1
|
Soares S, de Sousa JT, Boaretto FBM, da Silva JB, Dos Santos DM, Garcia ALH, da Silva J, Grivicich I, Picada JN. Amantadine mitigates the cytotoxic and genotoxic effects of doxorubicin in SH-SY5Y cells and reduces its mutagenicity. Toxicol In Vitro 2024; 99:105874. [PMID: 38851604 DOI: 10.1016/j.tiv.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Amantadine (AMA) is a useful drug in neuronal disorders, but few studies have been performed to access its toxicological profile. Conversely, doxorubicin (Dox) is a well-known antineoplastic drug that has shown neurotoxic effects leading to cognitive impairment. The aims of this study are to evaluate the cytotoxic, genotoxic, and mutagenic effects of AMA, as well as its possible protective actions against deleterious effects of Dox. The Salmonella/microsome assay was performed to assess mutagenicity while cytotoxicity and genotoxicity were evaluated in SH-SY5Y cells using MTT and comet assays. Possible modulating effects of AMA on the cytotoxicity, genotoxicity, and mutagenicity induced by Dox were evaluated through cotreatment procedures. Amantadine did not induce mutations in the Salmonella/microsome assay and decreased Dox-induced mutagenicity in the TA98 strain. AMA reduced cell viability and induced DNA damage in SH-SY5Y cells. In cotreatment with Dox, AMA attenuated the cytotoxicity of Dox and showed an antigenotoxic effect. In conclusion, AMA does not induce gene mutations, although it has shown a genotoxic effect. Furthermore, AMA decreases frameshift mutations induced by Dox as well as the cytotoxic and genotoxic effects of Dox in SH-SY5Y cells, suggesting that AMA can interfere with Dox mutagenic activity and attenuate its neurotoxic effects.
Collapse
Affiliation(s)
- Solange Soares
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Jayne Torres de Sousa
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Fernanda Brião Menezes Boaretto
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Juliana Bondan da Silva
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Duani Maria Dos Santos
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Ana Letícia Hilario Garcia
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil; Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, 92010-000 Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil; Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, 92010-000 Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil.
| |
Collapse
|
2
|
Dekundy A, Pichler G, El Badry R, Scheschonka A, Danysz W. Amantadine for Traumatic Brain Injury-Supporting Evidence and Mode of Action. Biomedicines 2024; 12:1558. [PMID: 39062131 PMCID: PMC11274811 DOI: 10.3390/biomedicines12071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) is an important global clinical issue, requiring not only prevention but also effective treatment. Following TBI, diverse parallel and intertwined pathological mechanisms affecting biochemical, neurochemical, and inflammatory pathways can have a severe impact on the patient's quality of life. The current review summarizes the evidence for the utility of amantadine in TBI in connection to its mechanism of action. Amantadine, the drug combining multiple mechanisms of action, may offer both neuroprotective and neuroactivating effects in TBI patients. Indeed, the use of amantadine in TBI has been encouraged by several clinical practice guidelines/recommendations. Amantadine is also available as an infusion, which may be of particular benefit in unconscious patients with TBI due to immediate delivery to the central nervous system and the possibility of precise dosing. In other situations, orally administered amantadine may be used. There are several questions that remain to be addressed: can amantadine be effective in disorders of consciousness requiring long-term treatment and in combination with drugs approved for the treatment of TBI? Do the observed beneficial effects of amantadine extend to disorders of consciousness due to factors other than TBI? Well-controlled clinical studies are warranted to ultimately confirm its utility in the TBI and provide answers to these questions.
Collapse
Affiliation(s)
- Andrzej Dekundy
- Merz Therapeutics GmbH, Eckenheimer Landstraße 100, 60318 Frankfurt am Main, Germany; (A.D.); (A.S.)
| | - Gerald Pichler
- Department of Neurology, Albert-Schweitzer-Hospital Graz, Albert-Schweitzer-Gasse 36, 8020 Graz, Austria;
| | - Reda El Badry
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut University, Assiut 71526, Egypt;
| | - Astrid Scheschonka
- Merz Therapeutics GmbH, Eckenheimer Landstraße 100, 60318 Frankfurt am Main, Germany; (A.D.); (A.S.)
