1
|
Lagoa R, Rajan L, Violante C, Babiaka SB, Marques-da-Silva D, Kapoor B, Reis F, Atanasov AG. Application of curcuminoids in inflammatory, neurodegenerative and aging conditions - Pharmacological potential and bioengineering approaches to improve efficiency. Biotechnol Adv 2025; 82:108568. [PMID: 40157560 DOI: 10.1016/j.biotechadv.2025.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Curcumin, a natural compound found in turmeric, has shown promise in treating brain-related diseases and conditions associated with aging. Curcumin has shown multiple anti-inflammatory and brain-protective effects, but its clinical use is limited by challenges like poor absorption, specificity and delivery to the right tissues. A range of contemporary approaches at the intersection with bioengineering and systems biology are being explored to address these challenges. Data from preclinical and human studies highlight various neuroprotective actions of curcumin, including the inhibition of neuroinflammation, modulation of critical cellular signaling pathways, promotion of neurogenesis, and regulation of dopamine levels. However, curcumin's multifaceted effects - such as its impact on microRNAs and senescence markers - suggest novel therapeutic targets in neurodegeneration. Tetrahydrocurcumin, a primary metabolite of curcumin, also shows potential due to its presence in circulation and its anti-inflammatory properties, although further research is needed to elucidate its neuroprotective mechanisms. Recent advancements in delivery systems, particularly brain-targeting nanocarriers like polymersomes, micelles, and liposomes, have shown promise in enhancing curcumin's bioavailability and therapeutic efficacy in animal models. Furthermore, the exploration of drug-laden scaffolds and dermal delivery may extend the pharmacological applications of curcumin. Studies reviewed here indicate that engineered dermal formulations and devices could serve as viable alternatives for neuroprotective treatments and to manage skin or musculoskeletal inflammation. This work highlights the need for carefully designed, long-term studies to better understand how curcumin and its bioactive metabolites work, their safety, and their effectiveness.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Applied Molecular Biosciences Unit UCIBIO, Institute for Health and Bioeconomy i4HB, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Logesh Rajan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| | - Cristiana Violante
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research iCBR, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology CIBB, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531 Coimbra, Portugal.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland; Laboratory of Natural Products and Medicinal Chemistry LNPMC, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences SIMATS, Thandalam, Chennai, India; Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, Tomoaia G, Mocanu A, Pal-Racz C, Toma VA, Roman I, Ujica MA, Pop LC. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024; 30:43. [PMID: 39795101 PMCID: PMC11722367 DOI: 10.3390/molecules30010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability. Formulations have been discovered including curcumin's complexes with brain-derived phospholipids and proteins, or its liposomal encapsulation. These novel strategies aim to improve curcumin's bioavailability and stability, and its capability to cross the BBB, thereby potentially enhancing its efficacy in treating cerebrovascular diseases. In summary, this review provides a comprehensive overview of molecular pathways involved in interactions of curcumin and its metabolites, and brain vascular homeostasis. This review explores cellular and molecular current aspects, of curcumin-based effects with an emphasis on curcumin's metabolism and its impact on pathological conditions, such as neurodegenerative diseases, schizophrenia, and cerebral angiopathy. It also highlights the limitations posed by curcumin's poor bioavailability and discusses ongoing efforts to surpass these impediments to harness the full therapeutic potential of curcumin in neurological disorders.
Collapse
Affiliation(s)
- Claudia-Andreea Moldoveanu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
| | - Alexandra Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor St., RO-400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Department of Orthopedics and Traumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 47 Gen. Traian Moșoiu St., RO-400132 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Csaba Pal-Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Centre for Systems Biology, Biodiversity and Bioresources “3B”, Babeș-Bolyai University, 44 Republicii St., RO-400347 Cluj-Napoca, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Madalina-Anca Ujica
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Lucian-Cristian Pop
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| |
Collapse
|
3
|
Vasudevan Sajini D, Thaggikuppe Krishnamurthy P, Chakkittukandiyil A, Mudavath RN. Orientin Modulates Nrf2-ARE, PI3K/Akt, JNK-ERK1/2, and TLR4/NF-kB Pathways to Produce Neuroprotective Benefits in Parkinson's Disease. Neurochem Res 2024; 49:1577-1587. [PMID: 38276990 DOI: 10.1007/s11064-024-04099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is characterized by oxidative stress and neuroinflammation as key pathological features. Emerging evidence suggests that nuclear factor erythroid 2 related factor 2-antioxidant response element (Nrf2-ARE), phosphatidylinositol 3‑kinase-protein kinase B (PI3K-Akt), c-Jun N-terminal kinase-extracellular signal-regulated kinase 1/2 (JNK-ERK1/2), and toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-kB) pathways play pivotal roles in PD pathogenesis. Orientin, a phenolic phytoconstituent, has demonstrated modulatory potential on these pathways in various experimental conditions other than PD. In this study, we aimed to evaluate the neuroprotective effects of Orientin against rotenone-induced neurodegeneration in SH-SY5Y cell lines and the Swiss albino mice model of PD. Orientin was administered at doses 10 and 20 µM in cell lines and 10 and 20 mg/kg in mice, and its effects on rotenone-induced neurodegeneration were investigated. Oxidative stress markers including mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as inflammatory markers including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), were measured. The expression levels of genes related to Nrf2-ARE (Nrf2), PI3K/Akt (Akt), JNK-ERK1/2 (TNF-α), and TLR4/NF-kB (TNF-α) pathways were measured to understand the modulatory effect of Orientin on these pathways. Additionally, behavioral studies assessing locomotor activity, muscle coordination, and muscle rigidity were conducted with mice. Our results indicate that Orientin dose-dependently attenuated rotenone-induced changes in oxidative stress markers, inflammatory markers, gene expression levels, and behavioral parameters. Therefore, our study concludes that Orientin exhibits significant neuroprotective benefits against rotenone-induced PD by modulating Nrf2-ARE, PI3K-Akt, JNK-ERK1/2, and TLR4/NF-kB pathways.
Collapse
Affiliation(s)
- Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643 001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643 001, India.
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643 001, India
| | - Ravi Naik Mudavath
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643 001, India
| |
Collapse
|
4
|
Lin JY, Chen YP, Lin TW, Li TJ, Chen YW, Li IC, Chen CC. Discovery of a New Compound, Erinacerin W, from the Mycelia of Hericium erinaceus, with Immunomodulatory and Neuroprotective Effects. Molecules 2024; 29:812. [PMID: 38398564 PMCID: PMC10891892 DOI: 10.3390/molecules29040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
One new compound with an isoindolinone skeleton, along with erinacines A, C, and S, was isolated from the mycelia of Hericium erinaceus, an edible fungus with a long history of use in traditional Chinese medicine. Based on analysis of MS and NMR spectral data, the structure of the compound was identified as (2E,6E)-8-(2-(1-carboxy-3-methylbutyl)-4,6-dihydroxy-1-oxoisoindolin-5-yl)-2,6-dimethylocta-2,6-dienoic acid. In light of this discovery, we have given this compound the name erinacerin W. Using a co-culture in vitro LPS-activated BV2 microglia-induced SH-SY5Y neuroinflammation model, the results showed that erinacerin W demonstrated protection against the LPS-activated BV-2 cell-induced overexpression of IL-6, IL-1β, and TNF-α on SH-SY5Y cells. This finding may provide potential therapeutic approaches for central nervous disorders.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Yen-Po Chen
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Yu-Wen Chen
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Long Tan Dist., Taoyuan City 325, Taiwan; (J.-Y.L.); (Y.-P.C.); (T.-W.L.); (T.-J.L.); (Y.-W.C.)
- Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Zhong-Li Dist., Taoyuan City 320, Taiwan
| |
Collapse
|
5
|
Vega-Galvez A, Gomez-Perez LS, Zepeda F, Vidal RL, Grunenwald F, Mejías N, Pasten A, Araya M, Ah-Hen KS. Assessment of Bio-Compounds Content, Antioxidant Activity, and Neuroprotective Effect of Red Cabbage ( Brassica oleracea var. Capitata rubra) Processed by Convective Drying at Different Temperatures. Antioxidants (Basel) 2023; 12:1789. [PMID: 37760092 PMCID: PMC10526076 DOI: 10.3390/antiox12091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and no efficient therapy able to cure or slow down PD is available. In this study, dehydrated red cabbage was evaluated as a novel source of bio-compounds with neuroprotective capacity. Convective drying was carried out at different temperatures. Total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and glucosinolates (TGC) were determined using spectrophotometry, amino acid profile by LC-DAD and fatty acid profile by GC-FID. Phenolic characterization was determined by liquid chromatography-high-resolution mass spectrometry. Cytotoxicity and neuroprotection assays were evaluated in SH-SY5Y human cells, observing the effect on preformed fibrils of α-synuclein. Drying kinetic confirmed a shorter processing time with temperature increase. A high concentration of bio-compounds was observed, especially at 90 °C, with TPC = 1544.04 ± 11.4 mg GAE/100 g, TFC = 690.87 ± 4.0 mg QE/100 g and TGC = 5244.9 ± 260.2 µmol SngE/100 g. TAC degraded with temperature. Glutamic acid and arginine were predominant. Fatty acid profiles were relatively stable and were found to be mostly C18:3n3. The neochlorogenic acid was predominant. The extracts had no cytotoxicity and showed a neuroprotective effect at 24 h testing, which can extend in some cases to 48 h. The present findings underpin the use of red cabbage as a functional food ingredient.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Francisca Zepeda
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - René L. Vidal
- Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Universidad de Chile, Santiago 8380000, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago 8380000, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Felipe Grunenwald
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Nicol Mejías
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Alexis Pasten
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - Kong Shun Ah-Hen
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
6
|
Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB. Curcumin, inflammation, and neurological disorders: How are they linked? Integr Med Res 2023; 12:100968. [PMID: 37664456 PMCID: PMC10469086 DOI: 10.1016/j.imr.2023.100968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background Despite the extensive research in recent years, the current treatment modalities for neurological disorders are suboptimal. Curcumin, a polyphenol found in Curcuma genus, has been shown to mitigate the pathophysiology and clinical sequalae involved in neuroinflammation and neurodegenerative diseases. Methods We searched PubMed database for relevant publications on curcumin and its uses in treating neurological diseases. We also reviewed relevant clinical trials which appeared on searching PubMed database using 'Curcumin and clinical trials'. Results This review details the pleiotropic immunomodulatory functions and neuroprotective properties of curcumin, its derivatives and formulations in various preclinical and clinical investigations. The effects of curcumin on neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), brain tumors, epilepsy, Huntington's disorder (HD), ischemia, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI) with a major focus on associated signalling pathways have been thoroughly discussed. Conclusion This review demonstrates curcumin can suppress spinal neuroinflammation by modulating diverse astroglia mediated cascades, ensuring the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
7
|
Khosravi F, Hojati V, Mirzaei S, Hashemi M, Entezari M. Curcumin neuroprotective effects in Parkinson disease during pregnancy. Brain Res Bull 2023; 201:110726. [PMID: 37543296 DOI: 10.1016/j.brainresbull.2023.110726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Young onset Parkinson disease (YOPD) accounts for about 10% of PD patients, with the onset of symptoms between the ages of 21 and 40. At this age, the probability of pregnancy is high and there is a concern that the disease affects the fetuses. Therefore, in the present study, the effects of rotenone-induced PD on female mice as well as their fetuses and curcumin supplementation on the cerebral tissue of both female mice and their resulted fetuses were studied. METHODS The rotenone was injected subcutaneously to induce PD model of female mice. The different concentrations of curcumin were administrated every day i.p. for 3 weeks and the rotarod test was done on day 1 and 19. Cell viability was measured by MTT test and apoptosis and necrosis of cells were evaluate using flow cytometry technique. After primer design, the expressions of bax, bcl-2, miR-211 and circRNA 0001518 genes were measured using RT-PCR technique. RESULTS Curcumin administration were improved cerebral cell viability of both female PD mice and resulted fetuses by preventing cell apoptosis and necrosis. bax, miR-211 and circRNA 0001518 were downregulated and bcl-2 overexpressed in cerebral neurons of PD mice and their fetuses. CONCLUSION PD induction in mice affects their fetal brain, and curcumin can partially reduce the negative effects of PD on fetal brain cells by overexpressing bcl-2 and decreasing bax expression genes.
Collapse
Affiliation(s)
- Faramarz Khosravi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Yiğit EN, Sönmez E, Yüksel İ, Aksan Kurnaz I, Çakır T. A transcriptome based approach to predict candidate drug targets and drugs for Parkinson's disease using an in vitro 6-OHDA model. Mol Omics 2023; 19:218-228. [PMID: 36723117 DOI: 10.1039/d2mo00267a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The most common treatment strategies for Parkinson's disease (PD) aim to slow down the neurodegeneration process or control the symptoms. In this study, using an in vitro PD model we carried out a transcriptome-based drug target prediction strategy. We identified novel drug target candidates by mapping genes upregulated in 6-OHDA-treated cells on a human protein-protein interaction network. Among the predicted targets, we show that AKR1C3 and CEBPB are promising in validating our bioinformatics approach since their known ligands, rutin and quercetin, respectively, act as neuroprotective drugs that effectively decrease cell death, and restore the expression profiles of key genes upregulated in 6-OHDA-treated cells. We also show that these two genes upregulated in our in vitro PD model are downregulated to basal levels upon drug administration. As a further validation of our methodology, we further confirm that the potential target genes identified with our bioinformatics approach are also upregulated in post-mortem transcriptome samples of PD patients from the literature. Therefore, we propose that this methodology predicts novel drug targets AKR1C3 and CEBPB, which are relevant to future clinical applications as potential drug repurposing targets for PD. Our systems-based computational approach to predict candidate drug targets can be employed in identifying novel drug targets in other diseases without a priori assumption.
Collapse
Affiliation(s)
- Esra Nur Yiğit
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Ekin Sönmez
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - İsa Yüksel
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| | - Işıl Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.,Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
9
|
Abushukur Y, Knackstedt R. The Impact of Supplements on Recovery After Peripheral Nerve Injury: A Review of the Literature. Cureus 2022; 14:e25135. [PMID: 35733475 PMCID: PMC9205410 DOI: 10.7759/cureus.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve injury (PNI) can result from trauma, surgical resection, iatrogenic injury, and/or local anesthetic toxicity. Damage to peripheral nerves may result in debilitating weakness, numbness, paresthesia, pain, and/or autonomic instability. As PNI is associated with inflammation and nerve degeneration, means to mitigate this response could result in improved outcomes. Numerous nutrients have been investigated to prevent the negative sequelae of PNI. Alpha-lipoic acid, cytidine diphosphate-choline (CDP Choline), curcumin, melatonin, vitamin B12, and vitamin E have demonstrated notable success in improving recovery following PNI within animal models. While animal studies show ample evidence that various supplements may improve recovery after PNI, similar evidence in human patients is limited. The goal of this review is to analyze supplements that have been used successfully in animal models of PNI to serve as a reference for future studies on human patients. By analyzing supplements that have shown efficacy in animal studies, healthcare providers will have a resource from which to guide decision-making regarding future human studies investigating the role that supplements could play in PNI recovery. Ultimately, establishing a comprehensive understanding of these supplements in human patients following PNI may significantly improve post-surgical outcomes, quality of life, and peripheral nerve regeneration.
