; 16:185-197. [PMID: 35942524 PMCID: PMC9364710 DOI: 10.1080/19336950.2022.2108565] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Started as an academic curiosity more than two decades ago, the idea that ion channels can regulate cellular processes in ways that do not depend on their conducting properties (non-ionic functions) gained traction and is now a flourishing area of research. Channels can regulate physiological processes including actin cytoskeletal remodeling, cell motility, excitation-contraction coupling, non-associative learning and embryogenesis, just to mention some, through non-ionic functions. When defective, non-ionic functions can give rise to channelopathies involved in cancer, neurodegenerative disease and brain trauma. Ion channels exert their non-ionic functions through a variety of mechanisms that range from physical coupling with other proteins, to possessing enzymatic activity, to assembling with signaling molecules. In this article, we take stock of the field and review recent findings. The concept that emerges, is that one of the most common ways through which channels acquire non-ionic attributes, is by assembling with integrins. These integrin-channel complexes exhibit broad genotypic and phenotypic heterogeneity and reveal a pleiotropic nature, as they appear to be capable of influencing both physiological and pathological processes.
Collapse
Affiliation(s)
- Elena Forzisi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| |
Collapse
|
3
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
4
|
Song MY, Hwang JY, Bae EJ, Kim S, Kang HM, Kim YJ, Park C, Park KS. Tyrosine Phosphorylation of the K v2.1 Channel Contributes to Injury in Brain Ischemia. Int J Mol Sci 2020; 21:ijms21249538. [PMID: 33333928 PMCID: PMC7765428 DOI: 10.3390/ijms21249538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
In brain ischemia, oxidative stress induces neuronal apoptosis, which is mediated by increased activity of the voltage-gated K+ channel Kv2.1 and results in an efflux of intracellular K+. The molecular mechanisms underlying the regulation of Kv2.1 and its activity during brain ischemia are not yet fully understood. Here this study provides evidence that oxidant-induced apoptosis resulting from brain ischemia promotes rapid tyrosine phosphorylation of Kv2.1. When the tyrosine phosphorylation sites Y124, Y686, and Y810 on the Kv2.1 channel are mutated to non-phosphorylatable residues, PARP-1 cleavage levels decrease, indicating suppression of neuronal cell death. The tyrosine residue Y810 on Kv2.1 was a major phosphorylation site. In fact, cells mutated Y810 were more viable in our study than were wild-type cells, suggesting an important role for this site during ischemic neuronal injury. In an animal model, tyrosine phosphorylation of Kv2.1 increased after ischemic brain injury, with an observable sustained increase for at least 2 h after reperfusion. These results demonstrate that tyrosine phosphorylation of the Kv2.1 channel in the brain may play a critical role in regulating neuronal ischemia and is therefore a potential therapeutic target in patients with brain ischemia.
Collapse
Affiliation(s)
- Min-Young Song
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Ji Yeon Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Eun Ji Bae
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Saesbyeol Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Hye-Min Kang
- Department of Anatomy & Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.-M.K.); (C.P.)
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Chan Park
- Department of Anatomy & Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.-M.K.); (C.P.)
| | - Kang-Sik Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0292; Fax: +82-2-964-2195
| |
Collapse
|
5
|
Kodirov SA. Tale of tail current. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:78-97. [PMID: 31238048 DOI: 10.1016/j.pbiomolbio.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
The largest biomass of channel proteins is located in unicellular organisms and bacteria that have no organs. However, orchestrated bidirectional ionic currents across the cell membrane via the channels are important for the functioning of organs of organisms, and equally concern both fauna or flora. Several ion channels are activated in the course of action potentials. One of the hallmarks of voltage-dependent channels is a 'tail current' - deactivation as observed after prior and sufficient activation predominantly at more depolarized potentials e.g. for Kv while upon hyperpolarization for HCN α subunits. Tail current also reflects the timing of channel closure that is initiated upon termination of stimuli. Finally, deactivation of currents during repolarization could be a selective estimate for given channel as in case of HERG, if dedicated long and more depolarized 'tail pulse' is used. Since from a holding potential of e.g. -70 mV are often a family of outward K+ currents comprising IA and IK are simultaneously activated in native cells.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia; Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341, Russia; Institute of Experimental Medicine, I. P. Pavlov Department of Physiology, Russian Academy of Medical Sciences, Saint Petersburg, Russia; Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, 02-093, Poland.
