1
|
Fantini V, Ferrari RR, Bordoni M, Spampinato E, Pandini C, Davin A, Medici V, Gagliardi S, Guaita A, Pansarasa O, Cereda C, Poloni TE. Functional analysis and transcriptome profile of meninges and skin fibroblasts from human-aged donors. Cell Prolif 2024; 57:e13627. [PMID: 38421110 PMCID: PMC11294439 DOI: 10.1111/cpr.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is surrounded by three membranes called meninges. Specialised fibroblasts, originating from the mesoderm and neural crest, primarily populate the meninges and serve as a binding agent. Our goal was to compare fibroblasts from meninges and skin obtained from the same human-aged donors, exploring their molecular and cellular characteristics related to CNS functions. We isolated meningeal fibroblasts (MFs) from brain donors and skin fibroblasts (SFs) from the same subjects. A functional analysis was performed measuring cell appearance, metabolic activity, and cellular orientation. We examined fibronectin, serpin H1, β-III-tubulin, and nestin through qPCR and immunofluorescence. A whole transcriptome analysis was also performed to characterise the gene expression of MFs and SFs. MFs appeared more rapidly in the post-tissue processing, while SFs showed an elevated cellular metabolism and a well-defined cellular orientation. The four markers were mostly similar between the MFs and SFs, except for nestin, more expressed in MFs. Transcriptome analysis reveals significant differences, particularly in cyclic adenosine monophosphate (cAMP) metabolism and response to forskolin, both of which are upregulated in MFs. This study highlights MFs' unique characteristics, including the timing of appearance, metabolic activity, and gene expression patterns, particularly in cAMP metabolism and response to forskolin. These findings contribute to a deeper understanding of non-neuronal cells' involvement in CNS activities and potentially open avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Valentina Fantini
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
| | | | - Matteo Bordoni
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
| | - Eleonora Spampinato
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Cecilia Pandini
- Molecular Biology and Transcriptomics UnitIRCCS Mondino FoundationPaviaItaly
- Department of BiosciencesUniversity of MilanMilanItaly
| | - Annalisa Davin
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Valentina Medici
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics UnitIRCCS Mondino FoundationPaviaItaly
| | - Antonio Guaita
- Laboratory of Neurobiology and NeurogeneticGolgi‐Cenci FoundationAbbiategrassoItaly
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics UnitIRCCS Mondino FoundationPaviaItaly
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of PediatricsBuzzi Children's HospitalMilanItaly
| | - Tino Emanuele Poloni
- Department of Neurology and NeuropathologyGolgi‐Cenci FoundationAbbiategrassoItaly
- Department of RehabilitationASP Golgi‐Redaelli Geriatric HospitalAbbiategrassoItaly
| |
Collapse
|
2
|
Scodellaro C, Pina RR, Ferreira FC, Sanjuan-Alberte P, Fernandes TG. Unlocking the Potential of Stem Cell Microenvironments In Vitro. Bioengineering (Basel) 2024; 11:289. [PMID: 38534563 DOI: 10.3390/bioengineering11030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The field of regenerative medicine has recently witnessed groundbreaking advancements that hold immense promise for treating a wide range of diseases and injuries. At the forefront of this revolutionary progress are stem cells. Stem cells typically reside in specialized environments in vivo, known as microenvironments or niches, which play critical roles in regulating stem cell behavior and determining their fate. Therefore, understanding the complex microenvironments that surround stem cells is crucial for advancing treatment options in regenerative medicine and tissue engineering applications. Several research articles have made significant contributions to this field by exploring the interactions between stem cells and their surrounding niches, investigating the influence of biomechanical and biochemical cues, and developing innovative strategies for tissue regeneration. This review highlights the key findings and contributions of these studies, shedding light on the diverse applications that may arise from the understanding of stem cell microenvironments, thus harnessing the power of these microenvironments to transform the landscape of medicine and offer new avenues for regenerative therapies.
