1
|
Laule C, Rahmouni K. Leptin and Associated Neural Pathways Underlying Obesity-Induced Hypertension. Compr Physiol 2025; 15:e8. [PMID: 40293220 PMCID: PMC12038170 DOI: 10.1002/cph4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 04/30/2025]
Abstract
Obesity rates have surged to pandemic levels, placing tremendous burden on our society. This chronic and complex disease is related to the development of many life-threatening illnesses including cardiovascular diseases. Hypertension caused by obesity increases the risk for cardiovascular mortality and morbidity by promoting stroke, myocardial infarction, congestive heart failure, and end-stage renal disease. Overwhelming evidence supports neural origins for obesity-induced hypertension and pinpoints the adipose-derived hormone, leptin, and the sympathetic nervous system as major causal factors. Hyperleptinemia in obesity is associated with selective leptin resistance where leptin's renal sympathoexcitatory and pressor effects are preserved while the metabolic actions are impaired. Understanding the mechanisms driving this phenomenon is critical for developing effective therapeutics. This review describes the neural mechanisms of obesity-induced hypertension with a focus on the molecular and neuronal substrates of leptin action.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
2
|
Iosif CI, Bashir ZI, Apps R, Pickford J. Cerebellar Prediction and Feeding Behaviour. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1002-1019. [PMID: 36121552 PMCID: PMC10485105 DOI: 10.1007/s12311-022-01476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.
Collapse
Affiliation(s)
- Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
3
|
Hamilton K, Harvey J. The Neuronal Actions of Leptin and the Implications for Treating Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14010052. [PMID: 33440796 PMCID: PMC7827292 DOI: 10.3390/ph14010052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer's disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer's disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.
Collapse
|
4
|
Sjögren M, Soylu-Kucharz R, Dandunna U, Stan TL, Cavalera M, Sandelius Å, Zetterberg H, Björkqvist M. Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2019; 132:104560. [PMID: 31419548 DOI: 10.1016/j.nbd.2019.104560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Body weight has been shown to be a predictor of clinical progression in Huntington's disease (HD). Alongside widespread neuronal pathology, both HD patients and the R6/2 mouse model of HD exhibit weight loss and increased energy expenditure, providing a rationale for targeting whole-body energy metabolism in HD. Leptin-deficient mice display low energy expenditure and increased body weight. We therefore hypothesized that normalizing energy metabolism in R6/2 mice, utilizing leptin- deficiency, would lead to a slower disease progression in the R6/2 mouse. In this study, we show that R6/2 mice on a leptin-deficient genetic background display increased body weight and increased fat mass compared to R6/2 mice, as well as wild type littermates. The increased body weight was accompanied by low energy expenditure, illustrated by a reduction in respiratory exchange rate. Leptin-deficient R6/2 mice had large white adipocytes with white adipocyte gene expression characteristics, in contrast to white adipose tissue in R6/2 mice, where white adipose tissue showed signs of browning. Leptin-deficient R6/2 mice did not exhibit improved neuropathological measures. Our results indicate that lowering energy metabolism in HD, by increasing fat mass and reducing respiratory exchange rate, is not sufficient to affect neuropathology. Further studies targeting energy metabolism in HD are warranted.
Collapse
Affiliation(s)
- Marie Sjögren
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | - Rana Soylu-Kucharz
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Unali Dandunna
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tiberiu Loredan Stan
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michele Cavalera
- Department of Clinical Sciences, Cardiovascular Research, Translational Studies, Lund University, Malmö, Sweden
| | - Åsa Sandelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Maria Björkqvist
- Wallenberg Neuroscience Center, Brain Disease Biomarker Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Stroh MA, Winter MK, McCarson KE, Thyfault JP, Zhu H. NCB5OR Deficiency in the Cerebellum and Midbrain Leads to Dehydration and Alterations in Thirst Response, Fasted Feeding Behavior, and Voluntary Exercise in Mice. THE CEREBELLUM 2019; 17:152-164. [PMID: 28887630 DOI: 10.1007/s12311-017-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic NADH-cytochrome-b5-oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues. We have previously reported that global ablation of NCB5OR in mice results in early-onset lean diabetes with decreased serum leptin levels and increased metabolic and feeding activities. The conditional deletion of NCB5OR in the mouse cerebellum and midbrain (conditional knock out, CKO mice) results in local iron dyshomeostasis and altered locomotor activity. It has been established that lesion to or removal of the cerebellum leads to changes in nutrient organization, visceral response, feeding behavior, and body weight. This study assessed whether loss of NCB5OR in the cerebellum and midbrain altered feeding or metabolic activity and had an effect on serum T3, cortisol, prolactin, and leptin levels. Metabolic cage data revealed that 16 week old male CKO mice had elevated