1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 PMCID: PMC11918480 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
|
2
|
Gottlieb S, van der Vaart A, Hassan A, Bledsoe D, Morgan A, O'Rourke B, Rogers WD, Wolstenholme JT, Miles MF. A Selective GSK3β Inhibitor, Tideglusib, Decreases Intermittent Access and Binge Ethanol Self-Administration in C57BL/6J Mice. Addict Biol 2025; 30:e70044. [PMID: 40390305 DOI: 10.1111/adb.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/07/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Over 10% of the US population over 12 years old meets criteria for alcohol use disorder (AUD), yet few effective, long-term treatments are currently available. Glycogen synthase kinase 3-beta (GSK3β) has been implicated in ethanol behaviours and poses as a potential therapeutic target in the treatment of AUD. Here, we investigated the preclinical evidence for tideglusib, a clinically available selective GSK3β inhibitor, in modulating chronic and binge ethanol consumption. Tideglusib decreased ethanol consumption in both a model of daily, progressive ethanol intake (two-bottle choice, intermittent ethanol access) and binge-like drinking behaviour (drinking in the dark) without effecting water intake. With drinking in the dark, tideglusib was more potent in males (ED50 = 64.6, CI = 58.9-70.8) than females (ED50 = 79.4, CI = 70.8-93.3). Further, we found tideglusib had no effect on ethanol pharmacokinetics, taste preference or anxiety-like behaviour, although there was a transient increase in total locomotion following treatment. Additionally, tideglusib treatment did not alter liver function as measured by serum activity of alanine aminotransferase and aspartate aminotransferase but did cause a decrease in serum alkaline phosphatase activity. RNA sequencing analysis of tideglusib actions on ethanol consumption revealed alterations in genes involved in synaptic plasticity and transmission, as well as genes downstream of the canonical Wnt signalling pathway, suggesting tideglusib may modulate ethanol consumption via β-catenin binding to the transcription factors TCF3 and LEF1. The data presented here further implicate GSK3β in alcohol consumption and support the use of tideglusib as a potential therapeutic in the treatment of AUD.
Collapse
Affiliation(s)
- Sam Gottlieb
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Program in Neuroscience, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Andrew van der Vaart
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Annalise Hassan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Douglas Bledsoe
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Alanna Morgan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brennen O'Rourke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Walker D Rogers
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
3
|
Ruszczak A, Poznański P, Leśniak A, Łazarczyk M, Skiba D, Nawrocka A, Gaweł K, Paszkiewicz J, Mickael ME, Sacharczuk M. Susceptibility to Pentylenetetrazole-Induced Seizures in Mice with Distinct Activity of the Endogenous Opioid System. Int J Mol Sci 2024; 25:6978. [PMID: 39000086 PMCID: PMC11241619 DOI: 10.3390/ijms25136978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.
Collapse
Affiliation(s)
- Anna Ruszczak
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Leśniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-697 Warsaw, Poland
| | - Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Kinga Gaweł
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500 Biała Podlaska, Poland
| | - Michel-Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-697 Warsaw, Poland
| |
Collapse
|
4
|
Gottlieb S, van der Vaart A, Hassan A, Bledsoe D, Morgan A, O'Rourke B, Rogers WD, Wolstenholme JT, Miles MF. A selective GSK3β inhibitor, tideglusib, decreases intermittent access and binge ethanol self-administration in C57BL/6J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593949. [PMID: 38798478 PMCID: PMC11118361 DOI: 10.1101/2024.05.13.593949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Over 10% of the US population over 12 years old meets criteria for Alcohol Use Disorder (AUD), yet few effective, long-term treatments are currently available. Glycogen synthase kinase 3 beta (GSK3β) has been implicated in ethanol behaviors and poses as a potential therapeutic target in the treatment of AUD. Here we investigate the role of tideglusib, a selective GSK3β inhibitor, in ethanol consumption and other behaviors. We have shown tideglusib decreases ethanol consumption in both a model of daily, progressive ethanol intake (two-bottle choice, intermittent ethanol access) and binge-like drinking behavior (drinking-in-the-dark) without effecting water intake. Further, we have shown tideglusib to have no effect on ethanol pharmacokinetics, taste preference, or anxiety-like behavior, though there was a transient increase in total locomotion following treatment. Additionally, we assessed liver health following treatment via serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and showed no effect on aminotransferase levels though there was a decrease in alkaline phosphatase. RNA sequencing studies revealed a role of GSK3β inhibition via tideglusib on the canonical Wnt signaling pathway, suggesting tideglusib may carry out its effects on ethanol consumption through effects on β-catenin binding to the transcription factors TCF3 and LEF1. The data presented here further implicate GSK3β in alcohol consumption and support the use of tideglusib as a potential therapeutic in the treatment of AUD.
