1
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
da Silva AV, Serrenho I, Araújo B, Carvalho AM, Baltazar G. Secretome as a Tool to Treat Neurological Conditions: Are We Ready? Int J Mol Sci 2023; 24:16544. [PMID: 38003733 PMCID: PMC10671352 DOI: 10.3390/ijms242216544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Due to their characteristics, mesenchymal stem cells (MSCs) are considered a potential therapy for brain tissue injury or degeneration. Nevertheless, despite the promising results observed, there has been a growing interest in the use of cell-free therapies in regenerative medicine, such as the use of stem cell secretome. This review provides an in-depth compilation of data regarding the secretome composition, protocols used for its preparation, as well as existing information on the impact of secretome administration on various brain conditions, pointing out gaps and highlighting relevant findings. Moreover, due to the ability of MSCs to respond differently depending on their microenvironment, preconditioning of MSCs has been used to modulate their composition and, consequently, their therapeutic potential. The different strategies used to modulate the MSC secretome were also reviewed. Although secretome administration was effective in improving functional impairments, regeneration, neuroprotection, and reducing inflammation in brain tissue, a high variability in secretome preparation and administration was identified, compromising the transposition of preclinical data to clinical studies. Indeed, there are no reports of the use of secretome in clinical trials. Despite the existing limitations and lack of clinical data, secretome administration is a potential tool for the treatment of various diseases that impact the CNS.
Collapse
Affiliation(s)
- Andreia Valente da Silva
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Inês Serrenho
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz Araújo
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
| | | | - Graça Baltazar
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
3
|
Bao XH, Gao F, Athari SS, Wang H. Immunomodulatory effect of IL-35 gene-transfected mesenchymal stem cells on allergic asthma. Fundam Clin Pharmacol 2023; 37:116-124. [PMID: 35959714 DOI: 10.1111/fcp.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Asthma is a common respiratory disease that has no definitive treatment at now. Immune response shifting from T helper (Th)1 to the Th2 is a main problem in asthma, and immunomodulation can help to control asthma. IL-35 and mesenchymal stem cells (MSCs) have regulatory effect on the immune system and may have the ability to control asthma pathology. After culturing MSCs, expression vector of IL-35 (pUNO1-mIL35elasti) was transduced to the MSCs, and then, asthmatic mice were treated with MSCs, MSCs-vector, MSCs-vector-IL-35, and no treatment. Airway hyperresponsiveness (AHR), levels of the cytokines, total and ovalbumin (OVA) specific immunoglobulin (Ig)E, LTB4, and LTC4 were measured. Lung tissue histopathology was also done. MSCs were successfully transduced by pUNO1-mIL35elasti vector, and IL-35 was produced in transduced cells. AHR, levels of the cytokines, IgEs, LTs, goblet cell hyperplasia, mucus secretion, peribronchial, and perivascular inflammation were controlled by MSCs therapy. In MSCs-IL-35 group, these controls were stronger than MSCs without IL-35 group. MSCs had strong effect on control of asthma. Transfected MSCs by expressing IL-35 gene could significantly better control allergic asthma symptoms than MSCs without IL-35. In the future, identification of the IL-35 mechanism of action would be useful to improve cytokine-cell based therapies.
Collapse
Affiliation(s)
- Xiang-Hua Bao
- Department of Occupational Disease, Yantai Occupational Disease Hospital, Yantaishan Hospital, Yantai, China
| | - Feng Gao
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hongqun Wang
- Department of Respiratory Disease, Chongqing Emergency Medical Center, Chongqing Fourth People's Hospital, Chongqing, China
| |
Collapse
|
4
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
5
|
Zhu S, Chen M, Ying Y, Wu Q, Huang Z, Ni W, Wang X, Xu H, Bennett S, Xiao J, Xu J. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res 2022; 10:30. [PMID: 35296645 PMCID: PMC8927336 DOI: 10.1038/s41413-022-00203-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit (NVU), pericytes play an essential role in the maintenance of the vascular network of the spinal cord. To date, subtypes of pericytes have been identified by various markers, namely the PDGFR-β, Desmin, CD146, and NG2, each of which is involved with spinal cord injury (SCI) repair. In addition, pericytes may act as a stem cell source that is important for bone development and regeneration, whilst specific subtypes of pericyte could facilitate bone fracture and defect repair. One of the major challenges of pericyte biology is to determine the specific markers that would clearly distinguish the different subtypes of pericytes, and to develop efficient approaches to isolate and propagate pericytes. In this review, we discuss the biology and roles of pericytes, their markers for identification, and cell differentiation capacity with a focus on the potential application in the treatment of SCI and bone diseases in orthopedics.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Samuel Bennett
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
6
|
Guo X, Huang D, Li D, Zou L, Lv H, Wang Y, Tan M. Adipose-derived mesenchymal stem cells with hypoxic preconditioning improve tenogenic differentiation. J Orthop Surg Res 2022; 17:49. [PMID: 35090498 PMCID: PMC8796587 DOI: 10.1186/s13018-021-02908-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADSCs), as seed cells for tendon tissue engineering, are promising for tendon repair and regeneration. But for ADSCs, diverse oxygen tensions have different stimulatory effects. To explore this issue, we investigated the tenogenic differentiation capability of ADSCs under hypoxia condition (5% O2) and the possible signaling pathways correspondingly. The effects of different oxygen tensions on proliferation, migration, and tenogenic differentiation potential of ADSCs were investigated. Methods P4 ADSCs were divided into a hypoxic group and a normoxic group. The hypoxic group was incubated under a reduced O2 pressure (5% O2, 5% CO2, balanced N2). The normoxic group was cultured in 21% O2. Two groups were compared: HIF-1α inhibitor (2-MeOE2) in normoxic culturing conditions and hypoxic culturing conditions. Hypoxia-inducible factor-1α (HIF-1α) and VEGF were measured using RT-qPCR. Specific HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2) was applied to investigate whether HIF-1α involved in ADSCs tenogenesis under hypoxia. Results Hypoxia significantly reduced proliferation and migration of ADSCs. Continuous treatment of ADSCs at 5% O2 resulted in a remarkable decrease in HIF-1α expression in comparison with 20% O2. Additionally, ADSCs of hypoxia preconditioning exhibited higher mRNA expression levels of the related key tenogenic makers and VEGF than normoxia via RT-qPCR measurement (p ˂ 0.05). Furthermore, the effects of hypoxia on tenogenic differentiation of ADSCs were inhibited by 2-MeOE2. Hypoxia can also stimulate VEGF production in ADSCs. Conclusions Our findings demonstrate that hypoxia preconditioning attenuates the proliferation and migration ability of ADSCs, but has positive impact on tenogenic differentiation through HIF-1α signaling pathway.
