1
|
Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization. Int J Mol Sci 2020; 21:ijms21082938. [PMID: 32331300 PMCID: PMC7215309 DOI: 10.3390/ijms21082938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund’s adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.
Collapse
|
2
|
Funahashi H, Miyahara Y, Haruta-Tsukamoto A, Matsuo T, Naono-Nakayama R, Ebihara K, Nishimori T, Ishida Y. Pharmacological characteristics of hemokinin-1-derived peptides in rat pruriceptive processing. Peptides 2020; 124:170232. [PMID: 31843553 DOI: 10.1016/j.peptides.2019.170232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022]
Abstract
Hemokinin-1 (HK-1) is a member of mammalian tachykinin peptide family, and [Leu11]-HK-1 has an antagonistic effect on HK-1. The attenuation of pruritogen-induced scratching behavior by pretreatment with [Leu11]-HK-1 indicates the involvement of HK-1 in pruriceptive processing. However, it remains unclear whether the intrathecal or intranasal administration of HK-1-derived peptides, such as [D-Trp7,9]-[Leu11]-HK-1 or [D-Trp7]-[Leu11]-HK-1, elicits the effects different from [Leu11]-HK-1. The induction of scratching by intrathecal administration of HK-1 was attenuated 30 min, 4 h and 24 h after pretreatment with [Leu11]-HK-1, [D-Trp7,9]-[Leu11]-HK-1 and [D-Trp7]-[Leu11]-HK-1 or [D-Trp9]-[Leu11]-HK-1, respectively. Similarly, the scratching induced by subcutaneous injection of pruritogens as chloroquine and histamine was ameliorated 30 min and 24 h after pretreatment with [Leu11]-HK-1 and these three HK-1-derived peptides, respectively. Moreover, the effective minimum concentrations of intrathecal administrations of [D-Trp9]-[Leu11]-HK-1 on scratching induced by chloroquine and histamine were 10-6 M, while the effective minimum concentrations of intranasal administration of this peptide on scratching induced by chloroquine and histamine were 10-5 M and 10-4 M, respectively. Thus, the present results indicate that the intrathecal administration of HK-1-derived peptides with D-Trp extends its effective time on scratching induced by intrathecal administration of HK-1 and pruritogens such as chloroquine and histamine. Similarly, the induction of scratching by pruritogens was attenuated by intranasal administration of HK-1-derived peptide, although the effective minimum concentration of this peptide was slightly lower than that of intrathecal administration, indicating that intranasal administration is an effective tool for carrying peptides into the brain.
Collapse
Affiliation(s)
- Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Tomoko Matsuo
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Rumi Naono-Nakayama
- Division of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kosuke Ebihara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan.
| |
Collapse
|
3
|
Hunyady Á, Hajna Z, Gubányi T, Scheich B, Kemény Á, Gaszner B, Borbély É, Helyes Z. Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms. Brain Res Bull 2019; 147:165-173. [PMID: 30664920 DOI: 10.1016/j.brainresbull.2019.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/15/2023]
Abstract
The Tac4 gene-derived hemokinin-1 (HK-1) is present in pain-related regions and activates the tachykinin NK1 receptor, but with binding site and signaling pathways different from Substance P (SP). NK1 receptor is involved in nociception, but our earlier data showed that it has no role in chronic neuropathic hyperalgesia, similarly to SP. Furthermore, NK1 antagonists failed in clinical trials as analgesics due to still unknown reasons. Therefore, we investigated the role of HK-1 in pain conditions of distinct mechanisms using genetically modified mice. Chronic neuropathic mechanical and cold hyperalgesia after partial sciatic nerve ligation (PSL) were determined by dynamic plantar aesthesiometry and withdrawal latency from icy water, motor coordination on the accelerating Rotarod. Peripheral nerve growth factor (NGF) production was measured by ELISA, neuronal and glia cell activation by immunohistochemistry in pain-related regions. Acute somatic and visceral chemonocifensive behaviors were assessed after intraplantar formalin or intraperitoneal acetic-acid injection, respectively. Resiniferatoxin-induced inflammatory mechanical and thermal hyperalgesia by aesthesiometry and increasing temperature hot plate. Chronic neuropathic mechanical and cold hypersensitivity were significantly decreased in HK-1 deficient mice. NGF level in the paw homogenates of intact mice were significantly lower in case of HK-1 deletion. However, it significantly increased under neuropathic condition in contrast to wildtype mice, where the higher basal concentration did not show any changes. Microglia, but not astrocyte activation was observed 14 days after PSL in the ipsilateral spinal dorsal horn of wildtype, but not HK-1-deficient mice. However, under neuropathic conditions, the number of GFAP-positive astrocytes was significantly smaller in case of HK-1 deletion. Acute visceral, but not somatic nocifensive behavior, as well as neurogenic inflammatory mechanical and thermal hypersensitivity were significantly reduced by HK-1 deficiency similarly to NK1, but not to SP deletion. We provide evidence for pro-nociceptive role of HK-1, via NK1 receptor activation in acute inflammation models, but differently from SP-mediated actions. Identification of its targets and signaling can open new directions in pain research.
Collapse
Affiliation(s)
- Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Tímea Gubányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Bálint Scheich
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; Department of Medical Biology, Medical School, University of Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| |
Collapse
|
4
|
Allen M, Johnson RA. Evaluation of self-injurious behavior, thermal sensitivity, food intake, fecal output, and pica after injection of three buprenorphine formulations in rats (Rattus norvegicus). Am J Vet Res 2018; 79:697-703. [DOI: 10.2460/ajvr.79.7.697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Allen M, Nietlisbach N, Johnson RA. Evaluation of self-injurious behavior, food intake, fecal output, and thermal withdrawal latencies after injection of a high-concentration buprenorphine formulation in rats (Rattus norvegicus). Am J Vet Res 2018; 79:154-162. [DOI: 10.2460/ajvr.79.2.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
OBJECTIVE To evaluate effects of high-concentration buprenorphine (HCB) on self-injurious behavior, food intake, fecal output, and thermal withdrawal latencies in healthy rats.
ANIMALS 8 Sprague-Dawley rats.
PROCEDURES Rats received 4 SC treatments (HCB at 0.075, 0.15, or 0.30 mg/kg [HCB0.075, HCB0.15, and HCB0.30, respectively] or 5% dextrose solution [0.20 mL/kg]) in a randomized, crossover-design study. Self-injurious behavior was assessed for 8 hours after injection. Food intake and fecal output were assessed for predetermined periods before and after treatment and separated into 12-hour light and dark periods for further analysis. Withdrawal latencies were assessed before (time 0) and at predetermined times after injection. Data were compared among treatments and time points.
RESULTS Self-injurious behavior was observed up to 8 hours after injection for all HCB, but not dextrose, treatments. Preinjection food intake and fecal output amounts were similar among groups and higher during the dark period than during the light period. Food intake after all HCB treatments was higher during the light period and lower during the dark period, compared with preinjection results for the same treatments and with postinjection results for dextrose administration. Light-period fecal output was lower after HCB0.15 and HCB0.30 administration, compared with preinjection values for the same treatments and postinjection values for dextrose administration. Percentage change in withdrawal latency was significantly higher than that at time 0 (ie, 0%) for only 1 treatment (HCB0.30) at 1 time point (1 hour after injection).
CONCLUSIONS AND CLINICAL RELEVANCE Although HCB0.30 produced a degree of thermal hypoalgesia in healthy rats, self-injurious behavior and alterations in food intake and fecal output were detected, potentially affecting clinical utility of the treatment.