| | - Wojciech Danysz
- Danysz Pharmacology Consulting, Vor den Gärten 16, 61130 Nidderau, Germany
| |
Collapse
|
3
|
Nikitina MA, Bragina EY, Nazarenko MS, Levchuk LA, Ivanova SA, Boiko AS, Gomboeva DE, Koroleva ES, Alifirova VM. [The relationship between the rs6265 polymorphism of the BDNF gene and the level of serum neurotrophic factor in patients with Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:114-120. [PMID: 38261293 DOI: 10.17116/jnevro2024124011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
OBJECTIVE To evaluate the clinical features and the level of serum brain-derived neurotrophic factor (BDNF) in groups of patients with Parkinson's disease (PD) differentiated by the genotypes of BDNF polymorphism (rs6265). MATERIAL AND METHODS The level of serum BDNF in the biomarkers' multiplex panel of neurodegenerative diseases (HNDG3MAG-36K) was assessed in 134 PD patients. Allele discrimination was carried out by real-time PCR using TaqMan probes for the analysis of BDNF rs6265 polymorphism in groups of patients and controls (n=192) matched for sex, age and ethnicity. RESULTS Comparing the distribution of rs6265 genotypes and alleles between groups of patients and controls no significant differences were found (p>0.05). Serum BDNF levels varied significantly by genotype (rs6265) among PD patients. Minimum mean serum BDNF level (320.1±164.6 pg/ml) was noted for individuals with the AA genotype, which significantly differs from the corresponding indicator among individuals with GA (2944.2±1590.6 pg/ml; p=0.0001) and GG genotypes (2949.4±1620.6 pg/ml; p=3.9×10-5). The concentration of BDNF significantly differed between patients with different forms of PD (p=0.0007) and increased as the stage of the disease progressed according to Hoehn and Yahr staging scale (p=1.0×10-6). CONCLUSION The BDNF rs6265 polymorphism was not associated with the development of PD in the studied population. The variability of the mean serum BDNF level was established depending on the genotype of the BDNF polymorphism in PD patients and a number of clinical features.
Collapse
Affiliation(s)
- M A Nikitina
- Siberian State Medical University, Tomsk, Russia
| | - E Yu Bragina
- Research Institute of Medical Genetics - Tomsk NRMC, Tomsk, Russia
| | - M S Nazarenko
- Siberian State Medical University, Tomsk, Russia
- Research Institute of Medical Genetics - Tomsk NRMC, Tomsk, Russia
| | - L A Levchuk
- Mental Health Research Institute - Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S A Ivanova
- Mental Health Research Institute - Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A S Boiko
- Mental Health Research Institute - Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - D E Gomboeva
- Research Institute of Medical Genetics - Tomsk NRMC, Tomsk, Russia
| | - E S Koroleva
- Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
4
|
Müller T, Riederer P, Kuhn W. Aminoadamantanes: from treatment of Parkinson's and Alzheimer's disease to symptom amelioration of long COVID-19 syndrome? Expert Rev Clin Pharmacol 2023; 16:101-107. [PMID: 36726198 DOI: 10.1080/17512433.2023.2176301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The aminoadamantanes amantadine and memantine are well known. They mainly act as N-methyl-D-aspartate antagonists. AREAS COVERED The antiviral drug amantadine moderately ameliorates impaired motor behavior in patients with Parkinson's disease. Memantine provides beneficial effects on memory function in patients with advanced Alzheimer's disease already treated with acetylcholine esterase inhibitors. Both compounds counteract impaired monoamine neurotransmission with associated symptoms, such as depression. They improve vigilance, lack of attention and concentration, fatigue syndromes according to clinical findings in patients with chronic neurodegenerative processes. Their extrasynaptic N-methyl-D-Aspartate receptor blockade weakens a prolonged influx of Ca2+ ions as the main responsible components of neuronal excitotoxicity. This causes neuronal dying and associated functional deficits. EXPERT OPINION We suggest aminoadamantanes as future therapies for amelioration of short- and long-term consequences of a COVID 19 infection. Particularly the extended-release amantadine formulations will be suitable. They showed better clinical efficacy compared with the conventional available compounds. Amantadine may particularly be suitable for amelioration of fatigue or chronic exhaustion, memantine for improvement of cognitive deficits. Clinical research in patients, who are affected by the short- and long-term consequences of a COVID 19 infection, is warranted to confirm these still hypothetical putative beneficial effects of aminoadamantanes.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088, Berlin, Germany
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany
| | - Wilfried Kuhn
- Department of Neurology, Leopoldina Hospital Schweinfurt, Gustav Adolf Str. 8, 97422, Schweinfurt, Germany
| |
Collapse
|
5
|
Memantine in the Prevention of Radiation-Induced Brain Damage: A Narrative Review. Cancers (Basel) 2022; 14:cancers14112736. [PMID: 35681716 PMCID: PMC9179311 DOI: 10.3390/cancers14112736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Decline in cognitive function is a major problem for patients undergoing whole-brain radiotherapy (WBRT). Scientific interest has increased due to the high dropout rate of patients in the first months after WBRT and the early onset of cognitive decline. Therefore, the study of antiglutamatergic pharmacological prophylaxis and hippocampal-sparing WBRT techniques has been deepened based on the knowledge of the mechanisms of hyperglutamatergic neurotoxicity and the role of some hippocampal areas in cognitive decline. In order to provide a summary of the evidence in this field, and to foster future research in this setting, this literature review presents current evidence on the prevention of radiation-induced cognitive decline and particularly on the role of memantine. Abstract Preserving cognitive functions is a priority for most patients with brain metastases. Knowing the mechanisms of hyperglutamatergic neurotoxicity and the role of some hippocampal areas in cognitive decline (CD) led to testing both the antiglutamatergic pharmacological prophylaxis and hippocampal-sparing whole-brain radiotherapy (WBRT) techniques. These studies showed a relative reduction in CD four to six months after WBRT. However, the failure to achieve statistical significance in one study that tested memantine alone (RTOG 0614) led to widespread skepticism about this drug in the WBRT setting. Moreover, interest grew in the reasons for the strong patient dropout rates in the first few months after WBRT and for early CD onset. In fact, the latter can only partially be explained by subclinical tumor progression. An emerging interpretation of the (not only) cognitive impairment during and immediately after WBRT is the dysfunction of the limbic and hypothalamic system with its immune and hormonal consequences. This new understanding of WBRT-induced toxicity may represent the basis for further innovative trials. These studies should aim to: (i) evaluate in greater detail the cognitive effects and, more generally, the quality of life impairment during and immediately after WBRT; (ii) study the mechanisms producing these early effects; (iii) test in clinical studies, the modern and advanced WBRT techniques based on both hippocampal-sparing and hypothalamic-pituitary-sparing, currently evaluated only in planning studies; (iv) test new timings of antiglutamatergic drugs administration aimed at preventing not only late toxicity but also acute effects.