Collapse
Affiliation(s)
- Chiara Scodellaro
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Raquel R Pina
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
5
|
Hayakawa K, Snyder EY, Lo EH. Meningeal Multipotent Cells: A Hidden Target for CNS Repair? Neuromolecular Med 2021; 23:339-343. [PMID: 33893971 PMCID: PMC8450679 DOI: 10.1007/s12017-021-08663-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022]
Abstract
Traditionally, the primary role of the meninges is thought to be structural, i.e., to act as a surrounding membrane that contains and cushions the brain with cerebrospinal fluid. During development, the meninges is formed by both mesenchymal and neural crest cells. There is now emerging evidence that subsets of undifferentiated stem cells might persist in the adult meninges. In this mini-review, we survey representative studies of brain-meningeal interactions and discuss the hypothesis that the meninges are not just protective membranes, but instead contain multiplex stem cell subsets that may contribute to central nervous system (CNS) homeostasis. Further investigations into meningeal multipotent cells may reveal a "hidden" target for promoting neurovascular remodeling and repair after CNS injury and disease.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Evan Y. Snyder
- Sanford Consortium for Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
6
|
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol 2021; 9:696640. [PMID: 34409033 PMCID: PMC8365427 DOI: 10.3389/fcell.2021.696640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan (GAG) in the human body. As a component of proteoglycans (PGs) it has numerous roles in matrix stabilization and cellular regulation. This chapter highlights the roles of CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS contains a diverse range of CS-PGs which direct the development of embryonic neural axonal networks, and the responses of neural cell populations in mature tissues to traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-rich scar tissue is laid down at the defect site to protect neural tissues, which are amongst the softest tissues of the human body. Unfortunately, the CS concentrated in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well known inhibitory properties over neural behavior, and animal models of CNS/PNS injury have demonstrated that selective degradation of CS using chondroitinase improves neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form denser regions of extracellular matrix termed perineuronal nets which surround neurons. Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures, which provide neural protection, synapse, and neural plasticity, and have roles in memory and cognitive learning. Despite the generally inhibitory cues delivered by CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and functional recovery. CS/DS thus has varied cell regulatory properties and structural ECM supportive roles in the CNS/PNS depending on the glycoform present and its location in tissue niches and specific cellular contexts. Studies on the fruit fly, Drosophila melanogaster and the nematode Caenorhabditis elegans have provided insightful information on neural interconnectivity and the role of the ECM and its PGs in neural development and in tissue morphogenesis in a whole organism environment.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
7
|
Decimo I, Dolci S, Panuccio G, Riva M, Fumagalli G, Bifari F. Meninges: A Widespread Niche of Neural Progenitors for the Brain. Neuroscientist 2020; 27:506-528. [PMID: 32935634 PMCID: PMC8442137 DOI: 10.1177/1073858420954826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence highlights the several roles that meninges play in
relevant brain functions as they are a protective membrane for the
brain, produce and release several trophic factors important for
neural cell migration and survival, control cerebrospinal fluid
dynamics, and embrace numerous immune interactions affecting neural
parenchymal functions. Furthermore, different groups have identified
subsets of neural progenitors residing in the meninges during
development and in the adulthood in different mammalian species,
including humans. Interestingly, these immature neural cells are able
to migrate from the meninges to the neural parenchyma and
differentiate into functional cortical neurons or oligodendrocytes.
Immature neural cells residing in the meninges promptly react to brain
disease. Injury-induced expansion and migration of meningeal neural
progenitors have been observed following experimental demyelination,
traumatic spinal cord and brain injury, amygdala lesion, stroke, and
progressive ataxia. In this review, we summarize data on the function
of meninges as stem cell niche and on the presence of immature neural
cells in the meninges, and discuss their roles in brain health and
disease. Furthermore, we consider the potential exploitation of
meningeal neural progenitors for the regenerative medicine to treat
neurological disorders.
Collapse
Affiliation(s)
- Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sissi Dolci
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Riva
- Unit of Neurosurgery, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Guido Fumagalli
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Ozudogru E, Arslan YE. A preliminary study on the development of a novel biomatrix by decellularization of bovine spinal meninges for tissue engineering applications. Cell Tissue Bank 2020; 22:25-38. [PMID: 32862393 DOI: 10.1007/s10561-020-09859-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022]
Abstract
Here, we aim at developing a novel biomatrix from decellularized bovine spinal meninges for tissue engineering and regenerative medicine applications. Within this concept, the bovine spinal meninges were decellularized using 1% Triton X-100 for 48 h, and residual nuclear content was determined with double-strand DNA content analysis and agarose gel electrophoresis. The major matrix components such as sulfated GAGs and collagen before and after the decellularization process were analyzed with DMMB, hydroxyproline assay and SDS-PAGE. Subsequently, the native bovine spinal meninges (nBSM) and decellularized BSM (dBSM) were physiochemically characterized via ATR-FTIR spectroscopy, TGA, DMA and tensile strength test. The dsDNA content in the nBSM was 153.39 ± 53.93 ng/mg dry weight, versus in the dBSM was 39.47 ± 4.93 ng/mg (n = 3) dry weight and DNA fragments of more than 200 bp in length were not detected in the dBSM by agarose gel electrophoresis. The sulfated GAGs contents for nBSM and dBSM were observed to be 10.87 ± 1.2 and 11.42 ± 2.01 μg/mg dry weight, respectively. The maximum strength of dBSM in dry and wet conditions was found to be 19.67 ± 0.21 MPa and 13.97 ± 0.17 MPa, while nBSM (dry) was found to be 26.26 ± 0.28 MPa. MTT, SEM, and histology results exhibited that the cells attached to the surface of dBSM, and proliferated on the dBSM. In conclusion, the in vitro preliminary study has demonstrated that the dBSM might be a proper and new bioscaffold for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Eren Ozudogru
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey.