Collapse
|
6
|
Borbély É, Helyes Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017; 64:9-17. [PMID: 27993375 DOI: 10.1016/j.npep.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
Hemokinin-1 (HK-1), the newest tachykinin encoded by the Tac4 gene was discovered in 2000. Its name differs from that of the other members of this peptide family due to its first demonstration in B lymphocytes. Since tachykinins are classically found in the nervous system, the significant expression of HK-1 in blood cells is a unique feature of this peptide. Due to its widespread distribution in the whole body, HK-1 is involved in different physiological and pathophysiological functions involving pain inflammation modulation, immune regulation, respiratory and endocrine functions, as well as tumor genesis. Furthermore, despite the great structural and immunological similarities to substance P (SP), the functions of HK-1 are often different or the opposite. They both have the highest affinity to the tachykinin NK1 receptor, but HK-1 is likely to have a distinct binding site and signalling pathways. Moreover, several actions of HK-1 different from SP have been suggested to be mediated via a presently not identified own receptor/target molecule. Therefore, it is very important to explore its effects at different levels and compare its characteristics with SP to get a deeper insight in the different cellular mechanisms. Since HK-1 has recently been in the focus of intensive research, in the present review we summarize the few clinical data and experimental results regarding HK-1 expression and function in different model systems obtained throughout the 16years of its history. Synthesizing these findings help to understand the complexity of HK-1 actions and determine its biomarker values and/or drug development potentials.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary
| |
Collapse
|
7
|
Borbély É, Hajna Z, Nabi L, Scheich B, Tékus V, László K, Ollmann T, Kormos V, Gaszner B, Karádi Z, Lénárd L, Paige CJ, Quinn JP, Szolcsányi J, Pintér E, Keeble J, Berger A, Helyes Z. Hemokinin-1 mediates anxiolytic and anti-depressant-like actions in mice. Brain Behav Immun 2017; 59:219-232. [PMID: 27621226 DOI: 10.1016/j.bbi.2016.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023] Open
Abstract
The tachykinin NK1 receptor was suggested to be involved in psychiatric disorders, but its antagonists have failed to be effective as antidepressants in clinical trials. Hemokinin-1 (HK-1), the newest tachykinin, is present in several brain regions and activates the NK1 receptor similarly to substance P (SP), but acts also through other mechanisms. Therefore, we investigated the roles of the Tac4 gene-derived HK-1 in comparison with SP and neurokinin A (NKA) encoded by the Tac1 gene, as well as the NK1 receptor in anxiety and depression-like behaviors in mice. Mice lacking SP/NKA, HK-1 or the NK1 receptor (Tac1-/-, Tac4-/-, Tacr1-/-, respectively) compared to C57Bl/6 wildtypes (WT), and treatment with the NK1 antagonist CP99994 were used in the experiments. Anxiety was evaluated in the light-dark box (LDB) and the elevated plus maze (EPM), locomotor activity in the open field (OFT) tests. Hedonic behavior was assessed in the sucrose preference test (SPT), depression-like behavior in the tail suspension (TST) and forced swim (FST) tests. FST-induced neuronal responsiveness was evaluated with Fos immunohistochemistry in several stress-related brain regions. In the LDB, Tac4-/- mice spent significantly less, while Tacr1-/- and CP99994-treated mice spent significantly more time in the lit compartment. In the EPM only Tac4-/- showed reduced time in the open arms, but no difference was observed in any other groups. In the OFT Tac4-/- mice showed significantly reduced, while Tac1-/- and Tacr1-/- animals increased motility than the WTs, but CP99994 had no effect. NK1-/- consumed markedly more, while Tac4-/- less sucrose solution compared to WTs. In the TST and FST, Tac4-/- mice showed significantly increased immobility. However, depression-like behavior was decreased both in cases of genetic deletion and pharmacological blockade of the NK1 receptor. FST-induced neuronal activation in different nuclei involved in behavioral and neuroendocrine stress responses was significantly reduced in the brain of Tac4 -/- mice. Our results provide the first evidence for an anxiolytic and anti-depressant-like actions of HK-1 through a presently unknown target-mediated mechanism. Identification of its receptor and/or signaling pathways might open new perspectives for anxiolytic and anti-depressant therapies.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Liza Nabi
- King's College London, Institute of Pharmaceutical Science, London, UK
| | - Bálint Scheich
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Kristóf László
- Department of Physiology, Medical School, University of Pécs, Hungary
| | - Tamás Ollmann
- Department of Physiology, Medical School, University of Pécs, Hungary
| | - Viktória Kormos
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Zoltán Karádi
- Department of Physiology, Medical School, University of Pécs, Hungary
| | - László Lénárd
- Department of Physiology, Medical School, University of Pécs, Hungary
| | | | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine Liverpool University, Liverpool, UK
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Julie Keeble
- King's College London, Institute of Pharmaceutical Science, London, UK
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary.
| |
Collapse
|
8
|
Watanabe C, Mizoguchi H, Bagetta G, Sakurada S. Involvement of spinal glutamate in nociceptive behavior induced by intrathecal administration of hemokinin-1 in mice. Neurosci Lett 2016; 617:236-9. [DOI: 10.1016/j.neulet.2016.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/10/2016] [Accepted: 02/14/2016] [Indexed: 11/17/2022]
|
9
|
Maduka UP, Hamity MV, Walder RY, White SR, Li Y, Hammond DL. Changes in the disposition of substance P in the rostral ventromedial medulla after inflammatory injury in the rat. Neuroscience 2016; 317:1-11. [PMID: 26762802 DOI: 10.1016/j.neuroscience.2015.12.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022]
Abstract
This study examined whether peripheral inflammatory injury increases the levels or changes the disposition of substance P (SubP) in the rostral ventromedial medulla (RVM), which serves as a central relay in bulbospinal pathways of pain modulation. Enzyme immunoassay and reverse transcriptase quantitative polymerase chain reaction were used to measure SubP protein and transcript, respectively, in tissue homogenates prepared from the RVM and the periaqueductal gray (PAG) and cuneiform nuclei of rats that had received an intraplantar injection of saline or complete Freund's adjuvant (CFA). Matrix-Assisted Laser Desorption/Ionization Time of Flight analysis confirmed that the RVM does not contain hemokinin-1 (HK-1), which can confound measurements of SubP because it is recognized equally well by commercial antibodies for SubP. Levels of SubP protein in the RVM were unchanged four hours, four days and two weeks after injection of CFA. Tac1 transcripts were similarly unchanged in the RVM four days or two weeks after CFA. In contrast, the density of SubP immunoreactive processes in the RVM increased 2-fold within four hours and 2.7-fold four days after CFA injection; it was unchanged at two weeks. SubP-immunoreactive processes in the RVM include axon terminals of neurons located in the PAG and cuneiform nucleus. SubP content in homogenates of the PAG and cuneiform nucleus was significantly increased four days after CFA, but not at four hours or two weeks. Tac1 transcripts in homogenates of these nuclei were unchanged four days and two weeks after CFA. These findings suggest that there is an increased mobilization of SubP within processes in the RVM shortly after injury accompanied by an increased synthesis of SubP in neurons that project to the RVM. These findings are consonant with the hypothesis that an increase in SubP release in the RVM contributes to the hyperalgesia that develops after peripheral inflammatory injury.
Collapse
Affiliation(s)
- U P Maduka
- Departments of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - M V Hamity
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - R Y Walder
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - S R White
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Y Li
- Proteomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - D L Hammond
- Departments of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
10
|
Ganjiwale A, Cowsik SM. Membrane-induced structure of novel human tachykinin hemokinin-1 (hHK1). Biopolymers 2015; 103:702-10. [DOI: 10.1002/bip.22734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Anjali Ganjiwale
- Institute of Bioinformatics and Applied Biotechnology, Electronic City-Phase I; Bangalore Karanataka India
| | - Sudha M. Cowsik
- School of Life Sciences; Jawaharlal Nehru Univeristy; New Delhi, India
| |
Collapse
|
11
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
12
|
Hajna Z, Borbély É, Kemény Á, Botz B, Kereskai L, Szolcsányi J, Pintér E, Paige CJ, Berger A, Helyes Z. Hemokinin-1 is an important mediator of endotoxin-induced acute airway inflammation in the mouse. Peptides 2015; 64:1-7. [PMID: 25541043 DOI: 10.1016/j.peptides.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Hemokinin-1, the newest tachykinin encoded by the preprotachykinin C (Tac4) gene, is predominatly produced by immune cells. Similarly to substance P, it has the greatest affinity to the tachykinin NK1 receptor, but has different binding site and signaling mechanisms. Furthermore, several recent data indicate the existence of a not yet identified own receptor and divergent non-NK1-mediated actions. Since there is no information on its functions in the airways, we investigated its role in endotoxin-induced pulmonary inflammation. METHODS Acute pneumonitis was induced in Tac4 gene-deleted (Tac4(-/-)) mice compared to C57Bl/6 wildtypes by intranasal E. coli lipopolysaccharide (LPS). Airway responsiveness to inhaled carbachol was measured with unrestrained whole body plethysmography 24h later. Semiquantitative histopathological scoring was performed; reactive oxygen species (ROS) production was measured with luminol bioluminescence, myeloperoxidase activity with spectrophotometry, and inflammatory cytokines with Luminex. RESULTS All inflammatory parameters, such as histopathological alterations (perivascular edema, neutrophil/macrophage accumulation, goblet cell hyperplasia), myeloperoxidase activity, ROS production, as well as interleukin-1beta, interleukin-6, tumor necrosis factor alpha, monocyte chemoattractant protein-1 and keratinocyte chemoattractant concentrations were significantly diminished in the lung of Tac4(-/-) mice. However, bronchial hyperreactivity similarly developed in both groups. Interestingly, in LPS-treated Tac4(-/-) mouse lungs, bronchus-associated, large, follicle-like lymphoid structures developed. CONCLUSIONS We provide the first evidence that hemokinin-1 plays a crucial pro-inflammatory role in the lung by increasing inflammatory cell activities, and might also be a specific regulator of lymphocyte functions.