Collapse
|
6
|
Pazos M, Dibello E, Mesa JM, Sames D, Comini MA, Seoane G, Carrera I. Iboga Inspired N-Indolylethyl-Substituted Isoquinuclidines as a Bioactive Scaffold: Chemoenzymatic Synthesis and Characterization as GDNF Releasers and Antitrypanosoma Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030829. [PMID: 35164094 PMCID: PMC8839081 DOI: 10.3390/molecules27030829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 μM) and two of them (compounds 6 and 14) showed a good selectivity index.
Collapse
Affiliation(s)
- Mariana Pazos
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Estefania Dibello
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Juan Manuel Mesa
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA;
| | - Marcelo Alberto Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay;
| | - Gustavo Seoane
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
| | - Ignacio Carrera
- Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (M.P.); (E.D.); (J.M.M.); (G.S.)
- Correspondence: ; Tel.: +598-2-9247-881
| |
Collapse
|
7
|
Katunina EA. [Amantadine in the treatment of Parkinson's disease. New opportunities in the context of COVID-19]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:101-106. [PMID: 34037362 DOI: 10.17116/jnevro2021121041101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article presents data from recent studies on the mechanisms of action and clinical efficacy of amantadines, and also describes a possible protective effect against COVID-19.
Collapse
Affiliation(s)
- E A Katunina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center for Brain and Neurotechnology, Moscow, Russia
| |
Collapse
|
8
|
Danysz W, Dekundy A, Scheschonka A, Riederer P. Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials. J Neural Transm (Vienna) 2021; 128:127-169. [PMID: 33624170 PMCID: PMC7901515 DOI: 10.1007/s00702-021-02306-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022]
Abstract
The aim of the current review was to provide a new, in-depth insight into possible pharmacological targets of amantadine to pave the way to extending its therapeutic use to further indications beyond Parkinson's disease symptoms and viral infections. Considering amantadine's affinities in vitro and the expected concentration at targets at therapeutic doses in humans, the following primary targets seem to be most plausible: aromatic amino acids decarboxylase, glial-cell derived neurotrophic factor, sigma-1 receptors, phosphodiesterases, and nicotinic receptors. Further three targets could play a role to a lesser extent: NMDA receptors, 5-HT3 receptors, and potassium channels. Based on published clinical studies, traumatic brain injury, fatigue [e.g., in multiple sclerosis (MS)], and chorea in Huntington's disease should be regarded potential, encouraging indications. Preclinical investigations suggest amantadine's therapeutic potential in several further indications such as: depression, recovery after spinal cord injury, neuroprotection in MS, and cutaneous pain. Query in the database http://www.clinicaltrials.gov reveals research interest in several further indications: cancer, autism, cocaine abuse, MS, diabetes, attention deficit-hyperactivity disorder, obesity, and schizophrenia.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Astrid Scheschonka
- Merz Pharmaceuticals GmbH., Eckenheimer Landstraße 100, 60318, Frankfurt am Main, Germany
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department Psychiatry, University of Southern Denmark Odense, Vinslows Vey 18, 5000, Odense, Denmark.