| |
Collapse
|
6
|
Ji SG, Weiss JH. Zn 2+-induced disruption of neuronal mitochondrial function: Synergism with Ca 2+, critical dependence upon cytosolic Zn 2+ buffering, and contributions to neuronal injury. Exp Neurol 2018; 302:181-195. [PMID: 29355498 DOI: 10.1016/j.expneurol.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
Excitotoxic Zn2+ and Ca2+ accumulation contributes to neuronal injury after ischemia or prolonged seizures. Synaptically released Zn2+ can enter postsynaptic neurons via routes including voltage sensitive Ca2+ channels (VSCC), and, more rapidly, through Ca2+ permeable AMPA channels. There are also intracellular Zn2+ binding proteins which can either buffer neuronal Zn2+ influx or release bound Zn2+ into the cytosol during pathologic conditions. Studies in culture highlight mitochondria as possible targets of Zn2+; cytosolic Zn2+ can enter mitochondria and induce effects including loss of mitochondrial membrane potential (ΔΨm), mitochondrial swelling, and reactive oxygen species (ROS) generation. While brief (5 min) neuronal depolarization (to activate VSCC) in the presence of 300 μM Zn2+ causes substantial delayed neurodegeneration, it only mildly impacts acute mitochondrial function, raising questions as to contributions of Zn2+-induced mitochondrial dysfunction to neuronal injury. Using brief high (90 mM) K+/Zn2+ exposures to mimic neuronal depolarization and extracellular Zn2+ accumulation as may accompany ischemia in vivo, we examined effects of disrupted cytosolic Zn2+ buffering and/or the presence of Ca2+, and made several observations: 1. Mild disruption of cytosolic Zn2+ buffering-while having little effects alone-markedly enhanced mitochondrial Zn2+ accumulation and dysfunction (including loss of ∆Ψm, ROS generation, swelling and respiratory inhibition) caused by relatively low (10-50 μM) Zn2+ with high K+. 2. The presence of Ca2+ during the Zn2+ exposure decreased cytosolic and mitochondrial Zn2+ accumulation, but markedly exacerbated the consequent dysfunction. 3. Paralleling effects on mitochondria, disruption of buffering and presence of Ca2+ enhanced Zn2+-induced neurodegeneration. 4. Zn2+ chelation after the high K+/Zn2+ exposure attenuated both ROS production and neurodegeneration, supporting the potential utility of delayed interventions. Taken together, these data lend credence to the idea that in pathologic states that impair cytosolic Zn2+ buffering, slow uptake of Zn2+ along with Ca2+ into neurons via VSCC can disrupt the mitochondria and induce neurodegeneration.
Collapse
Affiliation(s)
- Sung G Ji
- Department of Anatomy & Neurobiology, University of California, Irvine, USA
| | - John H Weiss
- Department of Anatomy & Neurobiology, University of California, Irvine, USA; Department of Neurology, University of California, Irvine, USA.