respiratory quotients and decreased respiratory water expulsion, decreased voluntary exercise, and altered feeding and drinking behavior compared to wild-type littermate controls. Most notably, male CKO mice displayed higher consumption of food during refeeding after a 48-h fast. Echo MRI revealed normal body composition but decreased total water content and hydration ratios in CKO mice. Increased serum osmolality measurements confirmed the dehydration status of male CKO mice. Serum leptin levels were significantly elevated in male CKO mice while prolactin, T3, and cortisol levels remain unchanged relative to wild-type controls, consistent with elevated transcript levels for leptin receptors (short form) in the male CKO mouse cerebellum. Taken together, these findings suggest altered feeding response post starvation as a result of NCB5OR deficiency in the cerebellum.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Research Service, Kansas City VA Medical Center, Kansas City, MO, 64128, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Doshi S, Gupta P, Kalb RG. Genetic induction of hypometabolism by ablation of MC4R does not suppress ALS-like phenotypes in the G93A mutant SOD1 mouse model. Sci Rep 2017; 7:13150. [PMID: 29030576 PMCID: PMC5640619 DOI: 10.1038/s41598-017-13304-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Dysfunction and death of motor neurons leads to progressive paralysis in amyotrophic lateral sclerosis (ALS). Recent studies have reported organism-level metabolic dysfunction as a prominent but poorly understood feature of the disease. ALS patients are hypermetabolic with increased resting energy expenditure, but if and how hypermetabolism contributes to disease pathology is unknown. We asked if decreasing metabolism in the mutant superoxide dismutase 1 (SOD1) mouse model of ALS (G93A SOD1) would alter motor function and survival. To address this, we generated mice with the G93A SOD1 mutation that also lacked the melanocortin-4 receptor (MC4R). MC4R is a critical regulator of energy homeostasis and food intake in the hypothalamus. Loss of MC4R is known to induce hyperphagia and hypometabolism in mice. In the MC4R null background, G93A SOD1 mice become markedly hypometabolic, overweight and less active. Decreased metabolic rate, however, did not reverse any ALS-related disease phenotypes such as motor dysfunction or decreased lifespan. While hypermetabolism remains an intriguing target for intervention in ALS patients and disease models, our data indicate that the melanocortin system is not a good target for manipulation. Investigating other pathways may reveal optimal targets for addressing metabolic dysfunction in ALS.
Collapse
Affiliation(s)
- Shachee Doshi
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Neuroscience Graduate Group, University of Pennsylvania, 140 John Morgan, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Preetika Gupta
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, 140 John Morgan, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Robert G Kalb
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, 140 John Morgan, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Gavello D, Carbone E, Carabelli V. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels (Austin) 2016; 10:282-96. [PMID: 27018500 DOI: 10.1080/19336950.2016.1164373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Leptin is produced by adipose tissue and identified as a "satiety signal," informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.
Collapse
Affiliation(s)
- Daniela Gavello
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Emilio Carbone
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| | - Valentina Carabelli
- a Department of Drug Science , Lab of Cellular Physiology and Molecular Neuroscience, NIS Center of Excellence, University of Torino , Torino , Italy
| |
Collapse
|
8
|
McGregor G, Malekizadeh Y, Harvey J. Minireview: Food for thought: regulation of synaptic function by metabolic hormones. Mol Endocrinol 2016; 29:3-13. [PMID: 25470238 DOI: 10.1210/me.2014-1328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peripheral actions of the metabolic hormones, leptin and insulin, are well documented. However, the functions of these hormones are not restricted to the periphery because evidence is growing that both leptin and insulin can readily cross the blood-brain barrier and have widespread central actions. The hippocampus in particular expresses high levels of both insulin and leptin receptors as well as key components of their associated signaling cascades. Moreover, recent studies indicate that both hormones are potential cognitive enhancers. Indeed, it has been demonstrated that both leptin and insulin markedly influence key cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and the trafficking of glutamate receptors to and away from hippocampal synapses. The hippocampal formation is also a prime site for the neurodegenerative processes that occur during Alzheimer's disease, and impairments in either leptin or insulin function have been linked to central nervous system-driven diseases like Alzheimer's disease. Thus, the capacity of the metabolic hormones, leptin and insulin, to regulate hippocampal synaptic function has significant implications for normal brain function and also central nervous system-driven disease.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | | | | |
Collapse
|
9
|
