1
|
de Oliveira DV, Godinho J, de Sa-Nakanishi AB, Comar JF, de Oliveira RMW, Bonato JM, Chinen LY, de Paula MN, Mello JCPD, Previdelli IS, Neves Pereira OC, Milani H. Delayed administration of Trichilia catigua A. Juss. Ethyl-acetate fraction after cerebral ischemia prevents spatial memory deficits, decreases oxidative stress, and impacts neural plasticity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116176. [PMID: 36682600 DOI: 10.1016/j.jep.2023.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trichilia catigua A. Juss (Meliaceae) is used in Brazilian folk medicine to alleviate fatigue and emotional stress and improve memory. Previous studies from our laboratory reported that an ethyl-acetate fraction (EAF) of T. catigua that was given before cerebral ischemia in vivo prevented memory loss and reduced oxidative stress and neuroinflammation. Despite the value of these findings of a neuroprotective effect of T. catigua, treatment that was given immediately before or immediately after ischemia limits its clinical relevance. Thus, unknown is whether T. catigua possesses a specific time window of efficacy (TWE) when administered postischemia. AIM OF THE STUDY Given continuity to previous studies, we investigated whether an EAF of T. catigua maintains its neuroprotective properties if treatment begins at different time windows of efficacy after ischemia. We also evaluated, for the first time, whether T. catigua possesses neuroplasticity/neurotrophic properties. MATERIAL AND METHODS Rats were subjected to transient global brain ischemia (TGCI) and then given a single dose of the EAF (400 mg/kg) or vehicle (1 ml/kg) orally 1, 4, or 6 h postischemia. The levels of protein PCG, GSH, and GSSG, and activity of SOD and CAT were assayed as markers of oxidative stress on the day after ischemia. In another experiment, naive rats underwent spatial learning training in a radial maze task and then subjected to TGCI. Delayed treatment with the EAF began 4 or 6 h later and continued for 7 days. Retrograde memory performance was assessed 10, 17, and 24 days postischemia. Afterward, brains were examined for neurodegeneration and neuronal dendritic morphology in the hippocampus and cerebral cortex. Another group received the EAF at 4 h of reperfusion, and 4 days later their brains were examined for GFAP and Iba-1 immunoreactivity. Lastly, ischemic rats received the EAF 4 h after ischemia and neural plasticity-related proteins, BDNF, SYN, PSD 95, and NeuN were measured in the hippocampus 7 and 14 days after ischemia. RESULTS A single EAF administration 1, 4, or 6 h postischemia alleviated oxidative stress that was caused by ischemia, expressed as a reduction of the amount of the PCG and GSSG, normalization of the GSH/GSSG ratio, and the restoration of SOD activity. Ischemia caused the persistent loss of memory (i.e., amnesia), an outcome that was consistently ameliorated by treatment with the EAF that was initiated 4 or 6 h postischemia. The 4 h delay in EAF treatment positively impacted dendritic morphology in neurons that survived ischemia. TGCI reduced BDNF, SYN, PSD-95, and NeuN protein levels in the hippocampus and cerebral cortex. The EAF normalized SYN and PSD-95 protein levels. Ischemia-induced neurodegeneration and glial cell activation were not prevented by EAF treatment. CONCLUSION The present study corroborates prior data that demonstrated the neuroprotective potential of T. catigua and extends these data by showing that the delayed administration of EAF postischemia effectively prevented memory impairment and decreased oxidative stress, dendritic deterioration, and synaptic protein loss within a TWE that ranged from 1 to 6 h. This specific TWE in preclinical research may have clinical relevance by suggesting the possible utility of this plant for the development of neuroprotective strategies in the setting of ischemic brain diseases. Another innovative finding of the present study was the possible neurotrophic/neuroplastic properties of T. catigua.
