1
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
2
|
Plini ERG, Melnychuk MC, Andrews R, Boyle R, Whelan R, Spence JS, Chapman SB, Robertson IH, Dockree PM. Greater physical fitness ( VO 2 max ) in healthy older adults associated with increased integrity of the locus coeruleus-noradrenergic system. Acta Physiol (Oxf) 2024; 240:e14191. [PMID: 38895950 PMCID: PMC11250687 DOI: 10.1111/apha.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
AIM Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greaterVo 2 max - a measure of oxygen uptake and physical fitness (PF). METHODS We hypothesized that greaterVo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine). RESULTS As hypothesized, greaterVo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators. CONCLUSION This newly established link betweenVo 2 max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC-NA system resilience to neurodegeneration viaVo 2 max enhancement.
Collapse
Affiliation(s)
- Emanuele R G Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael C Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Ralph Andrews
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Rory Boyle
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Robert Whelan
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jeffrey S Spence
- Center for BrainHealth, The University of Texas at Dallas, Dallas, Texas, USA
| | - Sandra B Chapman
- Center for BrainHealth, The University of Texas at Dallas, Dallas, Texas, USA
| | - Ian H Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Paul M Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Zhai X, Zhou D, Han Y, Han MH, Zhang H. Noradrenergic modulation of stress resilience. Pharmacol Res 2023; 187:106598. [PMID: 36481260 DOI: 10.1016/j.phrs.2022.106598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
4
|
Nowacka-Chmielewska M, Grabowska K, Grabowski M, Meybohm P, Burek M, Małecki A. Running from Stress: Neurobiological Mechanisms of Exercise-Induced Stress Resilience. Int J Mol Sci 2022; 23:13348. [PMID: 36362131 PMCID: PMC9654650 DOI: 10.3390/ijms232113348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 08/12/2023] Open
Abstract
Chronic stress, even stress of a moderate intensity related to daily life, is widely acknowledged to be a predisposing or precipitating factor in neuropsychiatric diseases. There is a clear relationship between disturbances induced by stressful stimuli, especially long-lasting stimuli, and cognitive deficits in rodent models of affective disorders. Regular physical activity has a positive effect on the central nervous system (CNS) functions, contributes to an improvement in mood and of cognitive abilities (including memory and learning), and is correlated with an increase in the expression of the neurotrophic factors and markers of synaptic plasticity as well as a reduction in the inflammatory factors. Studies published so far show that the energy challenge caused by physical exercise can affect the CNS by improving cellular bioenergetics, stimulating the processes responsible for the removal of damaged organelles and molecules, and attenuating inflammation processes. Regular physical activity brings another important benefit: increased stress robustness. The evidence from animal studies is that a sedentary lifestyle is associated with stress vulnerability, whereas a physically active lifestyle is associated with stress resilience. Here, we have performed a comprehensive PubMed Search Strategy for accomplishing an exhaustive literature review. In this review, we discuss the findings from experimental studies on the molecular and neurobiological mechanisms underlying the impact of exercise on brain resilience. A thorough understanding of the mechanisms underlying the neuroprotective potential of preconditioning exercise and of the role of exercise in stress resilience, among other things, may open further options for prevention and therapy in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| | - Konstancja Grabowska
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Mateusz Grabowski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
5
|
Chronic Environmental or Genetic Elevation of Galanin in Noradrenergic Neurons Confers Stress Resilience in Mice. J Neurosci 2020; 40:7464-7474. [PMID: 32868458 DOI: 10.1523/jneurosci.0973-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
The neuropeptide galanin has been implicated in stress-related neuropsychiatric disorders in humans and rodent models. While pharmacological treatments for these disorders are ineffective for many individuals, physical activity is beneficial for stress-related symptoms. Galanin is highly expressed in the noradrenergic system, particularly the locus coeruleus (LC), which is dysregulated in stress-related disorders and activated by exercise. Galanin expression is elevated in the LC by chronic exercise, and blockade of galanin transmission attenuates exercise-induced stress resilience. However, most research on this topic has been done in rats, so it is unclear whether the relationship between exercise and galanin is species specific. Moreover, use of intracerebroventricular (ICV) galanin receptor antagonists in prior studies precluded defining a causal role for LC-derived galanin specifically. Therefore, the goals of this study were twofold. First, we investigated whether physical activity (chronic wheel running) increases stress resilience and galanin expression in the LC of male and female mice. Next, we used transgenic mice that overexpress galanin in noradrenergic neurons (Gal OX) to determine how chronically elevated noradrenergic-derived galanin, alone, alters anxiogenic-like responses to stress. We found that three weeks of ad libitum access to a running wheel in their home cage increased galanin mRNA in the LC of mice, which was correlated with and conferred resilience to stress. The effects of exercise were phenocopied by galanin overexpression in noradrenergic neurons, and Gal OX mice were resistant to the anxiogenic effect of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.SIGNIFICANCE STATEMENT Understanding the neurobiological mechanisms underlying behavioral responses to stress is necessary to improve treatments for stress-related neuropsychiatric disorders. Increased physical activity is associated with stress resilience in humans, but the neurobiological mechanisms underlying this effect are not clear. Here, we investigate a potential causal mechanism of this effect driven by the neuropeptide galanin from the main noradrenergic nucleus, the locus coeruleus (LC). We show that chronic voluntary wheel running in mice increases stress resilience and increases galanin expression in the LC. Furthermore, we show that genetic overexpression of galanin in noradrenergic neurons causes resilience to a stressor and the anxiogenic effects of optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.