Collapse
|
7
|
Zamorano M, Castillo RL, Beltran JF, Herrera L, Farias JA, Antileo C, Aguilar-Gallardo C, Pessoa A, Calle Y, Farias JG. Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering. Front Physiol 2021; 12:705256. [PMID: 34603075 PMCID: PMC8484708 DOI: 10.3389/fphys.2021.705256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | | | - Jorge F Beltran
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Joaquín A Farias
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibíñtez, Santiago, Chile
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Cristobal Aguilar-Gallardo
- Hematological Transplant and Cell Therapy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, United Kingdom
| | - Jorge G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
8
|
Zayed M, Iohara K, Watanabe H, Ishikawa M, Tominaga M, Nakashima M. Characterization of stable hypoxia-preconditioned dental pulp stem cells compared with mobilized dental pulp stem cells for application for pulp regenerative therapy. Stem Cell Res Ther 2021; 12:302. [PMID: 34051821 PMCID: PMC8164249 DOI: 10.1186/s13287-021-02240-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) have been developed as a potential source of mesenchymal stem cells (MSCs) for regeneration of dental pulp and other tissues. However, further strategies to isolate highly functional DPSCs beyond the colony-forming methods are required. We have demonstrated the safety and efficacy of DPSCs isolated by G-CSF-induced mobilization and cultured under normoxia (mobilized DPSCs, MDPSCs) for pulp regeneration. The device for isolation of MDPSCs, however, is not cost-effective and requires a prolonged cell culture period. It is well known that MSCs cultured under hypoxic-preconditions improved MSC proliferation activity and stemness. Therefore, in this investigation, we attempted to improve the clinical utility of DPSCs by hypoxia-preconditioned DPSCs (hpDPSCs) compared with MDPSCs to improve the potential clinical utility for pulp regeneration in endodontic dentistry. Methods Colony-forming DPSCs were isolated and preconditioned with hypoxia in a stable closed cultured system and compared with MDPSCs isolated from the individual dog teeth. We examined the proliferation rate, migration potential, anti-apoptotic activity, and gene expression of the stem cell markers and angiogenic/neurotrophic factors. Trophic effects of the conditioned medium (CM) were also evaluated. In addition, the expression of immunomodulatory molecules upon stimulation with IFN-γ was investigated. The pulp regenerative potential and transplantation safety of hpDPSCs were further assessed in pulpectomized teeth in dogs by histological and immunohistochemical analyses and by chemistry of the blood and urine tests. Results hpDPSCs demonstrated higher proliferation rate and expression of a major regulator of oxygen homeostasis, HIF-1α, and a stem cell marker, CXCR-4. The direct migratory activity of hpDPSCs in response to G-CSF was significantly higher than MDPSCs. The CM of hpDPSCs stimulated neurite extension. However, there were no changes in angiogenic, migration, and anti-apoptotic activities compared with the CM of MDPSCs. The expression of immunomodulatory gene, PTGE was significantly upregulated by IFN gamma in hpDPSCs compared with MDPSCs. However, no difference in nitric oxide was observed. The regenerated pulp tissue was quantitatively and qualitatively similar in hpDPSC transplants compared with MDPSC transplants in dog teeth. There was no evidence of toxicity or adverse events of the hpDPSC transplantation. Conclusions These results demonstrated that the efficacy of hpDPSCs for pulp regeneration was identical, although hpDPSCs improved stem cell properties compared to MDPSCs, suggesting their potential clinical utility for pulp regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02240-w.
Collapse
Affiliation(s)
- Mohammed Zayed
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.,Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Koichiro Iohara
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Mami Ishikawa
- Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan
| | - Michiyo Tominaga
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Misako Nakashima
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan. .,Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan.
| |
Collapse
|
9
|
Anti-apoptotic effect of Nisin as a prebiotic on human mesenchymal stem cells in harsh condition. Cell Tissue Bank 2021; 23:227-236. [PMID: 34043109 DOI: 10.1007/s10561-021-09933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are progenitor cells of connective tissue with the ability of proliferation, self-renewal, and multilineage differentiation that make it a promising source with an enormous potential to be utilized for tissue repairing and vehicles of cell-based gene therapy. The low survival rate of MSCs following transplantation is their drawback. Preconditioning with some factors is a novel and effective strategy, improving the survival of the cells by protecting them from harmful conditions and result in the good recovery of injured tissues. Nisin is a prebiotic with antimicrobial activity. This manuscript aimed to evaluate the effect of Nisin preconditioning of MSCs on in vitro cell viability. MSCs were cultured and preconditioned with Nisin in different concentrations. Then, they are separately exposed to H2O2 and serum deprivation. Cell survival and cell apoptosis were evaluated by MTT assay and Real-time PCR, respectively. Furthermore, Annexin-PI staining and caspase activity was performed to visualize apoptotic cells. MSC-Nisin viability and proliferation significantly increased when exposed to H2O2 and serum deprivation, compared to that of MSCs. About 250 and 500 IU/mL of Nisin donate a significant anti-apoptotic impact to MSCs. Our data suggest that preconditioning with Nisin has been improved cell viability and the anti-apoptotic capacity of MSCs. However, the mechanism related to the protective properties of preconditioning and using this strategy in stem cell therapy requires more research.
Collapse
|
10
|
Regmi S, Seo Y, Ahn JS, Pathak S, Acharya S, Nguyen TT, Yook S, Sung JH, Park JB, Kim JO, Young CS, Kim HS, Jeong JH. Heterospheroid formation improves therapeutic efficacy of mesenchymal stem cells in murine colitis through immunomodulation and epithelial regeneration. Biomaterials 2021; 271:120752. [PMID: 33730631 DOI: 10.1016/j.biomaterials.2021.120752] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Tissue repairing capacity and immunomodulatory effects of mesenchymal stem cells (MSCs) have been extensively utilized for treating various inflammatory disorders; however, inconsistent efficacy and therapeutic outcomes due to low survival rate after transplantation often restrain their clinical potential. To overcome these limitations, 3-dimensional culture (3D-culture) was established to augment stemness and paracrine functions of MSCs, although hypoxic stress at the core often leads to unexpected cell death. Thus, we designed a novel strategy to improve the microenvironment of MSCs by creating heterospheroids (HS) consisting of MSCs and quercetin (QUR)-loaded microspheres (MSCHS), to achieve local drug delivery to the cells. Notably, MSCHS exhibited resistance for senescence-associated phenotype and oxidative stress-induced apoptosis compared to 3D-cultured MSCs (MSC3D), as well as to 2D-cultured cells (MSC2D) in vitro. In a murine model of colitis, MSC3D and MSCHS exhibited enhanced anti-inflammatory impact than MSC2Dvia attenuating neutrophil infiltration and regulating helper T cell (Th) polarization into Th1 and Th17 cells. Interestingly, MSCHS provided better therapeutic outcomes compared to MSC3D, partially due to their enhanced survival capacity in vivo. Moreover, we found that MSC-derived paracrine factor, prostaglandin E2 (PGE2), can directly drive the epithelial regeneration process by inducing specialized tissue-repairing cell generation using the intestinal organoid culture. Importantly, MSC3D and MSCHS displayed an outstanding regeneration-inducing potency compared to MSC2D owing to their superior PGE2 secretion. Taken together, we suggest a convergent strategy of MSCHS formation with reactive oxygen species (ROS) scavenger, QUR, which can maximize the inflammation-attenuating and tissue-repairing capacity of MSCs, as well as the engraftment efficiency after transplantation.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Yoojin Seo
- School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Ji-Su Ahn
- School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea; STEMORE Co. Ltd., Incheon 21983, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Chul Soon Young
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hyung-Sik Kim
- School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
11
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
12
|
Human mesenchymal stromal/stem cells recruit resident pericytes and induce blood vessels maturation to repair experimental spinal cord injury in rats. Sci Rep 2020; 10:19604. [PMID: 33177535 PMCID: PMC7658254 DOI: 10.1038/s41598-020-76290-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis is considered to mediate the beneficial effects of mesenchymal cell therapy in spinal cord injury. After a moderate balloon-compression injury in rats, injections of either human adipose tissue-derived stromal/stem cells (hADSCs) or their conditioned culture media (CM-hADSC) elicited angiogenesis around the lesion site. Both therapies increased vascular density, but the presence of hADSCs in the tissue was required for the full maturation of new blood vessels. Only animals that received hADSC significantly improved their open field locomotion, assessed by the BBB score. Animals that received CM-hADSC only, presented haemorrhagic areas and lack pericytes. Proteomic analyses of human angiogenesis-related factors produced by hADSCs showed that both pro- and anti-angiogenic factors were produced by hADSCs in vitro, but only those related to vessel maturation were detectable in vivo. hADSCs produced PDGF-AA only after insertion into the injured spinal cord. hADSCs attracted resident pericytes expressing NG2, α-SMA, PDGF-Rβ and nestin to the lesion, potentially contributing to blood vessel maturation. We conclude that the presence of hADSCs in the injured spinal cord is essential for tissue repair.