Collapse
Affiliation(s)
| | - Jacqueline Godinho
- Department of Medicina, Ingá University Center, Maringá, Paraná, Brazil.
| | | | | | | | - Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil.
| | - Luana Yukari Chinen
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil.
| | | | | | | | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
2
|
Ji Y, Koch D, González Delgado J, Günther M, Witte OW, Kessels MM, Frahm C, Qualmann B. Poststroke dendritic arbor regrowth requires the actin nucleator Cobl. PLoS Biol 2021; 19:e3001399. [PMID: 34898601 PMCID: PMC8699704 DOI: 10.1371/journal.pbio.3001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair. Ischemic stroke is a major cause of death and long-term disability. This study reveals that, in mice, stroke-induced damage to dendritic arborization in the area around an infarct is rapidly repaired via dendritic regrowth; this plasticity requires the actin nucleator Cobl.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Madlen Günther
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| |
Collapse
|
3
|
Meyer E, Bonato JM, Mori MA, Mattos BA, Guimarães FS, Milani H, de Campos AC, de Oliveira RMW. Cannabidiol Confers Neuroprotection in Rats in a Model of Transient Global Cerebral Ischemia: Impact of Hippocampal Synaptic Neuroplasticity. Mol Neurobiol 2021; 58:5338-5355. [PMID: 34302281 DOI: 10.1007/s12035-021-02479-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 02/01/2023]
Abstract
Evidence for the clinical use of neuroprotective drugs for the treatment of cerebral ischemia (CI) is still greatly limited. Spatial/temporal disorientation and cognitive dysfunction are among the most prominent long-term sequelae of CI. Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa that exerts neuroprotective effects against experimental CI. The present study investigated possible neuroprotective mechanisms of action of CBD on spatial memory impairments that are caused by transient global cerebral ischemia (TGCI) in rats. Hippocampal synaptic plasticity is a fundamental mechanism of learning and memory. Thus, we also evaluated the impact of CBD on neuroplastic changes in the hippocampus after TGCI. Wistar rats were trained to learn an eight-arm aversive radial maze (AvRM) task and underwent either sham or TGCI surgery. The animals received vehicle or 10 mg/kg CBD (i.p.) 30 min before surgery, 3 h after surgery, and then once daily for 14 days. On days 7 and 14, we performed a retention memory test. Another group of rats that received the same pharmacological treatment was tested in the object location test (OLT). Brains were removed and processed to assess neuronal degeneration, synaptic protein levels, and dendritic remodeling in the hippocampus. Cannabidiol treatment attenuated ischemia-induced memory deficits. In rats that were subjected to TGCI, CBD attenuated hippocampal CA1 neurodegeneration and increased brain-derived neurotrophic factor levels. Additionally, CBD protected neurons against the deleterious effects of TGCI on dendritic spine number and the length of dendritic arborization. These results suggest that the neuroprotective effects of CBD against TGCI-induced memory impairments involve changes in synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Bianca Andretto Mattos
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, Ribeirão Preto, São Paulo, 14015-000, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Alline Cristina de Campos
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, Ribeirão Preto, São Paulo, 14015-000, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil.
| |
Collapse
|
4
|
Bonato JM, Meyer E, de Mendonça PSB, Milani H, Prickaerts J, Weffort de Oliveira RM. Roflumilast protects against spatial memory impairments and exerts anti-inflammatory effects after transient global cerebral ischemia. Eur J Neurosci 2021; 53:1171-1188. [PMID: 33340424 DOI: 10.1111/ejn.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been shown to present beneficial effects in cerebral ischemic injury because of their ability to improve cognition and target different phases and mechanisms of cerebral ischemia, including apoptosis, neurogenesis, angiogenesis, and inflammation. The present study investigated whether repeated treatment with the PDE4 inhibitor roflumilast rescued memory loss and attenuated neuroinflammation in rats following transient global cerebral ischemia (TGCI). TGCI caused memory impairments, neuronal loss (reflected by Neuronal nuclei (NeuN) immunoreactivity), and compensatory neurogenesis (reflected by doublecortin (DCX) immunoreactivity) in the hippocampus. Also, increases in the protein expression of the phosphorylated response element-binding protein (pCREB) and inflammatory markers such as the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1), were detected in the hippocampus in TGCI rats. Repeated treatment with roflumilast (0.003 and 0.01 mg/kg) prevented spatial memory deficits without promoting hippocampal protection in ischemic animals. Roflumilast increased the levels of pCREB, arginase-1, interleukin (IL) 4, and IL-10 in the hippocampus 21 days after TGCI. These data suggest a protective effect of roflumilast against functional sequelae of cerebral ischemia, which might be related to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