Collapse
|
10
|
A review: traditional herbs and remedies impacting pathogenesis of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:495-513. [PMID: 35258640 DOI: 10.1007/s00210-022-02223-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons, leading to misbalance and loss of coordination. Current therapies are claimed only for symptomatic relief, on long-term use, which causes alteration in basal ganglia, and give rise to various adverse effects like dyskinesia and extra pyramidal side effects, which is reversed and proved to be attenuated with the help of various herbal approaches. Therefore, in order to attenuate the dopaminergic complications, focus of current research has been shifted from dopaminergic to non-dopaminergic strategies. Herbs and herbal remedies seems to be a better option to overcome the complications associated with current dopaminergic therapies. In recent years, various herbs and herbal remedies based on Ayurveda, traditional Chinese and Korean remedies, have become the target of various researches. These herbs and their bioactive compound are being extensively used to treat PD in India, China, Japan, and Korea. The major focus of this current review is to analyze preclinical studies with reference to various herbs, bioactive compounds, and traditional remedies for the management of Parkinson disorder, which will give an insight towards clinical trials.
Collapse
|
11
|
1,5-Benzodiazepin-2(3H)-ones: In Vitro Evaluation as Antiparkinsonian Agents. Antioxidants (Basel) 2021; 10:antiox10101584. [PMID: 34679721 PMCID: PMC8533176 DOI: 10.3390/antiox10101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson’s disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.
Collapse
|
12
|
Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Ajamgard M. Influence of curcumin and rosmarinic acid on disrupting the general properties of Alpha-Synuclein oligomer: Molecular dynamics simulation. J Mol Graph Model 2021; 107:107963. [PMID: 34147836 DOI: 10.1016/j.jmgm.2021.107963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/25/2023]
Abstract
Alpha-Synuclein (αS) is a protein involved in Parkinson's disease (PD) and is probably the main cause of the pathology of the disease. During pathogenesis, αS monomers aggregate, leading to the formation of a variety of oligomeric species. Recent research studies suggest that the oligomeric toxic species may be one of the main processes for pathology and disease. Here, we studied influence of two natural polyphenolic compounds, Curcumin (CUR) and Rosmarinic acid (RA), on disrupting the general properties of αS oligomer by molecular dynamics (MD) simulation method. The hydrophobic central domain of αS (NAC), is the most essential district responsible for protein self-aggregation; so, in this study, our systems have been developed to form a quintuplet NAC region of αS called 5mer; they have 10 and 20 CUR and RA molecules and a 5mer with no ligand. The several important and efficient analyzes were performed to investigate the effect of ligands on the structural properties of αS oligomers. The results indicated that both ligands can be successful in disrupting the original structure of αS oligomers; therefore, they can be considered suitable candidates for designing Parkinson's drugs.
Collapse
Affiliation(s)
- Mahrokh Rezaei Kamelabad
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran.
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Marzieh Ajamgard
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| |
Collapse
|
13
|
de Deus W, de França BM, Forero JS, Granato AEC, Ulrich H, Dória ACOC, Amaral MM, Slabon A, Rodrigues BVM. Curcuminoid-Tailored Interfacial Free Energy of Hydrophobic Fibers for Enhanced Biological Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24493-24504. [PMID: 34024099 PMCID: PMC8289194 DOI: 10.1021/acsami.1c05034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 05/25/2023]
Abstract
The ability of mimicking the extracellular matrix architecture has gained electrospun scaffolds a prominent space into the tissue engineering field. The high surface-to-volume aspect ratio of nanofibers increases their bioactivity while enhancing the bonding strength with the host tissue. Over the years, numerous polyesters, such as poly(lactic acid) (PLA), have been consolidated as excellent matrices for biomedical applications. However, this class of polymers usually has a high hydrophobic character, which limits cell attachment and proliferation, and therefore decreases biological interactions. In this way, functionalization of polyester-based materials is often performed in order to modify their interfacial free energy and achieve more hydrophilic surfaces. Herein, we report the preparation, characterization, and in vitro assessment of electrospun PLA fibers with low contents (0.1 wt %) of different curcuminoids featuring π-conjugated systems, and a central β-diketone unit, including curcumin itself. We evaluated the potential of these materials for photochemical and biomedical purposes. For this, we investigated their optical properties, water contact angle, and surface features while assessing their in vitro behavior using SH-SY5Y cells. Our results demonstrate the successful generation of homogeneous and defect-free fluorescent fibers, which are noncytotoxic, exhibit enhanced hydrophilicity, and as such greater cell adhesion and proliferation toward neuroblastoma cells. The unexpected tailoring of the scaffolds' interfacial free energy has been associated with the strong interactions between the PLA hydrophobic sites and the nonpolar groups from curcuminoids, which indicate its role for releasing hydrophilic sites from both parts. This investigation reveals a straightforward approach to produce photoluminescent 3D-scaffolds with enhanced biological properties by using a polymer that is essentially hydrophobic combined with the low contents of photoactive and multifunctional curcuminoids.
Collapse
Affiliation(s)
- Wevernilson
F. de Deus
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
| | - Bruna M. de França
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária, 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josué Sebastian
B. Forero
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Centro de Tecnologia, Bloco A, Cidade Universitária, 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro E. C. Granato
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05508-000, São Paulo, São Paulo, Brazil
| | - Anelise C. O. C. Dória
- Laboratório
de Biotecnologia e Plasmas Elétricos, IP&D, Universidade do Vale do Paraíba, Avenido Shishima Hifumi 2911, 12244-000, São José
dos Campos, São Paulo, Brazil
| | - Marcello M. Amaral
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
| | - Adam Slabon
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Bruno V. M. Rodrigues
- Instituto
Científico e Tecnológico, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, São Paulo, Brazil
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| |
Collapse
|
14
|
Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021; 47:311-350. [PMID: 33606322 DOI: 10.1002/biof.1716] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Curcuma longa (C. longa) or turmeric is a plant with a long history of use in traditional medicine, especially for treating inflammatory conditions C. longa and its main constituent, curcumin (CUR), showed various pharmacological effects such as antioxidant and anti-microbial properties. The updated knowledge of anti-inflammatory, antioxidant, and immunomodulatory effects of C. longa and CUR is provided in this review article. Pharmacological effects of C. longa, and CUR, including anti-inflammatory, antioxidant, and immunomodulatory properties, were searched using various databases and appropriate keywords until September 2020. Various studies showed anti-inflammatory effects of C. longa and CUR, including decreased white blood cell, neutrophil, and eosinophil numbers, and its protective effects on serum levels of inflammatory mediators such as phospholipase A2 and total protein in different inflammatory disorders. The antioxidant effects of C. longa and CUR were also reported in several studies. The plant extracts and CUR decreased malondialdehyde and nitric oxide levels but increased thiol, superoxide dismutase, and catalase levels in oxidative stress conditions. Treatment with C. longa and CUR also improved immunoglobulin E (Ig)E, pro-inflammatory cytokine interleukin 4 (IL)-4, transforming growth factor-beta, IL-17, interferon-gamma levels, and type 1/type 2 helper cells (Th1)/(Th2) ratio in conditions with disturbance in the immune system. Therefore C. longa and CUR showed anti-inflammatory, antioxidant, and immunomodulatory effects, indicating a potential therapeutic effect of the plant and its constituent, CUR, for treating of inflammatory, oxidative, and immune dysregulation disorders.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Jafarnezhad
- Department of Anesthesia, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad H Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Neuroprotective Effects of Curcumin in Methamphetamine-Induced Toxicity. Molecules 2021; 26:molecules26092493. [PMID: 33923340 PMCID: PMC8123176 DOI: 10.3390/molecules26092493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/18/2023] Open
Abstract
Curcumin (CUR), a natural polyphenol extracted from rhizome of the Curcuma longa L, has received great attention for its multiple potential health benefits as well as disease prevention. For instance, CUR protects against toxic agents acting on the human body, including the nervous system. In detail, CUR possesses, among others, strong effects as an autophagy activator. The present study indicates that CUR counteracts methamphetamine (METH) toxicity. Such a drug of abuse is toxic by disturbing the autophagy machinery. We profited from an unbiased, low variable cell context by using rat pheochromocytoma PC12 cell line. In such a system, a strong protection was exerted by CUR against METH toxicity. This was associated with increased autophagy flux, merging of autophagosomes with lysosomes and replenishment of autophagy vacuoles with LC3, which instead is moved out from the vacuoles by METH. This is expected to enable the autophagy machinery. In fact, while in METH-treated cells the autophagy substrates α-synuclein accumulates in the cytosol, CUR speeds up α-synuclein clearance. Under the effects of CUR LC3 penetrate in autophagy vacuoles to commit them to cell clearance and promotes the autophagy flux. The present data provide evidence that CUR counteracts the neurotoxic effects induced by METH by promoting autophagy.
