1
|
Kuwar R, Zhang N, McQuiston A, Wen X, Sun D. Generation of induced pluripotent stem cells from rat fibroblasts and optimization of its differentiation into mature functional neurons. J Neurosci Methods 2024; 406:110114. [PMID: 38522633 PMCID: PMC11060920 DOI: 10.1016/j.jneumeth.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) derived neural stem cells (NSCs) provide a potential for autologous neural transplantation therapy following neurological insults. Thus far, in preclinical studies the donor iPSCs-NSCs are mostly of human or mouse origin with concerns centering around graft rejection when applied to rat brain injury models. For better survival and integration of transplanted cells in the injured brain in rat models, use of rat-iPSC-NSCs and in combination with biomaterials is of advantageous. Herein, we report a detailed method in generating rat iPSCs with improved reprogramming efficiency and differentiation into neurons. NEW METHOD Rat fibroblasts were reprogrammed into iPSCs with polybrene and EF1α-STEMCCA-LoxP lentivirus vector. Pluripotency characterization, differentiation into neuronal linage cells were assessed with RT-qPCR, Western blotting, immunostaining and patch-clamp methods. Cells were cultured in a custom-designed integrin array system as well as in a hydrogel-based 3D condition. RESULTS We describe a thorough method for the generation of rat-iPSC-NSCs, and identify integrin αvβ8 as a substrate for the optimal growth of rat-iPSC-NSCs. Furthermore, with hydrogel as the supporting biomaterial in the 3-D culture, when combined with integrin αvβ8 binding peptide, it forms a conducive environment for optimal growth and differentiation of iPSC-NSCs into mature neurons. COMPARISON WITH EXISTING METHODS Published studies about rat-iPSC-NSCs are rare. This study provides a detailed protocol for the generation of rat iPSC-NSCs and optimal growth conditions for neuronal differentiation. Our method is useable for studies to assess the utility of rat iPSC-NSCs for neural transplantation in rat brain injury models.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ning Zhang
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Adam McQuiston
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
2
|
Chen Q, Li L, Xie H. [Research progress of different types of stem cells in treatment of ischemic stroke]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:111-117. [PMID: 33448208 DOI: 10.7507/1002-1892.202004160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the recent research progress of different types of stem cells in the treatment of ischemic stroke. Methods By searching the PubMed database, a systematic review had been carried out for the results of applying different types of stem cells in the treatment of ischemic stroke between 2000 and 2020. Results Stem cells can be transplanted via intracranial, intravascular, cerebrospinal fluid, and intranasal route in the treatment of ischemic stroke. Paracrine and cell replacement are the two major mechanisms of the therapy. The researches have mainly focused on utilization of neural stem cells, embryonic stem cells, and mesenchymal stem cells. Each has its own advantages and disadvantages in terms of capability of migration, survival rate, and safety. Certain stem cell therapies have completed phase one clinical trial. Conclusion Stem cells transplantation is feasible and has a great potential for the treatment of ischemic stroke, albeit that certain obstacles, including the selection of stem cells, transplantation strategy, migration ability, survival rate, still wait to be solved.
Collapse
Affiliation(s)
- Qiuzhu Chen
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ling Li
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
3
|
Luzzi S, Giotta Lucifero A, Brambilla I, Trabatti C, Mosconi M, Savasta S, Foiadelli T. The impact of stem cells in neuro-oncology: applications, evidence, limitations and challenges. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:51-60. [PMID: 32608375 PMCID: PMC7975826 DOI: 10.23750/abm.v91i7-s.9955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stem cells (SCs) represent a recent and attractive therapeutic option for neuro-oncology, as well as for treating degenerative, ischemic and traumatic pathologies of the central nervous system. This is mainly because of their homing capacity, which makes them capable of reaching the inaccessible SC niches of the tumor, therefore, acting as living drugs. The target of the study is a comprehensive overview of the SC-based therapies in neuro-oncology, also highlighting the current translational challenges of this type of approach. METHODS An online search of the literature was carried out on the PubMed/MEDLINE and ClinicalTrials.gov websites, restricting it to the most pertinent keywords regarding the systematization of the SCs and their therapeutic use for malignant brain tumors. A large part of the search was dedicated to clinical trials. Only preclinical and clinical data belonging to the last 5 years were shortlisted. A further sorting was implemented based on the best match and relevance. RESULTS The results consisted in 96 relevant articles and 31 trials. Systematization involves a distinction between human embryonic, fetal and adult, but also totipotent, pluripotent or multipotent SCs. Mesenchymal and neuronal SCs were the most studied for neuro-oncological illnesses. 30% and 50% of the trials were phase I and II, respectively. CONCLUSION Mesenchymal and neuronal SCs are ideal candidates for SCs-based therapy of malignant brain tumors. The spectrum of their possible applications is vast and is mainly based on the homing capacity toward the tumor microenvironment. Availability, delivery route, oncogenicity and ethical issues are the main translational challenges concerning the use of SCs in neuro-oncology.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Chiara Trabatti