| |
Collapse
|
7
|
Targeting a Potassium Channel/Syntaxin Interaction Ameliorates Cell Death in Ischemic Stroke. J Neurosci 2017; 37:5648-5658. [PMID: 28483976 DOI: 10.1523/jneurosci.3811-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 has been intimately linked with neuronal apoptosis. After ischemic, oxidative, or inflammatory insults, Kv2.1 mediates a pronounced, delayed enhancement of K+ efflux, generating an optimal intracellular environment for caspase and nuclease activity, key components of programmed cell death. This apoptosis-enabling mechanism is initiated via Zn2+-dependent dual phosphorylation of Kv2.1, increasing the interaction between the channel's intracellular C-terminus domain and the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) protein syntaxin 1A. Subsequently, an upregulation of de novo channel insertion into the plasma membrane leads to the critical enhancement of K+ efflux in damaged neurons. Here, we investigated whether a strategy designed to interfere with the cell death-facilitating properties of Kv2.1, specifically its interaction with syntaxin 1A, could lead to neuroprotection following ischemic injury in vivo The minimal syntaxin 1A-binding sequence of Kv2.1 C terminus (C1aB) was first identified via a far-Western peptide screen and used to create a protherapeutic product by conjugating C1aB to a cell-penetrating domain. The resulting peptide (TAT-C1aB) suppressed enhanced whole-cell K+ currents produced by a mutated form of Kv2.1 mimicking apoptosis in a mammalian expression system, and protected cortical neurons from slow excitotoxic injury in vitro, without influencing NMDA-induced intracellular calcium responses. Importantly, intraperitoneal administration of TAT-C1aB in mice following transient middle cerebral artery occlusion significantly reduced ischemic stroke damage and improved neurological outcome. These results provide strong evidence that targeting the proapoptotic function of Kv2.1 is an effective and highly promising neuroprotective strategy.SIGNIFICANCE STATEMENT Kv2.1 is a critical regulator of apoptosis in central neurons. It has not been determined, however, whether the cell death-enabling function of this K+ channel can be selectively targeted to improve neuronal survival following injury in vivo The experiments presented here demonstrate that the cell death-specific role of Kv2.1 can be uniquely modulated to provide neuroprotection in an animal model of acute ischemic stroke. We thus reveal a novel therapeutic strategy for neurological disorders that are accompanied by Kv2.1-facilitated forms of cell death.
Collapse
|
8
|
Patel R, Sesti F. Oxidation of ion channels in the aging nervous system. Brain Res 2016; 1639:174-85. [PMID: 26947620 DOI: 10.1016/j.brainres.2016.02.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
Ion channels are integral membrane proteins that allow passive diffusion of ions across membranes. In neurons and in other excitable cells, the harmonious coordination between the numerous types of ion channels shape and propagate electrical signals. Increased accumulation of reactive oxidative species (ROS), and subsequent oxidation of proteins, including ion channels, is a hallmark feature of aging and may contribute to cell failure as a result. In this review we discuss the effects of ROS on three major types of ion channels of the central nervous system, namely the potassium (K(+)), calcium (Ca(2+)) and sodium (Na(+)) channels. We examine two general mechanisms through which ROS affect ion channels: via direct oxidation of specific residues and via indirect interference of pathways that regulate the channels. The overall status of the present studies indicates that the interaction of ion channels with ROS is multimodal and pervasive in the central nervous system and likely constitutes a general mechanism of aging susceptibility.