Collapse
|
6
|
Mood Responses to Passive and Active Motion Leg Cycling Exercise in Healthy Sedentary Young Adults. Adv Prev Med 2020; 2020:7282013. [PMID: 32181019 PMCID: PMC7066409 DOI: 10.1155/2020/7282013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022] Open
Abstract
Previous studies suggest that passive motion exercise (PME) may be useful for overcoming exercise limitations associated with a sedentary lifestyle, orthopedic disorders, and various other debilitating conditions. Negative mood response is one of the factors that limit a person's ability to exercise. Therefore, this study tests the hypothesis that the mood response associated with PME is not different than the mood response associated with active motion exercise (AME). Eight women and seven men participated in the study and were administrated the Profile of Mood States (POMS) during modes of PME and AME in a randomized order. Outcome of the POMS consisted of the total mood disturbance score [(feelings of tension + depression + fatigue + anger + confusion) − vigor]. ANOVA was used to determine significance of differences in total mood disturbance, oxygen uptake (V.O2), and middle cerebral blood flow velocity (MCAv) at baseline and immediately after 30-minute conditions of PME and AME. Postexercise total mood disturbance score was significantly decreased for both conditions (PME baseline 29.2 ± 5.2 vs. postexercise 16.4 ± 6.8, P < 0.05) and AME baseline 22.4 ± 4.4 vs. postexercise 13.1 ± 5.2, P < 0.05). These senses of changes in feelings were associated with significant physiological increases in V.O2 and MCAv during both PME and AME (P < 0.05). These results demonstrate that physiological and mood responses to passive and active motion cycling exercise are not different. Future studies should determine whether passive motion cycling exercise is a useful preventive medicine strategy for overcoming various disease-related exercise limitations and counteracting the adverse effects of sedentary lifestyles.
Collapse
|
7
|
Keszler G, Molnár Z, Rónai Z, Sasvári-Székely M, Székely A, Kótyuk E. Association between anxiety and non-coding genetic variants of the galanin neuropeptide. PLoS One 2019; 14:e0226228. [PMID: 31881033 PMCID: PMC6934320 DOI: 10.1371/journal.pone.0226228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Galanin, an inhibitory neuropeptide and cotransmitter has long been known to co-localize with noradrenaline and serotonin in the central nervous system. Several human studies demonstrated altered galanin expression levels in major depressive disorder and anxiety. Pharmacological modulation of galanin signaling and transgenic strategies provide further proof for the involvement of the galanin system in the pathophysiology of mood disorders. Little is known, however, on the dynamic regulation of galanin expression at the transcriptional level. The aim of the present study was to seek genetic association of non-coding single nucleotide variations in the galanin gene with anxiety and depression. Methods Six single nucleotide polymorphisms (SNP) occurring either in the regulatory 5’ or 3’ flanking regions or within intronic sequences of the galanin gene have been genotyped with a high-throughput TaqMan OpenArray qPCR system in 526 healthy students (40% males). Depression and anxiety scores were obtained by filling in the Hospital Anxiety and Depression Scale (HADS) questionnaire. Data were analyzed by ANCOVA and Bonferroni correction was applied for multiple testing. Linkage disequilibrium (LD) analysis was used to map two haploblocks in the analyzed region. Results and conclusions A single-locus and a haplotype genetic association proved to be statistically significant. In single-marker analysis, the T allele of the rs1042577 SNP within the 3’ untranslated region of the galanin gene associated with greater levels of anxiety (HADS scores were 7.05±4.0 vs 6.15±.15; p = 0.000407). Haplotype analysis revealed an association of the rs948854 C_rs4432027_C allele combination with anxiety [F(1,1046) = 4.140, p = 0.042141, η2 = 0.004, power = 0.529]. Neither of these associations turned out to be gender-specific. These promoter polymorphisms are supposed to participate in epigenetic regulation of galanin expression by creating potentially methylatable CpG dinucleotides. The functional importance of the rs1042577_T allele remains to be elucidated.
Collapse
Affiliation(s)
- Gergely Keszler
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Molnár
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Székely
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Kótyuk
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
McDowell CP, Campbell MJ, Herring MP. Sex-Related Differences in Mood Responses to Acute Aerobic Exercise. Med Sci Sports Exerc 2017; 48:1798-802. [PMID: 27128666 DOI: 10.1249/mss.0000000000000969] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Although some evidence supports stronger mood improvements in response to acute exercise among women, sex-related differences remain understudied. PURPOSE This study aimed to quantify and compare differences in baseline mood and the magnitude of mood responses to either acute aerobic exercise or quiet rest among young adult men and women. METHODS Fifty-three young adults (27 males and 26 females) completed two counterbalanced conditions: 30 min of vigorous treadmill exercise or 30 min of quiet rest. Outcomes included state anxiety, worry symptoms, and feelings of tension, depression, vigor, fatigue, anger, and confusion. ANOVA and RM-ANOVA examined sex-related differences at baseline and across condition and time, respectively. Hedges' d (95% CI) values were calculated to quantify and compare the magnitude of change in response to exercise compared with control. RESULTS Females were more likely to report scores indicative of depression (Quick Inventory of Depressive Symptoms > 5; 38.5% vs 18.5%) and high trait anxiety (≥1 SD above age- and sex-related norm on the trait subscale of the State-Trait Anxiety Inventory; 26.9% vs 3.7%). Baseline worry symptoms and trait anxiety were significantly higher among females (P < 0.02). Although repeated-measures models did not support statistically significant differences between sexes, the magnitude of improvement in mood outcomes was larger among females than males for all outcomes other than feelings of tension. Compared with quiet rest, exercise significantly improved feelings of fatigue (d = 0.59, 95% CI = 0.01-1.17), confusion (d = 0.83, 95% CI = 0.24-1.41), and energy (d = 1.67, 95% CI = 1.02-2.33), and total mood disturbance (d = 1.09, 95% CI = 0.49-1.70) and resulted in a nonsignificant, moderate-sized improvement in state anxiety (d = 0.51, 95% CI = -0.07 to 1.08) among females. CONCLUSION Findings support potential sex-related differences in mood response to acute aerobic exercise, with larger improvements found among females. Future research should confirm findings and examine putative mechanisms of sex-related differences in mood responses to exercise.