5
|
Aguiar RP, Soares LM, Meyer E, da Silveira FC, Milani H, Newman-Tancredi A, Varney M, Prickaerts J, Oliveira RMW. Activation of 5-HT 1A postsynaptic receptors by NLX-101 results in functional recovery and an increase in neuroplasticity in mice with brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109832. [PMID: 31809832 DOI: 10.1016/j.pnpbp.2019.109832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
Pharmacological interventions that selectively activate serotonin 5-hydroxytryptramine-1A (5-HT1A) heteroreceptors may prevent or attenuate the consequences of brain ischemic episodes. The present study investigated whether the preferential 5-HT1A postsynaptic receptor agonist NLX-101 (a.k.a. F15599) mitigates cognitive and emotional impairments and affects neuroplasticity in mice that are subjected to the bilateral common carotid artery occlusion (BCCAO) model of brain ischemia. The selective serotonin reuptake inhibitor escitalopram (Esc) was used for comparative purposes because it is able to decrease morbidity and improve recovery in stroke patients and ischemic rodents. Sham and BCCAO mice received daily doses of NLX-101 (0.32 mg/kg, i.p) or Esc (20 mg/kg, i.p) for 28 days. During this period, they were evaluated for locomotor activity, anxiety- and despair-related behaviors and hippocampus-dependent cognitive function, using the open field, elevated zero maze, forced swim test and object location test, respectivelly. The mice's brains were processed for biochemical and histological analyses. BCCAO mice exhibited high anxiety and despair-like behaviors and performed worse than controls in the cognitive assessment. BCCAO induced neuronal and dendritic spine loss and decreases in the protein levels of neuronal plasticity markers, including brain-derived neurotrophic factor (BDNF), synaptophysin (SYN), and postsynaptic density protein-95 (PSD-95), in prefrontal cortex (PFC) and hippocampus. NLX-101 and Esc attenuated cognitive impairments and despair-like behaviors in BCCAO mice. Only Esc decreased anxiety-like behaviors due to brain ischemia. Both NLX-101 and Esc blocked the increase in plasma corticosterone levels and, restored BDNF, SYN and PSD-95 protein levels in the hippocampus. Moreover, both compounds impacted positively dentritic remodeling in the hippocampus and PFC of ischemic mice. In the PFC, NLX-101 increased the BDNF protein levels, while Esc in turn, attenuated the decrease in the PSD-95 protein levels induced by BCCAO. The present results suggest that activation of post-synaptic 5-HT1A receptors is the molecular mechanism for serotonergic protective effects in BCCAO. Moreover, post-synaptic biased agonists such as NLX-101 might constitute promising therapeutics for treatment of functional and neurodegenerative outcomes of brain ischemia.
Collapse
Affiliation(s)
- Rafael Pazinatto Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Lígia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Fernanda Canova da Silveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | | | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia M Weffort Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
6
|
Mauceri D, Buchthal B, Hemstedt TJ, Weiss U, Klein CD, Bading H. Nasally delivered VEGFD mimetics mitigate stroke-induced dendrite loss and brain damage. Proc Natl Acad Sci U S A 2020; 117:8616-8623. [PMID: 32229571 PMCID: PMC7165430 DOI: 10.1073/pnas.2001563117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the adult brain, vascular endothelial growth factor D (VEGFD) is required for structural integrity of dendrites and cognitive abilities. Alterations of dendritic architectures are hallmarks of many neurologic disorders, including stroke-induced damage caused by toxic extrasynaptic NMDA receptor (eNMDAR) signaling. Here we show that stimulation of eNMDARs causes a rapid shutoff of VEGFD expression, leading to a dramatic loss of dendritic structures. Using the mouse middle cerebral artery occlusion (MCAO) stroke model, we have established the therapeutic potential of recombinant mouse VEGFD delivered intraventricularly to preserve dendritic architecture, reduce stroke-induced brain damage, and facilitate functional recovery. An easy-to-use therapeutic intervention for stroke was developed that uses a new class of VEGFD-derived peptide mimetics and postinjury nose-to-brain delivery.