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- c and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Luzzi S, Crovace AM, Del Maestro M, Giotta Lucifero A, Elbabaa SK, Cinque B, Palumbo P, Lombardi F, Cimini A, Cifone MG, Crovace A, Galzio R. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon 2019; 5:e02818. [PMID: 31844735 PMCID: PMC6889232 DOI: 10.1016/j.heliyon.2019.e02818] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Examination of the current trends and future perspectives of the cell-based therapies in neurosurgery. METHODS A PubMed/MEDLINE-based systematic review has been performed combining the main Medical Subject Headings (MeSH) regarding the cell- and tissue-based therapies with the "Brain", "Spinal Cord", "Spine" and "Skull" MeSH terms. Only articles in English published in the last 10 years and pertinent to neurosurgery have been selected. RESULTS A total of 1,173 relevant articles have been chosen. Somatic cells and gene-modification technologies have undergone the greatest development. Immunotherapies and gene therapies have been tested for the cure of glioblastoma, stem cells mainly for brain and spinal cord traumatic injuries. Stem cells have also found a rationale in the treatment of the cranial and spinal bony defects, and of the intervertebral disc degeneration, as well.Most of the completed or ongoing trials concerning the cell-based therapies in neurosurgery are on phase 2. Future perspectives involve the need to overcome issues related to immunogenicity, oncogenicity and routes for administration. Refinement and improvement of vector design and delivery are required within the gene therapies. CONCLUSION The last decade has been characterised by a progressive evolution of neurosurgery from a purely mechanical phase to a new biological one. This trend has followed the rapid and parallel development of translational medicine and nanotechnologies.The introduction of new technologies, the optimisation of the already existing ones, and the reduction of costs are among the main challenges of the foreseeable future.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| | - Alberto Maria Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Mattia Del Maestro
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
- PhD School in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
| | - Samer K. Elbabaa
- Pediatric Neurosurgery, Pediatric Neuroscience Center of Excellence, Arnold Palmer Hospital for Children, 1222 S. Orange Avenue, 2nd Floor, MP 154, Orlando, FL, 32806, USA
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Annamaria Cimini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Delta 6, via Coppito, L'Aquila, 67100, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza G. Cesare, 11 – Policlinico di Bari, Bari, 70124, Italy
| | - Renato Galzio
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Polo Didattico "Cesare Brusotti", Viale Brambilla, 74, Pavia, 27100, Italy
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Viale C. Golgi, 19, Pavia, 27100, Italy
| |
Collapse
|
5
|
Reddy AP, Ravichandran J, Carkaci-Salli N. Neural regeneration therapies for Alzheimer's and Parkinson's disease-related disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165506. [PMID: 31276770 DOI: 10.1016/j.bbadis.2019.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is 'stem cell therapy' based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation - appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.
Collapse
Affiliation(s)
- Arubala P Reddy
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Janani Ravichandran
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, United States.
| | - Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033.
| |
Collapse
|
6
|
Sherman LS, Romagano MP, Williams SF, Rameshwar P. Mesenchymal stem cell therapies in brain disease. Semin Cell Dev Biol 2019; 95:111-119. [PMID: 30922957 DOI: 10.1016/j.semcdb.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
As treatments for diseases throughout the body progress, treatment for many brain diseases has been at a standstill due to difficulties in drug delivery. While new drugs are being discovered in vitro, these therapies are often hindered by inefficient tissue distribution and, more commonly, an inability to cross the blood brain barrier. Mesenchymal stem cells are thus being investigated as a delivery tool to directly target therapies to the brain to treat wide array of brain diseases. This review discusses the use of mesenchymal stem cells in hypoxic disease (hypoxic ischemic encephalopathy), an inflammatory neurodegenerative disease (multiple sclerosis), and a malignant condition (glioma).
Collapse
Affiliation(s)
- Lauren S Sherman
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA; School of Graduate Studies, Biomedical Sciences Programs - Newark, Rutgers University, Newark, NJ, USA
| | - Matthew P Romagano
- Department of Obstetrics, Gynecology and Women's Health, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Shauna F Williams
- Department of Obstetrics, Gynecology and Women's Health, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
7
|
Nakaji-Hirabayashi T, Fujimoto K, Yoshikawa C, Kitano H. Functional surfaces for efficient differentiation of neural stem/progenitor cells into dopaminergic neurons. J Biomed Mater Res A 2019; 107:860-871. [DOI: 10.1002/jbm.a.36602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Tadashi Nakaji-Hirabayashi
- Department of Applied Chemistry; Graduate School of Science and Engineering, University of Toyama; Toyama Japan
- Department of Advanced Nanosciences and Biosciences; Graduate School of Innovative Life Sciences, University of Toyama; Toyama Japan
- International Center for Materials Nanoarchitectonics; National Institute for Material Science; Ibaraki Japan
| | - Kurumi Fujimoto
- Department of Applied Chemistry; Graduate School of Science and Engineering, University of Toyama; Toyama Japan
| | - Chiaki Yoshikawa
- International Center for Materials Nanoarchitectonics; National Institute for Material Science; Ibaraki Japan
| | - Hiromi Kitano
- R & D and Head Office, Institute for Polymer-Water Interfaces; Toyama Japan
| |
Collapse
|
8
|
Abstract
Mesenchymal stem/stromal cells (MSC) are multipotent cells that can be isolated from adult and fetal tissues. In vitro, MSCs show functional plasticity by differentiating into specialized cells of all germ layers. MSCs are of relevant to medicine and have been proposed for several disorders. MSCs can be transplanted across allogeneic barriers as "off the shelf" cells. This chapter focuses on methods to deliver MSCs to the brain because neurological pathology such as damage due to stroke can lead to debilitating mental and physical problems. In general, neurological diseases are difficult to treat, partly due to the challenge in getting drugs across the blood-brain barrier (BBB). MSCs as well as other stem cells can cross the BBB. The described method begins to develop procedures, leading to efficient delivery of drugs to the brain. Here describe how MSCs can be propagated from bone marrow aspirates and their utility in delivering small RNA to the brain. The chapter discusses the issue to enhance efficient delivery of MSCs to the brain.