Collapse
|
13
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|
14
|
Platt A, David BT, Fessler RG. Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States. MEDICINES 2020; 7:medicines7050027. [PMID: 32408562 PMCID: PMC7281746 DOI: 10.3390/medicines7050027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Background: Although many therapeutic approaches have been attempted to treat spinal cord injury, cellular transplantation offers the greatest promise in reconstituting the architecture of the damaged cord. Methods: A literature review was conducted to search for clinical trials investigating stem cells as treatment for spinal cord injury in the United States. Results: Overall, eight studies met inclusion criteria. Of the included studies, four were identified as being terminated, suspended, or not yet recruiting. Two studies were identified as currently recruiting, including one phase one trial evaluating stereotactic injections of human spinal cord-derived neural stem cells in patients with chronic spinal cord injuries, and one trial of transplantation of autologous bone marrow derived stem cells via paraspinal injections, intravenous injections, and intranasal placement. One study was identified as an active study, a phase one trial of intrathecal injection of 100 million autologous, ex-vivo expanded, adipose-derived mesenchymal stem cells. One trial that was listed as completed is a phase 1/2a, dose escalation study, investigating stereotactic injection of human embryonic stem cell derived oligodendrocyte progenitor cells. Conclusions: Although few significant publications have emerged to this point, current trial results are promising.
Collapse
Affiliation(s)
- Andrew Platt
- Department of Surgery, Section of Neurosurgery, University of Chicago, Chicago, IL 60612, USA;
| | - Brian T. David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Richard G. Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +312-942-6644
| |
Collapse
|
15
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
16
|
Branco É, Alves JGR, Pinheiro LL, Coutinho LN, Gomes CRM, Galvão GR, de Oliveira Dos Santos GR, Moreira LFM, David MBM, Martins DM, de Oliveira EHC, de Souza MPC, Beltrão-Braga PCB, Russo FB, Pignatari GC, de Carvalho Miranda CMF, de Lima AR. Can Paraplegia by Disruption of the Spinal Cord Tissue Be Reversed? The Signs of a New Perspective. Anat Rec (Hoboken) 2019; 303:1812-1820. [PMID: 31520456 DOI: 10.1002/ar.24262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) trauma is often related to tissue loss, leading to partial or complete disruption of spinal cord function due to neuronal death. Although generally irreversible, traditional therapeutic efforts, such as physical therapy exercises, are generally recommended, but with a poor or reduced improvement of the microenvironment, which in turn stimulates neuroplasticity and neuroregeneration. Mesenchymal stem cells (MSCs) have paracrine, immunomodulatory, and anti-inflammatory effects. Here we use stem cells to see if they can promote not only physical but also the functional regeneration of neuronal tissue in dogs with CNS traumas. Two dogs, one with chronic spinal cord injury and one with subacute spinal cord injury, underwent infusion of autologous MSCs in association with physiotherapy. The two treatments in combination were able to partially or completely recover the dog's walking movement again. The treatment of MSCs in association with physical therapy improved the microenvironment, which could be evidence of a paradigm shift that the CNS is not capable of functional regeneration after aggressive traumas. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1812-1820, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Érika Branco
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - José G R Alves
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - Luane L Pinheiro
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - Leandro N Coutinho
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - Carolina R M Gomes
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - Gilvando R Galvão
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | | | - Luiz F M Moreira
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - Maridelzira B M David
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - Danielle M Martins
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| | - Edivaldo H C de Oliveira
- Laboratory of Tissue Culture and Cytogenetics, SAMAM, Evandro Chagas Institute, Ananindeua, Brazil.,Institute of Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Michel P C de Souza
- Laboratory of Tissue Culture and Cytogenetics, SAMAM, Evandro Chagas Institute, Ananindeua, Brazil.,Institute of Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Patrícia C B Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabiele B Russo
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Graciela C Pignatari
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ana R de Lima
- Institute of Animal Health and Production, Faculty of Veterinary Medicine, Federal Rural University of Amazonia, Belém, Brazil
| |
Collapse
|
17
|
Han KH, Kim AK, Jeong GJ, Jeon HR, Bhang SH, Kim DI. Enhanced Anti-Cancer Effects of Conditioned Medium from Hypoxic Human Umbilical Cord-Derived Mesenchymal Stem Cells. Int J Stem Cells 2019; 12:291-303. [PMID: 31023003 PMCID: PMC6657944 DOI: 10.15283/ijsc19002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives There have been contradictory reports on the pro-cancer or anti-cancer effects of mesenchymal stem cells. In this study, we investigated whether conditioned medium (CM) from hypoxic human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) (H-CM) showed enhanced anti-cancer effects compared with CM from normoxic hUC-MSCs (N-CM). Methods and Results Compared with N-CM, H-CM not only strongly reduced cell viability and increased apoptosis of human cervical cancer cells (HeLa cells), but also increased caspase-3/7 activity, decreased mitochondrial membrane potential (MMP), and induced cell cycle arrest. In contrast, cell viability, apoptosis, MMP, and cell cycle of human dermal fibroblast (hDFs) were not significantly changed by either CM whereas caspase-3/7 activity was decreased by H-CM. Protein antibody array showed that activin A, Beta IG-H3, TIMP-2, RET, and IGFBP-3 were upregulated in H-CM compared with N-CM. Intracellular proteins that were upregulated by H-CM in HeLa cells were represented by apoptosis and cell cycle arrest terms of biological processes of Gene Ontology (GO), and by cell cycle of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In hDFs, negative regulation of apoptosis in biological process of GO and PI3K-Akt signaling pathway of KEGG pathways were represented. Conclusions H-CM showed enhanced anti-cancer effects on HeLa cells but did not influence cell viability or apoptosis of hDFs and these different effects were supported by profiling of secretory proteins in both kinds of CM and intracellular signaling of HeLa cells and hDFs.