Collapse
|
16
|
Abdul-Latif R, Stupans I, Allahham A, Adhikari B, Thrimawithana T. Natural antioxidants in the management of Parkinson's disease: Review of evidence from cell line and animal models. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:300-310. [PMID: 33863692 DOI: 10.1016/j.joim.2021.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease. It results from the death of dopaminergic neurons. The pathophysiological mechanisms in idiopathic PD include the production of α-synuclein and mitochondrial respiratory function-affecting complex I, caused by reactive oxygen species. Therefore, the use of natural antioxidants in PD may provide an alternative therapy that prevents oxidative stress and reduces disease progression. In this review, the effects of hydroxytyrosol, Ginkgo biloba, Withania somnifera, curcumin, green tea, and Hypericum perforatum in PD animal and cell line models are compared and discussed. The reviewed antioxidants show evidence of protecting neural cells from oxidative stress in animal and cell models of PD. However, the clinical efficacy of these phytochemicals needs to be optimised and further investigated.
Collapse
Affiliation(s)
- Reem Abdul-Latif
- Discipline of Pharmacy, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3084, Australia
| | - Ieva Stupans
- Discipline of Pharmacy, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3084, Australia
| | - Ayman Allahham
- Discipline of Pharmacy, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3084, Australia
| | - Benu Adhikari
- Biosciences and Food Technology, School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC 3084, Australia
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, VIC 3084, Australia.
| |
Collapse
|
17
|
Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM. Mitochondria as a target for safety and toxicity evaluation of nutraceuticals. NUTRACEUTICALS 2021:463-483. [DOI: 10.1016/b978-0-12-821038-3.00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Khodadadi H, Jahromi GP, Zaeinalifard G, Fasihi-Ramandi M, Esmaeili M, Shahriary A. Neuroprotective and Antiapoptotic Effects of Allopregnanolone and Curcumin on Arsenic-Induced Toxicity in SH-SY5Y Dopaminergic Human Neuroblastoma Cells. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
El Nebrisi E, Javed H, Ojha SK, Oz M, Shehab S. Neuroprotective Effect of Curcumin on the Nigrostriatal Pathway in a 6-Hydroxydopmine-Induced Rat Model of Parkinson's Disease is Mediated by α7-Nicotinic Receptors. Int J Mol Sci 2020; 21:ijms21197329. [PMID: 33023066 PMCID: PMC7583812 DOI: 10.3390/ijms21197329] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder, characterized by selective degeneration of dopaminergic nigrostriatal neurons. Most of the existing pharmacological approaches in PD consider replenishing striatal dopamine. It has been reported that activation of the cholinergic system has neuroprotective effects on dopaminergic neurons, and human α7-nicotinic acetylcholine receptor (α7-nAChR) stimulation may offer a potential therapeutic approach in PD. Our recent in-vitro studies demonstrated that curcumin causes significant potentiation of the function of α7-nAChRs expressed in Xenopus oocytes. In this study, we conducted in vivo experiments to assess the role of the α7-nAChR on the protective effects of curcumin in an animal model of PD. Intra-striatal injection of 6-hydroxydopmine (6-OHDA) was used to induce Parkinsonism in rats. Our results demonstrated that intragastric curcumin treatment (200 mg/kg) significantly improved the abnormal motor behavior and offered neuroprotection against the reduction of dopaminergic neurons, as determined by tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra and caudoputamen. The intraperitoneal administration of the α7-nAChR-selective antagonist methyllycaconitine (1 µg/kg) reversed the neuroprotective effects of curcumin in terms of both animal behavior and TH immunoreactivity. In conclusion, this study demonstrates that curcumin has a neuroprotective effect in a 6-hydroxydopmine (6-OHDA) rat model of PD via an α7-nAChR-mediated mechanism.
Collapse
Affiliation(s)
- Eslam El Nebrisi
- Department of Pharmacology, Dubai Medical College, Dubai Medical University, Dubai 20170, UAE;
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE;
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE;
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE; (S.K.O.); (M.O.)
| | - Murat Oz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE; (S.K.O.); (M.O.)
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Kuwait 24923, Kuwait
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain PO BOX 17666, UAE;
- Correspondence: ; Tel.: +971-3-7137492
| |
Collapse
|
20
|
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-Responsive Nanobiomaterials-Based Therapeutics for Neurodegenerative Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907308. [PMID: 32940007 DOI: 10.1002/smll.201907308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Redox regulation has recently been proposed as a critical intracellular mechanism affecting cell survival, proliferation, and differentiation. Redox homeostasis has also been implicated in a variety of degenerative neurological disorders such as Parkinson's and Alzheimer's disease. In fact, it is hypothesized that markers of oxidative stress precede pathologic lesions in Alzheimer's disease and other neurodegenerative diseases. Several therapeutic approaches have been suggested so far to improve the endogenous defense against oxidative stress and its harmful effects. Among such approaches, the use of artificial antioxidant systems has gained increased popularity as an effective strategy. Nanoscale drug delivery systems loaded with enzymes, bioinspired catalytic nanoparticles and other nanomaterials have emerged as promising candidates. The development of degradable hydrogels scaffolds with antioxidant effects could also enable scientists to positively influence cell fate. This current review summarizes nanobiomaterial-based approaches for redox regulation and their potential applications as central nervous system neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- UCL Centre for Nerve Engineering, University College London, London, WC1E 6BT, UK
| | - Despoina Kesidou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Francisco Moura
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Eric Felli
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
21
|
Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A. The Interaction of Curcumin and Rosmarinic Acid with Non‐Amyloid‐Component Domain of Alpha‐Synuclein: A Molecular Dynamics Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mahrokh Rezaei Kamelabad
- Molecular Simulation Lab, Department of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Lab, Department of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | | |
Collapse
|
22
|
Mandal M, Jaiswal P, Mishra A. Role of curcumin and its nanoformulations in neurotherapeutics: A comprehensive review. J Biochem Mol Toxicol 2020; 34:e22478. [PMID: 32124518 DOI: 10.1002/jbt.22478] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
Curcumin, a dietary polyphenol and major constituent of Curcuma longa (Zingiberaceae), is extensively used as a spice in Asian countries. For ages, turmeric has been used in traditional medicine systems to treat various diseases, which was possible because of its anti-inflammatory, antioxidant, anticancerous, antiepileptic, antidepressant, immunomodulatory, neuroprotective, antiapoptotic, and antiproliferative effects. Curcumin has potent antioxidant, anti-inflammatory, antiapoptotic, neurotrophic activities, which support its plausible neuroprotective effects in neurodegenerative disease. However, there is limited information available regarding the clinical efficacy of curcumin in neurodegenerative cases. The low oral bioavailability of curcumin may be speculated as a plausible factor that limits its effects in humans. Therefore, utilization of several approaches for the enhancement of bioavailability may improve clinical outcomes. Furthermore, the use of nanotechnology and a targeted drug delivery system may improve the bioavailability of curcumin. The present review is designed to summarize the molecular mechanisms pertaining to the neuroprotective effects of curcumin and its nanoformulations.