| |
Collapse
|
9
|
Mollazadeh H, Mohtashami E, Mousavi SH, Soukhtanloo M, Vahedi MM, Hosseini A, Afshari AR, Sahebkar A. Deciphering the Role of Glutamate Signaling in Glioblastoma Multiforme: Current Therapeutic Modalities and Future Directions. Curr Pharm Des 2020; 26:4777-4788. [DOI: 10.2174/1381612826666200603132456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
As the most popular intrinsic neoplasm throughout the brain, glioblastoma multiforme (GBM) is resistant
to existing therapies. Due to its invasive nature, GBM shows a poor prognosis despite aggressive surgery
and chemoradiation. Therefore, identifying and understanding the critical molecules of GBM can help develop
new therapeutic strategies. Glutamatergic signaling dysfunction has been well documented in neurodegenerative
diseases as well as in GBM. Inhibition of glutamate receptor activation or extracellular glutamate release by specific
antagonists inhibits cell development, invasion, and migration and contributes to apoptosis and autophagy in
GBM cells. This review outlines the current knowledge of glutamate signaling involvement and current therapeutic
modalities for the treatment of GBM.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H. Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad M. Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | |
Collapse
|
10
|
Folch J, Busquets O, Ettcheto M, Sánchez-López E, Castro-Torres RD, Verdaguer E, Garcia ML, Olloquequi J, Casadesús G, Beas-Zarate C, Pelegri C, Vilaplana J, Auladell C, Camins A. Memantine for the Treatment of Dementia: A Review on its Current and Future Applications. J Alzheimers Dis 2018; 62:1223-1240. [PMID: 29254093 PMCID: PMC5870028 DOI: 10.3233/jad-170672] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of extracellular amyloid-β protein (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. The N-Methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptor, are essential for processes like learning and memory. An excessive activation of NMDARs has been associated with neuronal loss. The discovery of extrasynaptic NMDARs provided a rational and physiological explanation between physiological and excitotoxic actions of glutamate. Memantine (MEM), an antagonist of extrasynaptic NMDAR, is currently used for the treatment of AD jointly with acetylcholinesterase inhibitors. It has been demonstrated that MEM preferentially prevents the excessive continuous extrasynaptic NMDAR disease activation and therefore prevents neuronal cell death induced by excitotoxicity without disrupting physiological synaptic activity. The problem is that MEM has shown no clear positive effects in clinical applications while, in preclinical stages, had very promising results. The data in preclinical studies suggests that MEM has a positive impact on improving AD brain neuropathology, as well as in preventing Aβ production, aggregation, or downstream neurotoxic consequences, in part through the blockade of extrasynaptic NMDAR. Thus, the focus of this review is primarily to discuss the efficacy of MEM in preclinical models of AD, consider possible combinations of this drug with others, and then evaluate possible reasons for its lack of efficacy in clinical trials. Finally, applications in other pathologies are also considered.
Collapse
Affiliation(s)
- Jaume Folch
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ruben Dario Castro-Torres
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departamento de Biología Celular y Molecular, Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, CUCBA, México
| | - Ester Verdaguer
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Maria Luisa Garcia
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Gemma Casadesús
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, CUCBA, México
| | - Carme Pelegri
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vilaplana
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Fisiologia, Secció de Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Cacciatore I, Fornasari E, Marinelli L, Eusepi P, Ciulla M, Ozdemir O, Tatar A, Turkez H, Di Stefano A. Memantine-derived drugs as potential antitumor agents for the treatment of glioblastoma. Eur J Pharm Sci 2017; 109:402-411. [DOI: 10.1016/j.ejps.2017.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022]
|
12
|
Altinoz MA, Elmaci İ. Targeting nitric oxide and NMDA receptor-associated pathways in treatment of high grade glial tumors. Hypotheses for nitro-memantine and nitrones. Nitric Oxide 2017; 79:68-83. [PMID: 29030124 DOI: 10.1016/j.niox.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is a devastating brain cancer with no curative treatment. Targeting Nitric Oxide (NO) and glutamatergic pathways may help as adjunctive treatments in GBM. NO at low doses promotes tumorigenesis, while at higher levels (above 300 nM) triggers apoptosis. Gliomas actively secrete high amounts of glutamate which activates EGR signaling and mediates degradation of peritumoral tissues via excitotoxic injury. Memantine inhibits NMDA-subtype of glutamate receptors (NMDARs) and induces autophagic death of glioma cells in vitro and blocks glioma growth in vivo. Nitro-memantines may exert further benefits by limiting NMDAR signaling and by delivery of NO to the areas of excessive NMDAR activity leading NO-accumulation at tumoricidal levels within gliomas. Due to the duality of NO in tumorigenesis, agents which attenuate NO levels may also act beneficial in treatment of GBM. Nitrone compounds including N-tert-Butyl-α-phenylnitrone (PBN) and its disulfonyl-phenyl derivative, OKN-007 suppress free radical formation in experimental cerebral ischemia. OKN-007 failed to show clinical efficacy in stroke, but trials demonstrated its high biosafety in humans including elderly subjects. PBN inhibits the signaling pathways of NF-κB, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX). In animal models of liver cancer and glioblastoma, OKN-007 seemed more efficient than PBN in suppression of cell proliferation, microvascular density and in induction of apoptosis. OKN-007 also inhibits SULF2 enzyme, which promotes tumor growth via versatile pathways. We assume that nitromemantines may be more beneficial concomitant with chemo-radiotherapy while nitrones alone may act useful in suppressing basal tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Meric A Altinoz
- Neuroacademy Group, Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey.