Seroussi E, Cinnamon Y, Yosefi S, Genin O, Smith JG, Rafati N, Bornelöv S, Andersson L, Friedman-Einat M. Identification of the Long-Sought Leptin in Chicken and Duck: Expression Pattern of the Highly GC-Rich Avian leptin Fits an Autocrine/Paracrine Rather Than Endocrine Function. Endocrinology 2016; 157:737-51. [PMID: 26587783 DOI: 10.1210/en.2015-1634] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
More than 20 years after characterization of the key regulator of mammalian energy balance, leptin, we identified the leptin (LEP) genes of chicken (Gallus gallus) and duck (Anas platyrhynchos). The extreme guanine-cytosine content (∼70%), the location in a genomic region with low-complexity repetitive and palindromic sequence elements, the relatively low sequence conservation, and low level of expression have hampered the identification of these genes until now. In vitro-expressed chicken and duck leptins specifically activated signaling through the chicken leptin receptor in cell culture. In situ hybridization demonstrated expression of LEP mRNA in granular and Purkinje cells of the cerebellum, anterior pituitary, and in embryonic limb buds, somites, and branchial arches, suggesting roles in adult brain control of energy balance and during embryonic development. The expression patterns of LEP and the leptin receptor (LEPR) were explored in chicken, duck, and quail (Coturnix japonica) using RNA-sequencing experiments available in the Short Read Archive and by quantitative RT-PCR. In adipose tissue, LEP and LEPR were scarcely transcribed, and the expression level was not correlated to adiposity. Our identification of the leptin genes in chicken and duck genomes resolves a long lasting controversy regarding the existence of leptin genes in these species. This identification was confirmed by sequence and structural similarity, conserved exon-intron boundaries, detection in numerous genomic, and transcriptomic datasets and characterization by PCR, quantitative RT-PCR, in situ hybridization, and bioassays. Our results point to an autocrine/paracrine mode of action for bird leptin instead of being a circulating hormone as in mammals.
Collapse
Affiliation(s)
- Eyal Seroussi
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Yuval Cinnamon
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Sara Yosefi
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Olga Genin
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Julia Gage Smith
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Nima Rafati
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Susanne Bornelöv
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Leif Andersson
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| | - Miriam Friedman-Einat
- Agricultural Research Organization (E.S., Y.C., S.Y., O.G., J.G.-S., M.F.-E.), Volcani Center, 50250 Bet-Dagan, Israel; Department of Medical Biochemistry and Microbiology (N.R., S.B., L.A.), Uppsala University, SE-75123 Uppsala, Sweden; Department of Animal Breeding and Genetics (L.A.), Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and Department of Veterinary Integrative Biosciences (L.A.), College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458
| |
Collapse
|
10
|
Leptin as a Neuroprotector and a Central Nervous System Functional Stability Factor. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0120-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Superoxide Dismutase and Catalase Activities in the Retina during Experimental Diabetes and Electric Stimulation of the Paleocerebellar Cortex. Bull Exp Biol Med 2014; 158:206-8. [DOI: 10.1007/s10517-014-2723-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Indexed: 10/24/2022]
|
12
|
Huang G, Li J, Wang H, Lan X, Wang Y. Discovery of a novel functional leptin protein (LEP) in zebra finches: evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary. Endocrinology 2014; 155:3385-96. [PMID: 24823393 DOI: 10.1210/en.2014-1084] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leptin (LEP) is reported to play important roles in controlling energy balance in vertebrates, including birds. However, it remains an open question whether an authentic "LEP gene" exists and functions in birds. Here, we identified and characterized a LEP gene (zebra finch LEP [zbLEP]) encoding a 172-amino acid precursor in zebra finches. Despite zbLEP showing limited amino acid sequence identity (26%-29%) to human and mouse LEPs, synteny analysis proved that zbLEP is orthologous to mammalian LEP. Using a pAH32 luciferase reporter system and Western blot analysis, we demonstrated that the recombinant zbLEP protein could potently activate finch and chicken LEP receptors (zbLEPR; cLEPR) expressed in human embryonic kidney 293 cells and enhance signal transducer and activator of transcription 3 phosphorylation, further indicating that zbLEP is a functional ligand for avian LEPRs. Interestingly, quantitative real-time RT-PCR revealed that zbLEP mRNA is expressed nearly exclusively in the pituitary and various brain regions but undetectable in adipose tissue and liver, whereas zbLEPR mRNA is widely expressed in adult finch tissues examined with abundant expression noted in pituitary, implying that unlike mammalian LEP, finch LEP may not act as an adipocyte-derived signal to control energy balance. As in finches, a LEP highly homologous to zbLEP was also identified in budgerigar genome. Strikingly, finch and budgerigar LEPs show little homology with chicken LEP (cLEP) previously reported, suggesting that the so-called cLEP is incorrect. Collectively, our data provide convincing evidence for the existence of an authentic functional LEP in avian species and suggest an important role of brain- and pituitary-derived LEP played in vertebrates.