Collapse
|
5
|
Moradi Jafari A, Hassanpourezatti M. Influence of methadone on the anticonvulsant efficacy of valproate sodium gabapentin against maximal electroshock seizure in mice by regulation of brain MDA TNF-α. Front Neurol 2022; 13:920107. [PMID: 36081867 PMCID: PMC9445582 DOI: 10.3389/fneur.2022.920107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Methadone is the most frequently used opioid therapy worldwide, with controversial effects on oxidative stress homeostasis. This study investigated the effects of intraperitoneal (i.p.) co-administration of methadone (0.1, 0.3, 1, and 3 mg/kg) and valproate sodium (300 mg/kg) or gabapentin (50 mg/kg) in the mice maximal electroshock (MES)-induced seizure model. The adverse effect of drugs was assessed using the chimney test. The levels of tumor necrosis factor-alpha (TNF-α) and malondialdehyde (MDA) contents were measured in mice brains after a single seizure. Administration of methadone alone resulted in a significant reduction in the duration of hind limb extension (HLE) than that in the control group. Methadone pretreatment at doses of 0.1 and 0.3 mg/kg i.p. decreased, and at doses of 1 and 3 mg/kg i.p. had an increasing effect on anticonvulsant efficacy of gabapentin. Pretreatment with all doses of methadone significantly decreased the valproate anticonvulsive efficacy. At doses of 1 and 3 mg/kg i.p. methadone per se increased brain MDA levels after MES-induced seizure. Administration of methadone (0.3 mg/kg i.p.) enhanced and at 3 mg/kg decreased gabapentin effect on brain MDA level, but their co-treatment did not lead to further increase in MDA. Methadone at 0.3–3 mg/kg enhanced the effect of sodium valproate on MDA levels in the brain, but at all doses significantly potentiated its effect on brain TNF-α levels. The drugs did not produce any side effects on motor coordination in experimental animals. In conclusion, methadone showed different effects on anticonvulsant actions of gabapentin and valproate through regulation of brain levels of MDA and TNF-α.
Collapse
|
6
|
He XT, Hu XF, Zhu C, Zhou KX, Zhao WJ, Zhang C, Han X, Wu CL, Wei YY, Wang W, Deng JP, Chen FM, Gu ZX, Dong YL. Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. J Neuroinflammation 2020; 17:125. [PMID: 32321538 PMCID: PMC7175547 DOI: 10.1186/s12974-020-01740-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Robust activation of glial cells has been reported to occur particularly during the pathogenesis of bone cancer pain (BCP). Researchers from our group and others have shown that histone deacetylases (HDACs) play a significant role in modulating glia-mediated immune responses; however, it still remains unclear whether HDACs are involved in the activation of glial cells during the development of BCP. METHODS BCP model was established by intra-tibia tumor cell inoculation (TCI). The expression levels and distribution sites of histone deacetylases (HDACs) in the spinal dorsal horn and dorsal root ganglia were evaluated by Western blot and immunofluorescent staining, respectively. Suberoylanilide hydroxamic acid (SAHA), a clinically used HDAC inhibitor, was then intraperitoneally and intrathecally injected to rescue the increased expression levels of HDAC1 and HDAC2. The analgesic effects of SAHA administration on BCP were then evaluated by measuring the paw withdrawal thresholds (PWTs). The effects of SAHA on activation of glial cells and expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the spinal dorsal horn and dorsal root ganglia of TCI rats were further evaluated by immunofluorescent staining and Western blot analysis. Subsequently, the effects of SAHA administration on tumor growth and cancer cell-induced bone destruction were analyzed by hematoxylin and eosin (HE) staining and micro-CT scanning. RESULTS TCI caused rapid and long-lasting increased expression of HDAC1/HDAC2 in glial cells of the spinal dorsal horn