Collapse
Affiliation(s)
- Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | | | - Alexandra Berger
- Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary; MTA-PTE NAP B Pain Research Group.
| |
Collapse
|
13
|
Funahashi H, Naono-Nakayama R, Ebihara K, Koganemaru G, Kuramashi A, Ikeda T, Nishimori T, Ishida Y. Hemokinin-1 mediates pruriceptive processing in the rat spinal cord. Neuroscience 2014; 277:206-16. [DOI: 10.1016/j.neuroscience.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022]
|
14
|
Fu CY, Xia RL, Zhang TF, Lu Y, Zhang SF, Yu ZQ, Jin T, Mou XZ. Hemokinin-1(4-11)-induced analgesia selectively up-regulates δ-opioid receptor expression in mice. PLoS One 2014; 9:e90446. [PMID: 24587368 PMCID: PMC3938741 DOI: 10.1371/journal.pone.0090446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/30/2014] [Indexed: 12/01/2022] Open
Abstract
Our previous studies have shown that an active fragment of human tachykinins (hHK-1(4-11)) produced an opioid-independent analgesia after intracerebroventricular (i.c.v.) injection in mice, which has been markedly enhanced by a δ OR antagonist, naltrindole hydrochloride (NTI). In this study, we have further characterized the in vivo analgesia after i.c.v. injection of hHK-1(4-11) in mouse model. Our qRT-PCR results showed that the mRNA levels of several ligands and receptors (e.g. PPT-A, PPT-C, KOR, PDYN and PENK) have not changed significantly. Furthermore, neither transcription nor expression of NK1 receptor, MOR and POMC have changed noticeably. In contrast, both mRNA and protein levels of DOR have been up-regulated significantly, indicating that the enhanced expression of δ opioid receptor negatively modulates the analgesia induced by i.c.v. injection of hHK-1(4-11). Additionally, the combinatorial data from our previous and present experiments strongly suggest that the discriminable distribution sites in the central nervous system between hHK-1(4-11) and r/mHK-1 may be attributed to their discriminable analgesic effects. Altogether, our findings will not only contribute to the understanding of the complicated mechanisms regarding the nociceptive modulation of hemokinin-1 as well as its active fragments at supraspinal level, but may also lead to novel pharmacological interventions.
Collapse
MESH Headings
- Analgesia
- Animals
- Blotting, Western
- Female
- Gene Expression/drug effects
- Humans
- Injections, Intraventricular
- Male
- Mice, Inbred ICR
- Peptide Fragments/administration & dosage
- Peptide Fragments/pharmacology
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tachykinins/administration & dosage
- Tachykinins/chemistry
- Tachykinins/genetics
- Tachykinins/metabolism
- Tachykinins/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Cai-Yun Fu
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China
- * E-mail: (CF); (XM); (ZY)
| | - Rui-Long Xia
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Teng-Fei Zhang
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Lu
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shi-Fu Zhang
- Lab of Proteomics and Molecular Enzymology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi-Qiang Yu
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
- * E-mail: (CF); (XM); (ZY)
| | - Tao Jin
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiao-Zhou Mou
- Zhejiang Provincial People’s Hospital, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China
- * E-mail: (CF); (XM); (ZY)
| |
Collapse
|
15
|
Naono-Nakayama R, Ikeda T, Matsushima O, Sameshima H, Takamiya K, Funahashi H, Nishimori T. An amino-terminal fragment of hemokinin-1 has an inhibitory effect on pruritic processing in rats. Neuroscience 2014; 259:172-83. [DOI: 10.1016/j.neuroscience.2013.10.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/11/2013] [Accepted: 10/28/2013] [Indexed: 12/01/2022]
|
16
|
Borbély E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013; 47:439-50. [PMID: 24210137 DOI: 10.1016/j.npep.2013.10.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations.
Collapse
Affiliation(s)
- Eva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
17
|
Fukuda A, Goto T, Kuroishi KN, Gunjigake KK, Kataoka S, Kobayashi S, Yamaguchi K. Hemokinin-1 competitively inhibits substance P-induced stimulation of osteoclast formation and function. Neuropeptides 2013; 47:251-9. [PMID: 23660339 DOI: 10.1016/j.npep.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/28/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022]
Abstract
Hemokinin-1 (HK-1) is a novel member of the tachykinin family that is encoded by preprotachykinin 4 (TAC4) and shares the neurokinin-1 receptor (NK1-R) with substance P (SP). Although HK-1 is thought to be an endogenous peripheral SP-like endocrine or paracrine molecule in locations where SP is not expressed, neither the distribution of HK-1 in the maxillofacial area nor the role HK-1 in bone tissue have been examined. In this study, we investigated the distribution of HK-1 in trigeminal ganglion (TG) and maxillary bone, and assessed the expression of HK-1 during osteoclast differentiation. In vivo, rat molars were loaded for 5 days using the Waldo method. In vitro, rat osteoclast-like cells were induced from bone marrow cells. HK-1 distribution and expression were examined by immunofluorescence staining and reverse transcription polymerase chain reaction (RT-PCR). In vivo, HK-1 was localized in rat TG neurons; however, the number of HK-1-positive neurons was less than that of SP-positive neurons. In the maxillary bone, nerve fibers, blood vessels, and osteocytes were immunopositive for HK-1. Furthermore, HK-1-positive immunoreactivity was found in osteoclasts on the pressure side. In vitro, PCR showed that TAC4 and NK1-R mRNA was expressed in osteoclasts as well as in bone marrow cells. Although SP (10⁻⁷ M) treatment led to an increased number of osteoclasts, HK-1 (10⁻⁷ M) treatment did not. The numbers of biotin-labeled HK-1 peptides bound osteoclasts significantly decreased upon incubation with unlabeled SP and biotin-labeled HK-1 compared with biotin-labeled HK-1 alone. These results suggest that HK-1 may not stimulate the differentiation and function of osteoclasts. SP-stimulated osteoclast formation is competitively regulated by peripheral HK-1 through NK1-Rs.
Collapse
Affiliation(s)
- Aya Fukuda
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Xia RL, Fu CY, Zhang SF, Jin YT, Zhao FK. Study on the distribution sites and the molecular mechanism of analgesia after intracerebroventricular injection of rat/mouse hemokinin-1 in mice. Peptides 2013; 43:113-20. [PMID: 23470255 DOI: 10.1016/j.peptides.2013.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/24/2013] [Accepted: 02/25/2013] [Indexed: 11/22/2022]
Abstract
Hemokinin-1 is a peptide encoded by Pptc, which belongs to the family of mammalian tachykinins. Our previous results showed that rat/mouse hemokinin-1 (r/m HK-1) produced striking analgesia after intracerebroventricular (i.c.v.) injection in mice, and the analgesia could be blocked by the NK1 receptor antagonist and the opioid receptor antagonist, respectively. However, the precise distribution sites and the molecular mechanism involved in the analgesic effect after i.c.v. administration of r/m HK-1 are needed to be further investigated deeply. Using the fluorescence labeling method, our present results directly showed that r/m HK-1 peptides were mainly distributed at the ventricular walls and several juxta-ventricular structures for the first time. Our results showed that the mRNA expressions of NK1 receptor, PPT-A, PPT-C, KOR, PDYN, DOR and PENK were not changed markedly, as well as the protein expression of NK1 receptor was hardly changed. However, both the transcripts and proteins of MOR and POMC were up-regulated significantly, indicating that the analgesic effect induced by i.c.v. administration of r/m HK-1 is related to the activation of NK1 receptor first, then it is related to the release of endogenous proopiomelanocortin, as well as the increased expression level of μ opioid receptor. These results should facilitate further the analysis of the analgesia of r/m HK-1 in the central nerval system in acute pain and may open novel pharmacological interventions.