Collapse
|
9
|
Transplantation of Human Umbilical Cord Blood Mononuclear Cells Attenuated Ischemic Injury in MCAO Rats via Inhibition of NF-κB and NLRP3 Inflammasome. Neuroscience 2017; 369:314-324. [PMID: 29175152 DOI: 10.1016/j.neuroscience.2017.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Abstract
Accumulated evidence displayed that transplantation of stem cells may be a promising approach for the treatment of neurological disorders. However, the underlying mechanisms remain to be well elucidated. Moreover, some investigators cannot reproduce similar results as the previous. The present results showed that transplantation of fresh human umbilical cord blood mononuclear cells (cbMNCs) attenuated ischemic damage in middle cerebral artery occlusion (MCAO) rats, accompanied with improvement of neurologic deficits, learning and memory function. The increase in neovascularization and related molecules such as vascular endothelial growth factor (VEGF), Angiopoietin-1 (Ang-1) and endothelium-specific receptor tyrosine kinase 2 (Tie-2) in the injured brain was observed in cbMNCs-treated rats. Moreover, nuclear factor-κB (NF-κB) activation and nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome were also inhibited by the cells graft, resulting in reduction in cleaved caspase-1 and mature interleukin-1β (IL-1β) content. These results suggested that the protective actions of the cells on the cerebral ischemia may be related to inhibition of NF-κB pathway and NLRP3 inflammasome.
Collapse
|
10
|
Ye Y, Peng YR, Hu SQ, Yan XL, Chen J, Xu T. In Vitro Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells by Cerebrospinal Fluid Improves Motor Function of Middle Cerebral Artery Occlusion Rats. Front Neurol 2016; 7:183. [PMID: 27833584 PMCID: PMC5081354 DOI: 10.3389/fneur.2016.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/10/2016] [Indexed: 11/13/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) represent a promising tool for stem cell-based therapies. However, the majority of BMSC transplants only allow for limited recovery of the lost functions. We previously found that human cerebrospinal fluid (hCSF) is more potent than growth factors in differentiating human BMSCs into neuron-like cells in vitro. In this study, we studied the effect of transplantation of rat BMSC-derived neuron-like cells (BMSC-Ns) induced by hCSF into rat brain with middle cerebral artery occlusion (MCAO). The survival and differentiation of the transplanted cells were determined using immunofluorescence staining of bromodeoxyuridine. The recovery of neurological function were observed by the modified neurological severity score (modified NSS) at 4, 15, and 32 days after cell transplantation, HE staining for determination of the infarct volume at day 32 after cell transplantation. Transplantation of BMSC-Ns or BMSCs significantly improved indexes of neurological function and reduced infarct size in rats previously subjected to MCAO compared with those in the control group. Remarkably, 32 days after transplantation, rats treated with BMSC-Ns presented a smaller infarct size, higher number of neuron-specific, enolase-positive, and BrdU-positive cells, and improved neurological function compared with BMSC group. Our results demonstrate that transplantation of hCSF-treated BMSC-Ns significantly improves neurological function and reduces infarct size in rats subjected to MCAO. This study may pave a new avenue for the treatment of MCAO.
Collapse
Affiliation(s)
- Ying Ye
- Jiangsu Province Key Laboratory of Anesthesiology, Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Emergency Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi-Ran Peng
- Department of Clinical Medicine, Xuzhou Medical University , Xuzhou , China
| | - Shu-Qun Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Institute of Emergency Rescue Medicine, Xuzhou Medical University , Xuzhou, Jiangsu , China
| | - Xian-Liang Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Emergency Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Juan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Institute of Emergency Rescue Medicine, Xuzhou Medical University , Xuzhou, Jiangsu , China
| | - Tie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Emergency Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Koshinuma E, Maenosono H, Endo D, Nishioka Y. Cultivation of Rat Nerve Cells on Nanoimprinted Polydimethylsiloxane Culture Sheets. J PHOTOPOLYM SCI TEC 2015. [DOI: 10.2494/photopolymer.28.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eiki Koshinuma
- Department of Precision Machinery Engineering, College of Science and Technology, Nihon University
| | - Hirotaka Maenosono
- Department of Precision Machinery Engineering, College of Science and Technology, Nihon University
| | - Daisuke Endo
- Department of Precision Machinery Engineering, College of Science and Technology, Nihon University
| | - Yasuhiro Nishioka
- Department of Precision Machinery Engineering, College of Science and Technology, Nihon University
| |
Collapse
|
12
|
Lim JH, McCullen SD, Piedrahita JA, Loboa EG, Olby NJ. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram 2013; 15:405-12. [PMID: 23961767 DOI: 10.1089/cell.2013.0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.