Collapse
Affiliation(s)
- Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld (INF) 366, 69120 Heidelberg, Germany
| | - Bettina Buchthal
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld (INF) 366, 69120 Heidelberg, Germany
| | - Thekla J Hemstedt
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld (INF) 366, 69120 Heidelberg, Germany
| | - Ursula Weiss
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld (INF) 366, 69120 Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld (INF) 366, 69120 Heidelberg, Germany;
| |
Collapse
|
7
|
Postischemic fish oil treatment restores dendritic integrity and synaptic proteins levels after transient, global cerebral ischemia in rats. J Chem Neuroanat 2019; 101:101683. [DOI: 10.1016/j.jchemneu.2019.101683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022]
|
8
|
Halis H, Bitiktaş S, Baştuğ O, Tan B, Kavraal Ş, Güneş T, Süer C. Differential Effects of Pentoxifylline on Learning and Memory Impairment Induced by Hypoxic-ischemic Brain Injury in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:388-399. [PMID: 31352705 PMCID: PMC6705102 DOI: 10.9758/cpn.2019.17.3.388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/10/2023]
Abstract
Objective Hypoxic-ischemic (HI) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal HI injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, the present study investigated the long-term effects of HI and potential behavioral protective effect of pentoxifylline. Methods Seven-day-old rats underwent right carotid ligation, followed by hypoxia (FiO2 = 0.08). Rats received pentoxifylline immediately after and again 2 hours after hypoxia (two doses, 60‒100 mg/kg/dose), or serum physiologic. Another set of seven-day-old rats was included to sham group exposed to surgical stress but not ligated. These rats were tested for spatial learning and memory on the simple place task in the Morris water maze from postnatal days 77 to 85. Results HI rats displayed significant tissue loss in the right hippocampus, as well as severe spatial memory deficits. Low-dose treatment with pentoxifylline resulted in significant protection against both HI-induced hippocampus tissue losses and spatial memory impairments. Beneficial effects are, however, negated if pentoxifylline is administered at high dose. Conclusion These findings indicate that unilateral HI brain injury in a neonatal rodent model is associated with cognitive deficits, and that low dose pentoxifylline treatment is protective against spatial memory impairment.
Collapse
Affiliation(s)
- Hülya Halis
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Soner Bitiktaş
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Osman Baştuğ
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Şehrazat Kavraal
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tamer Güneş
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Adhya D, Annuario E, Lancaster MA, Price J, Baron‐Cohen S, Srivastava DP. Understanding the role of steroids in typical and atypical brain development: Advantages of using a "brain in a dish" approach. J Neuroendocrinol 2018; 30:e12547. [PMID: 29024164 PMCID: PMC5838783 DOI: 10.1111/jne.12547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023]
Abstract
Steroids have an important role in growth, development, sexual differentiation and reproduction. All four classes of steroids, androgens, oestrogens, progestogens and glucocorticoids, have varying effects on the brain. Androgens and oestrogens are involved in the sexual differentiation of the brain, and also influence cognition. Progestogens such as progesterone and its metabolites have been shown to be involved in neuroprotection, although their protective effects are timing-dependent. Glucocorticoids are linked with stress and memory performance, also in a dose- and time-dependent manner. Importantly, dysfunction in steroid function has been implicated in the pathogenesis of disease. Moreover, regulating steroid-signalling has been suggested as potential therapeutic avenue for the treatment of a number of neurodevelopmental, psychiatric and neurodegenerative disorders. Therefore, clarifying the role of steroids in typical and atypical brain function is essential for understanding typical brain functions, as well as determining their potential use for pharmacological intervention in the atypical brain. However, the majority of studies have thus far have been conducted using animal models, with limited work using native human tissue or cells. Here, we review the effect of steroids in the typical and atypical brain, focusing on the cellular, molecular functions of these molecules determined from animal models, and the therapeutic potential as highlighted by human studies. We further discuss the promise of human-induced pluripotent stem cells, including advantages of using three-dimensional neuronal cultures (organoids) in high-throughput screens, in accelerating our understanding of the role of steroids in the typical brain, and also with respect to their therapeutic value in the understanding and treatment of the atypical brain.