Collapse
Affiliation(s)
- Rahul Patel
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Peers C, Boyle JP. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging. Antioxid Redox Signal 2015; 22:505-21. [PMID: 25333910 DOI: 10.1089/ars.2014.6007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress and damage are well-established components of neurodegenerative diseases, contributing to neuronal death during disease progression. Here, we consider key K(+) channels as target proteins that can undergo oxidative modulation, describe what is understood about how this influences disease progression, and consider regulation of these channels by gasotransmitters as a means of cellular protection. RECENT ADVANCES Oxidative regulation of the delayed rectifier Kv2.1 and the Ca(2+)- and voltage-sensitive BK channel are established, but recent studies contest how their redox sensitivity contributes to altered excitability, progression of neurodegenerative diseases, and healthy aging. CRITICAL ISSUES Both Kv2.1 and BK channels have recently been established as target proteins for regulation by the gasotransmitters carbon monoxide and hydrogen sulfide. Establishing the molecular basis of such regulation, and exactly how this influences excitability and vulnerability to apoptotic cell death will determine whether such regulation can be exploited for therapeutic benefit. FUTURE DIRECTIONS Developing a more comprehensive picture of the oxidative modulation of K(+) channels (and, indeed, other ion channels) within the central nervous system in health and disease will enable us to better understand processes associated with healthy aging as well as distinct processes underlying progression of neurodegenerative diseases. Advances in the growing understanding of how gasotransmitters can regulate ion channels, including redox-sensitive K(+) channels, are a research priority for this field, and will establish their usefulness in design of future approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Chris Peers
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
10
|
McIntosh CH, Widenmaier S, Kim SJ. Glucose-dependent insulinotropic polypeptide signaling in pancreatic β-cells and adipocytes. J Diabetes Investig 2014; 3:96-106. [PMID: 24843552 PMCID: PMC4020726 DOI: 10.1111/j.2040-1124.2012.00196.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucose‐dependent insulinotropic polypeptide (GIP) was the first incretin to be identified. In addition to stimulating insulin secretion, GIP plays regulatory roles in the maintenance, growth and survival of pancreatic islets, as well as impacting on adipocyte function. The current review focuses on the intracellular signaling pathways by which GIP contributes to the regulation of β‐cell secretion and survival, and adipocyte differentiation and lipogenesis. Studies on signaling underlying the insulinotropic actions of the incretin hormones have largely been carried out with glucagon‐like peptide‐1. They have provided evidence for contributions by both protein kinase A (PKA) and exchange protein directly activated by cyclic adenosine monophosphate (EPAC2), and their probable role in GIP signaling is discussed. Recent studies have shown that inhibition of the kinase apoptosis signal‐regulating kinase 1 (ASK1) by GIP plays a key role in reducing mitochondria‐induced apoptosis in β‐cells through protein kinase B (PKB)‐mediated pathways, and that GIP‐induced post‐translational modification of voltage‐ dependent K+ (Kv) channels also contributes to its prosurvival role. Through regulation of gene expression, GIP tips the balance between pro‐ and anti‐apoptotic members of the B‐cell lymphoma‐2 (Bcl‐2) protein family towards β‐cell survival. GIP also plays important roles in the differentiation of pre‐adipocytes to adipocytes, and in the regulation of lipoprotein lipase expression and lipogenesis. These events involve interactions between GIP, insulin and resistin signaling pathways. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00196.x, 2012)
Collapse
Affiliation(s)
- Christopher Hs McIntosh
- Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute University of British Columbia, Vancouver, BC, Canada
| | - Scott Widenmaier
- Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute University of British Columbia, Vancouver, BC, Canada
| | - Su-Jin Kim
- Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Sesti F, Wu X, Liu S. Oxidation of KCNB1 K(+) channels in central nervous system and beyond. World J Biol Chem 2014; 5:85-92. [PMID: 24921000 PMCID: PMC4050120 DOI: 10.4331/wjbc.v5.i2.85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/26/2014] [Accepted: 03/03/2014] [Indexed: 02/05/2023] Open
Abstract
KCNB1, a voltage-gated potassium (K(+)) channel that conducts a major delayed rectifier current in the brain, pancreas and cardiovascular system is a key player in apoptotic programs associated with oxidative stress. As a result, this protein represents a bona fide drug target for limiting the toxic effects of oxygen radicals. Until recently the consensus view was that reactive oxygen species trigger a pro-apoptotic surge in KCNB1 current via phosphorylation and SNARE-dependent incorporation of KCNB1 channels into the plasma membrane. However, new evidence shows that KCNB1 can be modified by oxidants and that oxidized KCNB1 channels can directly activate pro-apoptotic signaling pathways. Hence, a more articulated picture of the pro-apoptotic role of KCNB1 is emerging in which the protein induces cell's death through distinct molecular mechanisms and activation of multiple pathways. In this review article we discuss the diverse functional, toxic and protective roles that KCNB1 channels play in the major organs where they are expressed.