and dorsal root ganglia. Inhibiting HDACs by SAHA not only reversed TCI-induced upregulation of HDACs but also inhibited the activation of glial cells in the spinal dorsal horn and dorsal root ganglia, and relieved TCI-induced mechanical allodynia. Further, we found that SAHA administration could not prevent cancer infiltration or bone destruction in the tibia, which indicated that the analgesic effects of SAHA were not due to its anti-tumor effects. Moreover, we found that SAHA administration could inhibit GSK3β activity in the spinal dorsal horn and dorsal root ganglia, which might contributed to the relief of BCP. CONCLUSION Our findings suggest that HDAC1 and HDAC2 are involved in the glia-mediated neuroinflammation in the spinal dorsal horn and dorsal root ganglia underlying the pathogenesis of BCP, which indicated that inhibiting HDACs by SAHA might be a potential strategy for pain relief of BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao-Fan Hu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chao Zhu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao Han
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chang-Le Wu
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan-Yan Wei
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
7
|
Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT 2C receptor expression in female rats. Neuropharmacology 2019; 165:107926. [PMID: 31883927 DOI: 10.1016/j.neuropharm.2019.107926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Sodium valproate (VPA) has analgesic effects in clinical and experimental studies, but the mechanisms are still unclear. The present study examined the effects of VPA on stress-induced somatic hyperalgesia and visceral hypersensitivity and the role of 5-HT2C receptors in the spinal cord. Repeated 3 day forced swim (FS) significantly reduced the thermal withdrawal latency and mechanical withdrawal threshold, and increased the magnitude of the visceromotor response to colorectal distention compared to the baseline values in rats. The somatic hyperalgesia and visceral hypersensitivity were accompanied by significant down-regulation of 5-HT2C receptor expression in the L4-L5 and L6-S1 dorsal spinal cord. Intraperitoneal administration of VPA (300 mg/kg) before each FS and 1 day post FS prevented the development of somatic hyperalgesia and visceral hypersensitivity induced by FS stress, as well as down-regulation of 5-HT2C receptors in the spinal cord. The reversal of somatic hyperalgesia and visceral hypersensitivity by VPA in FS rats was blocked by intrathecal administration of the selective 5-HT2C receptor antagonist RS-102221 (30 μg/10 μL) 30 min after each VPA injection. The results suggest that VPA attenuates FS-induced somatic hyperalgesia and visceral hypersensitivity by restoring down-regulated function of 5-HT2C receptors in the spinal cord.
Collapse
|
8
|
Barr JL, Shi X, Zaykaner M, Unterwald EM. Glycogen Synthase Kinase 3β in the Ventral Hippocampus is Important for Cocaine Reward and Object Location Memory. Neuroscience 2019; 425:101-111. [PMID: 31783102 DOI: 10.1016/j.neuroscience.2019.10.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
The ventral hippocampus is a component of the neural circuitry involved with context-associated memory for reward and generation of appropriate behavioral responses to context. Glycogen synthase kinase 3 beta (GSK3β) has been linked to the maintenance of synaptic plasticity, contextual memory retrieval, and is involved in the reconsolidation of cocaine-associated contextual memory. In this study, the effects of targeted downregulation of GSK3β in the ventral hippocampus were examined on a series of behavioral tests for assessing drug reward-context association and non-reward related memory. The Cre/loxP site-specific recombination system was used to knockdown GSK3β through bilateral stereotaxic delivery of