Collapse
Affiliation(s)
- Rui-Long Xia
- Lab of Proteomics & Molecular Enzymology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | | |
Collapse
|
19
|
Borbély É, Hajna Z, Sándor K, Kereskai L, Tóth I, Pintér E, Nagy P, Szolcsányi J, Quinn J, Zimmer A, Stewart J, Paige C, Berger A, Helyes Z. Role of tachykinin 1 and 4 gene-derived neuropeptides and the neurokinin 1 receptor in adjuvant-induced chronic arthritis of the mouse. PLoS One 2013; 8:e61684. [PMID: 23626716 PMCID: PMC3634005 DOI: 10.1371/journal.pone.0061684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/19/2022] Open
Abstract
Objective Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1) receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse. Methods Complete Freund’s Adjuvant was injected intraplantarly and into the tail of Tac1−/−, Tac4−/−, Tacr1−/− (NK1 receptor deficient) and Tac1−/−/Tac4−/− mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed. Results Mechanical hyperalgesia was significantly reduced from day 11 in Tac4−/− and Tacr1−/− animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage) and IL-1β concentration in the joint homogenates were significantly smaller in Tac4−/− and Tac1−/−/Tac4−/− mice. Conclusions Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Edema/chemically induced
- Edema/genetics
- Edema/metabolism
- Edema/pathology
- Freund's Adjuvant
- Gene Expression Regulation
- Hyperalgesia/chemically induced
- Hyperalgesia/genetics
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Inflammation
- Interleukin-1beta/biosynthesis
- Joints/metabolism
- Joints/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Plethysmography
- Protein Precursors/deficiency
- Protein Precursors/genetics
- Receptors, Neurokinin-1/deficiency
- Receptors, Neurokinin-1/genetics
- Signal Transduction
- Substance P/deficiency
- Substance P/genetics
- Tachykinins/deficiency
- Tachykinins/genetics
- Tarsus, Animal/metabolism
- Tarsus, Animal/pathology
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Katalin Sándor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - István Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - John Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine Liverpool University, Liverpool, United Kingdom
| | - Andreas Zimmer
- Laboratory of Molecular Neurobiology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - James Stewart
- School of Infection and Host Defense, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Paige
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Alexandra Berger
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- * E-mail:
| |
Collapse
|
20
|
New tachykinin peptides and nociception. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2012.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Lv SY, Qin YJ, Wang NB, Yang YJ, Chen Q. Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model. Peptides 2012; 37:165-70. [PMID: 22732665 DOI: 10.1016/j.peptides.2012.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
Apelin, as the endogenous ligand of the APJ receptor, is a novel identified neuropeptide whose biological functions are not fully understood. APJ receptor mRNA was found in several brain regions related to descending control system of pain, such as amygdala, hypothalamus and dorsal raphe nucleus (DRN). The present study was designed to determine whether supraspinal apelin-13 may produce antinociceptive effect observed in the acetic acid-induced writhing test, a model of visceral pain. Apelin-13 not only significantly produced preemptive antinociception at the dose of 0.3, 0.5, 1 and 3 μg/mouse when injected intracerebroventricularly (i.c.v.) before acetic acid, but also significantly induced antinociception at a dose of 0.5, 1 and 3 μg/mouse when injected i.c.v. after acetic acid. And i.c.v. apelin-13 did not influence 30-min locomotor activity counts in mice. Intrathecal (i.t.) administration of apelin-13 (1 and 3 μg/mouse) significantly decreased the number of writhes, however, intraperitoneal (i.p.) injection of apelin-13 (10-100 μg/mouse) had no effect on the number of writhes in the writhing test. The specific APJ receptor antagonist apelin-13(F13A), no-specific opioid receptor antagonist naloxone and μ-opioid receptor antagonist β-funaltrexamine hydrochloride (β-FNA) could significantly antagonize the antinociceptive effect of i.c.v. apelin-13, suggesting APJ receptor and μ-opioid receptor are involved in this process. Central low dose of apelin-13 (0.3 μg/mouse, i.c.v.) could significantly potentiate the analgesic potencies of modest and even relatively ineffective doses of morphine administrated at supraspinal level. This enhanced antinociceptive effect was reversed by naloxone, suggesting that the potentiated analgesic response is mediated by opioid-responsive neurons.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| | | | | | | | | |
Collapse
|
22
|
Sakai A, Takasu K, Sawada M, Suzuki H. Hemokinin-1 gene expression is upregulated in microglia activated by lipopolysaccharide through NF-κB and p38 MAPK signaling pathways. PLoS One 2012; 7:e32268. [PMID: 22384199 PMCID: PMC3288086 DOI: 10.1371/journal.pone.0032268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
The mammalian tachykinins, substance P (SP) and hemokinin-1 (HK-1), are widely distributed throughout the nervous system and/or peripheral organs, and function as neurotransmitters or chemical modulators by activating their cognate receptor NK(1). The TAC1 gene encoding SP is highly expressed in the nervous system, while the TAC4 gene encoding HK-1 is uniformly expressed throughout the body, including a variety of peripheral immune cells. Since TAC4 mRNA is also expressed in microglia, the resident immune cells in the central nervous system, HK-1 may be involved in the inflammatory processes mediated by these cells. In the present study, we found that TAC4, rather than TAC1, was the predominant tachykinin gene expressed in primary cultured microglia. TAC4 mRNA expression was upregulated in the microglia upon their activation by lipopolysaccharide, a well-characterized Toll-like receptor 4 agonist, while TAC1 mRNA expression was downregulated. Furthermore, both nuclear factor-κB and p38 mitogen-activated protein kinase intracellular signaling pathways were required for the upregulation of TAC4 mRNA expression, but not for the downregulation of TAC1 mRNA expression. These findings suggest that HK-1, rather than SP, plays dominant roles in the pathological conditions associated with microglial activation, such as neurodegenerative and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
Makino A, Sakai A, Ito H, Suzuki H. Involvement of Tachykinins and NK 1 Receptor in the Joint Inflammation with Collagen Type II-Specific Monoclonal Antibody-Induced Arthritis in Mice. J NIPPON MED SCH 2012; 79:129-38. [DOI: 10.1272/jnms.79.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Akira Makino
- Department of Restorative Medicine of Neuro-musculoskeletal System, Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School
| | - Atsushi Sakai
- Department of Neuropharmacology, Graduate School of Medicine, Nippon Medical School
| | - Hiromoto Ito
- Department of Restorative Medicine of Neuro-musculoskeletal System, Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School
| | - Hidenori Suzuki
- Department of Neuropharmacology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
24
|
Naono-Nakayama R, Sunakawa N, Ikeda T, Matsushima O, Nishimori T. Pharmacological characteristics of endokinin C/D-derived peptides in nociceptive and inflammatory processing in rats. Peptides 2011; 32:2407-17. [PMID: 22074956 DOI: 10.1016/j.peptides.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Endokinins designated from the human TAC4 gene consist of endokinin A, endokinin B, endokinin C (EKC) and endokinin D (EKD). EKC/D is a peptide using the common carboxyl-terminal in EKC and EKD and consists of 12 amino acids, and exerts antagonistic effects on the induction of scratching behavior by substance P (SP). Some of SP-preferring receptor antagonists have several d-tryptophan (d-Trp); however, the pharmacological effect of EKC/D-derived peptides with d-Trp remains to be solved. Therefore, to clarify the pharmacological characteristics of EKC/D-derived peptides, effects of pretreatment with these peptides on SP-induced scratching and thermal hyperalgesia, formalin-induced flinching and carrageenan-induced inflammation were evaluated. Intrathecal administration of [d-Trp(8)]-EKC/D and [d-Trp(10)]-EKC/D showed a markedly long inhibitory effect, at least 14 h, whereas the antagonistic effects of [d-Trp(8,10)]-EKC/D and EKC/D without d-Trp disappeared after 1h. Furthermore, the inhibitory effect of [d-Trp(10)]-EKC/D-derived peptides was dependent on the number of amino acids from the amino-terminus, and the more numerous the amino acids, the more marked the antagonistic effect. Thus, these results indicate that the effective duration of EKC/D-derived peptides is dependent on the number of d-Trp in the carboxyl-terminal region and the amino-terminal region regulates the antagonistic effect of EKC/D.