Collapse
Affiliation(s)
- Guian Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education (G.H., J.L., X.L., Y.W.) and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province (J.L., H.W., Y.W.), College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Guimond D, Diabira D, Porcher C, Bader F, Ferrand N, Zhu M, Appleyard SM, Wayman GA, Gaiarsa JL. Leptin potentiates GABAergic synaptic transmission in the developing rodent hippocampus. Front Cell Neurosci 2014; 8:235. [PMID: 25177272 PMCID: PMC4133691 DOI: 10.3389/fncel.2014.00235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/26/2014] [Indexed: 12/17/2022] Open
Abstract
It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABAergic transmission onto developing CA3 pyramidal cells of newborn rats. Specifically, leptin induces a long-lasting potentiation (LLP-GABAA) of miniature GABAA receptor-mediated postsynaptic current (GABAA-PSC) frequency. Leptin also increases the amplitude of evoked GABAA-PSCs in a subset of neurons along with a decrease in the coefficient of variation and no change in the paired-pulse ratio, pointing to an increased recruitment of functional synapses. Adding pharmacological blockers to the recording pipette showed that the leptin-induced LLP-GABAA requires postsynaptic calcium released from internal stores, as well as postsynaptic MAPK/ERK kinases 1 and/or 2 (MEK1/2), phosphoinositide 3 kinase (PI3K) and calcium-calmodulin kinase kinase (CaMKK). Finally, study of CA3 pyramidal cells in leptin-deficient ob/ob mice revealed a reduction in the basal frequency of miniature GABAA-PSCs compared to wild type littermates. In addition, presynaptic GAD65 immunostaining was reduced in the CA3 stratum pyramidale of mutant animals, both results converging to suggest a decreased number of functional GABAergic synapses in ob/ob mice. Overall, these results show that leptin potentiates and promotes the development of GABAergic synaptic transmission in the developing hippocampus likely via an increase in the number of functional synapses, and provide insights into the intracellular pathways mediating this effect. This study further extends the scope of leptin's neurotrophic action to a key regulator of hippocampal development and function, namely GABAergic transmission.
Collapse
Affiliation(s)
- Damien Guimond
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France ; Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Diabe Diabira
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Christophe Porcher
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Francesca Bader
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Nadine Ferrand
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Gary A Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Jean-Luc Gaiarsa
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| |
Collapse
|
14
|
Rapkin AJ, Berman SM, London ED. The Cerebellum and Premenstrual Dysphoric Disorder. AIMS Neurosci 2014; 1:120-141. [PMID: 28275721 PMCID: PMC5338637 DOI: 10.3934/neuroscience.2014.2.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum constitutes ten percent of brain volume and contains the majority of brain neurons. Although it was historically viewed primarily as processing motoric computations, current evidence supports a more comprehensive role, where cerebro-cerebellar feedback loops also modulate various forms of cognitive and affective processing. Here we present evidence for a role of the cerebellum in premenstrual dysphoric disorder (PMDD), which is characterized by severe negative mood symptoms during the luteal phase of the menstrual cycle. Although a link between menstruation and cyclical dysphoria has long been recognized, neuroscientific investigations of this common disorder have only recently been explored. This article reviews functional and structural brain imaging studies of PMDD and the similar but less well defined condition of premenstrual syndrome (PMS). The most consistent findings are that women with premenstrual dysphoria exhibit greater relative activity than other women in the dorsolateral prefrontal cortex and posterior lobules VI and VII of the neocerebellum. Since both brain areas have been implicated in emotional processing and mood disorders, working memory and executive functions, this greater activity probably represents coactivation within a cerebro-cerebellar feedback loop regulating emotional and cognitive processing. Some of the evidence suggests that increased activity within this circuit may preserve cerebellar structure during aging, and possible mechanisms and implications of this finding are discussed.
Collapse
Affiliation(s)
- Andrea J Rapkin
- USA David Geffen School of Medicine at UCLA, Box 951740, 27-139 CHS, Los Angeles, CA 90095, USA
| | - Steven M Berman
- Center for Addictive Behaviors, Department of Psychiatry and Biobehavioral Sciences, UCLA, 90095 USA
| | - Edythe D London
- Center for Addictive Behaviors, Department of Psychiatry and Biobehavioral Sciences, UCLA, 90095 USA; Department of Psychiatry and Biobehavioral Sciences, Department of Molecular and Medical Pharmacology, and Brain Research Institute, UCLA, 90095 USA
| |
Collapse
|
15
|
Harvey J. Leptin regulation of neuronal morphology and hippocampal synaptic function. Front Synaptic Neurosci 2013; 5:3. [PMID: 23964236 PMCID: PMC3734345 DOI: 10.3389/fnsyn.2013.00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/12/2013] [Indexed: 12/14/2022] Open
Abstract
The central actions of the hormone leptin in regulating energy homeostasis via the hypothalamus are well documented. However, evidence is growing that this hormone can also modify the structure and function of synapses throughout the CNS. The hippocampus is a region of the forebrain that plays a crucial role in associative learning and memory and is an area also highly vulnerable to neurodegenerative processes. Recent studies indicate that leptin is a potential cognitive enhancer as it modulates the cellular processes underlying hippocampal-dependent learning and memory including dendritic morphology, glutamate receptor trafficking and activity-dependent synaptic plasticity. Here, we review the recent evidence implicating the hormone leptin as a key regulator of hippocampal synaptic function and discuss the role of leptin receptor-driven lipid signaling pathways involved in this process.