| | - İlhan Elmaci
- Neuroacademy Group, Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Care management of the agitation or aggressiveness crisis in patients with TBI. Systematic review of the literature and practice recommendations. Ann Phys Rehabil Med 2015; 59:58-67. [PMID: 26700025 DOI: 10.1016/j.rehab.2015.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022]
Abstract
UNLABELLED The agitation crisis in the awakening phase after traumatic brain injury (TBI) is one of the most difficult behavioral disorders to alleviate. Current treatment options are heterogeneous and may involve excessive sedation. Practice guidelines are required by professionals in charge of TBI patients. Few reviews were published but those are old and based on expert opinions. The purpose of this work is to propose evidence-based guidelines to treat the agitation crisis. METHODS The elaboration of these guidelines followed the procedure validated by the French health authority for good practice recommendations, close to the Prisma statement. Guidelines were elaborated on the basis of a systematic and critical review of the literature. RESULTS Twenty-eight articles concerning 376 patients were analyzed. Recommendations are: when faced with an agitation crisis, the management strategy implies to search for an underlying factor that should be treated such as pain, acute sepsis, and drug adverse effect (expert opinion). Physical restraints should be discarded when possible (expert opinion). Neuroleptic agent with a marketing authorization can be used in order to obtain a quick sedation so as to protect the patient from himself, closed ones or the healthcare team but the duration should be as short as possible (expert opinion). The efficacy of beta-blockers and antiepileptics with mood regulation effects like carbamazepine and valproate yield the most compelling evidence and should be preferably used when a background regimen is envisioned (grade B for beta-blocker and C for antiepileptics). Neuroleptics, antidepressants, benzodiazepines, buspirone may be prescribed but are considered second-line treatments (expert opinion). CONCLUSION This study provides a strategy for treating the agitation crisis based on scientific data and expert opinion. The level of evidence remains low and published data are often old. New studies are essential to validate results from previous studies and test new drugs and non-pharmaceutical therapies.
Collapse
|
14
|
Rajasekar N, Nath C, Hanif K, Shukla R. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes. Mol Neurobiol 2015; 53:6730-6744. [PMID: 26660109 DOI: 10.1007/s12035-015-9576-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/29/2015] [Indexed: 12/21/2022]
Abstract
Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.
Collapse
Affiliation(s)
- N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India.
| |
Collapse
|
15
|
Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1316-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Rosa E, Cha J, Bain JR, Fahnestock M. Calcitonin gene-related peptide regulation of glial cell-line derived neurotrophic factor in differentiated rat myotubes. J Neurosci Res 2014; 93:514-20. [PMID: 25403360 DOI: 10.1002/jnr.23512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 01/05/2023]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) is the most potent trophic factor for motoneuron survival and neuromuscular junction formation. GDNF is upregulated in injured or denervated skeletal muscle and returns to normal levels following reinnervation. However, the mechanism by which GDNF is regulated in denervated muscle is not well understood. The nerve-derived neurotransmitter calcitonin gene-related peptide (CGRP) is upregulated following neuromuscular injury and is subsequently released from motoneurons at the neuromuscular junction. CGRP also promotes nerve regeneration, but the mechanism is not well understood. The current study investigates whether this increase in CGRP regulates GDNF, thus playing a key role in promoting regeneration of injured nerves. This study demonstrates that CGRP increases GDNF secretion without affecting its transcription or translation. Rat L6 myoblasts were differentiated into myotubes and subsequently treated with CGRP. GDNF mRNA expression levels were quantified by quantitative real-time reverse transcription-polymerase chain reaction, and secreted GDNF was quantified in the conditioned medium by ELISA. CGRP treatment increased secreted GDNF protein without altering GDNF mRNA levels. The translational inhibitor cycloheximide did not affect CGRP-induced GDNF secreted protein levels, whereas the secretional inhibitor brefeldin A blocked the CGRP-induced increase in GDNF. This study highlights the importance of injury-induced upregulation of CGRP by exposing its ability to increase GDNF levels and demonstrates a secretional mechanism for regulation of this key regeneration-promoting neurotrophic factor.