Collapse
|
12
|
McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer's disease. Front Aging Neurosci 2014; 6:77. [PMID: 24860495 PMCID: PMC4028997 DOI: 10.3389/fnagi.2014.00077] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/02/2014] [Indexed: 01/26/2023] Open
Abstract
Brain aging is marked by structural, chemical, and genetic changes leading to cognitive decline and impaired neural functioning. Further, aging itself is also a risk factor for a number of neurodegenerative disorders, most notably Alzheimer’s disease (AD). Many of the pathological changes associated with aging and aging-related disorders have been attributed in part to increased and unregulated production of reactive oxygen species (ROS) in the brain. ROS are produced as a physiological byproduct of various cellular processes, and are normally detoxified by enzymes and antioxidants to help maintain neuronal homeostasis. However, cellular injury can cause excessive ROS production, triggering a state of oxidative stress that can lead to neuronal cell death. ROS and intracellular zinc are intimately related, as ROS production can lead to oxidation of proteins that normally bind the metal, thereby causing the liberation of zinc in cytoplasmic compartments. Similarly, not only can zinc impair mitochondrial function, leading to excess ROS production, but it can also activate a variety of extra-mitochondrial ROS-generating signaling cascades. As such, numerous accounts of oxidative neuronal injury by ROS-producing sources appear to also require zinc. We suggest that zinc deregulation is a common, perhaps ubiquitous component of injurious oxidative processes in neurons. This review summarizes current findings on zinc dyshomeostasis-driven signaling cascades in oxidative stress and age-related neurodegeneration, with a focus on AD, in order to highlight the critical role of the intracellular liberation of the metal during oxidative neuronal injury.
Collapse
Affiliation(s)
- Meghan C McCord
- Department of Neurobiology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
13
|
El Hachmane MF, Rees KA, Veale EL, Sumbayev VV, Mathie A. Enhancement of TWIK-related acid-sensitive potassium channel 3 (TASK3) two-pore domain potassium channel activity by tumor necrosis factor α. J Biol Chem 2013; 289:1388-401. [PMID: 24307172 DOI: 10.1074/jbc.m113.500033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TASK3 two-pore domain potassium (K2P) channels are responsible for native leak K channels in many cell types which regulate cell resting membrane potential and excitability. In addition, TASK3 channels contribute to the regulation of cellular potassium homeostasis. Because TASK3 channels are important for cell viability, having putative roles in both neuronal apoptosis and oncogenesis, we sought to determine their behavior under inflammatory conditions by investigating the effect of TNFα on TASK3 channel current. TASK3 channels were expressed in tsA-201 cells, and the current through them was measured using whole cell voltage clamp recordings. We show that THP-1 human myeloid leukemia monocytes, co-cultured with hTASK3-transfected tsA-201 cells, can be activated by the specific Toll-like receptor 7/8 activator, R848, to release TNFα that subsequently enhances hTASK3 current. Both hTASK3 and mTASK3 channel activity is increased by incubation with recombinant TNFα (10 ng/ml for 2-15 h), but other K2P channels (hTASK1, hTASK2, hTREK1, and hTRESK) are unaffected. This enhancement by TNFα is not due to alterations in levels of channel expression at the membrane but rather to an alteration in channel gating. The enhancement by TNFα can be blocked by extracellular acidification but persists for mutated TASK3 (H98A) channels that are no longer acid-sensitive even in an acidic extracellular environment. TNFα action on TASK3 channels is mediated through the intracellular C terminus of the channel. Furthermore, it occurs through the ASK1 pathway and is JNK- and p38-dependent. In combination, TNFα activation and TASK3 channel activity can promote cellular apoptosis.