| |
Collapse
|
9
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
10
|
Vargas-Saturno L, Ayala-Grosso C. Adaptive neurogenesis in the cerebral cortex and contralateral subventricular zone induced by unilateral cortical devascularization: Possible modulation by dopamine neurotransmission. Eur J Neurosci 2018; 48:3514-3533. [PMID: 30402991 DOI: 10.1111/ejn.14260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023]
Abstract
Understanding endogenous neurogenesis and neuronal replacement to mature circuits is a topic of discussion as a therapeutic alternative under acute and chronic neurodegenerative disorders. Adaptive neurogenic response may result as a result of ischemia which could support long-term recovery of behavioral functions. Endogenous sources of neural progenitors may be stimulated by changes in blood flow or neuromodulation. Using a mouse model of unilateral cortical devascularization, we have observed reactive neurogenesis in the perilesional cortex and subventricular zone neurogenic niche. C57BL/6L 4 weeks old male mice were craneotomized at 1 mm caudal from frontal suture and 1 mm lateral from midline to generate a window of 3 mm side. Brain injury was produced by removal of the meninges and superficial vasculature of dorsal parietal cortex. BrdU agent (50 mg/kg, ip) was injected to lesioned and sham animals, during days 0 and 1 after surgery. Sagittal sections were analyzed at 1, 4, 7, and 10 days post-injury. A time-dependent increase in BrdU+ cells in the perilesional parietal cortex was accompanied by augmented BrdU+ cells in the sub ventricular and rostral migratory stream of ipsilateral and contralateral hemispheres. Neural progenitors and neuroblasts proliferated in the lesioned and non-lesioned subventricular zone and rostral migratory stream on day 4 after injury. Augmented contralateral neurogenesis was associated with an increase in vesicular monoamine transporter 2 protein in the striosomal sub ventricular neurogenic niche of non-lesioned hemisphere.
Collapse
Affiliation(s)
- Leslie Vargas-Saturno
- Unidad de Terapia Celular, Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Carlos Ayala-Grosso
- Unidad de Terapia Celular, Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| |
Collapse
|
11
|
Winner LK, Marshall NR, Jolly RD, Trim PJ, Duplock SK, Snel MF, Hemsley KM. Evaluation of Disease Lesions in the Developing Canine MPS IIIA Brain. JIMD Rep 2018; 43:91-101. [PMID: 29923090 PMCID: PMC6323028 DOI: 10.1007/8904_2018_110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 01/26/2023] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is an inherited neurodegenerative disease of childhood that results in early death. Post-mortem studies have been carried out on human MPS IIIA brain, but little is known about early disease development. Here, we utilised the Huntaway dog model of MPS IIIA to evaluate disease lesion development from 2 to 24 weeks of age. A significant elevation in primarily stored heparan sulphate was observed in all brain regions assessed in MPS IIIA pups ≤9.5 weeks of age. There was a significant elevation in secondarily stored ganglioside (GM3 36:1) in ≤9.5-week-old MPS IIIA pup cerebellum, and other brain regions also exhibited accumulation of this lipid with time. The number of neural stem cells and neuronal precursor cells was essentially unchanged in MPS IIIA dog brain (c.f. unaffected) over the time course assessed, a finding corroborated by neuron cell counts. We observed early neuroinflammatory changes in young MPS IIIA pup brain, with significantly increased numbers of activated microglia recorded in all but one brain region in MPS IIIA pups ≤9.5 weeks of age (c.f. age-matched unaffected pups). In conclusion, infant-paediatric-stage MPS IIIA canine brain exhibits substantial and progressive primary and secondary substrate accumulation, coupled with early and robust microgliosis. Whilst early initiation of treatment is likely to be required to maintain optimal neurological function, the brain's neurodevelopmental potential appears largely unaffected by the disease process; further investigations confirming this are warranted.