Collapse
Affiliation(s)
- Cillian P McDowell
- 1Department of Physical Education and Sport Sciences, University of Limerick, IRELAND; and 2Health Research Institute, University of Limerick, IRELAND
| | | | | |
Collapse
|
9
|
Fang P, He B, Shi M, Zhu Y, Bo P, Zhang Z. Crosstalk between exercise and galanin system alleviates insulin resistance. Neurosci Biobehav Rev 2015; 59:141-146. [PMID: 26542124 DOI: 10.1016/j.neubiorev.2015.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023]
Abstract
Studies have demonstrated that aerobic exercise can enhance insulin sensitivity, however, the precise mechanism for this outcome is not entirely identified. Emerging evidences point out that exercise can upregulate galanin protein and mRNA expression, resulting in improvement of insulin sensitivity via an increase in translocation of glucose transporter 4 and subsequent glucose uptake in myocytes and adipocytes of healthy and type 2 diabetic rats, which may be blocked by galanin antagonist. In return, galanin can exert the exercise-protective roles to prevent excessive movement of skeletal muscle and to accelerate exercise trauma repair in exercise-relative tissues. Studies also implicated that combination of aerobic exercise and activation of galanin system may make more significant improvement in insulin sensitivity than that of either one did. These suggest that galanin system is essential for physical activity to alleviate insulin resistance, namely, the beneficial effect of physical activity on glucose uptake is at least partly mediated by galanin system. Besides, co-treatment with galanin and exercise is an effective therapeutic strategy for reducing insulin resistance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 20024, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
10
|
Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2015; 1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system. To elucidate the contribution of galanin to LC physiology, here we briefly summarize the nature of stimuli that drive LC activity from a neuroanatomical perspective. We go on to describe the LC pathways in which galanin most likely exerts its effects on behavior, with a focus on addiction, depression, epilepsy, stress, and Alzheimer׳s disease. We propose a model in which LC-derived galanin has two distinct functions: as a neuromodulator, primarily acting via the galanin 1 receptor (GAL1), and as a trophic factor, primarily acting via galanin receptor 2 (GAL2). Finally, we discuss how the recent advances in neuropeptide detection, optogenetics and chemical genetics, and galanin receptor pharmacology can be harnessed to identify the roles of LC-derived galanin definitively. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA 30322, USA.
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Morgan JA, Corrigan F, Baune BT. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. J Mol Psychiatry 2015; 3:3. [PMID: 26064521 PMCID: PMC4461979 DOI: 10.1186/s40303-015-0010-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer's disease, depression, and Parkinson's disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important CNS functions have yet to be clarified. Here we review murine evidence about the effects of exercise on discrete brain regions involved in important CNS functions. Exercise effects on circadian rhythm, central metabolism, cardiovascular function, stress responses in the brain stem and hypothalamic pituitary axis, and movement are examined. The databases Pubmed, Web of Science, and Embase were searched for articles investigating regional brain adaptations to exercise. Brain regions examined included the brain stem, hypothalamus, and basal ganglia. We found evidence of multiple regional adaptations to both forced and voluntary exercise. Exercise can induce molecular adaptations in neuronal function in many instances. Taken together, these findings suggest that the regional physiological adaptations that occur with exercise could constitute a promising field for elucidating molecular and cellular mechanisms of recovery in psychiatric and neurological health conditions.
Collapse
Affiliation(s)
- Julie A Morgan
- />University of Adelaide, School of Medicine, Discipline of Psychiatry, Psychiatric Neuroscience Laboratory, Adelaide, South Australia Australia
| | - Frances Corrigan
- />University of Adelaide, Discipline of Anatomy and Pathology, School of Medical Sciences, Adelaide, South Australia Australia
| | - Bernhard T Baune
- />University of Adelaide, School of Medicine, Discipline of Psychiatry, Psychiatric Neuroscience Laboratory, Adelaide, South Australia Australia
| |
Collapse
|
12
|
Ogbonmwan YE, Schroeder JP, Holmes PV, Weinshenker D. The effects of post-extinction exercise on cocaine-primed and stress-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2015; 232:1395-403. [PMID: 25358851 PMCID: PMC4388768 DOI: 10.1007/s00213-014-3778-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
Abstract
RATIONALE Voluntary aerobic exercise has shown promise as a treatment for substance abuse, reducing relapse in cocaine-dependent people. Wheel running also attenuates drug-primed and cue-induced reinstatement of cocaine seeking in rats, an animal model of relapse. However, in most of these studies, wheel access was provided throughout cocaine self-administration and/or extinction and had effects on several parameters of drug seeking. Moreover, the effects of exercise on footshock stress-induced reinstatement have not been investigated. OBJECTIVES The purposes of this study were to isolate and specifically examine the protective effect of exercise on relapse-like behavior elicited by a drug prime or stress. METHODS Rats were trained to self-administer cocaine at a stable level, followed by extinction training. Once extinction criteria were met, rats were split into exercise (24 h, continuous access to running wheel) and sedentary groups for 3 weeks, after which, drug-seeking behavior was assessed following a cocaine prime or footshock. We also measured galanin messenger RNA (mRNA) in the locus coeruleus and A2 noradrenergic nucleus. RESULTS Exercising rats ran ∼4-6 km/day, comparable to levels previously reported for rats without a history of cocaine self-administration. Post-extinction exercise significantly attenuated cocaine-primed, but not footshock stress-induced, reinstatement of cocaine seeking, and increased galanin mRNA expression in the LC but not A2. CONCLUSION These results indicate that chronic wheel running can attenuate some forms of reinstatement, even when initiated after the cessation of cocaine self-administration, supporting the idea that voluntary exercise programs may help maintain abstinence in clinical populations.