Collapse
Affiliation(s)
- Kyu-Hyun Han
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gun-Jae Jeong
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Ran Jeon
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Suk Ho Bhang
- Sungkyunkwan University School of Chemical Engineering, Suwon, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol 2019; 98:151041. [PMID: 31023504 DOI: 10.1016/j.ejcb.2019.04.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising alternative agents for the treatment of inflammatory disorders due to their immunomodulatory functions, and several clinical trials on MSC-based products are currently being conducted. In this review, we discuss recent progress made on the use of MSCs as immunomodulatory agents, developmental challenges posed by MSC-based therapy, and the strategies being used to overcome these challenges. In this context, current understanding of the mechanisms responsible for MSC interactions with the immune system and the molecular responses of MSCs to inflammatory signals are discussed. The immunosuppressive activities of MSCs are initiated by cell-to-cell contact and the release of immuno-regulatory molecules. By doing so, MSCs can inhibit the proliferation and function of T cells, natural killer cells, B cells, and dendritic cells, and can also increase the proliferation of regulatory T cells. However, various problems, such as low transplanted cell viability, poor homing and engraftment into injured tissues, MSC heterogeneity, and lack of adequate information on optimum MSC doses impede clinical applications. On the other hand, it has been shown that the immunomodulatory activities and viabilities of MSCs might be enhanced by 3D-cultured systems, genetic modifications, preconditioning, and targeted-delivery.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
19
|
Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. J Control Release 2019; 300:141-153. [PMID: 30851286 DOI: 10.1016/j.jconrel.2019.02.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) is a complicated neuropathological condition that results in functional dysfunction and paralysis. Various treatments have been proposed including drugs, biological factors and cells administered in several ways. Stem cell therapy offers a potentially revolutionary mode to repair the damaged spinal cord after injury. Initially, stem cells were considered promising for replacing cells and tissue lost after SCI. Many studies looked at their differentiation to replace neuronal and glial cells for a better functional outcome. However, it is becoming clear that different functional improvements recognized to stem cells are due to biomolecular activities by the transplanted stem cells rather than cell replacement. This review aimed to discuss the paracrine mechanisms for tissue repair and regeneration after stem cell transplantation in SCI. It focuses on stem cell factor production, effect in tissue restoration, and novel delivery strategies to use them for SCI therapy.
Collapse
|
20
|
Abreu SC, Xisto DG, de Oliveira TB, Blanco NG, de Castro LL, Kitoko JZ, Olsen PC, Lopes-Pacheco M, Morales MM, Weiss DJ, Rocco PRM. Serum from Asthmatic Mice Potentiates the Therapeutic Effects of Mesenchymal Stromal Cells in Experimental Allergic Asthma. Stem Cells Transl Med 2018; 8:301-312. [PMID: 30426724 PMCID: PMC6392406 DOI: 10.1002/sctm.18-0056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/30/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway inflammation and remodeling, which can lead to progressive decline of lung function. Although mesenchymal stromal cells (MSCs) have shown beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been limited. Mounting evidence suggests that prior exposure of MSCs to specific inflammatory stimuli or environments can enhance their immunomodulatory properties. Therefore, we investigated whether stimulating MSCs with bronchoalveolar lavage fluid (BALF) or serum from asthmatic mice could potentiate their therapeutic properties in experimental asthma. In a house dust mite (HDM) extract asthma model in mice, unstimulated, asthmatic BALF‐stimulated, or asthmatic serum‐stimulated MSCs were administered intratracheally 24 hours after the final HDM challenge. Lung mechanics and histology; BALF protein, cellularity, and biomarker levels; and lymph‐node and bone marrow cellularity were assessed. Compared with unstimulated or BALF‐stimulated MSCs, serum‐stimulated MSCs further reduced BALF levels of interleukin (IL)‐4, IL‐13, and eotaxin, total and differential cellularity in BALF, bone marrow and lymph nodes, and collagen fiber content, while increasing BALF IL‐10 levels and improving lung function. Serum stimulation led to higher MSC apoptosis, expression of various mediators (transforming growth factor‐β, interferon‐γ, IL‐10, tumor necrosis factor‐α‐stimulated gene 6 protein, indoleamine 2,3‐dioxygenase‐1, and IL‐1 receptor antagonist), and polarization of macrophages to M2 phenotype. In conclusion, asthmatic serum may be a novel strategy to potentiate therapeutic effects of MSCs in experimental asthma, leading to further reductions in both inflammation and remodeling than can be achieved with unstimulated MSCs. stem cells translational medicine2019;8:301&312
Collapse
Affiliation(s)
- Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá B de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lígia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Zola Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Clinical Bacteriology and Immunology, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu W, Chen X, Si Y, Hong S, Shi Z, Fu W. Transplantation of Rat Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor 2 α Improves Blood Perfusion and Arteriogenesis in a Rat Hindlimb Ischemia Model. Stem Cells Int 2017; 2017:3794817. [PMID: 29238372 PMCID: PMC5697133 DOI: 10.1155/2017/3794817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been increasingly tested in cell-based therapy to treat numerous diseases. Genetic modification to improve MSC behavior may enhance posttransplantation outcome. This study aims to test the potential therapeutic benefits of rat bone marrow MSCs overexpressing hypoxia-inducible factor 2α (rMSCsHIF-2α ) in a rat hindlimb ischemia model. PBS, rMSCs, or rMSCsHIF-2α were injected into rat ischemic hindlimb. Compared with the injection of PBS or rMSCs, transplantation of rMSCsHIF-2α significantly improved blood perfusion, increased the number of vessel branches in the muscle of the ischemic hindlimb, and improved the foot mobility of the ischemic hindlimb (all P < 0.05). rMSCHIF-2α transplantation also markedly increased the expression of proangiogenic factors VEGF, bFGF, and SDF1 and Notch signaling proteins including DII4, NICD, Hey1, and Hes1, whereas it reduced the expression of proapoptotic factor Bax in the muscle of the ischemic hindlimb. Overexpression of HIF-2α did not affect rMSC stemness and proliferation under normoxia but significantly increased rMSC migration and tube formation in matrigel under hypoxia (all P < 0.05). RMSCsHIF-2α stimulated endothelial cell invasion under hypoxia significantly (P < 0.05). Genetic modification of rMSCs via overexpression of HIF-2α improves posttransplantation outcomes in a rat hindlimb ischemia model possibly by stimulating proangiogenic growth factors and cytokines.
Collapse
Affiliation(s)
- Weifeng Lu
- Department of Vascular Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Xiaoli Chen
- Cancer Research Center, Medical College of Xiamen University, Xiamen, China
| | - Yi Si
- Department of Cardiovascular Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shichai Hong
- Department of Vascular Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Zhengyu Shi
- Department of Vascular Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
23
|
Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts. Arch Plast Surg 2017; 44:370-377. [PMID: 28946717 PMCID: PMC5621823 DOI: 10.5999/aps.2017.44.5.370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/14/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs) express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2), ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05). ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05) in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.