Collapse
Affiliation(s)
- Rumi Naono-Nakayama
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
25
|
Naono-Nakayama R, Sunakawa N, Ikeda T, Nishimori T. Knockdown of the tachykinin neurokinin 1 receptor by intrathecal administration of small interfering RNA in rats. Eur J Pharmacol 2011; 670:448-57. [PMID: 21958872 DOI: 10.1016/j.ejphar.2011.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
The contribution of tachykinin neurokinin 1 (NK₁) receptor to nociceptive processing in the dorsal horn has been evaluated by tachykinin NK₁ receptor antagonism and knockout or knockdown of tachykinin NK₁ receptor; however, these results have not always been consistent. Therefore, to reevaluate the role of tachykinin NK₁ receptor in the dorsal horn, a solution of hemagglutinating virus of the Japan envelope (HVJ-E) with small interfering RNA (siRNA) against tachykinin NK₁ receptor was administered intrathecally and then the effect of treatment on tachykinin NK₁ receptor immunohistochemistry and on the induction of inflammation, thermal hyperalgesia and scratching behavior was evaluated. This treatment resulted in marked reduction of tachykinin NK₁ receptor immunoreactivity through the spinal dorsal horn, and the induction of thermal hyperalgesia and scratching behavior by substance P was significantly attenuated in rats with tachykinin NK₁ receptor siRNA. In addition, only one intrathecal injection of tachykinin NK₁ receptor siRNA reduced carrageenan-induced inflammation and thermal hyperalgesia significantly and markedly attenuated the induction of flinching after formalin injection and c-Fos expression in the dorsal horn following formalin injection. The efficient down-regulation of tachykinin NK₁ receptor by intrathecal administration tachykinin NK₁ receptor siRNA suggests that this method may be a valuable tool for examining the function of genes expressed in the dorsal horn.
Collapse
Affiliation(s)
- Rumi Naono-Nakayama
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|
26
|
Castillo C, Norcini M, Baquero-Buitrago J, Levacic D, Medina R, Montoya-Gacharna JV, Blanck TJJ, Dubois M, Recio-Pinto E. The N-methyl-D-aspartate-evoked cytoplasmic calcium increase in adult rat dorsal root ganglion neuronal somata was potentiated by substance P pretreatment in a protein kinase C-dependent manner. Neuroscience 2011; 177:308-20. [PMID: 21215796 DOI: 10.1016/j.neuroscience.2010.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/16/2010] [Accepted: 12/21/2010] [Indexed: 12/27/2022]
Abstract
The involvement of substance P (SP) in neuronal sensitization through the activation of the neurokinin-1-receptor (NK1r) in postsynaptic dorsal horn neurons has been well established. In contrast, the role of SP and NK1r in primary sensory dorsal root ganglion (DRG) neurons, in particular in the soma, is not well understood. In this study, we evaluated whether SP modulated the NMDA-evoked transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) in the soma of dissociated adult DRG neurons. Cultures were treated with nerve growth factor (NGF), prostaglandin E2 (PGE2) or both NGF+PGE2. Treatment with NGF+PGE2 increased the percentage of N-methyl-D-aspartate (NMDA) responsive neurons. There was no correlation between the percentage of NMDA responsive neurons and the level of expression of the NR1 and NR2B subunits of the NMDA receptor or of the NK1r. Pretreatment with SP did not alter the percentage of NMDA responsive neurons; while it potentiated the NMDA-evoked [Ca2+]cyt transient by increasing its magnitude and by prolonging the period during which small- and some medium-sized neurons remained NMDA responsive. The SP-mediated potentiation was blocked by the SP-antagonist ([D-Pro4, D-Trp7,9]-SP (4-11)) and by the protein kinase C (PKC) blocker bisindolylmaleimide I (BIM); and correlated with the phosphorylation of PKCε. The Nk1r agonist [Sar9, Met(O2)11]-SP (SarMet-SP) also potentiated the NMDA-evoked [Ca2+]cyt transient. Exposure to SP or SarMet-SP produced a rapid increase in the labeling of phosphorylated-PKCε. In none of the conditions we detected phosphorylation of the NR2B subunit at Ser-1303. Phosphorylation of the NR2B subunit at Tyr1472 was enhanced to a similar extent in cells exposed to NMDA, SP or NMDA+SP, and that enhancement was blocked by BIM. Our findings suggest that NGF and PGE2 may contribute to the injury-evoked sensitization of DRG neurons in part by enhancing their NMDA-evoked [Ca2+]cyt transient in all sized DRG neurons; and that SP may further contribute to the DRG sensitization by enhancing and prolonging the NMDA-evoked increase in [Ca2+]cyt in small- and medium-sized DRG neurons.
Collapse
Affiliation(s)
- C Castillo
- Department of Anesthesiology, New York University (NYU) Langone Medical Center, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mou L, Xing Y, Kong Z, Zhou Y, Chen Z, Wang R. The N-terminal domain of human hemokinin-1 influences functional selectivity property for tachykinin receptor neurokinin-1. Biochem Pharmacol 2010; 81:661-8. [PMID: 21168392 DOI: 10.1016/j.bcp.2010.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 01/28/2023]
Abstract
Human hemokinin-1 (hHK-1) is a substance P-like tachykinin peptide preferentially expressed in non-neuronal tissues. It is involved in multiple physiological functions such as inflammation, hematopoietic cells development and vasodilatation via the interaction with tachykinin receptor neurokinin-1 (NK1). To further understand the intracellular signal transduction mechanism under such functional multiplicity, current study was focused on the differential activation of Gs and Gq pathways by hHK-1 and its C-terminal fragments, which is termed as functional selectivity. We demonstrated these hHK-1 and related peptide fragments can independently activate Gs and Gq pathways, showing a relative bias toward Gq over Gs pathway. The T1, K3 and Q6 of hHK-1 might play roles in the activation of adenylate cyclase mediated by Gs, while having negligible effect on Gq mediated intracellular calcium release. The stepwise truncation of N-terminal amino acid of hHK-1 caused gradual decrease in ERK1/2 phosphorylation level and NF-κB activity. However, it had little influence on the induction of NK1 receptor desensitization and internalization. Taken together these data support that hHK-1 and its C-terminal fragments are human NK1 receptor agonists with different functional selectivity properties and that such functional selectivity leads to differential activation of downstream signaling and receptor trafficking.
Collapse
Affiliation(s)
- Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Medicine, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Naono-Nakayama R, Sunakawa N, Ikeda T, Matsushima O, Nishimori T. Subcutaneous injection of endokinin C/D attenuates carrageenan-induced inflammation. Peptides 2010; 31:1767-71. [PMID: 20638946 DOI: 10.1016/j.peptides.2010.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/24/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Endokinins, encoded by the human preprotachykinin C (PPT-C)/TAC4 gene, are peptides that consist of endokinin A (EKA), B (EKB), C (EKC) and D (EKD) and belong to the tachykinin family. Intrathecal injection of EKC/D (using the common carboxyl-terminal duodecapeptide in EKC and EKD) markedly attenuated the induction of thermal hyperalgesia and scratching behavior by intrathecal administration of substance P (SP), indicating that EKC/D has an antagonistic effect on the neurokinin 1 receptor (NK1R), SP-preferring receptor, at the spinal level; however, the pharmacological function of EKC/D at the periphery is not yet understood. Therefore, to clarify the effect of EKC/D on the peripheral tissue, the effect of subcutaneous injection of EKC/D on carrageenan-induced inflammation was examined. Subcutaneous injection of EKC/D attenuated an increase in paw volume following carrageenan-induced inflammation in a dose-dependent manner. Indeed, the increased paw volume was significantly decreased 40 min after treatment with 10(-4) M (10 nmol) and 10(-3) M (100 nmol) EKC/D (100 microl/rat). Similarly, injection of NK1R antagonists such as L-703,606 and Spantide I (10(-3) M) attenuated the increased paw volume following inflammation. Furthermore, the reduced withdrawal latency evoked by inflammation following subcutaneous injection of carrageenan was also dose-dependently attenuated by EKC/D administration. These results indicate that subcutaneous injection of EKC/D elicits an anti-inflammatory effect on carrageenan-induced inflammation.