an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the ventral hippocampus of adult mice homozygous for a floxed GSK3β allele. GSK3β floxed mice injected with AAV-Cre had a loss of 56-75% of GSK3β in the ventral hippocampus and displayed diminished development of cocaine conditioned place preference, but not morphine place preference as compared with wild-type mice injected with AAV-Cre or GSK3β floxed mice injected with a control virus, AAV-GFP. Impaired object location memory was observed in mice with GSK3β downregulation in the ventral hippocampus, but novel object recognition remained intact. These results indicate that GSK3β signaling in the ventral hippocampus is differentially involved in the formation of place-drug reward association dependent upon drug class. Additionally, ventral hippocampal GSK3β signaling is important in detection of discrete spatial cues, but not recognition memory for objects.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Xiangdang Shi
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael Zaykaner
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Department of Pharmacology and the Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
9
|
Çıtak Ekici Ö, Şahiner V, Erzin G, Ocak D, Şahiner ŞY, Göka E. Pregabalin abuse among patients with opioid use disorders may increase the severity of withdrawal symptoms: a single-center, case-control study. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1673946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Özlem Çıtak Ekici
- Merzifon Kara Mustafa Paşa State Hospital, Psychiatry Department, Amasya, Turkey
- Present/permanent work address: Merzifon Kara Mustafa Paşa State Hospital, Psychiatry Department, Amasya, Turkey
| | - Volkan Şahiner
- Ankara Bilkent City Hospital, Psychiatry Department, Ankara, Turkey
| | - Gamze Erzin
- Dışkapı Yıldırım Beyazıt Training and Research Hospital, Psychiatry Department, Ankara, Turkey
| | - Davut Ocak
- Necip Fazıl City Hospital, Psychiatry Department, Kahramanmaraş, Turkey
| | | | - Erol Göka
- Ankara Bilkent City Hospital, Psychiatry Department, Ankara, Turkey
| |
Collapse
|
10
|
He XT, Zhou KX, Zhao WJ, Zhang C, Deng JP, Chen FM, Gu ZX, Li YQ, Dong YL. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats. Front Pharmacol 2018; 9:509. [PMID: 29867508 PMCID: PMC5962808 DOI: 10.3389/fphar.2018.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 01/21/2023] Open
Abstract
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Morphine-Mediated Brain Region-Specific Astrocytosis Involves the ER Stress-Autophagy Axis. Mol Neurobiol 2018; 55:6713-6733. [PMID: 29344928 DOI: 10.1007/s12035-018-0878-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/07/2018] [Indexed: 01/08/2023]
Abstract
A recent study from our lab has revealed a link between morphine-mediated autophagy and synaptic impairment. The current study was aimed at investigating whether morphine-mediated activation of astrocytes involved the ER stress/autophagy axis. Our in vitro findings demonstrated upregulation of GFAP indicating astrocyte activation with a concomitant increase in the production of proinflammatory cytokines in morphine-exposed human astrocytes. Using both pharmacological and gene-silencing approaches, it was demonstrated that morphine-mediated defective autophagy involved upstream activation of ER stress with subsequent downstream astrocyte activation via the μ-opioid receptor (MOR). In vivo validation demonstrated preferential activation of ER stress/autophagy axis in the areas of the brain not associated with pain such as the basal ganglia, frontal cortex, occipital cortex, and the cerebellum of morphine-dependent rhesus macaques, and this correlated with increased astrocyte activation and neuroinflammation. Interventions aimed at blocking either the MOR or ER stress could thus likely be developed as promising therapeutic targets for abrogating morphine-mediated astrocytosis.