Collapse
Affiliation(s)
- Yvonne E. Ogbonmwan
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason P. Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Philip V. Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Sciolino NR, Smith JM, Stranahan AM, Freeman KG, Edwards GL, Weinshenker D, Holmes PV. Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology 2015; 89:255-64. [PMID: 25301278 PMCID: PMC4250306 DOI: 10.1016/j.neuropharm.2014.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/15/2022]
Abstract
Exercise promotes resilience to stress and increases galanin in the locus coeruleus (LC), but the question of whether changes in galanin signaling mediate the stress-buffering effects of exercise has never been addressed. To test the contributions of galanin to stress resilience, male Sprague Dawley rats received intracerebroventricular (ICV) cannulation for drug delivery and frontocortical cannulation for microdialysis, and were housed with or without a running wheel for 21d. Rats were acutely injected with vehicle or the galanin receptor antagonist M40 and exposed to a single session of either footshock or no stress. Other groups received galanin, the galanin receptor antagonist M40, or vehicle chronically for 21d prior to the stress session. Microdialysis sampling occurred during stress exposure and anxiety-related behavior was measured on the following day in the elevated plus maze. Dendritic spines were visualized by Golgi impregnation in medial prefrontal cortex (mPFC) pyramidal neurons and quantified. Exercise increased galanin levels in the LC. Under non-stressed conditions, anxiety-related behavior and dopamine levels were comparable between exercised and sedentary rats. In contrast, exposure to stress reduced open arm exploration in sedentary rats but not in exercise rats or those treated chronically with ICV galanin, indicating improved resilience. Both exercise and chronic, ICV galanin prevented the increased dopamine overflow and loss of dendritic spines observed after stress in sedentary rats. Chronic, but not acute M40 administration blocked the resilience-promoting effects of exercise. The results indicate that increased galanin levels promote features of resilience at both behavioral and neural levels.
Collapse
Affiliation(s)
- N R Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | - J M Smith
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | - A M Stranahan
- Physiology Department, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| | - K G Freeman
- Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA.
| | - G L Edwards
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA; Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA.
| | - D Weinshenker
- Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - P V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA; Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Alteration of behavioral changes and hippocampus galanin expression in chronic unpredictable mild stress-induced depression rats and effect of electroacupuncture treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:179796. [PMID: 25530777 PMCID: PMC4233667 DOI: 10.1155/2014/179796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Abstract
To explore new noninvasive treatment options for depression, this study investigated the effects of electric acupuncture (EA) for depression rat models. Depression in rats was induced by unpredictable chronic mild stress (UCMS) combined with isolation for 21 days. Eighteen male Sprague-Dawley rats were randomly assigned into three groups: control, model, and EA groups. Rats were treated by EA once daily for 21 days. The results showed that body weight and sucrose consumption were significantly increased in EA group than in the model group. The crossing numbers and rearing numbers in the open field test significantly decreased in the model group but not in the EA group. And EA treatments upregulated levels of hippocampus galanin (Gal) in UCMS rats back to relative normal levels. The present study suggested that EA had antidepressant effects on UCMS model rats. The potential antidepressant effect may be related to upregulating Gal expression in hippocampus.
Collapse
|
15
|
Lin P, Wang C, Xu B, Gao S, Guo J, Zhao X, Huang H, Zhang J, Chen X, Wang Q, Zhou W. The VGF-derived peptide TLQP62 produces antidepressant-like effects in mice via the BDNF/TrkB/CREB signaling pathway. Pharmacol Biochem Behav 2014; 120:140-8. [PMID: 24631486 DOI: 10.1016/j.pbb.2014.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 11/19/2022]
Abstract
Recent studies demonstrate that the neuropeptide VGF (nonacronymic)-derived peptide is regulated in the hippocampus by antidepressant therapies. Brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), cAMP response element-binding protein (CREB) signaling, and monoamine transmitter pathways mediate the behavioral effects of antidepressants, but it is not known if these pathways also contribute to the antidepressant-like effects of VGF-derived peptide TLQP62. Here the antidepressant-like effects of TLQP62 were evaluated by measuring immobility time in the forced swimming and tail suspension tests (FST and TST) following acute microinjection of the TLQP62 (0.25, 0.5 and 1 nmol/side) into the hippocampal CA1 regions. This treatment dose-dependently reduced immobility in the FST and TST compared to phosphate-buffered saline (PBS) infusion without affecting locomotor activity in the open field test (OFT). In addition, daily intrahippocampal microinfusion of TLQP62 (1 nmol/side/day; 21 days) also upregulated the expression of BDNF and the phosphorylation of CREB (pCREB) and TrkB (pTrkB) without altering CREB or TrkB. Blocking tissue plasminogen activator (tPA) by microinfusion of tPASTOP or TrkB activation by microinfusion of K252a 60 min prior to TLQP62 infusion almost completely abolished TLQP62-induced antidepressant-like effects, BDNF upregulation, and CREB/TrkB phosphorylation. In contrast, none of these effects were diminished by pretreatment with the non-specific 5-HT receptor antagonist metergoline, the selective 5-HT1A receptor antagonist NAN-190, the 5-HT synthase inhibitor parachlorophenylalanine, the selective α1-adrenoceptor antagonist prazosin, the β receptor antagonist propranolol, or the D2 receptor antagonist raclopride. Moreover, our study was also to investigate the antidepressant-like effects of TLQP62 (50, 250 and 500 nmol/kg; i.p.) on depression-related behaviors in comparison with fluoxetine (10mg/kg; i.p.). While TLQP62 and fluoxetine showed similar antidepressant-like behavioral effects in the FST of mice. Our present results strongly suggest that activation of BDNF/TrkB/CREB signaling may be involved in the antidepressant-like effects of TLQP62.