Collapse
Affiliation(s)
- Rumi Naono-Nakayama
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
29
|
Watanabe C, Mizoguchi H, Yonezawa A, Sakurada S. Characterization of intrathecally administered hemokinin-1-induced nociceptive behaviors in mice. Peptides 2010; 31:1613-6. [PMID: 20451571 DOI: 10.1016/j.peptides.2010.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/27/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022]
Abstract
Hemokinin-1 is a novel mammalian tachykinin cloned from mouse bone marrow. At present, pharmacological profile and physiological role of hemokinin-1 are still unclear. In the present study, we found that intrathecal (i.t.) administration of hemokinin-1 (0.00625-1.6 nmol) induced nociceptive responses consisting of scratching, biting and licking, which resemble substance P-induced behavioral responses in mice. The behaviors evoked by low-dose of hemokinin-1 (0.0125 nmol) were dose-dependently inhibited by i.t. co-administration of CP-99,994, a non-peptidic tachykinin NK(1) receptor antagonist, whereas high-dose of hemokinin-1 (0.1 nmol)-induced behaviors were not affected. Moreover, sendide, a peptidic tachykinin NK(1) receptor antagonist, failed to reduce the behavioral responses of both low- and high-dose of hemokinin-1. In contrast, substance P-induced behaviors were completely suppressed by both CP-99,994 and sendide. These results suggest that hemokinin-1 plays an important role in pain transmission at spinal cord. Moreover, the mechanism of hemokinin-1-induced nociceptive behaviors may be dose-dependent, and distinct from substance P-induced nociceptive behaviors.
Collapse
Affiliation(s)
- Chizuko Watanabe
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | |
Collapse
|
30
|
Sunakawa N, Naono R, Ikeda T, Matsushima O, Sakoda S, Nishimori T. The amino-terminal region of hemokinin-1 regulates the induction of thermal hyperalgesia in rats. Neuropeptides 2010; 44:273-8. [PMID: 20176398 DOI: 10.1016/j.npep.2010.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/28/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
It is known that intrathecal administration of substance P (SP) induces thermal hyperalgesia, whereas hemokinin-1 (HK-1), a member of the same tachykinin family as SP, hardly induces thermal hyperalgesia; however, the underlying mechanism remains to be elucidated. Therefore, we aimed to clarify which amino acid of these peptides contributes to the induction of thermal hyperalgesia. When two chimera peptides between the N-terminal region of SP and the C-terminal region of HK-1, and vice versa, SP (1-5)/HK-1 and HK-1 (1-5)/SP, were intrathecally administered, SP (1-5)/HK-1 induced thermal hyperalgesia whereas HK-1 (1-5)/SP had hardly any effect; furthermore, thermal hyperalgesia was induced by only C-terminal fragments of HK-1 and SP. These findings indicate that the N-terminal region of HK-1 is involved in the non-induction of thermal hyperalgesia. Next, we synthesized and intrathecally administered these chimera peptides in which part of the N-terminal region of HK-1 was replaced with that of SP, and vice versa, and all synthesized peptides induced thermal hyperalgesia. Both SP (1-2)/HK-1 and HK-1 (1-4)/SP certainly induced thermal hyperalgesia, although HK-1 and HK-1 (1-5)/SP had hardly any effect; therefore, it is probable that Ser at the 2nd position and Arg at the 5th position of HK-1 may be involved in the non-induction of thermal hyperalgesia. Furthermore, peptides in which amino acid at the 3rd and/or 4th positions of HK-1 was replaced with that of SP were synthesized. Intrathecal administration of HK-1 (1-2,4-5)/SP, but not HK-1 (1-2,5)/SP and HK-1 (1-3,5)/SP, hardly induced thermal hyperalgesia. These findings indicate that three amino acids, Ser, Thr and Arg at the 2nd, 4th and 5th positions of HK-1, respectively, regulate the induction of thermal hyperalgesia by HK-1.
Collapse
Affiliation(s)
- N Sunakawa
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Recio-Pinto E, Castillo C. Peripheral N-methyl-D-aspartate receptors as possible targets for chronic pain treatment. ACTA ACUST UNITED AC 2010. [DOI: 10.1053/j.trap.2010.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Naono-Nakayama R, Sunakawa N, Ikeda T, Nishimori T. Differential effects of substance P or hemokinin-1 on transient receptor potential channels, TRPV1, TRPA1 and TRPM8, in the rat. Neuropeptides 2010; 44:57-61. [PMID: 19926130 DOI: 10.1016/j.npep.2009.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 11/16/2022]
Abstract
Two tachykinin peptides, substance P (SP) and hemokinin-1 (HK-1), and three transient receptor potential (TRP) channels, TRPV1, TRPA1 and TRPM8, are similarly localized in the spinal dorsal horn and dorsal root ganglion, suggesting that TRP channels may be related or modulated by these tachykinin peptides. Thus, to clarify whether the responses of TRP channels are modulated by SP or HK-1, the effects of pretreatment with SP or HK-1 on the induction of scratching behavior by TRP channel agonists were examined. Pretreatment with SP or HK-1 enhanced the induction of scratching behavior by resiniferatoxin, a TRPV1 agonist, whereas scratching behavior induced by menthol, a TRPM8 agonist, was suppressed by pretreatment with these peptides. On the other hand, pretreatment with SP, but not HK-1, suppressed the induction of scratching behavior by cinnamaldehyde, a TRPA1 agonist. Taken together, the present results indicate that SP or HK-1 differentially modulated the response of TRPV1, TRPA1 or TRPM8 channel.
Collapse
Affiliation(s)
- Rumi Naono-Nakayama
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|
33
|
Nakayama T, Naono R, Ikeda T, Nishimori T. NMDA and AMPA receptors contribute to the maintenance of substance P-induced thermal hyperalgesia. Neurosci Res 2010; 67:18-24. [PMID: 20096735 DOI: 10.1016/j.neures.2010.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
Abstract
It is well known that intrathecal administration of substance P (SP) induces thermal hyperalgesia, but the mechanisms underlying the maintenance of SP-induced thermal hyperalgesia remain to be clarified. Thus, to clarify the receptors involved in the maintenance of SP-induced thermal hyperalgesia, the effect of administering SP or glutamate receptor agonists, NMDA or AMPA, under SP-induced thermal hyperalgesia was investigated. Also, the effect of pretreatment with protein kinase inhibitors on scratching behavior by NMDA or AMPA under SP-induced thermal hyperalgesia was examined. Under SP-induced thermal hyperalgesia, the number of scratchings following SP administration was time-dependently suppressed, whereas the number of scratchings after NMDA or AMPA administration was markedly enhanced and SP-induced thermal hyperalgesia was attenuated by pretreatment with NMDA or AMPA receptor antagonist. Furthermore, pretreatment with kinase inhibitors significantly attenuated the enhancement of scratching behavior by NMDA or AMPA under SP-induced thermal hyperalgesia. These findings indicate that SP-induced thermal hyperalgesia may be maintained through the enhanced responsiveness of NMDA or AMPA receptors, but not the receptor of SP, mediated by kinases.
Collapse
Affiliation(s)
- Tomohiro Nakayama
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | |
Collapse
|
34
|
Jin L, Jin BQ, Song CJ, Zhang Y. Murine Monoclonal Antibodies Generated Against Mouse/Rat Hemokinin-1. Hybridoma (Larchmt) 2009; 28:259-67. [DOI: 10.1089/hyb.2009.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Bo-quan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Chao-jun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yu Zhang
- Department of Immunology, Peking University Health Science Centre, Bei Jing, China
| |
Collapse
|
35
|
Kong ZQ, Han M, Yang WL, Zhao YL, Fu CY, Tao Y, Chen Q, Wang R. In vitro characterization of the effects of rat/mouse hemokinin-1 on mouse colonic contractile activity: a comparison with substance P. Neuropeptides 2009; 43:213-20. [PMID: 19394690 DOI: 10.1016/j.npep.2009.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/23/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
Rat/mouse hemokinin-1 (r/m HK-1) has been identified as a member of the tachykinin family and its effect in colonic contractile activity remains unknown. We investigated the effects and mechanisms of actions of r/m HK-1 on the mouse colonic contractile activity in vitro by comparing it with that of substance P (SP). R/m HK-1 induced substantial contractions on the circular muscle of mouse colon. The maximal contractile responses to r/m HK-1 varied significantly among proximal-, mid- and distal-colon, suggesting that the action of r/m HK-1 was region-specific in mouse colon. The contractile response induced by r/m HK-1 is primarily via activation of tachykinin NK(1) receptors leading to activation of cholinergic excitatory pathways and with a minor contribution of NK(2) receptors, which may be on the smooth muscle itself. A direct action on colonic smooth muscles may be also involved. In contrast, SP induced biphasic colonic responses (contractile and relaxant responses) on the circular muscle, in which the contractile action of SP was equieffective with r/m HK-1. SP exerted its contractile effect predominantly through neural and muscular tachykinin NK(1) receptors, but unlike r/m HK-1 did not appear to act via NK(2) receptors. The relaxation induced by SP was largely due to release of nitric oxide (NO) produced via an action on neural NK(1) receptors. These results indicate that the receptors and the activation properties involved in r/m HK-1-induced mouse colonic contractile activity are different from those of SP.