Collapse
|
12
|
Ochiai W, Kaneta M, Nagae M, yuzuhara A, Li X, Suzuki H, Hanagata M, Kitaoka S, Suto W, Kusunoki Y, Kon R, Miyashita K, Masukawa D, Ikarashi N, Narita M, Suzuki T, Sugiyama K. Mice with neuropathic pain exhibit morphine tolerance due to a decrease in the morphine concentration in the brain. Eur J Pharm Sci 2016; 92:298-304. [DOI: 10.1016/j.ejps.2016.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/05/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
|
13
|
Uchida H, Matsushita Y, Araki K, Mukae T, Ueda H. Histone deacetylase inhibitors relieve morphine resistance in neuropathic pain after peripheral nerve injury. J Pharmacol Sci 2015; 128:208-11. [DOI: 10.1016/j.jphs.2015.07.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022] Open
|
14
|
Con-T[M8Q] potently attenuates the expression and development of morphine tolerance in mice. Neurosci Lett 2015; 597:38-42. [DOI: 10.1016/j.neulet.2015.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 04/14/2015] [Indexed: 01/14/2023]
|
15
|
Ochiai W, Sugiyama K. [Altered expression of transporter and analgesic of morphine in neuropathic pain mice]. YAKUGAKU ZASSHI 2015; 135:703-8. [PMID: 25948305 DOI: 10.1248/yakushi.14-00234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that morphine is less effective for patients with neuropathic pain, accounting for approximately 70% of cancer patients with severe pain. One of the causes of the decline is reported as a decreased function of the μ-opioid receptor, which binds to the active metabolites of morphine in the mesencephalic ventral tegmental area. However, the details of this mechanism are not understood. We hypothesized that a decrease in the concentration of morphine in the brain reduces its analgesic effect on neuropathic pain, and found that the analgesic effect of morphine was correlated with its concentration in the brain. We examined the reason for the decreased concentration of morphine in the brain in case of neuropathic pain. We discovered increased P-glycoprotein (P-gp) expression in the small intestine, increased expression and activity of UGT2B in the liver, and increased P-gp expression in the brain under conditions of neuropathic pain. In this symposium, we argue that low brain morphine concentration is considered one of the causes of lower sensitivity to morphine in neuropathic pain patients.
Collapse
Affiliation(s)
- Wataru Ochiai
- Department of Clinical Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | | |
Collapse
|
16
|
Masvekar RR, El-Hage N, Hauser KF, Knapp PE. GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Mol Cell Neurosci 2015; 65:11-20. [PMID: 25616162 DOI: 10.1016/j.mcn.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 01/03/2023] Open
Abstract
Infection of the CNS with HIV-1 occurs rapidly after primary peripheral infection. HIV-1 can induce a wide range of neurological deficits, collectively known as HIV-1-associated neurocognitive disorders. Our previous work has shown that the selected neurotoxic effects induced by individual viral proteins, Tat and gp120, and by HIV(+) supernatant are enhanced by co-exposure to morphine. This mimics co-morbid neurological effects observed in opiate-abusing HIV(+) patients. Although there is a correlation between opiate drug abuse and progression of HIV-1-associated neurocognitive disorders, the mechanisms underlying interactions between HIV-1 and opiates remain obscure. Previous studies have shown that HIV-1 induces neurotoxic effects through abnormal activation of GSK3β. Interestingly, expression of GSK3β has shown to be elevated in brains of young opiate abusers indicating that GSK3β is also linked to neuropathology seen with opiate-abusing patients. Thus, we hypothesize that GSK3β activation is a point of convergence for HIV- and opiate-mediated interactive neurotoxic effects. Neuronal cultures were treated with supernatant from HIV-1SF162-infected THP-1 cells, in the presence or absence of morphine and GSK3β inhibitors. Our results show that GSK3β inhibitors, including valproate and small molecule inhibitors, significantly reduce HIV-1-mediated neurotoxic outcomes, and also negate interactions with morphine that result in cell death, suggesting that GSK3β-activation is an important point of convergence and a potential therapeutic target for HIV- and opiate-mediated neurocognitive deficits.
Collapse
Affiliation(s)
- Ruturaj R Masvekar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
17
|
Pregabalin role in inhibition of morphine analgesic tolerance and physical dependency in rats. Eur J Pharmacol 2014; 742:113-7. [DOI: 10.1016/j.ejphar.2014.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
|
18
|
Li YZ, Tang XH, Wang CY, Hu N, Xie KL, Wang HY, Yu YH, Wang GL. Glycogen Synthase Kinase-3β Inhibition Prevents Remifentanil-Induced Postoperative Hyperalgesia via Regulating the Expression and Function of AMPA Receptors. Anesth Analg 2014; 119:978-987. [DOI: 10.1213/ane.0000000000000365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Psychiatric agents and implications for perioperative analgesia. Best Pract Res Clin Anaesthesiol 2014; 28:167-81. [PMID: 24993437 DOI: 10.1016/j.bpa.2014.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/22/2022]
Abstract
The use of antidepressants, anxiolytics, mood stabilizers, anticonvulsants, and major tranquilizers introduces neurochemical, behavioral, cognitive, and emotional factors that increase the complexity of medical and surgical tasks. Increasingly, various classes of psychotropic medications are being prescribed in the perioperative setting for their analgesic properties in patients with or without a psychiatric diagnosis. In many cases, the precise mechanisms of action and dose-response relationships by which these agents mediate analgesia are largely unclear. An appreciation of the side effects and adverse-effect profiles of such medications and familiarity with the clinically relevant drug interactions that may occur in the perioperative setting are imperative to ensure the best possible outcome in dealing with patients on these medications. This review focuses on various classes of psychotropic agents, which are addressed individually, with particular focus on their analgesic properties. The latest published research is summarized, deficiencies in our current collective knowledge are discussed, and evidence-based recommendations are made for clinical practice.