Collapse
Affiliation(s)
- Mickael-F El Hachmane
- From the Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, ME4 4TB Kent, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
15
|
Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci U S A 2013; 110:13988-93. [PMID: 23918396 DOI: 10.1073/pnas.1306238110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A simultaneous increase in cytosolic Zn(2+) and Ca(2+) accompanies the initiation of neuronal cell death signaling cascades. However, the molecular convergence points of cellular processes activated by these cations are poorly understood. Here, we show that Ca(2+)-dependent activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is required for a cell death-enabling process previously shown to also depend on Zn(2+). We have reported that oxidant-induced intraneuronal Zn(2+) liberation triggers a syntaxin-dependent incorporation of Kv2.1 voltage-gated potassium channels into the plasma membrane. This channel insertion can be detected as a marked enhancement of delayed rectifier K(+) currents in voltage clamp measurements observed at least 3 h following a short exposure to an apoptogenic stimulus. This current increase is the process responsible for the cytoplasmic loss of K(+) that enables protease and nuclease activation during apoptosis. In the present study, we demonstrate that an oxidative stimulus also promotes intracellular Ca(2+) release and activation of CaMKII, which, in turn, modulates the ability of syntaxin to interact with Kv2.1. Pharmacological or molecular inhibition of CaMKII prevents the K(+) current enhancement observed following oxidative injury and, importantly, significantly increases neuronal viability. These findings reveal a previously unrecognized cooperative convergence of Ca(2+)- and Zn(2+)-mediated injurious signaling pathways, providing a potentially unique target for therapeutic intervention in neurodegenerative conditions associated with oxidative stress.
Collapse
|
16
|
Abstract
Our understanding of the roles played by zinc in the physiological and pathological functioning of the brain is rapidly expanding. The increased availability of genetically modified animal models, selective zinc-sensitive fluorescent probes, and novel chelators is producing a remarkable body of exciting new data that clearly establishes this metal ion as a key modulator of intracellular and intercellular neuronal signaling. In this Mini-Symposium, we will review and discuss the most recent findings that link zinc to synaptic function as well as the injurious effects of zinc dyshomeostasis within the context of neuronal death associated with major human neurological disorders, including stroke, epilepsy, and Alzheimer's disease.
Collapse
|
17
|
Kim SJ, Widenmaier SB, Choi WS, Nian C, Ao Z, Warnock G, McIntosh CHS. Pancreatic β-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels. Cell Death Differ 2011; 19:333-44. [PMID: 21818121 DOI: 10.1038/cdd.2011.102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the major incretin hormones that exert insulinotropic and anti-apoptotic actions on pancreatic β-cells. Insulinotropic actions of the incretins involve modulation of voltage-gated potassium (Kv) channels. In multiple cell types, Kv channel activity has been implicated in cell volume changes accompanying initiation of the apoptotic program. Focusing on Kv2.1, we examined whether regulation of Kv channels in β-cells contributes to the prosurvival effects of incretins. Overexpression of Kv2.1 in INS-1 β-cells potentiated apoptosis in response to mitochondrial and ER stress and, conversely, co-stimulation with GIP/GLP-1 uncoupled this potentiation, suppressing apoptosis. In parallel, incretins promoted phosphorylation and acetylation of Kv2.1 via pathways involving protein kinase A (PKA)/mitogen- and stress-activated kinase-1 (MSK-1) and histone acetyltransferase (HAT)/histone deacetylase (HDAC). Further studies demonstrated that acetylation of Kv2.1 was mediated by incretin actions on nuclear/cytoplasmic shuttling of CREB binding protein (CBP) and its interaction with Kv2.1. Regulation of β-cell survival by GIP and GLP-1 therefore involves post-translational modifications (PTMs) of Kv channels by PKA/MSK-1 and HAT/HDAC. This appears to be the first demonstration of modulation of delayed rectifier Kv channels contributing to the β-cell prosurvival effects of incretins and of 7-transmembrane G protein-coupled receptor (GPCR)-stimulated export of a nuclear lysine acetyltransferase that regulates cell surface ion channel function.