Collapse
Affiliation(s)
- D. Adhya
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - E. Annuario
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | | | - J. Price
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
- National Institute for Biological Standards and ControlSouth MimmsUK
| | - S. Baron‐Cohen
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
| | - D. P. Srivastava
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
10
|
Godinho J, de Oliveira RMW, de Sa-Nakanishi AB, Bacarin CC, Huzita CH, Longhini R, Mello JCP, Nakamura CV, Previdelli IS, Dal Molin Ribeiro MH, Milani H. Ethyl-acetate fraction of Trichilia catigua restores long-term retrograde memory and reduces oxidative stress and inflammation after global cerebral ischemia in rats. Behav Brain Res 2017; 337:173-182. [PMID: 28919157 DOI: 10.1016/j.bbr.2017.08.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023]
Abstract
We originally reported that an ethyl-acetate fraction (EAF) of Trichilia catigua prevented the impairment of water maze learning and hippocampal neurodegeneration after transient global cerebral (TGCI) in mice. We extended that previous study by evaluating whether T. catigua (i) prevents the loss of long-term retrograde memory assessed in the aversive radial maze (AvRM), (ii) confers hippocampal and cortical neuroprotection, and (iii) mitigates oxidative stress and neuroinflammation in rats that are subjected to the four vessel occlusion (4-VO) model of TGCI. In the first experiment, naive rats were trained in the AvRM and then subjected to TGCI. The EAF was administered orally 30min before and 1h after TGCI, and administration continued once per day for 7days post-ischemia. In the second experiment, the EAF was administered 30min before and 1h after TGCI, and protein carbonylation and myeloperoxidase (MPO) activity were assayed 24h and 5days later, respectively. Retrograde memory performance was assessed 8, 15, and 21days post-ischemia. Ischemia caused persistent retrograde amnesia, and this effect was prevented by T. catigua. This memory protection (or preservation) persisted even after the treatment was discontinued, despite the absence of histological neuroprotection. Protein carbonyl group content and MPO activity increased around 43% and 100%, respectively, after TGCI, which were abolished by the EAF of T. catigua. The administration of EAF did not coincide with the days of memory testing. The data indicate that antioxidant and/or antiinflammatory actions in the early phase of ischemia/reperfusion contribute to the long-term antiamnesic effect of T. catigua.
Collapse
Affiliation(s)
- Jacqueline Godinho
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná, Brazil
| | | | | | | | - Claudia Hitomi Huzita
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná, Brazil
| | - Renata Longhini
- Department of Pharmacy, State University of Maringa, Maringá, Paraná, Brazil
| | - João Carlos P Mello
- Department of Pharmacy, State University of Maringa, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Department of Basic Health Sciences, State University of Maringa, Maringá, Paraná, Brazil
| | | | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná, Brazil.
| |
Collapse
|
11
|
Mori MA, Meyer E, Soares LM, Milani H, Guimarães FS, de Oliveira RMW. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:94-105. [PMID: 27889412 DOI: 10.1016/j.pnpbp.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
12
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
13
|
Soares LM, De Vry J, Steinbusch HW, Milani H, Prickaerts J, Weffort de Oliveira RM. Rolipram improves cognition, reduces anxiety- and despair-like behaviors and impacts hippocampal neuroplasticity after transient global cerebral ischemia. Neuroscience 2016; 326:69-83. [DOI: 10.1016/j.neuroscience.2016.03.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
|
14
|
Bacarin CC, Godinho J, de Oliveira RMW, Matsushita M, Gohara AK, Cardozo-Filho L, Lima JDC, Previdelli IS, Melo SR, Ribeiro MHDM, Milani H. Postischemic fish oil treatment restores long-term retrograde memory and dendritic density: An analysis of the time window of efficacy. Behav Brain Res 2016; 311:425-439. [PMID: 27235715 DOI: 10.1016/j.bbr.2016.05.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 02/06/2023]
Abstract
We reported that fish oil (FO) prevented the loss of spatial memory caused by transient, global cerebral ischemia (TGCI), provided the treatment covered the first days prior to and after ischemia. Continuing these studies, trained rats were subjected to TGCI, and FO was administered for 10days, with a time window of efficacy (TWE) of 4, 8 or 12h post-ischemia. Retrograde memory was assessed up to 43days after TGCI. In another experiment, ischemic rats received FO with a 4- or 12-h TWE, and dendritic density was assessed in the hippocampus and cerebral cortex. The brain lipid profile was evaluated in sham-operated and ischemic rats that were treated with FO or vehicle with a 4-h TWE. Ischemia-induced retrograde amnesia was prevented by FO administration that was initiated with either a 4- or 8-h TWE. Fish oil was ineffective after a 12-h TWE. Independent of the TWE, FO did not prevent ischemic neuronal death. In the hippocampus, but not cerebral cortex, TGCI-induced dendritic loss was prevented by FO with a 4-h TWE but not 12-h TWE. The level of docosahexaenoic acid almost doubled in the hippocampus in ischemic, FO-treated rats (4-h TWE). The data indicate that (i) the anti-amnesic effect of FO can be observed with a TWE of up to 8h, (ii) the stimulation of dendritic neuroplasticity may have contributed to this effect, and (iii) DHA in FO may be the main active constituent in FO that mediates the cognitive and neuroplasticity effects on TGCI.