Collapse
Affiliation(s)
- Mukesh Mandal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, U.P., India
| | - Pawan Jaiswal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, U.P., India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, U.P., India
| |
Collapse
|
23
|
Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21020661. [PMID: 31963896 PMCID: PMC7013437 DOI: 10.3390/ijms21020661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial–mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 µM of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 µM. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 µM of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin.
Collapse
|
24
|
Rocha-Ferreira E, Sisa C, Bright S, Fautz T, Harris M, Contreras Riquelme I, Agwu C, Kurulday T, Mistry B, Hill D, Lange S, Hristova M. Curcumin: Novel Treatment in Neonatal Hypoxic-Ischemic Brain Injury. Front Physiol 2019; 10:1351. [PMID: 31798458 PMCID: PMC6863777 DOI: 10.3389/fphys.2019.01351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 μg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin’s anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Sisa
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Sarah Bright
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tessa Fautz
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Michael Harris
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Ingrid Contreras Riquelme
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Chinedu Agwu
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tugce Kurulday
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Beenaben Mistry
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Daniel Hill
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Visual Neuroscience, Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sigrun Lange
- School of Life Sciences, Tissue Architecture and Regeneration Research Group, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| |
Collapse
|
25
|
Limanaqi F, Biagioni F, Busceti CL, Ryskalin L, Polzella M, Frati A, Fornai F. Phytochemicals Bridging Autophagy Induction and Alpha-Synuclein Degradation in Parkinsonism. Int J Mol Sci 2019; 20:ijms20133274. [PMID: 31277285 PMCID: PMC6651086 DOI: 10.3390/ijms20133274] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived bioactive principles, which are extensively studied for potential beneficial effects in a variety of disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration. In the brain, phytochemicals produce a number of biological effects such as modulation of neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity, stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting protein aggregation through modulation of protein-folding chaperones and the cell clearing systems autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis through autophagy induction took center stage in recent research on neurodegenerative disorders such as Parkinson’s disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent two interdependent downstream biochemical events, which concur in the parkinsonian brain, and which are targeted by phytochemicals administration. Therefore, in the present review we discuss evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein aggregation and toxicity. Although further studies are needed to confirm the autophagy-based effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing autophagy through natural compounds may play a role in preserving dopamine (DA) neuron integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains a hallmark of PD.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | | | | | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy
| | - Maico Polzella
- Aliveda Laboratories, Crespina Lorenzana, 56042 Pisa (PI), Italy
| | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa (PI), Italy.
- I.R.C.C.S Neuromed, Via Atinense, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
26
|
Maitra U, Ciesla L. Using Drosophila as a platform for drug discovery from natural products in Parkinson's disease. MEDCHEMCOMM 2019; 10:867-879. [PMID: 31303984 PMCID: PMC6596131 DOI: 10.1039/c9md00099b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make Drosophila PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using Drosophila as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2320, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 7599
| | - Lukasz Ciesla
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2329, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 1828
| |
Collapse
|
27
|
Przybyłek M, Recki Ł, Mroczyńska K, Jeliński T, Cysewski P. Experimental and theoretical solubility advantage screening of bi-component solid curcumin formulations. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Khazdair MR, Anaeigoudari A, Hashemzehi M, Mohebbati R. Neuroprotective potency of some spice herbs, a literature review. J Tradit Complement Med 2019; 9:98-105. [PMID: 30963044 PMCID: PMC6435951 DOI: 10.1016/j.jtcme.2018.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/10/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, growing attention has been given to traditional medicine. In traditional medicine a large number of plants have been used to cure neurodegenerative diseases such as Alzheimer's disease (AD) and other memory related disorders. Crocus sativus (C. sativus), Nigella sativa (N. sativa), Coriandrum sativum (C. sativum), Ferula assafoetida (F. assafoetida), Thymus vulgaris (T. vulgaris), Zataria multiflora (Z. multiflora) and Curcuma longa (C. longa) were used traditionally for dietary, food additive, spice and various medicinal purposes. The Major components of these herbs are carotenoids, monoterpenes and poly phenol compounds which enhanced the neural functions. These medicinal plants increased anti-oxidant, decreased oxidant levels and inhibited acetylcholinesterase activity in the neural system. Furthermore, neuroprotective of plants occur via reduced pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α and total nitrite generation. Therefore, the effects of the above mentioned medicinal and their active constituents improved neurodegenerative diseases which indicate their therapeutic potential in disorders associated with neuro-inflammation and neurotransmitter deficiency such as AD and depression.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Neurogenic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Milad Hashemzehi
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Mohebbati
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Abstract
BACKGROUND Parkinson disease (PD) is a neurodegenerative disorder affecting the basal nuclei, causing motor and cognitive disorders. Bearing in mind that standard treatments are ineffective in delaying the disease progression, alternative treatments capable of eliminating symptoms and reversing the clinical condition have been sought. Possible alternative treatments include cell therapy, especially with the use of mesenchymal stem cells (MSC). REVIEW SUMMARY MSC are adult stem cells which have demonstrated remarkable therapeutic power in parkinsonian animals due to their differentiation competence, migratory capacity and the production of bioactive molecules. This review aims to analyze the main studies involving MSC and PD in more than a decade of studies, addressing their different methodologies and common characteristics, as well as suggesting perspectives on the application of MSC in PD. CONCLUSIONS The results of MSC therapy in animal models and some clinical trials suggest that such cellular therapy may slow the progression of PD and promote neuroregeneration. However, further research is needed to address the limitations of an eventual clinical application.
Collapse
|
30
|
Nguyen TT, Vuu MD, Huynh MA, Yamaguchi M, Tran LT, Dang TPT. Curcumin Effectively Rescued Parkinson's Disease-Like Phenotypes in a Novel Drosophila melanogaster Model with dUCH Knockdown. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2038267. [PMID: 30057672 PMCID: PMC6051027 DOI: 10.1155/2018/2038267] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/24/2018] [Indexed: 02/03/2023]
Abstract
The relationship between oxidative stress and neurodegenerative diseases has been extensively examined, and antioxidants are considered to be a promising approach for decelerating disease progression. Parkinson's disease (PD) is a common neurodegenerative disorder and affects 1% of the population over 60 years of age. A complex combination of genetic and environmental factors contributes to the pathogenesis of PD. However, since the onset mechanisms of PD have not yet been elucidated in detail, difficulties are associated with developing effective treatments. Curcumin has been reported to have neuroprotective properties in PD models induced by neurotoxins or genetic factors such as α-synuclein, PINK1, DJ-1, and LRRK2. In the present study, we investigated the effects of curcumin in a novel Drosophila model of PD with knockdown of dUCH, a homolog of human UCH-L1. We found that dopaminergic neuron-specific knockdown of dUCH caused impaired movement and the loss of dopaminergic neurons. Furthermore, the knockdown of dUCH induced oxidative stress while curcumin decreased the ROS level induced by this knockdown. In addition, dUCH knockdown flies treated with curcumin had improved locomotive abilities and less severe neurodegeneration. Taken together, with studies on other PD models, these results strongly suggest that treatments with curcumin are an appropriate therapy for PD related to oxidative stress.