Collapse
Affiliation(s)
- Jenni Harvey
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee Dundee, UK
| |
Collapse
|
16
|
Berman SM, London ED, Morgan M, Rapkin AJ. Elevated gray matter volume of the emotional cerebellum in women with premenstrual dysphoric disorder. J Affect Disord 2013; 146:266-71. [PMID: 22868063 PMCID: PMC3529750 DOI: 10.1016/j.jad.2012.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Premenstrual dysphoric disorder (PMDD) is characterized by severe, negative mood symptoms during the luteal phase of each menstrual cycle. We recently reported that women with PMDD show a greater increase in relative glucose metabolism in the posterior cerebellum from the follicular to the luteal phase, as compared with healthy women, and that the phase-related increase is proportional to PMDD symptom severity. We extended this work with a study of brain structure in PMDD. METHODS High-resolution magnetic resonance imaging (MRI) scans were obtained from 12 women with PMDD and 13 healthy control subjects (whole-brain volume-corrected p<.05). Voxel-based morphometry was used to assess group differences in cerebral grey-matter volume (GMV), using a statistical criterion of p<.05, correcting for multiple comparisons in the whole-brain volume. RESULTS PMDD subjects had greater GMV than controls in the posterior cerebellum but not in any other brain area. Age was negatively correlated with GMV within this region in healthy women, but not in women with PMDD. The group difference in GMV was significant for women over age 30(p=.0002) but not younger participants (p>.1). CONCLUSIONS PMDD appears to be associated with reduced age-related loss in posterior cerebellar GMV. Although the mechanism underlying this finding is unclear, cumulative effects of symptom-related cerebellar activity may be involved.
Collapse
Affiliation(s)
- Steven M. Berman
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles
- Brain Research Institute, University of California Los Angeles
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles
- Brain Research Institute, University of California Los Angeles
- Department of Molecular and Medical Pharmacology, University of California Los Angeles
| | - Melinda Morgan
- Department of Obstetrics and Gynecology, University of California Los Angeles
| | - Andrea J. Rapkin
- Department of Obstetrics and Gynecology, University of California Los Angeles
| |
Collapse
|
17
|
Berman SM, Paz-Filho G, Wong ML, Kohno M, Licinio J, London ED. Effects of leptin deficiency and replacement on cerebellar response to food-related cues. CEREBELLUM (LONDON, ENGLAND) 2013; 12:59-67. [PMID: 22576622 PMCID: PMC3569483 DOI: 10.1007/s12311-012-0360-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leptin affects eating behavior partly by altering the response of the brain to food-related stimuli. The effects of leptin on brain structure have been observed in the cerebellum, where leptin receptors are most densely expressed, but the function of leptin in the cerebellum remains unclear. We performed a nonrandomized, prospective interventional study of three adults with genetically mediated leptin deficiency. FMRI was recorded three times each year during years 5 and 6 of leptin replacement treatment. Session 1 of each year occurred after 10 months of continuous daily replacement, session 2 after 33-37 days without leptin, and session 3 at 14-23 days after daily replacement was restored. Statistical parametric mapping software (SPM5) was employed to contrast the fMRI blood oxygenation level-dependent response to images of high-calorie foods versus images of brick walls. Covariate analyses quantified the effects of the duration of leptin replacement and concomitant changes in body mass on the cerebral responses. Longer duration of replacement was associated with more activation by food images in a ventral portion of the posterior lobe of the cerebellum, while simultaneous decreases in body mass were associated with decreased activation in a more dorsal portion of the same lobe. These findings indicate that leptin replacement reversibly alters neural function within the posterior cerebellum and modulates plasticity-dependent brain physiology in response to food cues. The results suggest an underexplored role for the posterior cerebellum in the regulation of leptin-mediated processes related to food intake.