Collapse
|
24
|
Abstract
Fat grafting has emerged as an important tool in the armamentarium of plastic surgeons. Its applications in aesthetic and reconstructive surgery continue to expand. However, its limitations (such as inconsistent survival) remain problematic. Recent research efforts have focused on tacking these issues with the use of platelet rich plasma, hypoxic preconditioning, hyperbaric oxygen, and the tissue engineering of scaffolds. In the future, as these laboratory discoveries are translated to clinical application, the beneficial uses of fat grafting will continue to increase.
Collapse
Affiliation(s)
- Farooq Shahzad
- Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | |
Collapse
|
25
|
Wakai T, Narasimhan P, Sakata H, Wang E, Yoshioka H, Kinouchi H, Chan PH. Hypoxic preconditioning enhances neural stem cell transplantation therapy after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2016; 36:2134-2145. [PMID: 26661220 PMCID: PMC5363661 DOI: 10.1177/0271678x15613798] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/08/2015] [Accepted: 09/21/2015] [Indexed: 01/06/2023]
Abstract
Previous studies have shown that intraparenchymal transplantation of neural stem cells ameliorates neurological deficits in animals with intracerebral hemorrhage. However, hemoglobin in the host brain environment causes massive grafted cell death and reduces the effectiveness of this approach. Several studies have shown that preconditioning induced by sublethal hypoxia can markedly improve the tolerance of treated subjects to more severe insults. Therefore, we investigated whether hypoxic preconditioning enhances neural stem cell resilience to the hemorrhagic stroke environment and improves therapeutic effects in mice. To assess whether hypoxic preconditioning enhances neural stem cell survival when exposed to hemoglobin, neural stem cells were exposed to 5% hypoxia for 24 hours before exposure to hemoglobin. To study the effectiveness of hypoxic preconditioning on grafted-neural stem cell recovery, neural stem cells subjected to hypoxic preconditioning were grafted into the parenchyma 3 days after intracerebral hemorrhage. Hypoxic preconditioning significantly enhanced viability of the neural stem cells exposed to hemoglobin and increased grafted-cell survival in the intracerebral hemorrhage brain. Hypoxic preconditioning also increased neural stem cell secretion of vascular endothelial growth factor. Finally, transplanted neural stem cells with hypoxic preconditioning exhibited enhanced tissue-protective capability that accelerated behavioral recovery. Our results suggest that hypoxic preconditioning in neural stem cells improves efficacy of stem cell therapy for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Takuma Wakai
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Purnima Narasimhan
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Hiroyuki Sakata
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hideyuki Yoshioka
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan
| | - Hiroyuki Kinouchi
- Department of Neurosurgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan
| | - Pak H Chan
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Feng J, Wang W. Hypoxia pretreatment and EPO-modification enhance the protective effects of MSC on neuron-like PC12 cells in a similar way. Biochem Biophys Res Commun 2016; 482:232-238. [PMID: 27845038 DOI: 10.1016/j.bbrc.2016.11.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) based cell transplantation therapy is proved to be an attractive strategy with great potential for improvement of hypoxia induced neural damage. In the present study, MSCs were co-culture with PC12 to investigate its protective effects against hypoxia pretreatment, and the Lactate dehydrogenase (LDH) release assay, MTT and Anexin V staining were performed to analysis the cellular damage or apoptotic. RT-PCR and Western blotting were further used to investigate the underlying mechanism. The results indicate that hypoxia treatment results in the decrease of PC12 cell viability, yet co-culture with MSC could protect the PC12 from hypoxia induced damage. Hypoxia pre-activated or EPO transduced MSC with up-regulated erythropoietin (EPO) expression could further enhance MSC's protective effect against hypoxia induced cell damage, which was associated with high level of anti-apoptotic p-Akt and ration Bcl-2/Bax, and decreased Caspase 3 in PC12. Taken together, these data suggests high levels of MSC-mediated cyto-protection is closely tied to high gene expression levels of EPO. The up-regulation of EPO for enhanced MSC-mediated cyto-protection may has great potential for the MSC cellular therapy of neural or neuronal injuries induced by hypoxia.
Collapse
Affiliation(s)
- Jinli Feng
- Department of Neurology, The 309th Hospital of PLA, NO17, Heishanhu Road, Haidian District, Beijing, China.
| | - Wei Wang
- Department of Neurology, The 309th Hospital of PLA, NO17, Heishanhu Road, Haidian District, Beijing, China.
| |
Collapse
|
27
|
Stiers PJ, van Gastel N, Carmeliet G. Targeting the hypoxic response in bone tissue engineering: A balance between supply and consumption to improve bone regeneration. Mol Cell Endocrinol 2016; 432:96-105. [PMID: 26768117 DOI: 10.1016/j.mce.2015.12.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022]
Abstract
Bone tissue engineering is a promising therapeutic alternative for bone grafting of large skeletal defects. It generally comprises an ex vivo engineered combination of a carrier structure, stem/progenitor cells and growth factors. However, the success of these regenerative implants largely depends on how well implanted cells will adapt to the hostile and hypoxic host environment they encounter after implantation. In this review, we will discuss how hypoxia signalling may be used to improve bone regeneration in a tissue-engineered construct. First, hypoxia signalling induces angiogenesis which increases the survival of the implanted cells as well as stimulates bone formation. Second, hypoxia signalling has also angiogenesis-independent effects on mesenchymal cells in vitro, offering exciting new possibilities to improve tissue-engineered bone regeneration in vivo. In addition, studies in other fields have shown that benefits of modulating hypoxia signalling include enhanced cell survival, proliferation and differentiation, culminating in a more potent regenerative implant. Finally, the stimulation of endochondral bone formation as a physiological pathway to circumvent the harmful effects of hypoxia will be briefly touched upon. Thus, angiogenic dependent and independent processes may counteract the deleterious hypoxic effects and we will discuss several therapeutic strategies that may be combined to withstand the hypoxia upon implantation and improve bone regeneration.
Collapse
Affiliation(s)
- Pieter-Jan Stiers
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Yu Y, Zhou Y, Cheng T, Lu X, Yu K, Zhou Y, Hong J, Chen Y. Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system. Cell Prolif 2016; 49:173-84. [PMID: 27021233 DOI: 10.1111/cpr.12250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Tissue engineering is a promising approach for repair of tendon injuries. Adipose-derived mesenchymal stem cells (ADMSCs) have gained increasing research interest for their potential in improving healing and regeneration of injured tendons. The present study aimed to investigate effects of O2 tension and potential signalling pathways on AMDSC differentiation into tenocytes, in an indirect co-culture system. MATERIALS AND METHODS Human ADMSCs were co-cultured under normoxia (20% O2 ) and also under hypoxia (2% O2 ). Tenocyte differentiation of AMDSCs and expression of hypoxia-inducible factor-1 (HIF-1α) were analysed by reverse transcription-PCR, Western blotting and immunohistochemistry. Furthermore, HIF-1α inhibitor and inducer (FG-4592) effects on differentiation of AMDSCs were studied using qPCR, immunofluorescence and Western blotting. RESULTS Indirect co-culture with tenocytes increased differentiation of ADMSCs into tenocytes; furthermore, hypoxia further enhanced tenocyte differentiation of AMDSCs, accompanied by increased expression of HIF-1α. HIF-1α inhibitor attenuated effects of hypoxia on differentiation of ADMSCs; in contrast, FG-4592 increased differentiation of ADMSCs under both hypoxia and normoxia. CONCLUSIONS Taken together, we found that growing ADMSCs under hypoxia, or activating expression of HIF-1α to be important in differentiation of ADMSCs, which provides a foundation for application of ADMSCs in vivo for tendon regeneration.