Collapse
Affiliation(s)
- Zi-Qing Kong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tran AH, Berger A, Wu GE, Paige CJ. Regulatory mechanisms in the differential expression of Hemokinin-1. Neuropeptides 2009; 43:1-12. [PMID: 19081134 DOI: 10.1016/j.npep.2008.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 11/20/2022]
Abstract
Hemokinin-1, encoded by the TAC4 gene, is the most recent addition to the tachykinin family. Although most closely related to the neuropeptide Substance P, Hemokinin-1 distinguishes itself from other tachykinins by its predominantly non-neuronal expression pattern. Its expression in T and B lymphocytes, macrophages, and dendritic cells points to an important role for Hemokinin-1 in the immune system. To seek reasons for its preferential expression in the immune system and ultimately to provide clues to its function, we investigated the molecular mechanisms driving the differential expression pattern of this unique tachykinin. Our study provides the first analysis of the promoter region of the TAC4 gene, which reveals regulatory mechanism different from the Substance P promoter. We demonstrate for the first time that Hemokinin-1 initiates transcription from multiple start sites through a TATA-less promoter. Conservation of the 5' non-coding region indicates the importance of the upstream regulatory region in directing expression of Hemokinin-1 in specific cell types, during cell differentiation and activation. Furthermore, NFkappaB, a transcription factor important in the activation of immune cells was shown to be involved in promoting increased TAC4 transcription during PMA induction of a T cell line. Our studies reveal that Hemokinin-1 is regulated by a unique transcription regulation system that likely governs its differential expression pattern and suggests a role for Hemokinin-1 distinct from Substance P.
Collapse
Affiliation(s)
- Anne H Tran
- Department of Stem Cell and Developmental Biology, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9.
| | | | | | | |
Collapse
|
37
|
Effect of the carboxyl-terminal of endokinins on SP-induced pain-related behavior. Biochem Biophys Res Commun 2009; 378:182-5. [DOI: 10.1016/j.bbrc.2008.04.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 04/04/2008] [Indexed: 02/04/2023]
|
38
|
Matsumura T, Sakai A, Nagano M, Sawada M, Suzuki H, Umino M, Suzuki H. Increase in hemokinin-1 mRNA in the spinal cord during the early phase of a neuropathic pain state. Br J Pharmacol 2008; 155:767-74. [PMID: 18660829 PMCID: PMC2584930 DOI: 10.1038/bjp.2008.301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/10/2008] [Accepted: 06/27/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Substance P (SP), a representative member of the tachykinin family, is involved in nociception under physiological and pathological conditions. Recently, hemokinin-1 (HK-1) was identified as a new member of this family. Although HK-1 acts on NK(1) tachykinin receptors that are thought to be innate for SP, the roles of HK-1 in neuropathic pain are still unknown. EXPERIMENTAL APPROACH Using rats that had been subjected to chronic constrictive injury (CCI) of the sciatic nerve as a neuropathic pain model, we examined the changes in expression of SP- and HK-1-encoding genes (TAC1 and TAC4, respectively) in the L4/L5 spinal cord and L4/L5 dorsal root ganglia (DRGs) in association with changes in pain-related behaviours in this neuropathic pain state. KEY RESULTS The TAC4 mRNA level was increased on the ipsilateral side of the dorsal spinal cord, but not in DRGs, at day 3 after CCI. In contrast, the TAC1 mRNA level was significantly increased in the DRGs at day 3 after CCI without any changes in the dorsal spinal cord. Analysis of a cultured microglial cell line revealed the presence of TAC4 mRNA in microglial cells. Minocycline, an inhibitor of microglial activation, blocked the increased expression of TAC4 mRNA after CCI and inhibited the associated pain-related behaviours and microglial activation in the spinal cord. CONCLUSIONS AND IMPLICATIONS The present results suggest that HK-1 expression is increased at least partly in activated microglial cells after nerve injury and is clearly involved in the early phase of neuropathic pain.
Collapse
Affiliation(s)
- T Matsumura
- Anesthesiology and Clinical Physiology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University Bunkyo-ku, Tokyo, Japan
| | - A Sakai
- Department of Pharmacology, Nippon Medical School Bunkyo-ku, Tokyo, Japan
| | - M Nagano
- Department of Pharmacology, Nippon Medical School Bunkyo-ku, Tokyo, Japan
| | - M Sawada
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Japan
| | - H Suzuki
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Japan
| | - M Umino
- Anesthesiology and Clinical Physiology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School, Tokyo Medical and Dental University Bunkyo-ku, Tokyo, Japan
| | - H Suzuki
- Department of Pharmacology, Nippon Medical School Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Fu CY, Zhao YL, Dong L, Chen Q, Ni JM, Wang R. In vivo characterization of the effects of human hemokinin-1 and human hemokinin-1(4-11), mammalian tachykinin peptides, on the modulation of pain in mice. Brain Behav Immun 2008; 22:850-60. [PMID: 18262387 DOI: 10.1016/j.bbi.2007.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/09/2007] [Accepted: 12/22/2007] [Indexed: 11/18/2022] Open
Abstract
Human hemokinin-1 (h HK-1) and its truncated form h HK-1(4-11) are mammalian tachykinin peptides encoded by the recently identified TAC4 gene in human, and the biological functions of these peptides have not been well investigated. In the present study, an attempt has been made to investigate the effects and mechanisms of action of h HK-1 and h HK-1(4-11) in pain modulation at the supraspinal level in mice using the tail immersion test. Intracerebroventricular (i.c.v.) administration of h HK-1 (0.3, 1, 3 and 6 nmol/mouse) produced a dose- and time-related antinociceptive effect. This effect was significantly antagonized by the NK(1) receptor antagonist SR140333, but not by the NK(2) receptor antagonist SR48968, indicating that the analgesic effect induced by i.c.v. h HK-1 is mediated through the activation of NK(1) receptors. Interestingly, naloxone, beta-funaltrexamine and naloxonazine, but not naltrindole and nor-binaltorphimine, could also block the analgesic effect markedly, suggesting that this effect is related to descending mu opioidergic neurons (primary mu(1) subtype). Human HK-1(4-11) could also induce a dose- and time-dependent analgesic effect after i.c.v. administration, however, the potency of analgesia was less than h HK-1. Surprisingly, SR140333 could not modify this analgesic effect, suggesting that this effect is not mediated through the NK(1) receptors like h HK-1. SR48968 could modestly enhance the analgesic effect induced by h HK-1(4-11), indicating that a small amount of h HK-1(4-11) may bind to NK(2) receptors. Furthermore, none of the opioid receptor (OR) antagonists could markedly block the analgesia of h HK-1(4-11), suggesting that the analgesic effect is not mediated through the descending opioidergic neurons. Blocking of delta ORs significantly enhanced the analgesia, indicating that delta OR is a negatively modulatory factor in the analgesic effect of h HK-1(4-11). It is striking that bicuculline (a competitive antagonist at GABA(A) receptors) effectively blocked the analgesia induced by h HK-1(4-11), suggesting that this analgesic effect is mediated through the descending inhibitory GABAergic neurons. The novel mechanism involved in the analgesic effect of h HK-1(4-11), which is different from that of h HK-1, may pave the way for a new strategy for the investigation and control of pain.