Collapse
Affiliation(s)
- Ji-Hey Lim
- 1 Department of Clinical Sciences, North Carolina State University , Raleigh, NC, 27607
| | | | | | | | | |
Collapse
|
13
|
Myelin repair and functional recovery mediated by neural cell transplantation in a mouse model of multiple sclerosis. Neurosci Bull 2013; 29:239-50. [PMID: 23471865 DOI: 10.1007/s12264-013-1312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 01/09/2023] Open
Abstract
Cellular therapies are becoming a major focus for the treatment of demyelinating diseases such as multiple sclerosis (MS), therefore it is important to identify the most effective cell types that promote myelin repair. Several components contribute to the relative benefits of specific cell types including the overall efficacy of the cell therapy, the reproducibility of treatment, the mechanisms of action of distinct cell types and the ease of isolation and generation of therapeutic populations. A range of distinct cell populations promote functional recovery in animal models of MS including neural stem cells and mesenchymal stem cells derived from different tissues. Each of these cell populations has advantages and disadvantages and likely works through distinct mechanisms. The relevance of such mechanisms to myelin repair in the adult central nervous system is unclear since the therapeutic cells are generally derived from developing animals. Here we describe the isolation and characterization of a population of neural cells from the adult spinal cord that are characterized by the expression of the cell surface glycoprotein NG2. In functional studies, injection of adult NG2(+) cells into mice with ongoing MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) enhanced remyelination in the CNS while the number of CD3(+) T cells in areas of spinal cord demyelination was reduced approximately three-fold. In vivo studies indicated that in EAE, NG2(+) cells stimulated endogenous repair while in vitro they responded to signals in areas of induced inflammation by differentiating into oligodendrocytes. These results suggested that adult NG2(+) cells represent a useful cell population for promoting neural repair in a variety of different conditions including demyelinating diseases such as MS.
Collapse
|
14
|
Li F, Niyibizi C. Cells derived from murine induced pluripotent stem cells (iPSC) by treatment with members of TGF-beta family give rise to osteoblasts differentiation and form bone in vivo. BMC Cell Biol 2012; 13:35. [PMID: 23241430 PMCID: PMC3541062 DOI: 10.1186/1471-2121-13-35] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023] Open
Abstract
Background Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells into embryonic like state (ESC) using defined factors. There is great interest in these cells because of their potential for application in regenerative medicine. Results iPSC reprogrammed from murine tail tip fibroblasts were exposed to retinoic acid alone (RA) or in combination with TGF-β1 and 3, basic fibroblast growth factor (bFGF) or bone morphogenetic protein 2 (BMP-2). The resulting cells expressed selected putative mesenchymal stem cells (MSCs) markers; differentiated toward osteoblasts and adipocytic cell lineages in vitro at varying degrees. TGF-beta1 and 3 derived-cells possessed higher potential to give rise to osteoblasts than bFGF or BMP-2 derived-cells while BMP-2 derived cells exhibited a higher potential to differentiate toward adipocytic lineage. TGF-β1 in combination with RA derived-cells seeded onto HA/TCP ceramics and implanted in mice deposited typical bone. Immunofluorescence staining for bone specific proteins in cell seeded scaffolds tissue sections confirmed differentiation of the cells into osteoblasts in vivo. Conclusions The results demonstrate that TGF-beta family of proteins could potentially be used to generate murine iPSC derived-cells with potential for osteoblasts differentiation and bone formation in vivo and thus for application in musculoskeletal tissue repair and regeneration.
Collapse
Affiliation(s)
- Feng Li
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
15
|
Efficient neuronal in vitro and in vivo differentiation after immunomagnetic purification of mESC derived neuronal precursors. Stem Cell Res 2012; 10:133-46. [PMID: 23237958 DOI: 10.1016/j.scr.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023] Open
Abstract
The cellular heterogeneity that is generated during the differentiation of pluripotent stem cells into specific neural subpopulations represents a major obstacle for experimental and clinical progress. To address this problem we developed an optimized strategy for magnetic isolation of PSA-NCAM positive neuronal precursors from embryonic stem cells (ESCs) derived neuronal cultures. PSA-NCAM enrichment at an early step of the in vitro differentiation process increased the number of ES cell derived neurons and reduced cellular diversity. Gene expression analysis revealed that mainly genes involved in neuronal activity were over-represented after purification. In vitro derived PSA-NCAM(+) enriched precursors were characterized in vivo through grafting into the forebrain of adult mice. While unsorted control cells 40 days post graft gave rise to a mixed population composed of immature precursors, early postmitotic neurons and glial cells, PSA-NCAM(+) enriched cells differentiated predominantly into NeuN positive cells. Furthermore, PSA-NCAM enriched population showed efficient migration towards the olfactory bulb after transplantation into the rostral migratory stream of the forebrain neurogenic system. Thus, enrichment of neuronal precursors based on PSA-NCAM expression represents a general and straightforward approach to narrow cellular heterogeneity during neuronal differentiation of pluripotent cells.