Collapse
|
20
|
Li Y, Wang H, Xie K, Wang C, Yang Z, Yu Y, Wang G. Inhibition of glycogen synthase kinase-3β prevents remifentanil-induced hyperalgesia via regulating the expression and function of spinal N-methyl-D-aspartate receptors in vivo and vitro. PLoS One 2013; 8:e77790. [PMID: 24147079 PMCID: PMC3797695 DOI: 10.1371/journal.pone.0077790] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
A large number of experimental and clinical studies have confirmed that brief remifentanil exposure can enhance pain sensitivity presenting as opioid-induced hyperalgesia (OIH). N-methyl-D-aspartate (NMDA) receptor antagonists have been reported to inhibit morphine analgesic tolerance in many studies. Recently, we found that glycogen synthase kinase-3β (GSK-3β) modulated NMDA receptor trafficking in a rat model of remifentanil-induced postoperative hyperalgesia. In the current study, it was demonstrated that GSK-3β inhibition prevented remifentanil-induced hyperalgesia via regulating the expression and function of spinal NMDA receptors in vivo and in vitro. We firstly investigated the effects of TDZD-8, a selective GSK-3β inhibitor, on thermal and mechanical hyperalgesia using a rat model of remifentanil-induced hyperalgesia. GSK-3β activity as well as NMDA receptor subunits (NR1, NR2A and NR2B) expression and trafficking in spinal cord L4-L5 segments were measured by Western blot analysis. Furthermore, the effects of GSK-3β inhibition on NMDA-induced current amplitude and frequency were studied in spinal cord slices by whole-cell patch-clamp recording. We found that remifentanil infusion at 1 μg·kg(-1)·min(-1) and 2 μg·kg(-1)·min(-1) caused mechanical and thermal hyperalgesia, up-regulated NMDA receptor subunits NR1 and NR2B expression in both membrane fraction and total lysate of the spinal cord dorsal horn and increased GSK-3β activity in spinal cord dorsal horn. GSK-3β inhibitor TDZD-8 significantly attenuated remifentanil-induced mechanical and thermal hyperalgesia from 2 h to 48 h after infusion, and this was associated with reversal of up-regulated NR1 and NR2B subunits in both membrane fraction and total lysate. Furthermore, remifentanil incubation increased amplitude and frequency of NMDA receptor-induced current in dorsal horn neurons, which was prevented with the application of TDZD-8. These results suggest that inhibition of GSK-3β can significantly ameliorate remifentanil-induced hyperalgesia via modulating the expression and function of NMDA receptors, which present useful insights into the mechanistic action of GSK-3β inhibitor as potential anti-hyperalgesic agents for treating OIH.
Collapse
Affiliation(s)
- Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
- Tianjin Research Institute of Anesthesiology, Tianjin, P. R. China
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
- Tianjin Research Institute of Anesthesiology, Tianjin, P. R. China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
- Tianjin Research Institute of Anesthesiology, Tianjin, P. R. China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
- Tianjin Research Institute of Anesthesiology, Tianjin, P. R. China
| | - Zhuo Yang
- Medical School, Nankai University, Tianjin, P. R. China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
- Tianjin Research Institute of Anesthesiology, Tianjin, P. R. China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, P. R. China
- Tianjin Research Institute of Anesthesiology, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
21
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|