Collapse
Affiliation(s)
- Steven M. Berman
- Department of Psychiatry and Biobehavioral Sciences and the Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- Brain Research Institute, University of California Los Angeles, Los Angeles, California 90024
| | - Gilberto Paz-Filho
- Department of Translational Medicine, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia 0200
| | - Ma-Li Wong
- Department of Translational Medicine, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia 0200
| | - Milky Kohno
- Department of Psychiatry and Biobehavioral Sciences and the Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
| | - Julio Licinio
- Department of Translational Medicine, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia 0200
| | - Edythe D. London
- Department of Psychiatry and Biobehavioral Sciences and the Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024
- Brain Research Institute, University of California Los Angeles, Los Angeles, California 90024
| |
Collapse
|
18
|
Raschpichler M, Straatman K, Schroeter ML, Arelin K, Schlögl H, Fritzsch D, Mende M, Pampel A, Böttcher Y, Stumvoll M, Villringer A, Mueller K. Abdominal fat distribution and its relationship to brain changes: the differential effects of age on cerebellar structure and function: a cross-sectional, exploratory study. BMJ Open 2013; 3:e001915. [PMID: 23355665 PMCID: PMC3563141 DOI: 10.1136/bmjopen-2012-001915] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. DESIGN Cross-sectional, exploratory. SETTING University Clinic, Integrative Research and Treatment Centre. PARTICIPANTS We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20-45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65-70 years of age, mean BMI=27.0, 18 women). MAIN OUTCOME MEASURES VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). RESULTS We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT-cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. CONCLUSIONS Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults' brains being adversely affected.
Collapse
Affiliation(s)
- Matthias Raschpichler
- Leipzig University Medical Center, IFB AdiposityDiseases,University of Leipzig,Leipzig, Germany
| | - Kees Straatman
- Advanced Imaging Facilities, College of Medicine, Biological Sciences and Psychology, University of Leicester,Leicester, UK
| | | | - Katrin Arelin
- Center for Civilization Diseases, University of Leipzig,Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig,Leipzig, Germany
| | - Haiko Schlögl
- Departmant of Internal Medicine, University of Leipzig, Leipzig, Germany
| | - Dominik Fritzsch
- Department for Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Meinhard Mende
- Clinical Trial Centre Leipzig, University of Leipzig,Leipzig, Germany
| | - André Pampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yvonne Böttcher
- Leipzig University Medical Center, IFB AdiposityDiseases,University of Leipzig,Leipzig, Germany
| | - Michael Stumvoll
- Departmant of Internal Medicine, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Civilization Diseases, University of Leipzig,Leipzig, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
19
|
Doherty GH, Beccano-Kelly D, Yan SD, Gunn-Moore FJ, Harvey J. Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid β. Neurobiol Aging 2013; 34:226-37. [PMID: 22921154 DOI: 10.1016/j.neurobiolaging.2012.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 11/24/2022]
Abstract
Accumulation of amyloid-β (Aβ) is a key event mediating the cognitive deficits in Alzheimer's disease (AD) as Aβ promotes synaptic dysfunction and triggers neuronal death. Recent evidence has linked the hormone leptin to AD as leptin levels are markedly attenuated in AD patients. Leptin is also a potential cognitive enhancer as it facilitates the cellular events underlying hippocampal learning and memory. Here we show that leptin prevents the detrimental effects of Aβ(1-42) on hippocampal long-term potentiation. Moreover leptin inhibits Aβ(1-42)-driven facilitation of long-term depression and internalization of the 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid (AMPA) receptor subunit, GluR1, via activation of PI3-kinase. Leptin also protects cortical neurons from Aβ(1-42)-induced cell death by a signal transducer and activator of transcription-3 (STAT-3)-dependent mechanism. Furthermore, leptin inhibits Aβ(1-42)-mediated upregulation of endophilin I and phosphorylated tau in vitro, whereas cortical levels of endophilin I and phosphorylated tau are enhanced in leptin-insensitive Zucker fa/fa rats. Thus leptin benefits the functional characteristics and viability of neurons that degenerate in AD. These novel findings establish that the leptin system is an important therapeutic target in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gayle H Doherty
- School of Biology, University of St. Andrews, St. Andrews, Fife, Scotland, UK
| | | | | | | | | |
Collapse
|
20
|
Leptin: a novel therapeutic target in Alzheimer's disease? Int J Alzheimers Dis 2012; 2012:594137. [PMID: 22254146 PMCID: PMC3255100 DOI: 10.1155/2012/594137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/15/2011] [Indexed: 12/12/2022] Open
Abstract
It is well established that the hormone leptin circulates in the plasma in amounts proportional to body fat content and it regulates food intake and body weight via its actions in the hypothalamus. However, numerous studies have shown that leptin receptors are widely expressed throughout the CNS and evidence is growing that leptin plays a role in modulating a variety of neuronal processes. In particular, recent studies have highlighted a potential cognitive enhancing role for leptin as it regulates diverse aspects of hippocampal synaptic function that are thought to underlie learning and memory processes including glutamate receptor trafficking, dendritic morphology, and activity-dependent synaptic plasticity. Characterisation of the novel actions of leptin in limbic brain regions is providing valuable insights into leptin's role in higher cognitive functions in health and disease.