Collapse
|
16
|
Calatrava-Ferreras L, Gonzalo-Gobernado R, Herranz AS, Reimers D, Montero Vega T, Jiménez-Escrig A, Richart López LA, Bazán E. Effects of intravenous administration of human umbilical cord blood stem cells in 3-acetylpyridine-lesioned rats. Stem Cells Int 2012; 2012:135187. [PMID: 23150735 PMCID: PMC3488418 DOI: 10.1155/2012/135187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/01/2012] [Indexed: 12/26/2022] Open
Abstract
Cerebellar ataxias include a heterogeneous group of infrequent diseases characterized by lack of motor coordination caused by disturbances in the cerebellum and its associated circuits. Current therapies are based on the use of drugs that correct some of the molecular processes involved in their pathogenesis. Although these treatments yielded promising results, there is not yet an effective therapy for these diseases. Cell replacement strategies using human umbilical cord blood mononuclear cells (HuUCBMCs) have emerged as a promising approach for restoration of function in neurodegenerative diseases. The aim of this work was to investigate the potential therapeutic activity of HuUCBMCs in the 3-acetylpyridine (3-AP) rat model of cerebellar ataxia. Intravenous administered HuUCBMCs reached the cerebellum and brain stem of 3-AP ataxic rats. Grafted cells reduced 3-AP-induced neuronal loss promoted the activation of microglia in the brain stem, and prevented the overexpression of GFAP elicited by 3-AP in the cerebellum. In addition, HuUCBMCs upregulated the expression of proteins that are critical for cell survival, such as phospho-Akt and Bcl-2, in the cerebellum and brain stem of 3-AP ataxic rats. As all these effects were accompanied by a temporal but significant improvement in motor coordination, HuUCBMCs grafts can be considered as an effective cell replacement therapy for cerebellar disorders.
Collapse
Affiliation(s)
- Lucía Calatrava-Ferreras
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gonzalo-Gobernado
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Antonio S. Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Teresa Montero Vega
- Servicio de Bioquímica, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | | | | | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, Carretera de Colmenar Km. 9, 1, 28034 Madrid, Spain
| |
Collapse
|
17
|
Mesenchymal stem cells as therapeutic agents and potential targeted gene delivery vehicle for brain diseases. J Control Release 2012; 162:464-73. [DOI: 10.1016/j.jconrel.2012.07.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 01/01/2023]
|
18
|
Couto DS, Perez-Breva L, Cooney CL. Regenerative medicine: learning from past examples. Tissue Eng Part A 2012; 18:2386-93. [PMID: 22697402 DOI: 10.1089/ten.tea.2011.0639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regenerative medicine products have characteristically shown great therapeutic potential, but limited market success. Learning from the past attempts at capturing value is critical for new and emerging regenerative medicine therapies to define and evolve their business models as new therapies emerge and others mature. We propose a framework that analyzes technological developments along with alternative business models and illustrates how to use both strategically to map value capture by companies in regenerative medicine. We analyze how to balance flexibility of the supply chain and clarity in the regulatory pathway for each business model and propose the possible pathways of evolution between business models. We also drive analogies between cell-based therapies and other healthcare products such as biologicals and medical devices and suggest how to strategically evolve from these areas into the cell therapy space.
Collapse
Affiliation(s)
- Daniela S Couto
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
19
|
Hwang DW, Lee DS. Optical imaging for stem cell differentiation to neuronal lineage. Nucl Med Mol Imaging 2012; 46:1-9. [PMID: 24900026 DOI: 10.1007/s13139-011-0122-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/14/2023] Open
Abstract
In regenerative medicine, the prospect of stem cell therapy holds great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell- or tissue-specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating into a neuronal lineage. The detection limit of weak promoters or reporter genes can be greatly enhanced by adopting a yeast GAL4 amplification system or an engineering-enhanced luciferase reporter gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.
Collapse
Affiliation(s)
- Do Won Hwang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 Korea ; Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 Korea ; WCU, Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
20
|
Reier PJ, Lane MA, Hall ED, Teng YD, Howland DR. Translational spinal cord injury research: preclinical guidelines and challenges. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:411-33. [PMID: 23098728 PMCID: PMC4288927 DOI: 10.1016/b978-0-444-52137-8.00026-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advances in the neurobiology of spinal cord injury (SCI) have prompted increasing attention to opportunities for moving experimental strategies towards clinical applications. Preclinical studies are the centerpiece of the translational process. A major challenge is to establish strategies for achieving optimal translational progression while minimizing potential repetition of previous disappointments associated with clinical trials. This chapter reviews and expands upon views pertaining to preclinical design reported in recently published opinion surveys. Subsequent discussion addresses other preclinical considerations more specifically related to current and potentially imminent cellular and pharmacological approaches to acute/subacute and chronic SCI. Lastly, a retrospective and prospective analysis examines how guidelines currently under discussion relate to select examples of past, current, and future clinical translations. Although achieving definition of the "perfect" preclinical scenario is difficult to envision, this review identifies therapeutic robustness and independent replication of promising experimental findings as absolutely critical prerequisites for clinical translation. Unfortunately, neither has been fully embraced thus far. Accordingly, this review challenges the notion "everything works in animals and nothing in humans", since more rigor must first be incorporated into the bench-to-bedside translational process by all concerned, whether in academia, clinical medicine, or corporate circles.