Collapse
Affiliation(s)
- Peipei Lin
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Chuang Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China.
| | - Bing Xu
- No. 97 Hospital, Xuzhou, Jiangsu 221000, PR China
| | - Siyun Gao
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Jiejie Guo
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Xin Zhao
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Huihui Huang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Junfang Zhang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Xiaowei Chen
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Qinwen Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Wenhua Zhou
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology of Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
16
|
Holmes PV. Trophic Mechanisms for Exercise-Induced Stress Resilience: Potential Role of Interactions between BDNF and Galanin. Front Psychiatry 2014; 5:90. [PMID: 25120496 PMCID: PMC4112800 DOI: 10.3389/fpsyt.2014.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Current concepts of the neurobiology of stress-related disorders, such as anxiety and depression emphasize disruptions in neural plasticity and neurotrophins. The potent trophic actions of exercise, therefore, represent not only an effective means for prevention and treatment of these disorders, they also afford the opportunity to employ exercise paradigms as a basic research tool to uncover the neurobiological mechanisms underlying these disorders. Novel approaches to studying stress-related disorders focus increasingly on trophic factor signaling in corticolimbic circuits that both mediate and regulate cognitive, behavioral, and physiological responses to deleterious stress. Recent evidence demonstrates that the neural plasticity supported by these trophic mechanisms is vital for establishing and maintaining resilience to stress. Therapeutic interventions that promote these mechanisms, be they pharmacological, behavioral, or environmental, may therefore prevent or reverse stress-related mental illness by enhancing resilience. The present paper will provide an overview of trophic mechanisms responsible for the enhancement of resilience by voluntary exercise with an emphasis on brain-derived neurotrophic factor, galanin, and interactions between these two trophic factors.
Collapse
Affiliation(s)
- Philip V Holmes
- Neuroscience Program, Psychology Department, Biomedical and Health Sciences Institute, The University of Georgia , Athens, GA , USA
| |
Collapse
|
17
|
Epps SA, Kahn AB, Holmes PV, Boss-Williams KA, Weiss JM, Weinshenker D. Antidepressant and anticonvulsant effects of exercise in a rat model of epilepsy and depression comorbidity. Epilepsy Behav 2013; 29:47-52. [PMID: 23933912 PMCID: PMC3783960 DOI: 10.1016/j.yebeh.2013.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
Abstract
The bidirectional comorbidity between epilepsy and depression is associated with severe challenges for treatment efficacy and safety, often resulting in poor prognosis and outcome for the patient. We showed previously that rats selectively bred for depression-like behaviors (SwLo rats) also have increased limbic seizure susceptibility compared with their depression-resistant counterparts (SwHi rats). In this study, we examined the therapeutic efficacy of voluntary exercise in our animal model of epilepsy and depression comorbidity. We found that chronic wheel running significantly increased both struggling duration in the forced swim test and latency to pilocarpine-induced limbic motor seizure in SwLo rats but not in SwHi rats. The antidepressant and anticonvulsant effects of exercise were associated with an increase in galanin mRNA specifically in the locus coeruleus of SwLo rats. These results demonstrate the beneficial effects of exercise in a rodent model of epilepsy and depression comorbidity and suggest a potential role for galanin.
Collapse
Affiliation(s)
- S. Alisha Epps
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Alexa B. Kahn
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | - Jay M. Weiss
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322,Address correspondence to: David Weinshenker, PhD, Department of Human Genetics, Emory University School of Medicine, Whitehead 301, 615 Michael St., Atlanta, GA 30322, Phone: (404) 727-3106, Fax: (404) 727-3949,
| |
Collapse
|
18
|
Loughridge AB, Greenwood BN, Day HEW, McQueen MB, Fleshner M. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus. Front Behav Neurosci 2013; 7:37. [PMID: 23717271 PMCID: PMC3650681 DOI: 10.3389/fnbeh.2013.00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/18/2013] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms.
Collapse
Affiliation(s)
- Alice B Loughridge
- Department of Integrative Physiology, University of Colorado Boulder Boulder, CO, USA
| | | | | | | | | |
Collapse
|
19
|
Bu L, Liu Z, Zou J, Gao X, Bao Y, Qu S. Blocking central galanin receptors attenuates insulin sensitivity in myocytes of diabetic trained rats. J Neurosci Res 2013; 91:971-7. [PMID: 23653288 DOI: 10.1002/jnr.23228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/23/2013] [Accepted: 03/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Le Bu
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai; China
| | - Zhimin Liu
- Department of Endocrinology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Junjie Zou
- Department of Endocrinology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Xiang Gao
- Department of Nephrology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Yi Bao
- Department of Endocrinology; Changzheng Hospital, Second Military Medical University; Shanghai; China
| | - Shen Qu
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai; China
| |
Collapse
|
20
|
Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev 2012; 36:1965-84. [PMID: 22771334 PMCID: PMC4815919 DOI: 10.1016/j.neubiorev.2012.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/01/2012] [Accepted: 06/10/2012] [Indexed: 12/15/2022]
Abstract
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| | - Philip V. Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
21
|
Zhang Z, Sheng S, Guo L, Li G, Zhang L, Zhang L, Shi M, Bo P, Zhu Y. Intracerebroventricular administration of galanin antagonist sustains insulin resistance in adipocytes of type 2 diabetic trained rats. Mol Cell Endocrinol 2012; 361:213-8. [PMID: 22564511 DOI: 10.1016/j.mce.2012.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/06/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
The aim of this study is to investigate whether galanin (GAL) central receptors are involved in regulation of insulin resistance. To test it, a GAL antagonist, M35 was intracerebroventricularly administrated in trained type 2 diabetic rats. The euglycemic-hyperinsulinemic clamp test was conducted for an index of glucose infusion rates. The epididymal fat pads were processed for determination of glucose uptake and Glucose Transporter 4 (GLUT4) amounts. The Gal mRNA expression levels in hypothalamus were quantitatively assessed too. We found an inhibitory effect of M35 on glucose uptake into adipocytes, Gal mRNA expression levels in hypothalamus, glucose infusion rates in the clamp test and GLUT4 concentration in plasma membranes and total cell membranes of adipocytes. The ratios of GLUT4 contents of the former to the latter in M35 groups were lower. These results suggest a facilitating role for GAL on GLUT4 translocation and insulin sensitivity via its central receptors in rats.