Collapse
Affiliation(s)
- S-J Kim
- Departments of Cellular & Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Rosales-Corral S, Reiter RJ, Tan DX, Ortiz GG, Lopez-Armas G. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal 2010; 13:193-247. [PMID: 19951033 DOI: 10.1089/ars.2009.2629] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is a CNS reaction to injury in which some severe pathologies, regardless of their origin, converge. The phenomenon emphasizes crosstalk between neurons and glia and reveals a complex interaction with oxidizing agents through redox sensors localized in enzymes, receptors, and transcription factors. When oxidizing pressures cause reversible molecular changes, such as minimal or transitory proinflammatory cytokine overproduction, redox couples provide a means of translating the presence of reactive oxygen or nitrogen species into useful signals in the cell. Additionally, thiol-based redox sensors convey information about localized changes in redox potential induced by physiologic or pathologic situations. They are susceptible to oxidative changes and become key events during neuroinflammation, altering the course of a signaling response or the behavior of specific transcription factors. When oxidative stress augments the pressure on the intracellular environment, the effective reduction potential of redox pairs diminishes, and cell signaling shifts toward proinflammatory and proapoptotic signals, creating a vicious cycle between oxidative stress and neuroinflammation. In addition, electrophilic compounds derived from the oxidative cascade react with key protein thiols and interfere with redox signaling. This article reviews the relevant functional aspects of redox control during the neuroinflammatory process.
Collapse
Affiliation(s)
- Sergio Rosales-Corral
- Lab. Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO) del Instituto Mexicano del Seguro Social (IMSS) , Guadalajara, Jalisco. Mexico.
| | | | | | | | | |
Collapse
|
19
|
Redman PT, Hartnett KA, Aras MA, Levitan ES, Aizenman E. Regulation of apoptotic potassium currents by coordinated zinc-dependent signalling. J Physiol 2009; 587:4393-404. [PMID: 19622611 PMCID: PMC2766646 DOI: 10.1113/jphysiol.2009.176321] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022] Open
Abstract
Oxidant-liberated intracellular Zn(2+) regulates neuronal apoptosis via an exocytotic membrane insertion of Kv2.1-encoded ion channels, resulting in an enhancement of voltage-gated K(+) currents and a loss of intracellular K(+) that is necessary for caspase-mediated proteolysis. In the present study we show that an N-terminal tyrosine of Kv2.1 (Y124), which is a known target of Src kinase, is critical for the apoptotic current surge. Moreover, we demonstrate that Y124 works in concert with a C-terminal serine (S800) target of p38 mitogen-activated protein kinase (MAPK) to regulate Kv2.1-mediated current enhancement. While Zn(2+) was previously shown to activate p38, we show here that this metal inhibits cytoplasmic protein tyrosine phosphatase (Cyt-PTPepsilon), which specifically targets Y124. Importantly, a point mutation of Y124 to a non-phosphorylatable residue or over-expression of Cyt-PTPepsilon protects cells from injury. Kv2.1-encoded channels thus regulate neuronal survival by providing a converging input for two Zn(2+)-dependent signal transduction cascades.
Collapse
Affiliation(s)
- Patrick T Redman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
20
|
Suppression of a pro-apoptotic K+ channel as a mechanism for hepatitis C virus persistence. Proc Natl Acad Sci U S A 2009; 106:15903-8. [PMID: 19717445 DOI: 10.1073/pnas.0906798106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An estimated 3% of the global population are infected with hepatitis C virus (HCV), and the majority of these individuals will develop chronic liver disease. As with other chronic viruses, establishment of persistent infection requires that HCV-infected cells must be refractory to a range of pro-apoptotic stimuli. In response to oxidative stress, amplification of an outward K(+) current mediated by the Kv2.1 channel, precedes the onset of apoptosis. We show here that in human hepatoma cells either infected with HCV or harboring an HCV subgenomic replicon, oxidative stress failed to initiate apoptosis via Kv2.1. The HCV NS5A protein mediated this effect by inhibiting oxidative stress-induced p38 MAPK phosphorylation of Kv2.1. The inhibition of a host cell K(+) channel by a viral protein is a hitherto undescribed viral anti-apoptotic mechanism and represents a potential target for antiviral therapy.