Collapse
Affiliation(s)
- Thi Thanh Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - My Dung Vuu
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Man Anh Huynh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Linh Thuoc Tran
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thi Phuong Thao Dang
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
31
|
Curcumin inhibits activation induced by urban particulate material or titanium dioxide nanoparticles in primary human endothelial cells. PLoS One 2017; 12:e0188169. [PMID: 29244817 PMCID: PMC5731739 DOI: 10.1371/journal.pone.0188169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/01/2017] [Indexed: 01/21/2023] Open
Abstract
Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved.
Collapse
|
32
|
Wei CC, Chang CH, Liao VHC. Anti-Parkinsonian effects of β-amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:118-125. [PMID: 29157804 DOI: 10.1016/j.phymed.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease that is associated with aging and is characterized as a movement disorder. Currently, there is still no complete therapy for PD. In recent years, the identification and characterization of medicinal plants to cure or treat PD has gained increasing scientific interest. PURPOSE In this study, we investigated a pentacyclic triterpenoid compound, β-amyrin, which is found in many medicinal plants for its anti-Parkinsonian effects, using Caenorhabditis elegans (C. elegans) disease models and their underlying mechanisms. METHODS C. elegans treated or untreated with β-amyrin were investigated for oxidative stress resistance, neurodegeneration, and α-synuclein aggregation assays. The C. elegans ortholog of Atg8/LC3, LGG-1 that is involved in the autophagy pathway was also evaluated by quantitative RT-PCR and transgenic strain experiments. RESULTS β-Amyrin exerted excellent antioxidant activity and reduced intracellular oxygen species in C. elegans. Using the transgenic strain BZ555, β-amyrin showed a protective effect on dopaminergic neurons reducing cell damage induced by 6-hydroxydopamine (6-OHDA). In addition, β-amyrin significantly reduced the α-synuclein aggregation in the transgenic strain NL5901. Moreover, β-amyrin up-regulated LGG-1 mRNA expression and increased the number of localized LGG-1 puncta in the transgenic strain DA2123. CONCLUSION The results from this study suggest that the anti-Parkinsonian effects of β-amyrin might be regulated via LGG-1 involved autophagy pathway in C. elegans. Therefore, β-amyrin may be useful for therapeutic applications or supplements to treat or slow the progression of PD.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
33
|
Lu T, Kim P, Luo Y. Tp53 gene mediates distinct dopaminergic neuronal damage in different dopaminergic neurotoxicant models. Neural Regen Res 2017; 12:1413-1417. [PMID: 29089978 PMCID: PMC5649453 DOI: 10.4103/1673-5374.215243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by pharmacological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal terminal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuronal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.
Collapse
Affiliation(s)
- Tao Lu
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Paul Kim
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Yu Luo
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
34
|
Wang XS, Zhang ZR, Zhang MM, Sun MX, Wang WW, Xie CL. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson's disease: a systematic experiment literatures review. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:412. [PMID: 28818104 PMCID: PMC5561616 DOI: 10.1186/s12906-017-1922-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/11/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Meanwhile, the neuroprotective actions of curcumin have been documented for experimental therapy in Parkinson's disease (PD). METHODS In this study, we used a systematic review to comprehensively assess the efficacy of curcumin in experimental PD. Using electronic and manual search for the literatures, we identified studies describing the efficacy of curcumin in animal models of PD. RESULTS We identified 13 studies with a total of 298 animals describing the efficacy of curcumin in animal models of PD. The methodological quality of all preclinical trials is ranged from 2 to 5. The majority of the experiment studies demonstrated that curcumin was more significantly neuroprotection effective than control groups for treating PD. Among them, five studies indicated that curcumin had an anti-inflammatory effect in the PD animal models (p < 0.05). Meanwhile, four studies showed the antioxidant capability of curcumin, by which it protected substantia nigra neurons and improved striatal dopamine levels. Furthermore, two studies in this review displayed that curcumin treatment was also effective in reducing neuronal apoptosis and improving functional outcome in animal models of PD. Most of the preclinical studies demonstrated the positive findings while one study reported that curcumin had no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis. CONCLUSIONS The results demonstrated a marked efficacy of curcumin in experimental model of PD, suggesting curcumin probably a candidate neuroprotective drug for human PD patients.
Collapse
Affiliation(s)
- Xin-Shi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Zeng-Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Man-Man Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Miao-Xuan Sun
- The center of rehabilitation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Wen-Wen Wang
- The center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| |
Collapse
|
35
|
Wang S, Ye Q, Tu J, Zhang M, Ji B. Curcumin protects against hypertension aggravated retinal ischemia/reperfusion in a rat stroke model. Clin Exp Hypertens 2017; 39:711-717. [PMID: 28678631 DOI: 10.1080/10641963.2017.1313854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Saibin Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Qian Ye
- Department of Cardiology, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Junwei Tu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Zhejiang University Jinhua Hospital, Jinhua, China
| | - Mingying Zhang
- Department of Cardiology, Wenzhou Municipal Central Hospital, Wenzhou, China
| | - Bin Ji
- Department of Anesthesiology, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2017; 7:205-233. [PMID: 28417091 PMCID: PMC5388087 DOI: 10.1016/j.jtcme.2016.05.005] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years, several drugs have been developed deriving from traditional products and current drug research is actively investigating the possible therapeutic roles of many Ayruvedic and Traditional Indian medicinal therapies. Among those being investigated is Turmeric. Its most important active ingredient is curcuminoids. Curcuminoids are phenolic compounds commonly used as a spice, pigment and additive also utilized as a therapeutic agent used in several foods. Comprehensive research over the last century has revealed several important functions of curcuminoids. Various preclinical cell culture and animals studies suggest that curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-acidogenic, radioprotective and arthritis. Different clinical trials also suggest a potential therapeutic role for curcuminoids in numerous chronic diseases such as colon cancer, lung cancer, breast cancer, inflammatory bowel diseases. The aim of this review is to summarize the chemistry, analog, metal complex, formulations of curcuminoids and their biological activities.
Collapse
Affiliation(s)
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreerag Gopi
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Kolenchery, Cochin, India
| |
Collapse
|
37
|
Alem M, Tarlani A, Aghabozorg HR. Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Adv 2017. [DOI: 10.1039/c7ra03231e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Versatile new high porous alumina supports were synthesized by double templates. They gave different release state for curcumin drug. The release of (insoluble) curcumin reached to 80% in SGF. The new formulation enhanced the SH-SY5Y cells survival.