Collapse
Affiliation(s)
- Paul J Reier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
21
|
Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease. Mol Neurobiol 2011; 45:87-98. [PMID: 22161544 PMCID: PMC3259334 DOI: 10.1007/s12035-011-8219-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022]
Abstract
There is much interest in the use of mesenchymal stem cells/marrow stromal cells (MSC) to treat neurodegenerative disorders, in particular those that are fatal and difficult to treat, such as Huntington's disease. MSC present a promising tool for cell therapy and are currently being tested in FDA-approved phase I-III clinical trials for many disorders. In preclinical studies of neurodegenerative disorders, MSC have demonstrated efficacy, when used as delivery vehicles for neural growth factors. A number of investigators have examined the potential benefits of innate MSC-secreted trophic support and augmented growth factors to support injured neurons. These include overexpression of brain-derived neurotrophic factor and glial-derived neurotrophic factor, using genetically engineered MSC as a vehicle to deliver the cytokines directly into the microenvironment. Proposed regenerative approaches to neurological diseases using MSC include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation, MSC in the brain promote endogenous neuronal growth, encourage synaptic connection from damaged neurons, decrease apoptosis, reduce levels of free radicals, and regulate inflammation. These abilities are primarily modulated through paracrine actions. Clinical trials for MSC injection into the central nervous system to treat amyotrophic lateral sclerosis, traumatic brain injury, and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of Huntington's disease is discussed.
Collapse
|
22
|
Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, Hosseini K, Razavi HE, Yekaninejad MS. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15:515-525. [PMID: 21800956 DOI: 10.3171/2011.6.spine10917] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Many experimental studies on spinal cord injuries (SCIs) support behavioral improvement after Schwann cell treatment. This study was conducted to evaluate safety issues 2 years after intramedullary Schwann cell transplantation in 33 consecutively selected patients with SCI. METHODS Of 356 patients with SCIs who had completed at least 6 months of a conventional rehabilitation program and who were screened for the study criteria, 33 were enrolled. After giving their informed consent, they volunteered for participation. They underwent sural nerve harvesting and intramedullary injection of a processed Schwann cell solution. Outcome assessments included a general health questionnaire, neurological examination, and functional recordings in terms of American Spinal Injury Association (ASIA) and Functional Independence Measure scoring, which were documented by independent observers. There were 24 patients with thoracic and 9 with cervical injuries. Sixteen patients were categorized in ASIA Grade A, and the 17 remaining participants had ASIA Grade B. RESULTS There were no cases of deep infection, and the follow-up MR imaging studies obtained at 2 years did not reveal any deformity related to the procedure. There was no case of permanent neurological worsening or any infectious or viral complications. No new increment in syrinx size or abnormal tissue and/or tumor formation were observed on contrast-enhanced MR imaging studies performed 2 years after the treatment. CONCLUSIONS Preliminary results, especially in terms of safety, seem to be promising, paving the way for future cell therapy trials.
Collapse
Affiliation(s)
- Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Suicide gene therapy using reducible poly (oligo-D-arginine) for the treatment of spinal cord tumors. Biomaterials 2011; 32:9766-75. [PMID: 21924768 DOI: 10.1016/j.biomaterials.2011.08.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/31/2011] [Indexed: 11/21/2022]
Abstract
Suicide gene therapy based on a combination of herpes simplex virus-thymidine kinase (HSV-tk) and ganciclovir (GCV) has obstacles to achieving a success in clinical use for the treatment of cancer due to inadequate thymidine kinase (TK) expression. The primary concern for improving anticancer efficacy of the suicide gene therapy is to develop an appropriate carrier that highly expresses TK in vivo. Despite great advances in the development of non-viral vectors, none has been used in cancer suicide gene therapy, not even in experimental challenge. Reducible poly (oligo-D-arginine) (rPOA), one of the effective non-viral carriers working in vivo, was chosen to deliver HSV-tk to spinal cord tumors which are appropriate targets for suicide gene therapy. Since the system exerts toxicity only in dividing cells, cells in the central nervous system, which are non-proliferative, are not sensitive to the toxic metabolites. In the present study, we demonstrated that the locomotor function of the model rat was maintained through the tumor suppression resulting from the tumor-selective suicide activity by co-administration of rPOA/HSV-tk and GCV. Thus, rPOA plays a crucial role in suicide gene therapy for cancer, and an rPOA/HSV-tk and GCV system could help promote in vivo trials of suicide gene therapy.
Collapse
|
24
|
Novikova LN, Brohlin M, Kingham PJ, Novikov LN, Wiberg M. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy 2011; 13:873-87. [DOI: 10.3109/14653249.2011.574116] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 2011; 5:933-46. [PMID: 21082892 DOI: 10.2217/rme.10.72] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.
Collapse
Affiliation(s)
- Nanette Joyce
- Department of Internal Medicine, Division of Hematology/Oncology, Stem Cell Program, University of California, Davis, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
26
|
Spitzer N, Sammons GS, Price EM. Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies. J Neurosci Methods 2011; 197:48-55. [PMID: 21310182 DOI: 10.1016/j.jneumeth.2011.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
Cell transplant and gene therapies are promising approaches to many disorders of the nervous system. In studies involving cell transplants to the brain or nervous system, expression of green fluorescent protein (GFP) is commonly used to label cells, allowing their identification and histological assessment even after long post-operative survival times. Techniques employing viral tracing or reporter genes also commonly use GFP to label cells. Here, we document the presence of a subpopulation of green autofluorescent cells in the cortex and hippocampus of formaldehyde fixed, cryosectioned rat brains aged 3-9 months. Using standard microscopic fluorescence imaging techniques, we acquired clear images of green autofluorescent cells, complete with extensive processes, which appear to be well integrated into the host tissue. Treatment of brain sections with sodium borohydride followed by cupric sulfate in ammonium acetate buffer reduced background and cellular autofluorescence throughout sections but, especially in hippocampus, did not eliminate considerable green fluorescence in a subset of neurons. This autofluorescence was weak and would therefore pose a problem only when cells weakly express GFP or when few labeled cells survive. We suggest that investigators be aware of the potential for false positives, especially if the cells expressing GFP are expected to migrate widely from the transplant site. Parallel sections from naïve brains should regularly be processed and imaged alongside experimental brain sections, and anti-GFP immunohistochemistry should be performed to ensure that true GFP+ signals are imaged instead of endogenous autofluorescent neurons.