Collapse
|
21
|
Obesity and the ageing brain: could leptin play a role in neurodegeneration? Curr Gerontol Geriatr Res 2011; 2011:708154. [PMID: 22013440 PMCID: PMC3195276 DOI: 10.1155/2011/708154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/15/2011] [Indexed: 01/19/2023] Open
Abstract
Obesity and ageing are both characteristics of the human population that are on the increase across the globe. It has long been established that ageing is the major risk factor for neurodegenerative conditions such as Alzheimer's disease, and it is becoming increasingly evident that obesity is another such factor. Leptin resistance or insensitivity has been uncovered as a cause of obesity, and in addition the leptin signalling system is less potent in the elderly. Taken together, these findings reveal that this molecule may be a link between neurodegeneration and obesity or ageing. It is now known that leptin has beneficial effects on both the survival and neurophysiology of the neurons that are lost in Alzheimer's disease suggesting that it may be an important research target in the quest for strategies to prevent, halt, or cure this condition.
Collapse
|
22
|
London ED, Berman SM, Chakrapani S, Delibasi T, Monterosso J, Erol HK, Paz-Filho G, Wong ML, Licinio J. Short-term plasticity of gray matter associated with leptin deficiency and replacement. J Clin Endocrinol Metab 2011; 96:E1212-20. [PMID: 21613360 PMCID: PMC3146795 DOI: 10.1210/jc.2011-0314] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin affects neurogenesis, neuronal growth, and viability. We previously reported that leptin supplementation increased gray matter (GM) concentration in the anterior cingulate gyrus (ACG), cerebellum, and inferior parietal lobule, areas that are also involved in food intake. OBJECTIVE The aim of this study was to report the changes in brain structure at different states of leptin supplementation. DESIGN We conducted a nonrandomized trial. SETTING AND PATIENTS We studied three adults with congenital leptin deficiency due to a mutation in the leptin gene. INTERVENTION Patients received treatment with recombinant methionyl human leptin, with annual 11- to 36-d periods of treatment withholding followed by treatment restoration over 3 yr. MAIN OUTCOME MEASURES GM concentration (by voxel-based morphometry analysis of magnetic resonance scans) was correlated with body mass index (BMI) and leptin supplementation. RESULTS Annually withholding leptin supplementation for several weeks increased BMI and reversed the original effects of leptin in the cerebellum and ACG. The changes in the ACG were consistent with an indirect effect of leptin mediated through increased BMI. In the cerebellum, where leptin receptors are most dense, GM changes appeared to be direct effects of leptin. Leptin restoration did not lead to recovery of GM in the short term but did lead to an unexpected GM increase in the posterior half of the left thalamus, particularly the pulvinar nucleus. CONCLUSION These findings provide the first in vivo evidence of remarkably plastic, reversible, and regionally specific effects of leptin on human brain morphology. They suggest that leptin may have therapeutic value in modulating plasticity-dependent brain functions.
Collapse
Affiliation(s)
- Edythe D London
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90024, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Eckert MA. Slowing down: age-related neurobiological predictors of processing speed. Front Neurosci 2011; 5:25. [PMID: 21441995 PMCID: PMC3061488 DOI: 10.3389/fnins.2011.00025] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/15/2011] [Indexed: 11/21/2022] Open
Abstract
Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging.
Collapse
Affiliation(s)
- Mark A Eckert
- Hearing Research Program, Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
24
|
Oldreive CE, Doherty GH. Effects of tumour necrosis factor-alpha on developing cerebellar granule and Purkinje neurons in vitro. J Mol Neurosci 2010; 42:44-52. [PMID: 20419354 DOI: 10.1007/s12031-010-9370-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/07/2010] [Indexed: 11/27/2022]
Abstract
Tumour necrosis factor-alpha (TNF-alpha) has been widely implicated in both neurodevelopment and neurodegeneration, yet its effects on individual populations of cerebellar neurons as they develop have not been fully elucidated. Therefore, we established primary neuronal cultures of developing murine cerebellar Purkinje neurons and postnatal cerebellar granule cells to determine the consequences of TNF-alpha exposure for their survival. We discovered that TNF-alpha did not affect the viability of cerebellar granule neurons at any of the ages studied, even though TNF-alpha and its receptors, TNFR1 and TNFR2, are widely expressed in the postnatal cerebellum. In addition, TNF-alpha was neither able to ameliorate, nor enhance, cell death in cerebellar granule cells elicited by a variety of stimuli including homocysteine and alcohol exposure. In contrast, in cultures established at embryonic day 16, TNF-alpha enhanced the number of cerebellar Purkinje neurons in vitro but this effect was not observed in embryonic day 19 cultures. Thus, TNF-alpha has differential and highly specific effects on different populations of cerebellar neurons as they develop.