Collapse
Affiliation(s)
- Elyse Rosa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Effectiveness of Amantadine Hydrochloride in the Reduction of Chronic Traumatic Brain Injury Irritability and Aggression. J Head Trauma Rehabil 2014; 29:391-9. [DOI: 10.1097/01.htr.0000438116.56228.de] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Revilla S, Ursulet S, Álvarez-López MJ, Castro-Freire M, Perpiñá U, García-Mesa Y, Bortolozzi A, Giménez-Llort L, Kaliman P, Cristòfol R, Sarkis C, Sanfeliu C. Lenti-GDNF gene therapy protects against Alzheimer's disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 2014; 20:961-72. [PMID: 25119316 DOI: 10.1111/cns.12312] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 02/01/2023] Open
Abstract
AIMS Glial cell-derived neurotrophic factor (GDNF) is emerging as a potent neurotrophic factor with therapeutic potential against a range of neurodegenerative conditions including Alzheimer's disease (AD). We assayed the effects of GDNF treatment in AD experimental models through gene-therapy procedures. METHODS Recombinant lentiviral vectors were used to overexpress GDNF gene in hippocampal astrocytes of 3xTg-AD mice in vivo, and also in the MC65 human neuroblastoma that conditionally overexpresses the 99-residue carboxyl-terminal (C99) fragment of the amyloid precursor protein. RESULTS After 6 months of overexpressing GDNF, 10-month-old 3xTg-AD mice showed preserved learning and memory, while their counterparts transduced with a green fluorescent protein vector showed cognitive loss. GDNF therapy did not significantly reduce amyloid and tau pathology, but rather, induced a potent upregulation of brain-derived neurotrophic factor that may act in concert with GDNF to protect neurons from atrophy and degeneration. MC65 cells overexpressing GDNF showed an abolishment of oxidative stress and cell death that was at least partially mediated by a reduced presence of intracellular C99 and derived amyloid β oligomers. CONCLUSIONS GDNF induced neuroprotection in the AD experimental models used. Lentiviral vectors engineered to overexpress GDNF showed to be safe and effective, both as a potential gene therapy and as a tool to uncover the mechanisms of GDNF neuroprotection, including cross talk between astrocytes and neurons in the injured brain.
Collapse
Affiliation(s)
- Susana Revilla
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 465] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
20
|
Hirata Y, Furuta K, Suzuki M, Oh-hashi K, Ueno Y, Kiuchi K. Neuroprotective cyclopentenone prostaglandins up-regulate neurotrophic factors in C6 glioma cells. Brain Res 2012; 1482:91-100. [PMID: 22982731 DOI: 10.1016/j.brainres.2012.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/30/2022]
Abstract
In a previous study, we developed newly synthesized arylthio derivatives of cyclopentenone prostaglandins (GIF-0642, GIF-0643, GIF-0644, GIF-0745 and GIF-0747), which are neuroprotective against both manganese toxicity in PC12 cells and glutamate toxicity in HT22 cells. In the present study, we showed that these compounds and their lead compound, NEPP11, are potent inducers of glial cell line-derived neurotrophic factor (GDNF) expression in C6 glioma cells and primary astrocytes. These neuroprotective cyclopentenone prostaglandins also induced the gene expression of nerve growth factor and, to a lesser extent, brain-derived neurotrophic factor. The induction of GDNF mRNA was transcription-dependent, and the overexpression of dominant-negative Nrf2 attenuated the ability of the (arylthio)cyclopentenone prostaglandins to stimulate GDNF gene expression. These results suggest that (arylthio)cyclopentenone prostaglandins increase GDNF gene expression partly via the Keap1/Nrf2 pathway. A growing number of reports demonstrate the importance of increasing the amounts of neurotrophic factors, especially GDNF, in neuropathological states. Although the precise mechanisms by which the GIF compounds inhibit cell death are under investigation, an increase in neurotrophic factors may contribute to the diverse pharmacological properties of (arylthio)cyclopentenone prostaglandins in vivo and will make them potentially valuable in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yoko Hirata
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501 1193, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Männistö PT, Hong JS. Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia [corrected]. Neuropharmacology 2011; 61:574-82. [PMID: 21586298 PMCID: PMC3130082 DOI: 10.1016/j.neuropharm.2011.04.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/18/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
Abstract
Amantadine is commonly given to alleviate L-DOPA-induced dyskinesia of Parkinson's disease (PD) patients. Animal and human evidence showed that amantadine may also exert neuroprotection in several neurological disorders. Additionally, it is generally believed that this neuroprotection results from the ability of amantadine to inhibit glutamatergic NMDA receptor. However, several lines of evidence questioned the neuroprotective capacity of NMDA receptor antagonists in animal models of PD. Thus the cellular and molecular mechanism of neuroprotection of amantadine remains unclear. Using primary cultures with different composition of neurons, microglia, and astroglia we investigated the direct role of these glial cell types in the neuroprotective effect of amantadine. First, amantadine protected rat midbrain cultures from either MPP(+) or lipopolysaccharide (LPS), two toxins commonly used as PD models. Second, our studies revealed that amantadine reduced both LPS- and MPP(+)-induced toxicity of dopamine neurons through 1) the inhibition of the release of microglial pro-inflammatory factors, 2) an increase in expression of neurotrophic factors such as GDNF from astroglia. Lastly, differently from the general view on amantadine's action, we provided evidence suggesting that NMDA receptor inhibition was not crucial for the neuroprotective effect of amantadine. In conclusion, we report that amantadine protected dopamine neurons in two PD models through a novel dual mechanism, namely reducing the release of pro-inflammatory factors from activated microglia and increasing the expression of GNDF in astroglia.