Collapse
Affiliation(s)
- Nadja Spitzer
- Department of Biological Sciences and Cell Differentiation and Development Center, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA.
| | | | | |
Collapse
|
27
|
Therapeutic Possibilities of Induced Pluripotent Stem Cells. TRANSLATIONAL STEM CELL RESEARCH 2011. [DOI: 10.1007/978-1-60761-959-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Ma S, Nowak FV. The RhoGAP domain-containing protein, Porf-2, inhibits proliferation and enhances apoptosis in neural stem cells. Mol Cell Neurosci 2010; 46:573-82. [PMID: 21185940 DOI: 10.1016/j.mcn.2010.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022] Open
Abstract
Neural stem cells (NSCs) are essential to developing and mature CNS. They shape the structural and functional layouts of the brain in developing CNS and continue to proliferate, generating new neurons in several adult brain regions. Preoptic regulatory factor-2 (Porf-2), a RhoGAP domain-containing protein expressed in CNS, has a role in gender-related brain development and function. Porf-2 expression was knocked down in C17.2, a mouse cerebellar multipotent cell line. This increased proliferation and decreased drug-induced apoptosis without affecting cell type distribution following differentiation induction. It lowered levels of cyclin kinase inhibitor p21, affected G1 to S phase cell cycle transition; partially blocked the elevation in p53 transcriptional activity, p21 and Bcl-2-associated X protein (Bax) levels caused by bleomycin, but had no influence on enhancement of Bax in response to staurosporine. Thus Porf-2 may inhibit NSC proliferation by enhancing p21 protein levels followed by G1 phase arrest; it plays pro-apoptotic roles in response to drug treatment through both p53 transcription-dependent and independent pathways. This is consistent with categorization of Porf-2 as a functional RhoGAP in CNS.
Collapse
Affiliation(s)
- Shuang Ma
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
29
|
A neurospheroid network-stamping method for neural transplantation to the brain. Biomaterials 2010; 31:8939-45. [DOI: 10.1016/j.biomaterials.2010.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 12/18/2022]
|
30
|
Epidermal neural crest stem cells and their use in mouse models of spinal cord injury. Brain Res Bull 2010; 83:189-93. [DOI: 10.1016/j.brainresbull.2010.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 12/25/2022]
|
31
|
Rosette-forming glioneuronal tumor of the fourth ventricle in an elderly patient. J Neurooncol 2010; 103:727-31. [DOI: 10.1007/s11060-010-0408-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
|
32
|
Liu H, Huang GW, Zhang XM, Ren DL, X Wilson J. Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells. J Clin Biochem Nutr 2010; 47:174-80. [PMID: 20838574 PMCID: PMC2935158 DOI: 10.3164/jcbn.10-47] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/10/2010] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14–16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system.
Collapse
Affiliation(s)
- Huan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | |
Collapse
|
33
|
Yamazoe H, Keino-Masu K, Masu M. Combining the cell-encapsulation technique and axon guidance for cell transplantation therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:1815-26. [PMID: 20557690 DOI: 10.1163/092050609x12567186470615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In cell transplantation therapy for the treatment of neurodegenerative disorders, encapsulation of implanted cells in a semipermeable membrane is a promising approach to protect the implanted cells from host immune rejection and inhibit the invasion of tumor into surrounding tissue if the implanted cells form a tumor after transplantation. However, implanted neurons isolated by capsules could not build connections with host neurons, preventing the implanted neurons from responding to stimuli from host neurons. In the present study, we focused on the passage of neurites and axons navigated by axon guidance molecules through membrane pores to enable encapsulated neurons and host neurons to form connections. The type of matrix coated on membranes and the pore size of the membranes greatly affected the successful passage of PC12 neurites through membrane pores. PC12 neurites preferably passed through collagen-coated membranes with pores greater than 0.8 μm in diameter, but the neurites did not pass through albumin- or fibronectin-coated membranes or membranes with pores less than 0.1 μm in diameter. We could navigate the direction of commissural neural axon extensions by utilizing the axon guidance molecules secreted from floor plate and make guided axons pass through the membrane pores. These results suggest the feasibility of building connections between encapsulated neurons and host neurons by encapsulating the implanted neurons and axon guidance molecules, which attract the axons of host neurons into the capsule, in the porous membranes with suitable pore size and matrix coating.