Collapse
Affiliation(s)
- Masoumeh Alem
- Faculty of Chemistry
- Tehran North Branch
- Islamic Azad University
- Tehran
- Iran
| | - Aliakbar Tarlani
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI)
- Tehran
- Iran
| | | |
Collapse
|
38
|
Liu GM, Xu K, Li J, Luo YG. Curcumin upregulates S100 expression and improves regeneration of the sciatic nerve following its complete amputation in mice. Neural Regen Res 2016; 11:1304-11. [PMID: 27651779 PMCID: PMC5020830 DOI: 10.4103/1673-5374.189196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The repair of peripheral nerve injury after complete amputation is difficult, and even with anastomosis, the rapid recovery of nerve function remains challenging. Curcumin, extracted from plants of the genus Curcuma, has been shown to have anti-oxidant and anti-inflammatory properties and to improve sciatic nerve crush injury in rats. Here, we determined whether curcumin had neuroprotective effects following complete peripheral nerve amputation injury. BALB/c mice underwent complete sciatic nerve amputation, followed by an immediate epineurium anastomosis. Mice were intragastrically administered curcumin at doses of 40 (high), 20 (moderate), and 10 mg/kg/d (low) for 1 week. We found that myelin in the mice of the high- and moderate-dose curcumin groups appeared with regular shape, uniform thickness, clear boundary, and little hyperplasia surrounding the myelin. High and moderate doses of curcumin markedly improved both action potential amplitude of the sciatic nerves and the conduction velocity of the corresponding motor neurons, and upregulated mRNA and protein expression of S100, a marker for Schwann cell proliferation, in L4–6 spinal cord segments. These results suggest that curcumin is effective in promoting the repair of complete sciatic nerve amputation injury and that the underlying mechanism may be associated with upregulation of S100 expression.
Collapse
Affiliation(s)
- Guo-Min Liu
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Kun Xu
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Juan Li
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yun-Gang Luo
- Department of Stomatology, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
39
|
Kopalli SR, Kang TB, Koppula S. Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents. Expert Opin Ther Pat 2016; 26:1239-1256. [PMID: 27568917 DOI: 10.1080/13543776.2016.1230201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.
Collapse
Affiliation(s)
| | - Tae-Bong Kang
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Sushruta Koppula
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| |
Collapse
|
40
|
Szczepanowicz K, Jantas D, Piotrowski M, Staroń J, Leśkiewicz M, Regulska M, Lasoń W, Warszyński P. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity. NANOTECHNOLOGY 2016; 27:355101. [PMID: 27454207 DOI: 10.1088/0957-4484/27/35/355101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.
Collapse
Affiliation(s)
- Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dai C, Li D, Gong L, Xiao X, Tang S. Curcumin Ameliorates Furazolidone-Induced DNA Damage and Apoptosis in Human Hepatocyte L02 Cells by Inhibiting ROS Production and Mitochondrial Pathway. Molecules 2016; 21:E1061. [PMID: 27556439 PMCID: PMC6272881 DOI: 10.3390/molecules21081061] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Furazolidone (FZD), a synthetic nitrofuran derivative, has been widely used as an antibacterial and antiprotozoal agent. Recently, the potential toxicity of FZD has raised concerns, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on FZD-induced cytotoxicity and the underlying mechanism in human hepatocyte L02 cells. The results showed that curcumin pre-treatment significantly ameliorated FZD-induced oxidative stress, characterized by decreased reactive oxygen species (ROS) and malondialdehyde formation, and increased superoxide dismutase, catalase activities and glutathione contents. In addition, curcumin pre-treatment significantly ameliorated the loss of mitochondrial membrane potential, the activations of caspase-9 and -3, and apoptosis caused by FZD. Alkaline comet assay showed that curcumin markedly reduced FZD-induced DNA damage in a dose-dependent manner. Curcumin pre-treatment consistently and markedly down-regulated the mRNA expression levels of p53, Bax, caspase-9 and -3 and up-regulated the mRNA expression level of Bcl-2. Taken together, these results reveal that curcumin protects against FZD-induced DNA damage and apoptosis by inhibiting oxidative stress and mitochondrial pathway. Our study indicated that curcumin may be a promising combiner with FZD to reduce FZD-related toxicity in clinical applications.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Daowen Li
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Lijing Gong
- Sport Science Research Center, Beijing Sport University, 48 Xinxi Road, Haidian District, Beijing 100084, China.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
42
|
Therapeutic Effects of CUR-Activated Human Umbilical Cord Mesenchymal Stem Cells on 1-Methyl-4-phenylpyridine-Induced Parkinson's Disease Cell Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9140541. [PMID: 27340670 PMCID: PMC4906196 DOI: 10.1155/2016/9140541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/02/2016] [Accepted: 03/27/2016] [Indexed: 12/16/2022]
Abstract
The purpose of this study is to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) activated by curcumin (CUR) on PC12 cells induced by 1-methyl-4-phenylpyridinium ion (MPP+), a cell model of Parkinson's disease (PD). The supernatant of hUC-MSC and hUC-MSC activated by 5 µmol/L CUR (hUC-MSC-CUR) were collected in accordance with the same concentration. The cell proliferation and differentiation potential to dopaminergic neuronal cells and antioxidation were observed in PC12 cells after being treated with the above two supernatants and 5 µmol/L CUR. The results showed that the hUC-MSC-CUR could more obviously promote the proliferation and the expression of tyrosine hydroxylase (TH) and microtubule associated protein-2 (MAP2) and significantly decreased the expression of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in PC12 cells. Furtherly, cytokines detection gave a clue that the expression of IL-6, IL-10, and NGF was significantly higher in the group treated with the hUC-MSC-CUR compared to those of other two groups. Therefore, the hUC-MSC-CUR may be a potential strategy to promote the proliferation and differentiation of PD cell model, therefore providing new insights into a novel therapeutic approach in PD.
Collapse
|
43
|
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and Health. Molecules 2016; 21:264. [PMID: 26927041 PMCID: PMC6273481 DOI: 10.3390/molecules21030264] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/08/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
Nowadays, there are some molecules that have shown over the years a high capacity to act against relevant pathologies such as cardiovascular disease, neurodegenerative disorders or cancer. This article provides a brief review about the origin, bioavailability and new research on curcumin and synthetized derivatives. It examines the beneficial effects on health, delving into aspects such as cancer, cardiovascular effects, metabolic syndrome, antioxidant capacity, anti-inflammatory properties, and neurological, liver and respiratory disorders. Thanks to all these activities, curcumin is positioned as an interesting nutraceutical. This is the reason why it has been subjected to several modifications in its structure and administration form that have permitted an increase in bioavailability and effectiveness against different diseases, decreasing the mortality and morbidity associated to these pathologies.
Collapse
Affiliation(s)
- Mario Pulido-Moran
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| | - Jorge Moreno-Fernandez
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
- Departamento de Fisiología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
| | | | - Mcarmen Ramirez-Tortosa
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain.
- Instituto de Nutrición y Tecnología de los Alimentos José Mataix Verdú, Centro de Investigaciones Biomédicas, Avenida del Conocimiento s/n, Campus Tecnológico y Ciencias de la Salud, Universidad de Granada, Armilla (Granada) 18016, Spain.