Collapse
Affiliation(s)
- Bernardino Ossola
- Division of Pharmacology & Toxicology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Laboratories of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Nadia Schendzielorz
- Division of Pharmacology & Toxicology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Laboratories of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Shih-Heng Chen
- Laboratories of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Gary S. Bird
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Raimo K. Tuominen
- Division of Pharmacology & Toxicology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka T. Männistö
- Division of Pharmacology & Toxicology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Jau-Shyong Hong
- Laboratories of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
22
|
Cakil D, Yildirim M, Ayyildiz M, Agar E. The effect of co-administration of the NMDA blocker with agonist and antagonist of CB1-receptor on penicillin-induced epileptiform activity in rats. Epilepsy Res 2011; 93:128-37. [DOI: 10.1016/j.eplepsyres.2010.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
23
|
Use of Memantine (akatinol) for the Correction of Cognitive Impairments in Parkinson’s Disease Complicated by Dementia. ACTA ACUST UNITED AC 2009; 40:149-55. [DOI: 10.1007/s11055-009-9244-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Ray B, Banerjee PK, Greig NH, Lahiri DK. Memantine treatment decreases levels of secreted Alzheimer's amyloid precursor protein (APP) and amyloid beta (A beta) peptide in the human neuroblastoma cells. Neurosci Lett 2009; 470:1-5. [PMID: 19948208 DOI: 10.1016/j.neulet.2009.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/05/2023]
Abstract
Memantine, an uncompetitive NMDA receptor antagonist, is a FDA-approved drug used for the treatment of moderate-to-severe Alzheimer's disease (AD). Several studies have documented protective roles of memantine against amyloid beta (A beta) peptide-mediated damage to neurons in both in vitro and in vivo models. Memantine is also effective in reducing amyloid burden in the brain of APP transgenic mice. However, the exact mechanism by which memantine provides protection against A beta-mediated neurodegenerative cascade, including APP metabolism, remains to be elucidated. Herein, we investigated the effect of memantine on levels of the secreted form of A beta precursor protein (APP), secreted A beta and cell viability markers under short/acute conditions. We treated neuronal SK-N-SH cells with 10 microM memantine and measured levels of secreted total APP (sAPP), APP alpha isoform and A beta((1-40)) in a time dependent manner for up to 24h. Memantine significantly decreased the levels of the secreted form of sAPP, sAPP alpha and A beta((1-40)) compared to vehicle treated cells. This change started as early as 8h and continued for up to 24h of drug treatment. Unlike sAPP, a slight non-significant increase in total intracellular APP level was observed in 24-h treated memantine cells. Taken together, these results suggest a role for memantine in the transport or trafficking of APP molecules away from the site of their proteolytic cleavage by the secretase enzymes. Such a novel property of memantine warrants further study to define its therapeutic utility.
Collapse
Affiliation(s)
- Balmiki Ray
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
25
|
Dell'Antone P, IbnLkayat M, Drago D, Zatta P. Acidic vesicles of the endo-exocytic pathways as targets for some anti-monoamine oxidase drugs. Metab Brain Dis 2009; 24:713-22. [PMID: 17624582 DOI: 10.1007/s11011-007-9054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 02/22/2007] [Indexed: 11/26/2022]
Abstract
Acidic vesicles are cytoplasmatic organelles delimited by a single lipoprotein membrane. They contain a large number of enzymes, mostly acidic hydrolases, catalysing various reactions at optimal acidic pH, capable of participating in intracellular digestion. In this paper, some anti-monoamine oxidase drugs (clorgyline, pargyline, amantadine and deprenyl), utilized as pharmacological treatment in some neurological disorders (e.g., Alzheimer's, Parkinson's etc. diseases), were tested for their ability to influence the pH of the acidic intracellular organelles with the aim of exploring their possible pharmacological action. Of the above mentioned drugs, clorgyline showed the most effective action in modifying the acidic vesicles' internal pH, followed by deprenyl, pargyline and amantadine. The effect was not ascribed to an increased proton conductance, but was most likely due to a weak base-like mechanism, in that they exhibit equilibria among species associated with H(+) ions and species lacking this association.