Collapse
Affiliation(s)
- Cai Y Fu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
40
|
Naono R, Nakayama T, Ikeda T, Matsusima O, Nishimori T. Pharmacological characterization of desensitization in scratching behavior induced by intrathecal administration of hemokinin-1 in the rat. Neuropeptides 2008; 42:47-55. [PMID: 18055010 DOI: 10.1016/j.npep.2007.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/23/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
Desensitization is induced by the repeated administration of high doses of substance P (SP) or hemokinin-1 (HK-1). However, little information is available about the mechanisms involved in the induction of desensitization by these peptides. Thus, to characterize this desensitization, we examined the dose-dependent effect of these peptides, the effect of pretreatment with neurokinin 1(NK1) receptor antagonists, and the effect of pretreatment with inhibitors of protein kinases such as protein kinase A (PKA), protein kinase C (PKC), calcium/calmodulin kinase II (CaMKII) and mitogen-activated protein kinase kinase (MEK). The number of scratchings induced by 10(-3)M SP or HK-1 decreased following pretreatment with 10(-11)-10(-3)M SP or HK-1 with a marked reduction at 10(-3) and 10(-6)M SP or HK-1. The effect of NK1 receptor antagonists on desensitization induced by pretreatment with 10(-6)M SP was marked, whereas there was little effect of pretreatment with these antagonists on 10(-6)M HK-1-induced desensitization. Additionally, 10(-6)M SP- and HK-1-induced desensitization was attenuated by pretreatment with PKA, PKC and MEK inhibitors, except a CaMKII inhibitor that inhibited SP-induced desensitization. These results indicate that the receptor and kinases involved in HK-1-induced desensitization are partially different from those of SP.
Collapse
Affiliation(s)
- R Naono
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
41
|
Naono R, Nakayama T, Ikeda T, Matsushima O, Nishimori T. Leucine at the carboxyl-terminal of endokinins C and D contributes to elicitation of the antagonistic effect on substance P in rat pain processing. Brain Res 2007; 1165:71-80. [PMID: 17655832 DOI: 10.1016/j.brainres.2007.05.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 02/05/2023]
Abstract
Endokinins are tachykinin peptides designated from a human preprotachykinin C (PPT-C, TAC4) gene and consist of endokinin A (EKA), endokinin B (EKB), endokinin C (EKC) and endokinin D (EKD). A representative of mammalian tachykinins is substance P (SP), which functions as a neurotransmitter or modulator in the pain system; however, little is known about the role of these endokinins, especially EKC and EKD, in pain processing. Therefore, we evaluated the effects of EKC/D (using the common carboxyl-terminal duodecapeptide in EKC and EKD) on pain processing in rats. Pretreatment with EKC/D prevented induction of scratching behavior and thermal hyperalgesia by intrathecal administration of EKA/B (using the common C-terminal decapeptide in EKA and EKB) and SP and c-Fos expression in laminae I/II and V/VI of the spinal cord by noxious thermal stimulation. A prominent difference between EKC/D and SP is the presence of leucine instead of methionine at the carboxyl-terminal of EKC/D. Thus, to clarify whether leucine at the carboxyl-terminal of EKC/D plays an important role in determining the inhibitory effect of this peptide, we intrathecally administered [Met(12)]-EKC/D in which only leucine of EKC/D is replaced by methionine. This peptide did not exhibit the inhibitory effect on SP-induced scratching behavior or thermal hyperalgesia but conversely caused thermal hyperalgesia. Taken together, these findings indicate that EKC/D has an inhibitory effect on pain processing in the rat spinal cord, and the effect is due to leucine at the carboxyl-terminal of EKC/D.
Collapse
Affiliation(s)
- Rumi Naono
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
42
|
Fu CY, Kong ZQ, Long Y, Chen Q, Wang R. Cardiovascular responses to rat/mouse hemokinin-1, a mammalian tachykinin peptide: systemic study in anesthetized rats. Eur J Pharmacol 2007; 572:175-81. [PMID: 17628523 DOI: 10.1016/j.ejphar.2007.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 05/29/2007] [Accepted: 06/07/2007] [Indexed: 11/15/2022]
Abstract
Rat/mouse hemokinin-1 is a mammalian tachykinin peptide whose biological functions have not been well characterized. In the present study, an attempt has been made to investigate the effect and mechanism of action of rat/mouse hemokinin-1 on systemic arterial pressure after intravenous (i.v.) injections in anesthetized rats by comparing it with that of substance P. Our data showed that injection of rat/mouse hemokinin-1 (0.1, 0.3, 1, 3 and 10 nmol/kg) lowered systemic arterial pressure dose-dependently. This effect was significantly blocked by pretreatment with SR140333 (a selective tachykinin NK1 receptor antagonist) and the NO synthase inhibitor L-NAME (Nomega-nitro-L-arginine methyl ester hydrochloride), respectively, but was not affected by bilateral vagotomy or the muscarinic receptor blocker atropine. Compared to rat/mouse hemokinin-1, a dose of 3 nmol/kg of substance P caused biphasic changes in systemic arterial pressure (depressor and pressor responses). The results suggest that the mechanism of the depressor response caused by substance P was similar to rat/mouse hemokinin-1 in that it was inhibited by SR140333 and L-NAME, respectively, but that there was a component of the cardiovascular change induced by rat/mouse hemokinin-1 (but not substance P) that was attenuated by SR48968 (a selective tachykinin NK2 receptor antagonist). The depressor response induced by rat/mouse hemokinin-1 (i.v.) might be explained primarily by the action on endothelial tachykinin NK1 receptors to release endothelium-derived relaxing factor (NO) and this effect was not affected by vagal components. In addition, rat/mouse hemokinin-1 could not induce the pressor response through stimulation of sympathetic ganglion like substance P in anesthetized rats.
Collapse
Affiliation(s)
- Cai-Yun Fu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Yoshioka D, Takebuchi F, Nishimori T, Naono R, Ikeda T, Nakayama T. Intrathecal administration of the common carboxyl-terminal decapeptide in endokinin A and endokinin B evokes scratching behavior and thermal hyperalgesia in the rat. Neurosci Lett 2006; 410:193-7. [PMID: 17101218 DOI: 10.1016/j.neulet.2006.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 11/24/2022]
Abstract
Endokinins are novel mammalian tachykinin peptides designated from a human preprotachykinin gene and consist of endokinin A (EKA), endokinin B (EKB), endokinin C (EKC) and endokinin D (EKD). A representative of the tachykinin peptide is substance P (SP), which functions as a pain modulator or transmitter and contributes to pain processing; however, little is known about the function of endokinins in pain processing. Therefore, we evaluated the effects of EKA/B (using the common C-terminal decapeptide in EKA and EKB) and EKC/D (using the common C-terminal duodecapeptide in EKC and EKD) on pain processing in rats. Intrathecal administration of 10(-3) M (10 nmol) EKA/B evoked pain-related behavior such as scratching while 10(-3) M EKC/D administration did not. This induction of scratching behavior following EKA/B administration was suppressed by pretreatment with an NK1 receptor antagonist. In addition to the induction of scratching behavior, intrathecal administration of 10(-7) - 10(-4) M (1 pmol-1 nmol) EKA/B decreased the latency of the paw withdrawal response to noxious thermal stimulation, whereas there was little effect of EKC/D administration on the latency of the withdrawal response. This effect of EKA/B was also suppressed by pretreatment with NK1 receptor antagonists. These results indicate that intrathecal administration of EKA/B but not EKC/D evokes scratching behavior and thermal hyperalgesia through the NK1 receptor.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Division of Neurobiology, Miyazaki Medical College, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Naono R, Yoshioka D, Ikeda T, Nakayama T, Nishimori T. The common carboxyl-terminal region of novel tachykinin peptides contributes to induce desensitization in scratching behavior of rats. Brain Res Bull 2006; 71:461-5. [PMID: 17259014 DOI: 10.1016/j.brainresbull.2006.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 09/29/2006] [Accepted: 10/03/2006] [Indexed: 11/16/2022]
Abstract
Some novel tachykinin peptides exhibiting homology with known members of the tachykinin family have been recently reported; however, little is known about the function of these peptides. Repeated intrathecal administration of substance P (SP) causes desensitization by binding SP to neurokinin 1 (NK1) receptor. Thus, to clarify the characteristics of the receptors involved in these novel peptides, we investigated whether desensitization is induced by intrathecal administration of these peptides in rats since desensitization is induced by binding these peptides to the receptor. Intrathecal administration of 10(-3) M hemokinin-1 (HK-1) and 10(-3) M decapeptide common in the carboxyl-terminal region of endokinin A and endokinin B (EKA/B) as well as SP evoked scratching behavior. When each peptide was administered twice with an interval of 15 min, remarkable desensitization of scratching behavior was produced. Furthermore, the first administration of EKA/B or SP produced clear cross-desensitization to SP, EKA/B and HK-1, whereas the first administration of HK-1 demonstrated weak cross-desensitization to EKA/B and SP. These results suggest that EKA/B and SP may bind to both the NK1 receptor and HK-1-preferred receptor, and HK-1 may preferentially bind to its preferred receptor.
Collapse
Affiliation(s)
- Rumi Naono
- Division of Neurobiology, Miyazaki Medical College, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|