Collapse
Affiliation(s)
| | - Jaqueline Godinho
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná,Brazil
| | | | - Makoto Matsushita
- Department of Chemistry, State University of Maringa, Maringá, Paraná, Brazil
| | - Aline Kirie Gohara
- Department of Chemistry, State University of Maringa, Maringá, Paraná, Brazil
| | - Lúcio Cardozo-Filho
- Department of Chemistry Engineering, State University of Maringa, Paraná, Maringá, Brazil
| | | | | | - Silvana Regina Melo
- Department of Morphophysiological Sciences, State University of Maringa, Maringá, Paraná, Brazil
| | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringa, Maringá, Paraná,Brazil.
| |
Collapse
|
15
|
Prophylactic melatonin significantly reduces Alzheimer's neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Mol Neurodegener 2015; 10:27. [PMID: 26159703 PMCID: PMC4702331 DOI: 10.1186/s13024-015-0027-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) underlies dementia for millions of people worldwide, and its occurrence is set to double in the next 20 years. Currently, approved drugs for treating AD only marginally ameliorate cognitive deficits, and provide limited symptomatic relief, while newer substances under therapeutic development are potentially years away from benefiting patients. Melatonin (MEL) for insomnia has been proven safe with >15 years of over-the-counter access in the US. MEL exerts multiple complementary mechanisms of action against AD in animal models; thus it may be an excellent disease-modifying therapeutic. While presumed to provide neuroprotection via activation of known G-protein-coupled melatonin receptors (MTNRs), some data indicate MEL acts intracellularly to protect mitochondria and neurons by scavenging reactive oxygen species and reducing free radical formation. We examined whether genetic deletion of MTNRs abolishes MEL’s neuroprotective actions in the AβPPswe/PSEN1dE9 mouse model of AD (2xAD). Beginning at 4 months of age, both AD and control mice either with or without both MTNRs were administered either MEL or vehicle in drinking water for 12 months. Results Behavioral and cognitive assessments of 15-month-old AD mice revealed receptor-dependent effects of MEL on spatial learning and memory (Barnes maze, Morris Water Maze), but receptor-independent neuroprotective actions of MEL on non-spatial cognitive performance (Novel Object Recognition Test). Similarly, amyloid plaque loads in hippocampus and frontal cortex, as well as plasma Aβ1–42 levels, were significantly reduced by MEL in a receptor-independent manner, in contrast to MEL’s efficacy in reducing cortical antioxidant gene expression (Catalase, SOD1, Glutathione Peroxidase-1, Nrf2) only when receptors were present. Increased cytochrome c oxidase activity was seen in 16mo AD mice as compared to non-AD control mice. This increase was completely prevented by MEL treatment of 2xAD/MTNR+ mice, but only partially prevented in 2xAD/MTNR- mice, consistent with mixed receptor-dependent and independent effects of MEL on this measure of mitochondrial function. Conclusions These findings demonstrate that prophylactic MEL significantly reduces AD neuropathology and associated cognitive deficits in a manner that is independent of antioxidant pathways. Future identification of direct molecular targets for MEL action in the brain should open new vistas for development of better AD therapeutics.
Collapse
|
16
|
Naskar A, Manivasagam T, Chakraborty J, Singh R, Thomas B, Dhanasekaran M, Mohanakumar KP. Melatonin synergizes with low doses of L-DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J Pineal Res 2013; 55:304-12. [PMID: 23952687 DOI: 10.1111/jpi.12076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/03/2013] [Indexed: 02/01/2023]
Abstract
The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is the preferred drug for Parkinson's disease, but long-term treatment results in the drug-induced dyskinesias and other side effects. This study was undertaken to examine whether melatonin could potentiate low dose L-DOPA effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental parkinsonism. Mice were treated with the parkinsonian neurotoxin, MPTP, and different doses of melatonin and low doses of L-DOPA. Behavior, striatal histology, and dopamine metabolism were evaluated on the 7th day. MPTP-induced striatal dopamine loss was not modified by melatonin administration (10-30 mg/kg; i.p. at 10-hr intervals, 6 times; or at 2-hr intervals, by day). However, low doses of L-DOPA (5 mg/kg, by oral gavage) administered alone or along with melatonin (10 mg/kg, i.p.) twice everyday for 2 days, 10 hr apart, after two doses of MPTP significantly attenuated striatal dopamine loss and provided improvements in both catalepsy and akinesia. Additionally, Golgi-impregnated striatal sections showed preservation of the medium spiny neurons, which have been damaged in MPTP-treated mouse. The results demonstrated that melatonin, but not L-DOPA, restored spine density and spine morphology of medium spiny neurons in the striatum and suggest that melatonin could be an ideal adjuvant to L-DOPA therapy in Parkinson's disease, and by the use of this neurohormone, it is possible to bring down the therapeutic doses of L-DOPA.