Collapse
Affiliation(s)
- Paolo Dell'Antone
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
26
|
Wu HM, Tzeng NS, Qian L, Wei SJ, Hu X, Chen SH, Rawls SM, Flood P, Hong JS, Lu RB. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology 2009; 34:2344-57. [PMID: 19536110 PMCID: PMC3655438 DOI: 10.1038/npp.2009.64] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Memantine shows clinically relevant efficacy in patients with Alzheimer's disease and Parkinson's disease. Most in vivo and in vitro studies attribute the neuroprotective effects of memantine to the blockade of N-methyl-D-aspartate (NMDA) receptor on neurons. However, it cannot be excluded that mechanisms other than NMDA receptor blockade may contribute to the neuroprotective effects of this compound. To address this question, primary midbrain neuron-glia cultures and reconstituted cultures were used, and lipopolysaccharide (LPS), an endotoxin from bacteria, was used to produce inflammation-mediated dopaminergic (DA) neuronal death. Here, we show that memantine exerted both potent neurotrophic and neuroprotective effects on DA neurons in rat neuron-glia cultures. The neurotrophic effect of memantine was glia dependent, as memantine failed to show any positive effect on DA neurons in neuron-enriched cultures. More specifically, it seems to be that astroglia, not microglia, are the source of the memantine-elicited neurotrophic effects through the increased production of glial cell line-derived neurotrophic factor (GDNF). Mechanistic studies showed that GDNF upregulation was associated with histone hyperacetylation by inhibiting the cellular histone deacetylase activity. In addition, memantine also displays neuroprotective effects against LPS-induced DA neuronal damage through its inhibition of microglia activation showed by both OX-42 immunostaining and reduction of pro-inflammatory factor production, such as extracellular superoxide anion, intracellular reactive oxygen species, nitric oxide, prostaglandin E(2), and tumor necrosis factor-alpha. These results suggest that the neuroprotective effects of memantine shown in our cell culture studies are mediated in part through alternative novel mechanisms by reducing microglia-associated inflammation and by stimulating neurotrophic factor release from astroglia.
Collapse
Affiliation(s)
- Hung-Ming Wu
- College of Medicine, Institute of Behavioral Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, Kinyamu H, Lu N, Gao X, Leng Y, Chuang DM, Zhang W, Lu RB, Hong JS. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 2008; 11:1123-34. [PMID: 18611290 PMCID: PMC2579941 DOI: 10.1017/s1461145708009024] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the selective and progressive loss of dopaminergic (DA) neurons in the midbrain substantia nigra. Currently, available treatment is unable to alter PD progression. Previously, we demonstrated that valproic acid (VPA), a mood stabilizer, anticonvulsant and histone deacetylase (HDAC) inhibitor, increases the expression of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in astrocytes to protect DA neurons in midbrain neuron-glia cultures. The present study investigated whether these effects are due to HDAC inhibition and histone acetylation. Here, we show that two additional HDAC inhibitors, sodium butyrate (SB) and trichostatin A (TSA), mimic the survival-promoting and protective effects of VPA on DA neurons in neuron-glia cultures. Similar to VPA, both SB and TSA increased GDNF and BDNF transcripts in astrocytes in a time-dependent manner. Furthermore, marked increases in GDNF promoter activity and promoter-associated histone H3 acetylation were noted in astrocytes treated with all three compounds, where the time-course for acetylation was similar to that for gene transcription. Taken together, our results indicate that HDAC inhibitors up-regulate GDNF and BDNF expression in astrocytes and protect DA neurons, at least in part, through HDAC inhibition. This study indicates that astrocytes may be a critical neuroprotective mechanism of HDAC inhibitors, revealing a novel target for the treatment of psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xuefei Wu
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
29
|
Kloc R, Luchowska E, Wielosz M, Owe-Larsson B, Urbanska EM. Memantine increases brain production of kynurenic acid via protein kinase A-dependent mechanism. Neurosci Lett 2008; 435:169-73. [DOI: 10.1016/j.neulet.2008.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/30/2022]
|
30
|
Wong HL, Wang MX, Cheung PT, Yao KM, Chan BP. A 3D collagen microsphere culture system for GDNF-secreting HEK293 cells with enhanced protein productivity. Biomaterials 2007; 28:5369-80. [PMID: 17764735 DOI: 10.1016/j.biomaterials.2007.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 08/09/2007] [Indexed: 11/17/2022]
Abstract
Mammalian cell culture technology has been used for decades in mass production of therapeutic proteins. However, unrestricted cell proliferation usually results in low-protein productivity. Controlled proliferation technologies such as metabolism intervention and genetic manipulation are therefore applied to enhance the productivity. Nevertheless, these strategies induced growth arrest with reduced viability and increased apoptosis. In this study, we report a new controlled proliferation technology by encapsulating human embryonic kidney (HEK) 293 cells over-expressing glial-derived neurotrophic factor (GDNF) in 3D collagen microspheres for extended culture. We investigated the viability, proliferation, cell cycle and GDNF productivity of HEK293 cells in microspheres as compared to monolayer culture. This system provides a physiologically relevant tissue-like environment for cells to grow and exerts proliferation control throughout the culture period without compromising the viability. A significant increase in the production rate of GDNF was found in the 3D microsphere system comparing with the monolayer culture. GDNF productivity was also significantly affected by the initial cell number and the serum concentration. The secreted GDNF was still bioactive as it induced neurite extension in PC12 cells. In summary, the 3D collagen microsphere system presents a cost-effective controlled growth technology for protein production in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Hoi-Ling Wong
- Medical Engineering Program, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | | | |
Collapse
|