Collapse
Affiliation(s)
- Yang Yu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaolang Lu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kehe Yu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jianjun Hong
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ying Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
29
|
Harvey AJ, Rathjen J, Yu LJ, Gardner DK. Oxygen modulates human embryonic stem cell metabolism in the absence of changes in self-renewal. Reprod Fertil Dev 2016; 28:446-58. [DOI: 10.1071/rd14013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022] Open
Abstract
Human embryonic stem (ES) cells are routinely cultured under atmospheric oxygen (~20%), a concentration that is known to impair embryo development in vitro and is likely to be suboptimal for maintaining human ES cells compared with physiological (~5%) oxygen conditions. Conflicting reports exist on the effect of oxygen during human ES cell culture and studies have been largely limited to characterisation of typical stem cell markers or analysis of global expression changes. This study aimed to identify physiological markers that could be used to evaluate the metabolic impact of oxygen on the MEL-2 human ES cell line after adaptation to either 5% or 20% oxygen in extended culture. ES cells cultured under atmospheric oxygen displayed decreased glucose consumption and lactate production when compared with those cultured under 5% oxygen, indicating an overall higher flux of glucose through glycolysis under physiological conditions. Higher glucose utilisation at 5% oxygen was accompanied by significantly increased expression of all glycolytic genes analysed. Analysis of amino acid turnover highlighted differences in the consumption of glutamine and threonine and in the production of proline. The expression of pluripotency and differentiation markers was, however, unaltered by oxygen and no observable difference in proliferation between cells cultured in 5% and 20% oxygen was seen. Apoptosis was elevated under 5% oxygen conditions. Collectively these data suggest that culture conditions, including oxygen concentration, can significantly alter human ES cell physiology with coordinated changes in gene expression, in the absence of detectable alterations in undifferentiated marker expression.
Collapse
|
30
|
Fan L, Zhang C, Yu Z, Shi Z, Dang X, Wang K. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and osteogenesis in rabbit femoral head osteonecrosis. Bone 2015; 81:544-553. [PMID: 26363339 DOI: 10.1016/j.bone.2015.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Osteonecrosis of the femoral head may be a disease resulting from abnormal proliferation or differentiation of mesenchymal stem cells. The present investigation explored the novel strategy of hypoxia-preconditioned BMMSCs to reverse the impairment of osteonecrosis BMMSCs and enhance the therapeutic potential of hypoxia-treated BMMSC transplantation. METHODS BMMSCs from the anterior superior iliac spine region of osteonecrosis rabbit were cultured under 20% O2 or 2% O2 conditions. Normal BMMSCs were cultured under 20% O2 condition as control. Growth factors secreted were examined by enzyme-linked immunosorbent assay. 20% O2 or 2% O2 BMMSCs were injected into the femoral head of rabbits after core decompression. Cell viability and apoptosis were assessed in vitro, and TUNEL staining of the femoral head was analyzed after transplantation. Angiogenesis (capillary-like structure formation, CD31 immunohistochemical staining and ink infusion angiography) and osteogenesis (Alizarin red-S staining, micro-CT scanning and OCN immunohistochemical staining) tests were conducted as well. RESULTS 2% O2 exposure up-regulated growth factor secretion in BMMSCs. Apoptosis in 2% O2 group was lower when compared with that in 20% O2 osteonecrosis group. Cell viability in 2% O2 was significantly higher when compared with that in 20% O2 osteonecrosis group. Growth factor secretion, cell viability, apoptosis, capillary-like structure formation, Alizarin red-S staining, and ALP staining showed no difference between the 2% O2 BMMSC and normal BMMSC groups. Transplantation of 2% O2 versus 20% O2 mesenchymal stem cells after core decompression resulted in an increase in angiogenesis function and a decrease in local tissue apoptosis. Our study also found that osteogenesis function was improved after hypoxic stem cell transplantation. CONCLUSION Hypoxic preconditioning of BMMSCs is an effective means of reversing the impairment of osteonecrosis BMMSCs, promoting their regenerative capability and therapeutic potential for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Chen Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zefeng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Zhibin Shi
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
31
|
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated significant potentials for the treatment of inflammatory bowel disease. Clinical feasible methods to individually document the MSC recruitment to intestinal mucosa is lacking. Here, we proposed that endomicroscopy could noninvasively track MSCs in vivo at cellular resolution. METHOD Isolated Sprague Dawley rat MSC was characterized, fluorescently labeled, and imaged ex vivo using an endomicroscope. Then enhanced green fluorescent protein (eGFP)-labeled MSC was tracked in vivo, and acquired images were compared with immunofluorescence, immunohistology, and fluorescent in situ hybridization results. RESULTS Endomicroscopy visualized clearly the eGFP-labeled or carboxyfluorescein succinimidyl ester-stained MSC ex vivo. Endomicroscopy using the FIVE1 system could track eGFP-labeled MSC with distinct in vivo features. Immunofluorescence, immunohistochemistry, and fluorescent in situ hybridization confirmed the presence of eGFP-positive cells. In vivo endomicroscopy could quantify the transplanted MSCs that homed to colonic mucosa of the recipient rat in multiple models, including the rat-to-rat allograft, human-to-rat xenograft, hypoxia-induced MSC, and busulfan immunosuppressed recipient rat models. After hypoxia induction, there was a trend of enhanced rat MSC homing to the inflamed mucosa as visualized by endomicroscopy (114.1 in hypoxia group versus 34.3 in other 3 groups combined, t = 2.14, P = 0.0644). CONCLUSIONS Endomicroscopy is a novel and promising tool to track transplanted MSCs to the colonic mucosa. This clinical available noninvasive cellular tracking method may provide new insight to individualize each recipient's regimen in the future.