Collapse
Affiliation(s)
- Amit Naskar
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
17
|
Fish oil provides robust and sustained memory recovery after cerebral ischemia: influence of treatment regimen. Physiol Behav 2013; 119:61-71. [PMID: 23770426 DOI: 10.1016/j.physbeh.2013.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/24/2022]
Abstract
We previously reported that long-term treatment with fish oil (FO) facilitates memory recovery after transient, global cerebral ischemia (TGCI), despite the presence of severe hippocampal damage. The present study tested whether this antiamnesic effect resulted from an action of FO on behavioral performance itself, or whether it resulted from an anti-ischemic action. Different treatment regimens were used that were distinguished from each other by their initiation or duration with regard to the onset of TGCI and memory assessment. Naive rats were trained in an eight-arm radial maze, subjected to TGCI (4-VO model, 15 min), and tested for memory performance up to 6 weeks after TGCI. Fish oil (docosahexaenoic acid, 300 mg/kg/day) was given orally according to one of the following regimens: regimen 1 (from 3 days prior to ischemia until 4 weeks post-ischemia), regimen 2 (from 3 days prior to ischemia until 1 week post-ischemia), and regimen 3 (from week 2 to week 5 post-ischemia). When administered according to regimens 1 and 2, FO abolished amnesia completely. This effect persisted for at least 5 weeks after discontinuing the treatment. Such an effect did not occur, however, in the group treated according to regimen 3. Hippocampal and cortical damage was not alleviated by FO. The present results demonstrate that FO-mediated memory recovery (or preservation) following TGCI is a reproducible, robust, and long-lasting effect. Moreover, such an effect was found with a relatively short period of treatment, provided it covered the first days prior to and after ischemia. This suggests that FO prevented amnesia by changing some acute, ischemia/reperfusion-triggered process and not by stimulating memory performance on its own.
Collapse
|
18
|
Rojas JJ, Deniz BF, Miguel PM, Diaz R, Hermel ÉDES, Achaval M, Netto CA, Pereira LO. Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia–ischemia in the rat. Exp Neurol 2013; 241:25-33. [DOI: 10.1016/j.expneurol.2012.11.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022]
|
19
|
Domínguez-Alonso A, Ramírez-Rodríguez G, Benítez-King G. Melatonin increases dendritogenesis in the hilus of hippocampal organotypic cultures. J Pineal Res 2012; 52:427-36. [PMID: 22257024 DOI: 10.1111/j.1600-079x.2011.00957.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuropsychiatric disorders are characterized by hippocampus decreased volume and loss of dendrite arborizations in the subiculum and prefrontal cortex. These structural changes are associated with diminished memory performance. Hilar neurons of the hippocampus integrate spatial memory and are lost in dementia. They receive information from dentate gyrus neurons through dendrites, while they send axonal tracts to the CA3 region. Dendrites are complex structures of neurons that receive chemical information from presynaptic and postsynaptic terminals. Melatonin, the main product of the pineal gland, has neuroprotective actions through its free radical-scavenging properties and decreases neuronal apoptosis. Recently, we found that melatonin increases dendrite maturation and complexity in new neurons formed in the dentate gyrus of mice. In addition, in N1E-115 cultured cells, the indole stimulates early stages of neurite formation, a process that is known to antecede dendrite formation and maturation. Thus, in this study, we explored whether melatonin stimulates dendrite formation and complexity in the adult rat hippocampus in organotypic slice cultures, which is a model that preserves the hippocampal circuitry and their tridimensional organizations of connectivity. The effects of melatonin were studied in nonpathological conditions and in the absence of harmful agents. The results showed that the indole at nocturnal concentrations reached in the cerebrospinal fluid stimulates dendritogenesis at formation, growth, and maturation stages. Also, data showed that dendrites formed became competent to form presynaptic specializations. Evidence strongly suggests that melatonin may be useful in the treatment of neuropsychiatric diseases to repair the loss of dendrites and re-establish lost synaptic connections.