Collapse
Affiliation(s)
- Leanne K. Winner
- grid.430453.5Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Neil R. Marshall
- grid.148374.d0000 0001 0696 9806Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - Robert D. Jolly
- grid.148374.d0000 0001 0696 9806Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand
| | - Paul J. Trim
- grid.430453.5Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Stephen K. Duplock
- grid.430453.5Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Marten F. Snel
- grid.430453.5Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA Australia
| | - Kim M. Hemsley
- grid.430453.5Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA Australia
| |
Collapse
|
12
|
Wieduwild R, Wetzel R, Husman D, Bauer S, El-Sayed I, Duin S, Murawala P, Thomas AK, Wobus M, Bornhäuser M, Zhang Y. Coacervation-Mediated Combinatorial Synthesis of Biomatrices for Stem Cell Culture and Directed Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706100. [PMID: 29659062 DOI: 10.1002/adma.201706100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Combinatorial screening represents a promising strategy to discover biomaterials for tailored cell culture applications. Although libraries incorporating different biochemical cues have been investigated, few simultaneously recapitulate relevant biochemical, physical, and dynamic features of the extracellular matrix (ECM). Here, a noncovalent system based on liquid-liquid phase separation (coacervation) and gelation mediated by glycosaminoglycan (GAG)-peptide interactions is reported. Multiple biomaterial libraries are generated using combinations of sulfated glycosaminoglycans and poly(ethylene glycol)-conjugated peptides. Screening these biomaterials reveals preferred biomatrices for the attachment of six cell types, including primary mesenchymal stromal cells (MSCs) and primary neural precursor cells (NPCs). Incorporation of GAGs sustains the expansion of all tested cell types comparable to standard cell culture surfaces, while osteogenic differentiation of MSC and neuronal differentiation of NPC are promoted on chondroitin and heparan biomatrices, respectively. The presented noncovalent system provides a powerful tool for developing tissue-specific ECM mimics.
Collapse
Affiliation(s)
- Robert Wieduwild
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Richard Wetzel
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Dejan Husman
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Sophie Bauer
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Iman El-Sayed
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Sarah Duin
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Priyanka Murawala
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Alvin Kuriakose Thomas
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Manja Wobus
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
- University Hospital Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Fetscherstraße 74, 01307, Dresden, Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| |
Collapse
|
13
|
Kask K, Tikker L, Ruisu K, Lulla S, Oja EM, Meier R, Raid R, Velling T, Tõnissoo T, Pooga M. Targeted deletion of RIC8A in mouse neural precursor cells interferes with the development of the brain, eyes, and muscles. Dev Neurobiol 2018; 78:374-390. [PMID: 29380551 DOI: 10.1002/dneu.22578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/11/2022]
Abstract
Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018.
Collapse
Affiliation(s)
- Keiu Kask
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Laura Tikker
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014, Helsinki, Finland
| | - Katrin Ruisu
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Sirje Lulla
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Eva-Maria Oja
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Riho Meier
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Raivo Raid
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Teet Velling
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
14
|
van der Meulen PM, Barendregt AM, Cuadrado E, Magro-Checa C, Steup-Beekman GM, Schonenberg-Meinema D, Van den Berg JM, Li QZ, Baars PA, Wouters D, Voskuyl AE, Ten Berge IRJM, Huizinga TWJ, Kuijpers TW. Protein array autoantibody profiles to determine diagnostic markers for neuropsychiatric systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56:1407-1416. [PMID: 28460084 DOI: 10.1093/rheumatology/kex073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Objective The aim was to investigate the association between autoantibodies (autoAbs) and neuropsychiatric (NP) involvement in patients with SLE and to evaluate whether any autoAb or a combination of these autoAbs could indicate the underlying pathogenic process. Methods Using a multiplexed protein array for 94 antigens, we compared the serum autoAb profiles of 69 NPSLE patients, 203 SLE patients without NP involvement (non-NPSLE) and 51 healthy controls. Furthermore, we compared the profiles of NPSLE patients with clinical inflammatory (n = 38) and ischaemic (n = 31) NP involvement. Results In total, 75 IgG and 47 IgM autoAbs were associated with SLE patients in comparison with healthy controls. Comparing NPSLE with non-NPSLE and healthy control sera, 9 IgG (amyloid, cardiolipin, glycoprotein 2, glycoprotein 210, heparin, heparan sulphate, histone H2A, prothrombin protein and vimentin) and 12 IgM (amyloid, cardiolipin, centromere protein A, collagen II, histones H2A and H2B, heparan sulphate, heparin, mitochondrial 2, nuclear Mi-2, nucleoporin 62 and vimentin) autoAbs were present at significantly different levels in NPSLE. The combination of IgG autoAbs against heparan sulphate, histone H2B and vimentin could differentiate NPSLE from non-NPSLE (area under the curve 0.845, 99.97% CI: 0.756, 0.933; P < 0.0001). Compared with non-NPSLE, four IgG and seven IgM autoAbs were significantly associated with inflammatory NPSLE. In ischaemic NPSLE, three IgG and three IgM autoAbs were significantly different from non-NPSLE patients. Conclusion In our cohort, the presence of high levels of anti-heparan sulphate and anti-histone H2B combined with low levels of anti-vimentin IgG autoAbs is highly suggestive of NPSLE. These results need to be validated in external cohorts.