Collapse
|
21
|
KNOCH MEGANE, HARTNETT KARENA, HARA HIROKAZU, KANDLER KARL, AIZENMAN ELIAS. Microglia induce neurotoxicity via intraneuronal Zn(2+) release and a K(+) current surge. Glia 2008; 56:89-96. [PMID: 17955552 PMCID: PMC2561170 DOI: 10.1002/glia.20592] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microglial cells are critical components of the injurious cascade in a large number of neurodegenerative diseases. However, the precise molecular mechanisms by which microglia mediate neuronal cell death have not been fully delineated. We report here that reactive species released from activated microglia induce the liberation of Zn(2+) from intracellular stores in cultured cortical neurons, with a subsequent enhancement in neuronal voltage-gated K(+) currents, two events that have been intimately linked to apoptosis. Both the intraneuronal Zn(2+) release and the K(+) current surge could be prevented by the NADPH oxidase inhibitor apocynin, the free radical scavenging mixture of superoxide dismutase and catalase, as well as by 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride. The enhancement of K(+) currents was prevented by neuronal overexpression of metallothionein III or by expression of a dominant negative (DN) vector for the upstream mitogen-activated protein kinase apoptosis signal regulating kinase-1 (ASK-1). Importantly, neurons overexpressing metallothionein-III or transfected with DN vectors for ASK-1 or Kv2.1-encoded K(+) channels were resistant to microglial-induced toxicity. These results establish a direct link between microglial-generated oxygen and nitrogen reactive products and neuronal cell death mediated by intracellular Zn(2+) release and a surge in K(+) currents.
Collapse
Affiliation(s)
- MEGAN E. KNOCH
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - KAREN A. HARTNETT
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - HIROKAZU HARA
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - KARL KANDLER
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - ELIAS AIZENMAN
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Abstract
Apoptosis in cortical neurons requires efflux of cytoplasmic potassium mediated by a surge in Kv2.1 channel activity. Pharmacological blockade or molecular disruption of these channels in neurons prevents apoptotic cell death, while ectopic expression of Kv2.1 channels promotes apoptosis in non-neuronal cells. Here, we use a cysteine-containing mutant of Kv2.1 and a thiol-reactive covalent inhibitor to demonstrate that the increase in K+ current during apoptosis is due to de novo insertion of functional channels into the plasma membrane. Biotinylation experiments confirmed the delivery of additional Kv2.1 protein to the cell surface following an apoptotic stimulus. Finally, expression of botulinum neurotoxins that cleave syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) blocked upregulation of surface Kv2.1 channels in cortical neurons, suggesting that target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins support proapoptotic delivery of K+ channels. These data indicate that trafficking of Kv2.1 channels to the plasma membrane causes the apoptotic surge in K+ current.
Collapse
Key Words
- apoptosis
- kv2.1
- mtset
- biotinylation
- botulinum
- kv, voltage-dependent potassium channel
- dtdp, 2,2′-dithiodipyridine
- cho, chinese hamster ovary
- mtset, (2-trimethylammoniumethyl) methanethiosulfate
- dtt, dithiothreitol
- gapdh, glyceraldehyde phosphate dehydrogenase
- bont, botulinum neurotoxin
- t-snare, target soluble n-ethylmaleimide-sensitive factor attachment protein receptor
- snap-25, synaptosome-associated protein of 25 kilodaltons
- mapk, mitogen-activated protein kinase
- baf, butoxy-carbonyl-aspartate-fluoromethyl ketone
Collapse
Affiliation(s)
- SK Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA
| | - K Takimoto
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - E Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA
| | - ES Levitan
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA
| |
Collapse
|