Collapse
|
32
|
Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. PROGRESS IN BRAIN RESEARCH 2015; 218:15-54. [PMID: 25890131 DOI: 10.1016/bs.pbr.2014.12.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the big challenges in neuroscience that remains to be understood is why the central nervous system is not able to regenerate to the extent that the peripheral nervous system does. This is especially problematic after traumatic injuries, like spinal cord injury (SCI), since the lack of regeneration leads to lifelong deficits and paralysis. Treatment of SCI has improved during the last several decades due to standardized protocols for emergency medical response teams and improved medical, surgical, and rehabilitative treatments. However, SCI continues to result in profound impairments for the individual. There are many processes that lead to the pathophysiology of SCI, such as ischemia, vascular disruption, neuroinflammation, oxidative stress, excitotoxicity, demyelination, and cell death. Current treatments include surgical decompression, hemodynamic control, and methylprednisolone. However, these early treatments are associated with modest functional recovery. Some treatments currently being investigated for use in SCI target neuroprotective (riluzole, minocycline, G-CSF, FGF-2, and polyethylene glycol) or neuroregenerative (chondroitinase ABC, self-assembling peptides, and rho inhibition) strategies, while many cell therapies (embryonic stem cells, neural stem cells, induced pluripotent stem cells, mesenchymal stromal cells, Schwann cells, olfactory ensheathing cells, and macrophages) have also shown promise. However, since SCI has multiple factors that determine the progress of the injury, a combinatorial therapeutic approach will most likely be required for the most effective treatment of SCI.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
34
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
35
|
Zhang C, He X, Li H, Wang G. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury. Neural Regen Res 2014; 8:965-74. [PMID: 25206389 PMCID: PMC4145889 DOI: 10.3969/j.issn.1673-5374.2013.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/20/2013] [Indexed: 01/09/2023] Open
Abstract
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Guoyu Wang
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
36
|
Abstract
Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
37
|
Choi YC, Choi JS, Woo CH, Cho YW. Stem cell delivery systems inspired by tissue-specific niches. J Control Release 2014; 193:42-50. [PMID: 24979211 DOI: 10.1016/j.jconrel.2014.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022]
Abstract
Since stem cells have the capacity to differentiate into a variety of cell types, stem cell delivery systems (SCDSs) can be effective therapeutic strategies for a multitude of diseases and disorders. For stem cell-based therapy, stem cells are introduced directly (or peripherally) into a target tissue via different delivery systems. Despite initial promising results obtained from preclinical studies, a number of technical hurdles must be overcome for ultimate clinical utility of stem cells. A key aspect of SCDSs is how to create local environments, called stem cell niches, for improvement of survival and engraftment as well as the fate of transplanted stem cells. The stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues play a guidance role to modulate stem cell behaviors such as adhesion, proliferation, and differentiation. Recent studies have tried to decipher the complex interplay between stem cells and niches, and thereafter to engineer SCDS, mimicking dynamic stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues. Here, we discuss the biological role of stem cell niches and highlight recent progress in SCDS to mimic stem cell niches, particularly focusing on important biomaterial properties for modulating stem cell fate.
Collapse
Affiliation(s)
- Young Chan Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Chang Hee Woo
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea.
| |
Collapse
|
38
|
Electro-Acupuncture Promotes the Survival and Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Pre-Induced with Neurotrophin-3 and Retinoic Acid in Gelatin Sponge Scaffold after Rat Spinal Cord Transection. Stem Cell Rev Rep 2014; 10:612-25. [DOI: 10.1007/s12015-014-9513-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Martinez AMB, Goulart CDO, Ramalho BDS, Oliveira JT, Almeida FM. Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells 2014; 6:179-94. [PMID: 24772245 PMCID: PMC3999776 DOI: 10.4252/wjsc.v6.i2.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy has attracted the attention of scientists and clinicians around the world. Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury. These effects are believed to be due to their ability to differentiate into other cell lineages, modulate inflammatory and immunomodulatory responses, reduce cell apoptosis, secrete several neurotrophic factors and respond to tissue injury, among others. There are many pre-clinical studies on MSC treatment for spinal cord injury (SCI) and peripheral nerve injuries. However, the same is not true for clinical trials, particularly those concerned with nerve trauma, indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions. As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies. For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes. This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now. At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves, respectively.
Collapse
Affiliation(s)
- Ana Maria Blanco Martinez
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Camila de Oliveira Goulart
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Bruna Dos Santos Ramalho
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Júlia Teixeira Oliveira
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells 2014; 6:120-133. [PMID: 24772239 PMCID: PMC3999770 DOI: 10.4252/wjsc.v6.i2.120] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/19/2014] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
With technological advances in basic research, the intricate mechanism of secondary delayed spinal cord injury (SCI) continues to unravel at a rapid pace. However, despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord, the cure for paralysis remains elusive. Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI. Recent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results. An array of mesenchymal stem cells (MSCs) from various sources with novel and promising strategies are being developed to improve function after SCI. In this review, we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI. We will discuss the progress of MSCs application in research, focusing on the neuroprotective properties of MSCs. Finally, we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI.
Collapse
|
41
|
Xiong H, Bai C, Wu S, Gao Y, Lu T, Hu Q, Guan W, Ma Y. Biological characterization of mesenchymal stem cells from bovine umbilical cord. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.880370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
42
|
Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials 2014; 35:3956-74. [PMID: 24560461 DOI: 10.1016/j.biomaterials.2014.01.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide and is associated with irreversible cardiomyocyte death and pathological remodeling of cardiac tissue. In the past 15 years, several animal models have been developed for pre-clinical testing to assess the potential of stem cells for functional tissue regeneration and the attenuation of left ventricular remodeling. The promising results obtained in terms of improved cardiac function, neo-angiogenesis and reduction in infarct size have motivated the initiation of clinical trials in humans. Despite the potential, the results of these studies have highlighted that the effective delivery and retention of viable cells within the heart remain significant challenges that have limited the therapeutic efficacy of cell-based therapies for treating the ischemic myocardium. In this review, we discuss key elements for designing clinically translatable cell-delivery approaches to promote myocardial regeneration. Key topics addressed include cell selection, with a focus on mesenchymal stem cells derived from the bone marrow (bMSCs) and adipose tissue (ASCs), including a discussion of their potential mechanisms of action. Natural and synthetic biomaterials that have been investigated as injectable cell delivery vehicles for cardiac applications are critically reviewed, including an analysis of the role of the biomaterials themselves in the therapeutic scheme.
Collapse
|
43
|
Kang S, Kim SM, Sung JH. Cellular and molecular stimulation of adipose-derived stem cells under hypoxia. Cell Biol Int 2014; 38:553-62. [DOI: 10.1002/cbin.10246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Sangjin Kang
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
| | - Soo-Min Kim
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
| | - Jong-Hyuk Sung
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
- Department of Pharmacy; Yonsei University; Incheon Republic of Korea
| |
Collapse
|
44
|
Hsiao ST, Dilley RJ, Dusting GJ, Lim SY. Ischemic preconditioning for cell-based therapy and tissue engineering. Pharmacol Ther 2013; 142:141-53. [PMID: 24321597 DOI: 10.1016/j.pharmthera.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/02/2013] [Indexed: 01/07/2023]
Abstract
Cell- and tissue-based therapies are innovative strategies to repair and regenerate injured hearts. Despite major advances achieved in optimizing these strategies in terms of cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. The non-genetic approach of ischemic/hypoxic preconditioning to enhance cell- and tissue-based therapies has received much attention in recent years due to its non-invasive drug-free application. Here we discuss the current development of hypoxic/ischemic preconditioning to enhance stem cell-based cardiac repair and regeneration.