| |
Collapse
|
44
|
Tiwari SK, Agarwal S, Tripathi A, Chaturvedi RK. Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway. Mol Neurobiol 2015; 53:3010-3029. [PMID: 25963729 DOI: 10.1007/s12035-015-9197-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/22/2015] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an environmental xenoestrogenic endocrine disruptor, utilized for production of consumer products, and exerts adverse effects on the developing nervous system. Recently, we found that BPA impairs the finely tuned dynamic processes of neurogenesis (generation of new neurons) in the hippocampus of the developing rat brain. Curcumin is a natural polyphenolic compound, which provides neuroprotection against various environmental neurotoxicants and in the cellular and animal models of neurodegenerative disorders. Here, we have assessed the neuroprotective efficacy of curcumin against BPA-mediated reduced neurogenesis and the underlying cellular and molecular mechanism(s). Both in vitro and in vivo studies showed that curcumin protects against BPA-induced hippocampal neurotoxicity. Curcumin protects against BPA-mediated reduced neural stem cells (NSC) proliferation and neuronal differentiation and enhanced neurodegeneration. Curcumin also enhances the expression/levels of neurogenic and the Wnt pathway genes/proteins, which were reduced due to BPA exposure in the hippocampus. Curcumin-mediated neuroprotection against BPA-induced neurotoxicity involved activation of the Wnt/β-catenin signaling pathway, which was confirmed by the use of Wnt specific activators (LiCl and GSK-3β siRNA) and inhibitor (Dkk-1). BPA-mediated increased β-catenin phosphorylation, decreased GSK-3β levels, and β-catenin nuclear translocation were significantly reversed by curcumin, leading to enhanced neurogenesis. Curcumin-induced protective effects on neurogenesis were blocked by Dkk-1 in NSC culture treated with BPA. Curcumin-mediated enhanced neurogenesis was correlated well with improved learning and memory in BPA-treated rats. Overall, our results conclude that curcumin provides neuroprotection against BPA-mediated impaired neurogenesis via activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Swati Agarwal
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR-IITR, 80 MG Marg, Lucknow, 226001, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
45
|
Meesarapee B, Thampithak A, Jaisin Y, Sanvarinda P, Suksamrarn A, Tuchinda P, Morales NP, Sanvarinda Y. Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells. Phytother Res 2013; 28:611-6. [PMID: 23857913 DOI: 10.1002/ptr.5036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/09/2013] [Accepted: 06/12/2013] [Indexed: 01/31/2023]
Abstract
6-Hydroxydopamine (6-OHDA) selectively enters dopaminergic neurons and undergoes auto-oxidation resulting in the generation of reactive oxygen species and dopamine quinones, subsequently leading to apoptosis. This mechanism mimics the pathogenesis of Parkinson's disease and has been used to induce experimental Parkinsonism in both in vitro and in vivo systems. In this study, we investigated the effects of curcumin I (diferuloylmethane) purified from Curcuma longa on quinoprotein production, phosphorylation of p38 MAPK (p-p38), and caspase-3 activation in 6-OHDA-treated SH-SY5Y dopaminergic cells. Pretreatment of SH-SY5Y with curcumin I at concentrations of 1, 5, 10, and 20 μM, significantly decreased the formation of quinoprotein and reduced the levels of p-p38 and cleaved caspase-3 in a dose-dependent manner. Moreover, the levels of the dopaminergic neuron marker, phospho-tyrosine hydroxylase (p-TH), were also dose-dependently increased upon treatment with curcumin I. Our results clearly demonstrated that curcumin I protects neurons against oxidative damage, as shown by attenuation of p-p38 expression, caspase-3-activation, and toxic quinoprotein formation, together with the restoration of p-TH levels. This study provides evidence for the therapeutic potential of curcumin I in the chemoprevention of oxidative stress-related neurodegeneration.
Collapse
Affiliation(s)
- Benjawan Meesarapee
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 2013; 11:338-78. [PMID: 24381528 PMCID: PMC3744901 DOI: 10.2174/1570159x11311040002] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Since the second half of the last century, this traditional medicine has attracted the attention of scientists from multiple disciplines to elucidate its pharmacological properties. Of significant interest is curcumin's role to treat neurodegenerative diseases including Alzheimer's disease (AD), and Parkinson's disease (PD) and malignancy. These diseases all share an inflammatory basis, involving increased cellular reactive oxygen species (ROS) accumulation and oxidative damage to lipids, nucleic acids and proteins. The therapeutic benefits of curcumin for these neurodegenerative diseases appear multifactorial via regulation of transcription factors, cytokines and enzymes associated with (Nuclear factor kappa beta) NFκB activity. This review describes the historical use of curcumin in medicine, its chemistry, stability and biological activities, including curcumin's anti-cancer, anti-microbial, anti-oxidant, and anti-inflammatory properties. The review further discusses the pharmacology of curcumin and provides new perspectives on its therapeutic potential and limitations. Especially, the review focuses in detail on the effectiveness of curcumin and its mechanism of actions in treating neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and brain malignancies.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Ching-Yee Loo
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Mary Bebawy
- School of Pharmacy, Graduate School of Health, University of Technology Sydney PO Box 123 Broadway, NSW 2007, Australia
| | - Frederick Luk
- School of Pharmacy, Graduate School of Health, University of Technology Sydney PO Box 123 Broadway, NSW 2007, Australia
| | - Rebecca S Mason
- Physiology and Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Ramin Rohanizadeh
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| |
Collapse
|
47
|
Dai MC, Zhong ZH, Sun YH, Sun QF, Wang YT, Yang GY, Bian LG. Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neurosci Lett 2013; 536:41-6. [PMID: 23328441 DOI: 10.1016/j.neulet.2013.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 01/01/2023]
Abstract
Necroptosis was reported as one backup way of programmed cell death when apoptosis was blocked, and the receptor interacting protein 1 was considered as the key necroptosis regulator protein. Here, we report the neuroprotective effects of curcumin which attenuates necroptosis. Primary cortical neurons were cultured and were injured by ferrous chloride, z.vad.fmk was applied to block apoptosis, curcumin was administrated to protect neurons, necrostatin-1 was applied to inhibit necroptosis if needed. Cell viability was measured by detecting lactate dehydrogenase activity in lysates of surviving cells, and assessed by cell counting kit-8. The expression of receptor interacting protein 1 was detected by immunoblot and immunofluorescence. Results showed that necroptosis mainly occurred in the concentrations of ferrous chloride ranging from 100 to 200μM, curcumin attenuated necroptosis in a dose-dependent manner. Furthermore, curcumin decreased expression of receptor interacting protein 1 in a dose- and time-dependent manner. Taken together, these findings suggest that curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis.
Collapse
Affiliation(s)
- Min-Chao Dai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 China
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Over the last 10 years curcumin has been reported to be effective against a wide variety of diseases and is characterized as having anticarcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, antiarthritic, and anti-infectious properties. Recent studies performed in both vertebrate and invertebrate models have been conducted to determine whether curcumin was also neuroprotective. The efficacy of curcumin in several preclinical trials for neurodegenerative diseases has created considerable excitement mainly because of its lack of toxicity and low cost. This suggests that curcumin could be a worthy candidate for nutraceutical intervention. As aging is a common risk factor for neurodegenerative diseases, it is possible that some compounds that target aging mechanisms could also prevent these kinds of diseases. One potential mechanism to explain several of the general health benefits associated with curcumin is that it may prevent aging-associated changes in cellular proteins that lead to protein insolubility and aggregation. This loss in protein homeostasis is associated with several age-related diseases. Recently, curcumin has been found to help maintain protein homeostasis and extend lifespan in the model invertebrate Caenorhabditis elegans. Here, we review the evidence from several animal models that curcumin improves healthspan by preventing or delaying the onset of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Adriana Monroy
- Hospital General de Mexico, Dr. Balmis 148, México, D.F. 06726, México
| | - Gordon J. Lithgow
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Silvestre Alavez
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| |
Collapse
|
49
|
Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, Tsai CW. Carnosic Acid Prevents 6-Hydroxydopamine-Induced Cell Death in SH-SY5Y Cells via Mediation of Glutathione Synthesis. Chem Res Toxicol 2012; 25:1893-901. [DOI: 10.1021/tx300171u] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Ping Ou
- Department of Health Food, Chung Chou University of Science and Technology, Changua,
Taiwan
| | - Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Fung-Ju Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chi-Rei Wu
- The School of Chinese Pharmaceutical
Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shu-Wei Chang
- Department of Medicinal Botanicals
and Health Care, Dayeh University, Changhua,
Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
50
|
Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs 2012; 21:1123-40. [DOI: 10.1517/13543784.2012.693479] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|