Collapse
Affiliation(s)
- Ceri E Oldreive
- School of Biology, University of St Andrews, West Burn Lane, St Andrews, Fife KY169TS, Scotland, UK
| | | |
Collapse
|
25
|
de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A. Distinct modes of neuritic growth in purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One 2009; 4:e6848. [PMID: 19718257 PMCID: PMC2729392 DOI: 10.1371/journal.pone.0006848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background During development, neurons modify their axon growth mode switching from an elongating phase, in which the main axon stem reaches the target territory through growth cone-driven extension, to an arborising phase, when the terminal arbour is formed to establish synaptic connections. To investigate the relative contribution of cell-autonomous factors and environmental signals in the control of these distinct axon growth patterns, we examined the neuritogenesis of Purkinje neurons in cerebellar cultures prepared at elongating (embryonic day 17) or arborising (postnatal day zero) stages of Purkinje axon maturation. Methodology/Principal Findings When placed in vitro, Purkinje cells of both ages undergo an initial phase of neurite elongation followed by the development of terminal ramifications. Nevertheless, elongation of the main axon stem prevails in embryonic Purkinje axons, and many of these neurons are totally unable to form terminal branches. On the contrary, all postnatal neurites switch to arbour growth within a few days in culture and spread extensive terminal trees. Regardless of their elongating or arborising pattern, defined growth features (e.g. growth rate and tree extension) of embryonic Purkinje axons remain distinct from those of postnatal neurites. Thus, Purkinje neurons of different ages are endowed with intrinsic stage-specific competence for neuritic growth. Such competence, however, can be modified by environmental cues. Indeed, while exposure to the postnatal environment stimulates the growth of embryonic axons without modifying their phenotype, contact-mediated signals derived from granule cells specifically induce arborising growth and modulate the dynamics of neuritic elongation. Conclusions/Significance Cultured Purkinje cells recapitulate an intrinsically coded neuritogenic program, involving initial navigation of the axon towards the target field and subsequent expansion of the terminal arborisation. The execution of this program is regulated by environmental signals that modify the growth competence of Purkinje cells, so to adapt their endogenous properties to the different phases of neuritic morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinando Rossi
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- Rita Levi-Montalcini Center for Brain Repair, National Institute of Neuroscience, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- * E-mail:
| |
Collapse
|
26
|
Narita K, Kosaka H, Okazawa H, Murata T, Wada Y. Relationship between plasma leptin level and brain structure in elderly: a voxel-based morphometric study. Biol Psychiatry 2009; 65:992-4. [PMID: 19026409 DOI: 10.1016/j.biopsych.2008.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent accumulating lines of evidence reveal that leptin is associated with synaptic plasticity and neuroprotective activity in the brain. METHODS In this preliminary study with a cross-sectional design, we examined the relationship between plasma leptin level and total or regional gray matter (GM) volume in 34 elderly subjects (mean age 64.5 years) with normal fasting glucose level and without dementia and metabolic syndrome by voxel-based morphometry of magnetic resonance imaging scans. RESULTS Plasma leptin level showed no significant correlation with total GM volume but showed a significantly positive correlation with GM volumes in the right hippocampus, left parahippocampus, and right cerebellum with adjustments for age, gender, body mass index (BMI), and waist-to-hip ratio (W/H). Also, after adjustments for age, gender, BMI, W/H, and intracranial volume, plasma leptin level significantly positively correlated with GM volumes in the right hippocampus and bilateral cerebella but not with that in the left parahippocampus. CONCLUSIONS The results of this pilot study would be beneficial for our understanding of the neuroprotective effects of leptin on human brain aging.
Collapse
Affiliation(s)
- Kosuke Narita
- Department of Neuropsychiatry, University of Fukui, Fukui 910-1193, Japan
| | | | | | | | | |
Collapse
|
27
|
Leptin signaling in brain: A link between nutrition and cognition? Biochim Biophys Acta Mol Basis Dis 2008; 1792:401-8. [PMID: 19130879 DOI: 10.1016/j.bbadis.2008.12.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/05/2008] [Accepted: 12/07/2008] [Indexed: 12/22/2022]
Abstract
Leptin is a protein hormone that acts within the hypothalamus to suppress food intake and decrease body adiposity, but it is increasingly clear that the hypothalamus is not the only site of leptin action, nor food intake the only biological effect of leptin. Instead, leptin is a pleiotropic hormone that impinges on many brain areas, and in doing so alters food intake, motivation, learning, memory, cognitive function, neuroprotection, reproduction, growth, metabolism, energy expenditure, and more. This diversity of function also means that a dysregulation of leptin secretion and signaling can have far reaching effects. To date research on leptin signaling has focused primarily on the hypothalamus, and the result is a relative lack of information regarding the impact of leptin signaling and leptin resistance in non-hypothalamic areas, despite a growing literature implicating leptin in the regulation of neuronal structure and function in the hippocampus, cortex and other brain areas associated with cognition.
Collapse
|