Collapse
Affiliation(s)
- Sarah T Hsiao
- Department of Cardiovascular Science, University of Sheffield, United Kingdom
| | - Rodney J Dilley
- Ear Science Institute Australia and Ear Sciences Centre, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia; Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia
| | - Shiang Y Lim
- Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia.
| |
Collapse
|
45
|
Chung DJ, Wong A, Hayashi K, Yellowley CE. Effect of hypoxia on generation of neurospheres from adipose tissue-derived canine mesenchymal stromal cells. Vet J 2013; 199:123-30. [PMID: 24252224 DOI: 10.1016/j.tvjl.2013.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/29/2022]
Abstract
Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are good candidates for cell therapy due to the accessibility of fat tissue and the abundance of AT-MSCs therein. Neurospheres are free-floating spherical condensations of cells with neural stem/progenitor cell (NSPC) characteristics that can be derived from AT-MSCs. The aims of this study were to examine the influence of oxygen (O2) tension on generation of neurospheres from canine AT-MSCs (AT-cMSCs) and to develop a hypoxic cell culture system to enhance the survival and therapeutic benefit of generated neurospheres. AT-cMSCs were cultured under varying oxygen tensions (1%, 5% and 21%) in a neurosphere culture system. Neurosphere number and area were evaluated and NSPC markers were quantified using real-time quantitative PCR (qPCR). Effects of oxygen on neurosphere expression of hypoxia inducible factor 1, α subunit (HIF1A) and its target genes, erythropoietin receptor (EPOR), chemokine (C-X-C motif) receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF), were quantified by qPCR. Neural differentiation potential was evaluated in 21% O2 by cell morphology and qPCR. Neurospheres were successfully generated from AT-cMSCs at all O2 tensions. Expression of nestin mRNA (NES) was significantly increased after neurosphere culture and was significantly higher in 1% O2 compared to 5% and 21% O2. Neurospheres cultured in 1% O2 had significantly increased levels of VEGF and EPOR. There was a significant increase in CXCR4 expression in neurospheres generated at all O2 tensions. Neurosphere culture under hypoxia had no negative effect on subsequent neural differentiation. This study suggests that generation of neurospheres under hypoxia could be beneficial when considering these cells for neurological cell therapies.
Collapse
Affiliation(s)
- D J Chung
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - A Wong
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - K Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - C E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
46
|
Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells. Cell Tissue Res 2013; 354:471-80. [DOI: 10.1007/s00441-013-1719-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/06/2013] [Indexed: 01/12/2023]
|
47
|
Stacpoole SRL, Webber DJ, Bilican B, Compston A, Chandran S, Franklin RJM. Neural precursor cells cultured at physiologically relevant oxygen tensions have a survival advantage following transplantation. Stem Cells Transl Med 2013; 2:464-72. [PMID: 23677643 DOI: 10.5966/sctm.2012-0144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Traditionally, in vitro stem cell systems have used oxygen tensions that are far removed from the in vivo situation. This is particularly true for the central nervous system, where oxygen (O2) levels range from 8% at the pia to 0.5% in the midbrain, whereas cells are usually cultured in a 20% O2 environment. Cell transplantation strategies therefore typically introduce a stress challenge at the time of transplantation as the cells are switched from 20% to 3% O2 (the average in adult organs). We have modeled the oxygen stress that occurs during transplantation, demonstrating that in vitro transfer of neonatal rat cortical neural precursor cells (NPCs) from a 20% to a 3% O2 environment results in significant cell death, whereas maintenance at 3% O2 is protective. This survival benefit translates to the in vivo environment, where culture of NPCs at 3% rather than 20% O2 approximately doubles survival in the immediate post-transplantation phase. Furthermore, NPC fate is affected by culture at low, physiological O2 tensions (3%), with particularly marked effects on the oligodendrocyte lineage, both in vitro and in vivo. We propose that careful consideration of physiological oxygen environments, and particularly changes in oxygen tension, has relevance for the practical approaches to cellular therapies.
Collapse
Affiliation(s)
- Sybil R L Stacpoole
- Department of Clinical Neurosciences, University Medical Center, the Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Liu L, Gao J, Yuan Y, Chang Q, Liao Y, Lu F. Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol Int 2013; 37:551-60. [PMID: 23505143 DOI: 10.1002/cbin.10097] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/22/2013] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells found in bone marrow, adipose tissue, and other adult tissues. MSCs improve regeneration of injured tissues in vivo, but the mechanisms remain unclear. Typically, MSCs are cultured under ambient or normoxic conditions (21% O2 ). However, the physiological niches of MSCs have much lower oxygen tension. When used as a therapeutic tool to repair tissue injuries, MSCs cultured in standard conditions must adapt from 21% O2 in culture to <1% O2 in ischemic tissue. We have examined the effects of hypoxia preconditioning (1% O2 ) in human adipose derived mesenchymal stem cells (AD-MSCs) to discover the conditions that best enhance their tissue regenerative potential. We demonstrate that AD-MSCs respond positively to hypoxia compared with normoxia preconditioning, show decreased apoptosis even in severe microenvironmental conditions (such as a low-serum medium), and an increased expression of the angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor. Human umbilical vein endothelial cells have higher vitality and lower apoptosis when cultured in medium taken from hypoxia-preconditioned AD-MSCs, as well as significantly increased capillary-like structures with this medium on Matrigel. The data suggest that hypoxia preconditioned AD-MSCs can improve tissue regeneration.
Collapse
Affiliation(s)
- Linqi Liu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
49
|
Direct GSK-3β inhibition enhances mesenchymal stromal cell migration by increasing expression of β-PIX and CXCR4. Mol Neurobiol 2013; 47:811-20. [PMID: 23288365 DOI: 10.1007/s12035-012-8393-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are emerging as candidate cells for the treatment of neurological diseases because of their neural replacement, neuroprotective, and neurotrophic effects. However, the majority of MSCs transplanted by various routes fail to reach the site of injury, and they have demonstrated only minimal therapeutic benefit in clinical trials. Therefore, enhancing the migration of MSCs to target sites is essential for this therapeutic strategy to be effective. In this study, we assessed whether inhibition of glycogen synthase kinase-3β (GSK-3β) increases the migration capacity of MSCs during ex vivo expansion. Human bone marrow MSCs (hBM-MSCs) were cultured with various GSK-3β inhibitors (LiCl, SB-415286, and AR-A014418). Using a migration assay kit, we found that the motility of hBM-MSCs was significantly enhanced by GSK-3β inhibition. Western blot analysis revealed increased levels of migration-related signaling proteins such as phospho-GSK-3β, β-catenin, phospho-c-Raf, phospho-extracellular signal-regulated kinase (ERK), phospho-β-PAK-interacting exchange factor (PIX), and CXC chemokine receptor 4 (CXCR4). In addition, real-time polymerase chain reaction demonstrated increased expression of matrix metalloproteinase-2 (MMP-2), membrane-type MMP-1 (MT1-MMP), and β-PIX. In the reverse approach, treatment with β-PIX shRNA or CXCR4 inhibitor (AMD 3100) reduced hBM-MSC migration. These findings suggest that inhibition of GSK-3β during ex vivo expansion of hBM-MSCs may enhance their migration capacity by increasing expression of β-catenin, phospho-c-Raf, phospho-ERK, and β-PIX and the subsequent up-regulation of CXCR4. Enhancing the migration capacity of hBM-MSCs by treating these cells with GSK-3β inhibitors may increase their therapeutic potential.
Collapse
|
50
|
Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J Trauma Acute Care Surg 2012; 73:1161-7. [DOI: 10.1097/ta.0b013e318265d128] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|