Collapse
Affiliation(s)
- Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
23
|
Sciolino NR, Dishman RK, Holmes PV. Voluntary exercise offers anxiolytic potential and amplifies galanin gene expression in the locus coeruleus of the rat. Behav Brain Res 2012; 233:191-200. [PMID: 22580167 PMCID: PMC3409590 DOI: 10.1016/j.bbr.2012.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/05/2012] [Accepted: 05/01/2012] [Indexed: 01/04/2023]
Abstract
Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin. Rats were housed in the presence or absence of a running wheel for 21 d. A subset of these rats were (1) not injected or received a single high, dose of the β-carboline FG7142 (inverse agonist at the benzodiazepine receptor site) immediately prior to testing or (2) were injected repeatedly with vehicle or FG7142 during the last 10d of exercise. On day 22, anxiety-like and defensive behaviors were measured in the elevated plus maze, shock probe defensive burying, and defensive withdrawal tests. Locus coeruleus prepro-galanin mRNA was measured by in situ hybridization. Exercise and sedentary rats that were not injected exhibited similar behavior in all tests, whereas FG7142 injected immediately prior to the test battery produced intense avoidance and immobility consistent with an anxiety-like response. However, exercise produced anxiolytic-like and active defensive behaviors in the test battery relative to the sedentary condition in rats injected repeatedly with vehicle or FG7142. Exercise also increased prepro-galanin mRNA in the locus coeruleus relative to sedentary controls. These data suggest that the emergence of enhanced adaptive behavior after chronic voluntary exercise is influenced by stress. Our data support a role for galanin in the beneficial consequences of wheel running.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Interdisciplinary Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia
| | | | - Philip V. Holmes
- Interdisciplinary Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia
- Department of Psychology, University of Georgia
| |
Collapse
|
24
|
Smith MA, Pennock MM, Walker KL, Lang KC. Access to a running wheel decreases cocaine-primed and cue-induced reinstatement in male and female rats. Drug Alcohol Depend 2012; 121:54-61. [PMID: 21885215 PMCID: PMC3237846 DOI: 10.1016/j.drugalcdep.2011.08.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 08/02/2011] [Accepted: 08/05/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Relapse to drug use after a period of abstinence is a persistent problem in the treatment of cocaine dependence. Physical activity decreases cocaine self-administration in laboratory animals and is associated with a positive prognosis in human substance-abusing populations. The purpose of this study was to examine the effects of long-term access to a running wheel on drug-primed and cue-induced reinstatement of cocaine-seeking behavior in male and female rats. methods: Long-Evans rats were obtained at weaning and assigned to sedentary (no wheel) and exercising (access to wheel) groups for the duration of the study. After 6 weeks, rats were implanted with intravenous catheters and trained to self-administer cocaine for 14 days. After training, saline was substituted for cocaine and responding was allowed to extinguish, after which cocaine-primed reinstatement was examined in both groups. Following this test, cocaine self-administration was re-established in both groups for a 5-day period. Next, a second period of abstinence occurred in which both cocaine and the cocaine-associated cues were withheld. After 5 days of abstinence, cue-induced reinstatement was examined in both groups. RESULTS Sedentary and exercising rats exhibited similar levels of cocaine self-administration, but exercising rats responded less than sedentary rats during extinction. In tests of cocaine-primed and cue-induced reinstatement, exercising rats responded less than sedentary rats, and this effect was apparent in both males and females. CONCLUSIONS These data indicate that long-term access to a running wheel decreases drug-primed and cue-induced reinstatement, and that physical activity may be effective at preventing relapse in substance-abusing populations.
Collapse
Affiliation(s)
- Mark A. Smith
- Department of Psychology, Davidson College, Davidson, NC 28035, USA,Program in Neuroscience, Davidson College, Davidson, NC 28035, USA
| | - Michael M. Pennock
- Department of Psychology, Davidson College, Davidson, NC 28035, USA,Program in Neuroscience, Davidson College, Davidson, NC 28035, USA
| | | | - Kimberly C. Lang
- Department of Psychology, Davidson College, Davidson, NC 28035, USA,Program in Neuroscience, Davidson College, Davidson, NC 28035, USA
| |
Collapse
|
25
|
Groves-Chapman JL, Murray PS, Stevens KL, Monroe DC, Koch LG, Britton SL, Holmes PV, Dishman RK. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high- and low-aerobic capacity. Brain Res 2011; 1425:90-7. [PMID: 22024546 PMCID: PMC3312391 DOI: 10.1016/j.brainres.2011.09.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/21/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for 3 weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/day) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance.
Collapse
|
26
|
An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:654085. [PMID: 21966294 PMCID: PMC3182334 DOI: 10.1155/2011/654085] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/26/2011] [Indexed: 01/19/2023]
Abstract
The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF) in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function. Such increases in activity may mediate beneficial effects such as enhanced learning and memory. However, the increased activity also comes at a cost: BDNF plasticity renders the hippocampus more vulnerable to hyperexcitability and/or excitotoxic damage. Exercise dramatically increases hippocampal BDNF levels and produces behavioral effects consistent with this phenomenon. In analyzing the literature regarding exercise-induced regulation of BDNF, this paper provides a theoretical model for how the potentially deleterious consequences of BDNF plasticity may be modulated by other endogenous factors. The peptide galanin may play such a role by regulating hippocampal excitability.