Collapse
Affiliation(s)
- Hironori Yamazoe
- Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
34
|
Pettersson J, Lobov S, Novikova LN. Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation. Brain Res Bull 2010; 81:125-32. [PMID: 19828127 DOI: 10.1016/j.brainresbull.2009.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 01/05/2023]
Abstract
Development of cell-based treatment strategies for repair of the injured nervous system requires cell tracing techniques to follow the fate of transplanted cells and their interaction with the host tissue. The present study investigates the efficacy of fluorescent cell tracers Fast Blue, PKH26, DiO and CMFDA for long-term labeling of olfactory ensheathing glial cells (OEC) in culture and following transplantation into the rat spinal cord. All tested dyes produced very efficient initial labeling of p75-positive OEC in culture. The number of Fast Blue-positive cells remained largely unchanged during the first 4 weeks but only about 21% of the cells retained tracer 6 weeks after labeling. In contrast, the number of cells labeled with PKH26 and DiO was reduced to 51-55% after 2 weeks in culture and reached 8-12% after 4-6 weeks. CMFDA had completely disappeared from the cells 2 weeks after labeling. AlamarBlue assay showed that among four tested tracers only CMFDA reduced proliferation rate of the OEC. After transplantation into spinal cord, Fast Blue-labeled OEC survived for at least 8 weeks but demonstrated very limited migration from the injection sites. Additional immunostaining with glial and neuronal markers revealed signs of dye leakage from the transplanted cells resulted in weak labeling of microglia and spinal neurons. The results show that Fast Blue is an efficient cell marker for cultured OEC. However, transfer of the dye from the transplanted cells to the host tissue should be considered and correctly interpreted.
Collapse
Affiliation(s)
- Jonas Pettersson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
35
|
Gopalakrishnan G, Thostrup P, Rouiller I, Lucido AL, Belkaïd W, Colman DR, Lennox RB. Lipid bilayer membrane-triggered presynaptic vesicle assembly. ACS Chem Neurosci 2010; 1:86-94. [PMID: 22778819 PMCID: PMC3368651 DOI: 10.1021/cn900011n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/01/2009] [Indexed: 11/30/2022] Open
Abstract
The formation of functional synapses on artificial substrates is a very important step in the development of engineered in vitro neural networks. Spherical supported bilayer lipid membranes (SS-BLMs) are used here as a novel substrate to demonstrate presynaptic vesicle accumulation at an in vitro synaptic junction. Confocal fluorescence microscopy, cryo-transmission electron microscopy (cryo-TEM), and fluorescence recovery after photobleaching (FRAP) experiments have been used to characterize the SS-BLMs. Conventional immunocytochemistry combined with confocal fluorescence microscopy was used to observe the formation of presynaptic vesicles at the neuron-SS-BLM contacts. These results indicate that lipid phases may play a role in the observed phenomenon, in addition to the chemical and electrostatic interactions between the neurons and SS-BLMs. The biocompatibility of lipid bilayers along with their membrane tunability makes the suggested approach a useful "toolkit" for many neuroengineering applications including artificial synapse formation and synaptogenesis in vivo.
Collapse
Affiliation(s)
- Gopakumar Gopalakrishnan
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 2K6 Montreal, Canada
- Montreal Neurological Institute & Hospital, McGill University, 3801 University Street, H3A 2B4 Montreal, Canada
- McGill Program in Neuroengineering, McGill University, Montreal, Canada
- FQRNT Centre for Self-Assembled Chemical Structures (CSACS), McGill University, Montreal, Canada
| | - Peter Thostrup
- Department of Physics, McGill University, 3600 University Street, H3A 2T8 Montreal, Canada
- McGill Program in Neuroengineering, McGill University, Montreal, Canada
| | - Isabelle Rouiller
- Department of Anatomy & Cell Biology, McGill University, 3640 University Street, H3A 2B2 Montreal, Canada
| | - Anna Lisa Lucido
- Montreal Neurological Institute & Hospital, McGill University, 3801 University Street, H3A 2B4 Montreal, Canada
- McGill Program in Neuroengineering, McGill University, Montreal, Canada
| | - Wiam Belkaïd
- Montreal Neurological Institute & Hospital, McGill University, 3801 University Street, H3A 2B4 Montreal, Canada
- McGill Program in Neuroengineering, McGill University, Montreal, Canada
| | - David R. Colman
- Montreal Neurological Institute & Hospital, McGill University, 3801 University Street, H3A 2B4 Montreal, Canada
- McGill Program in Neuroengineering, McGill University, Montreal, Canada
| | - R. Bruce Lennox
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A 2K6 Montreal, Canada
- McGill Program in Neuroengineering, McGill University, Montreal, Canada
- FQRNT Centre for Self-Assembled Chemical Structures (CSACS), McGill University, Montreal, Canada
| |
Collapse
|
36
|
Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 2010; 120:51-9. [PMID: 20051636 DOI: 10.1172/jci40553] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are generated by epigenetic reprogramming of somatic cells through the exogenous expression of transcription factors. These cells, just like embryonic stem cells, are likely to have a major impact on regenerative medicine, because they self-renew and retain the potential to be differentiated into all cell types of the human body. In this Review, we describe the current state of iPS cell technology, including approaches by which they are generated and what is known about their biology, and discuss the potential applications of these cells for disease modeling, drug discovery, and, eventually, cell replacement therapy.
Collapse
Affiliation(s)
- Evangelos Kiskinis
- The Stowers Medical Institute, Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|