Collapse
Affiliation(s)
- Aline Domínguez-Alonso
- Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México, D.F
| | | | | |
Collapse
|
20
|
Pascual R, Pilar Zamora-León S, Pérez N, Rojas T, Rojo A, José Salinas M, Reyes Á, Bustamante C. Melatonin ameliorates neocortical neuronal dendritic impairment induced by toluene inhalation in the rat. ACTA ACUST UNITED AC 2011; 63:467-71. [DOI: 10.1016/j.etp.2010.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/11/2010] [Accepted: 03/14/2010] [Indexed: 10/19/2022]
|
21
|
Zhang B, Li A, Yang Z, Wu J, Luo Q, Gong H. Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain. J Neurosci Methods 2011; 197:1-5. [DOI: 10.1016/j.jneumeth.2010.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/26/2022]
|
22
|
Ramirez-Rodriguez G, Ortíz-López L, Domínguez-Alonso A, Benítez-King GA, Kempermann G. Chronic treatment with melatonin stimulates dendrite maturation and complexity in adult hippocampal neurogenesis of mice. J Pineal Res 2011; 50:29-37. [PMID: 20880317 DOI: 10.1111/j.1600-079x.2010.00802.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the course of adult hippocampal neurogenesis, the postmitotic maturation and survival phase is associated with dendrite maturation. Melatonin modulates the survival of new neurons with relative specificity. During this phase, the new neurons express microtubule-associated protein doublecortin (DCX). Here, we show that the entire population of cells expressing DCX is increased after 14 days of treatment with melatonin. As melatonin also affects microtubule polymerization which is important for neuritogenesis and dendritogenesis, we studied the consequences of chronic melatonin administration on dendrite maturation of DCX-positive cells. Treatment with melatonin increased the number of DCX-positive immature neurons with more complex dendrites. Sholl analysis revealed that melatonin treatment lead to greater complexity of the dendritic tree. In addition, melatonin increased the total volume of the granular cell layer. Besides its survival-promoting effect, melatonin thus also increases dendritic maturation in adult neurogenesis. This might open the opportunity of using melatonin as an adjuvant in attempts to extrinsically stimulate adult hippocampal neurogenesis in neuropsychiatric disease, dementia or cognitive ageing.
Collapse
Affiliation(s)
- Gerardo Ramirez-Rodriguez
- Laboratory of Neurogenesis, Department of Neuropharmacology, National Institute of Psychiatry. Mexico DF, Mexico
| | | | | | | | | |
Collapse
|
23
|
Pascual R, Bustamante C. Melatonin promotes distal dendritic ramifications in layer II/III cortical pyramidal cells of rats exposed to toluene vapors. Brain Res 2010; 1355:214-20. [PMID: 20678491 DOI: 10.1016/j.brainres.2010.07.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/24/2010] [Indexed: 11/18/2022]
Abstract
We have previously shown that toluene inhalation produces significant impairments in the basilar dendritic outgrowth of pyramidal cortical cells. This neurotoxic effect was markedly inhibited by melatonin administration at a dose of 5mg kg(-1). The present study was designed to determine whether toluene and melatonin equally affect all basilar dendritic segments or if a differential response exists between the segments. Twenty-eight male mice were weaned at postnatal day 21 (P21) and randomly assigned to either the control (C; n=10,) or toluene (T; n=18) group. Between P22-P32, male rats were placed into a glass chamber and exposed to either toluene vapors (5-000-6000 ppm) or clean air for 10 min a day. When toluene exposure ended (P32), animals were further assigned to the following experimental groups: (a) control/saline (C/S; n=10), (b) toluene/saline (T/S; n=10), or (c) toluene/melatonin 5mg kg(-1) (T/M; n=8). Melatonin or vehicle solutions were administered daily between P32 and P38. Forty-eight hours after the final toluene exposure, the animals were sacrificed, and the pyramidal cortical cells were stained using the Golgi-Cox-Sholl procedure. The number of basilar dendritic branches/order was counted using the centrifugal ordering method. The results indicate that (i) toluene inhalation significantly impairs both proximal and distal basilar dendritic ramifications (in the parietal and frontal/occipital cortices, respectively) and (ii) melatonin both protects neurons from toluene neurotoxicity in all cortical areas studied and increases the complexity of the dendritic tree above control values.
Collapse
Affiliation(s)
- Rodrigo Pascual
- Laboratorio de Neurociencias, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso, Chile.
| | | |
Collapse
|