Collapse
|
27
|
He B, Shi M, Zhang L, Li G, Zhang L, Shao H, Li J, Fang P, Ma Y, Shi Q, Sui Y. Beneficial effect of galanin on insulin sensitivity in muscle of type 2 diabetic rats. Physiol Behav 2011; 103:284-289. [PMID: 21352839 DOI: 10.1016/j.physbeh.2011.02.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 02/04/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study was to determine whether enhanced galanin (GAL) release induced by exercise would elevate insulin sensitivity and glucose transporter 4 (GLUT4) concentration in the plasma membranes of skeletal muscle in type 2 diabetic rats. We used M35, a GAL antagonist to antagonize the GAL function and swimming training for four weeks to increase GAL release of rats. The blood samples were analyzed for GAL and insulin concentration. The euglycemic-hyperinsulinemic clamp test was conducted for an index of glucose infusion rates. Additionally, skeletal muscle was collected and processed for GLUT4 mRNA level and GLUT4 concentration. The present findings showed that plasma GAL levels after swimming training in all three trained groups were higher compared with each sedentary control and each preswimming level. The insulin levels after swimming in both M35 treatment groups were elevated compared with each diabetic control and each pretraining level. Moreover, M35 treatment reduced glucose infusion rates compared with each diabetic control, but swimming enhanced the rates in all trained groups compared with each sedentary control. Furthermore, M35 treatment reduced GLUT4 concentration and GLUT4 mRNA levels compared with each diabetic control. The ratio of GLUT4 contents in plasma membranes to total cell membranes in both drug groups were lower compared with each diabetic control. These results suggest that endogenous GAL may enhance GLUT4 contents and promote GLUT4 transportation from intracellular membrane pools to plasma membranes. GAL is an important hormone to regulate insulin sensitivity in skeletal muscle from type 2 diabetic rats.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Blood Glucose
- Bradykinin/analogs & derivatives
- Bradykinin/therapeutic use
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/rehabilitation
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay/methods
- Galanin/blood
- Galanin/therapeutic use
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glucose Clamp Technique/methods
- Glucose Transporter Type 4/blood
- Glucose Transporter Type 4/genetics
- Insulin/metabolism
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Peptide Fragments/therapeutic use
- Physical Conditioning, Animal/methods
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin/toxicity
- Swimming
Collapse
Affiliation(s)
- Biao He
- Department of Physical Education, Anhui Defence Vacation College, Luan, Anhui Province, 237011, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Murray PS, Groves JL, Pettett BJ, Britton SL, Koch LG, Dishman RK, Holmes PV. Locus coeruleus galanin expression is enhanced after exercise in rats selectively bred for high capacity for aerobic activity. Peptides 2010; 31:2264-8. [PMID: 20850488 PMCID: PMC2967655 DOI: 10.1016/j.peptides.2010.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 01/29/2023]
Abstract
The neuropeptide galanin extensively coexists with norepinephrine in locus coeruleus (LC) neurons. Previous research in this laboratory has demonstrated that unlimited access to activity wheels in the home cage increases mRNA for galanin (GAL) in the LC, and that GAL mediates some of the beneficial effects of exercise on brain function. To assess whether capacity for aerobic exercise modulates this upregulation in galanin mRNA, three heterogeneous rat models were tested: rats selectively bred for (1) high intrinsic (untrained) aerobic capacity (High Capacity Runners, HCR) and (2) low intrinsic aerobic capacity (Low Capacity Runners, LCR) and (3) unselected Sprague-Dawley (SD) rats with and without free access to running wheels for 3 weeks. Following this exercise protocol, mRNA for tyrosine hydroxylase (TH) and GAL was measured in the LC. The wheel running distances between the three models were significantly different, and age contributed as a significant covariate. Both selection and wheel access condition significantly affected GAL mRNA expression, but not TH mRNA expression. GAL was elevated in exercising HCR and SD rats compared to sedentary rats while LCR rats did not differ between conditions. Overall running distance significantly correlated with GAL mRNA expression, but not with TH mRNA expression. No strain differences in GAL or TH gene expression were observed in sedentary rats. Thus, intrinsic aerobic running capacity influences GAL gene expression in the LC only insofar as actual running behavior is concerned; aerobic capacity does not influence GAL expression in addition to changes associated with running.
Collapse
Affiliation(s)
- Patrick S Murray
- Neuroscience Program, Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Jiang L, Shi M, Guo L, He B, Li G, Zhang L, Zhang L, Shao H. Effect of M35, a neuropeptide galanin antagonist on glucose uptake translated by glucose transporter 4 in trained rat skeletal muscle. Neurosci Lett 2009; 467:178-81. [DOI: 10.1016/j.neulet.2009.10.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 11/30/2022]
|
30
|
Thom NJ, Holmes PV, Dishman RK. Effects of exercise on male copulatory behavior after β-adrenoreceptor blockade. Brain Res Bull 2009; 79:414-7. [DOI: 10.1016/j.brainresbull.2009.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/01/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
|
31
|
Dishman RK. Gene-physical activity interactions in the etiology of obesity: behavioral considerations. Obesity (Silver Spring) 2008; 16 Suppl 3:S60-5. [PMID: 19037216 DOI: 10.1038/oby.2008.520] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding how genes, environment, and personal motivation operate to influence physical activity will require (i) inclusion of properly validated measures of putative mediators (e.g., cultural values, efficacy and control beliefs, goals, intentions, enjoyment, and self-management skills) and moderators (e.g., age or maturation, personality, race/ethnicity, fitness, fatness, skill, and competing behaviors) of physical activity, (ii) a search for candidate genes involved with motivational systems of energy expenditure in addition to energy intake pathways, (iii) assessment of specific features physical activity exposure (i.e., type, intensity, timing, and context), (iv) manipulation of physical activity or prospective observation of change in physical activity at multiple times, rather than cross-sectional association and linkage studies, and (v) use of statistical procedures that permit multilevel modeling (i.e., personal and group-level variables) of direct, indirect (i.e., mediated), and moderated (i.e., interactions of mediators with external factors) relations with physical activity within theoretical gene-environment networks.
Collapse
Affiliation(s)
- Rod K Dishman
- Department of Kinesiology, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
32
|
Thakker-Varia S, Alder J. Neuropeptides in depression: role of VGF. Behav Brain Res 2008; 197:262-78. [PMID: 18983874 DOI: 10.1016/j.bbr.2008.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/05/2008] [Indexed: 12/20/2022]
Abstract
The monoamine hypothesis of depression is increasingly called into question by newer theories that revolve around changes in neuronal plasticity, primarily in the hippocampus, at both the structural and the functional levels. Chronic stress negatively regulates hippocampal function while antidepressants ameliorate the effects of stress on neuronal morphology and activity. Both stress and antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) whose transcription is dependent on cAMP response element binding protein (CREB). BDNF itself has antidepressant-like actions and can induce transcription of a number of molecules. One class of genes regulated by both BDNF and serotonin (5-HT) are neuropeptides including VGF (non-acryonimic) which has a novel role in depression. Neuropeptides are important modulators of neuronal function but their role in affective disorders is just emerging. Recent studies demonstrate that VGF, which is also a CREB-dependent gene, is upregulated by antidepressant drugs and voluntary exercise and is reduced in animal models of depression. VGF enhances hippocampal synaptic plasticity as well as neurogenesis in the dentate gyrus but the mechanisms of antidepressant-like actions of VGF in behavioral paradigms are not known. We summarize experimental data describing the roles of BDNF, VGF and other neuropeptides in depression and how they may be acting through the generation of new neurons and altered synaptic activity. Understanding the molecular and cellular changes that underlie the actions of neuropeptides and how these adaptations result in antidepressant-like effects will aid in developing drugs that target novel pathways for major depressive disorders.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 683 Hoes Lane West, Robert Wood Johnson-School of Public Health 357A, Piscataway, NJ 08854-5635, United States
| | | |
Collapse
|
33
|
Alexander JL, Richardson G, Grypma L, Hunkeler EM. Collaborative depression care, screening, diagnosis and specificity of depression treatments in the primary care setting. Expert Rev Neurother 2008; 7:S59-80. [PMID: 18039069 DOI: 10.1586/14737175.7.11s.s59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification, referral and specific treatment of midlife patients in primary care who are distressed by mood, anxiety, sleep and stress-related symptoms, with or without clinically confirmed menopausal symptoms, are confounded by many structural issues in the delivery of women's healthcare. Diagnosis, care delivery, affordability of treatment, time commitment for treatment, treatment specificity for a particular patient's symptoms and patient receptiveness to diagnosis and treatment all play roles in the successful amelioration of symptoms in this patient population. The value of screening for depression in primary care, the limitations of commonly used screening instruments relative to culture and ethnicity, and which clinical care systems make best use of diagnostic screening programs will be discussed in the context of the midlife woman. The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) program illustrates the relatively high rate of unremitted patients, regardless of clinical setting, who are receiving antidepressants. Nonmedication treatment approaches, referred to in the literature as 'nonsomatic treatments', for depression, anxiety and stress, include different forms of cognitive-behavioral therapy, interpersonal therapy, structured daily activities, mindfulness therapies, relaxation treatment protocols and exercise. The specificity of these treatments, their mechanisms of action, the motivation and time commitment required of patients, and the availability of trained practitioners to deliver them are reviewed. Midlife women with menopausal symptoms and depression/anxiety comorbidity represent a challenging patient population for whom an individualized treatment plan is often necessary. Treatment for depression comorbid with distressing menopausal symptoms would be facilitated by the implementation of a collaborative care program for depression in the primary care setting.
Collapse
|
34
|
The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 2007; 27:12156-67. [PMID: 17989282 DOI: 10.1523/jneurosci.1898-07.2007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is upregulated in the hippocampus by antidepressant treatments, and BDNF produces antidepressant-like effects in behavioral models of depression. In our previous work, we identified genes induced by BDNF and defined their specific roles in hippocampal neuronal development and plasticity. To identify genes downstream of BDNF that may play roles in psychiatric disorders, we examined a subset of BDNF-induced genes also regulated by 5-HT (serotonin), which includes the neuropeptide VGF (nonacronymic). To explore the function of VGF in depression, we first investigated the expression of the neuropeptide in animal models of depression. VGF was downregulated in the hippocampus after both the learned helplessness and forced swim test (FST) paradigms. Conversely, VGF infusion in the hippocampus of mice subjected to FST reduced the time spent immobile for up to 6 d, thus demonstrating a novel role for VGF as an antidepressant-like agent. Recent evidence indicates that chronic treatment of rodents with antidepressants increases neurogenesis in the adult dentate gyrus and that neurogenesis is required for the behavioral effects of antidepressants. Our studies using [(3)H]thymidine and bromodeoxyuridine as markers of DNA synthesis indicate that chronic VGF treatment enhances proliferation of hippocampal progenitor cells both in vitro and in vivo with survival up to 21 d. By double immunocytochemical analysis of hippocampal neurons, we demonstrate that VGF increases the number of dividing cells that express neuronal markers in vitro. Thus, VGF may act downstream of BDNF and exert its effects as an antidepressant-like agent by enhancing neurogenesis in the hippocampus.
Collapse
|
35
|
Eisenstein SA, Holmes PV. Chronic and voluntary exercise enhances learning of conditioned place preference to morphine in rats. Pharmacol Biochem Behav 2007; 86:607-15. [PMID: 17368736 DOI: 10.1016/j.pbb.2007.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 01/19/2007] [Accepted: 02/01/2007] [Indexed: 01/09/2023]
Abstract
Previous research has shown that brief and intermittent activity wheel running attenuates conditioned place preference (CPP) to morphine in rats, which suggests that exercise may produce a cross-tolerance to opiates. On the other hand, a different exercise paradigm, chronic and voluntary wheel running, enhances learning in contextual conditioning tasks. The present experiments tested CPP to 2.5, 5, and 7.5 mg/kg morphine in sedentary rats and rats provided free access to running wheels for three weeks. Sucrose preference was also tested to determine exercise's influence on appetitive processes. Levels of mRNA encoding brain-derived neurotrophic factor and preprogalanin mRNA were quantified using in situ hybridization. In rats that exhibited CPP to morphine, exercising rats spent significantly more time per entry in the morphine-paired chamber during the CPP test. CPP to morphine was dose-dependent. The expression of hippocampal brain-derived neurotrophic factor (BDNF) was greater in exercising rats compared to the sedentary group. Preprogalanin (GAL) mRNA expression in the locus coeruleus (LC) was positively correlated with mean distance run. These results suggest that while chronic exercise may produce cross-tolerance to opioids, exercise-induced enhancement of associative learning caused by exercise may override this effect in the conditioned place preference procedure.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Neuroscience and Behavior Program, Psychology Department, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|