Collapse
Affiliation(s)
- Pomme M van der Meulen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Anouk M Barendregt
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Eloy Cuadrado
- Astrocyte Biology and Neurodegeneration Group, Netherlands Institute for Neuroscience, Amsterdam
| | - César Magro-Checa
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dieneke Schonenberg-Meinema
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - J Merlijn Van den Berg
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul A Baars
- Department of Experimental Immunology, Academic Medical Center, Amsterdam
| | | | | | - Ineke R J M Ten Berge
- Department of Internal Medicine, Clinical Immunology & Nephrology, Academic Medical Center, Amsterdam, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital Academic Medical Center
| |
Collapse
|
15
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
16
|
Yamada T, Kerever A, Yoshimura Y, Suzuki Y, Nonaka R, Higashi K, Toida T, Mercier F, Arikawa-Hirasawa E. Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche. J Neurochem 2017; 142:534-544. [PMID: 28547849 DOI: 10.1111/jnc.14081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Abstract
Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.
Collapse
Affiliation(s)
- Taihei Yamada
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Yoshimura
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuji Suzuki
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyohei Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Frederic Mercier
- Department of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Fasulo L, Brandi R, Arisi I, La Regina F, Berretta N, Capsoni S, D'Onofrio M, Cattaneo A. ProNGF Drives Localized and Cell Selective Parvalbumin Interneuron and Perineuronal Net Depletion in the Dentate Gyrus of Transgenic Mice. Front Mol Neurosci 2017; 10:20. [PMID: 28232789 PMCID: PMC5299926 DOI: 10.3389/fnmol.2017.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 01/12/2023] Open
Abstract
ProNGF, the precursor of mature Nerve Growth Factor (NGF), is the most abundant NGF form in the brain and increases markedly in the cortex in Alzheimer's Disease (AD), relative to mature NGF. A large body of evidence shows that the actions of ProNGF and mature NGF are often conflicting, depending on the receptors expressed in target cells. TgproNGF#3 mice, expressing furin-cleavage resistant proNGF in CNS neurons, directly reveal consequences of increased proNGF levels on brain homeostasis. Their phenotype clearly indicates that proNGF can be a driver of neurodegeneration, including severe learning and memory behavioral deficits, cholinergic deficits, and diffuse immunoreactivity for A-beta and A-beta-oligomers. In aged TgproNGF#3 mice spontaneous epileptic-like events are detected in entorhinal cortex-hippocampal slices, suggesting occurrence of excitatory/inhibitory (E/I) imbalance. In this paper, we investigate the molecular events linking increased proNGF levels to the epileptiform activity detected in hippocampal slices. The occurrence of spontaneous epileptiform discharges in the hippocampal network in TgproNGF#3 mice suggests an impaired inhibitory interneuron homeostasis. In the present study, we detect the onset of hippocampal epileptiform events at 1-month of age. Later, we observe a regional- and cellular-selective Parvalbumin interneuron and perineuronal net (PNN) depletion in the dentate gyrus (DG), but not in other hippocampal regions of TgproNGF#3 mice. These results demonstrate that, in the hippocampus, the DG is selectively vulnerable to altered proNGF/NGF signaling. Parvalbumin interneuron depletion is also observed in the amygdala, a region strongly connected to the hippocampus and likewise receiving cholinergic afferences. Transcriptome analysis of TgproNGF#3 hippocampus reveals a proNGF signature with broad down-regulation of transcription. The most affected mRNAs modulated at early times belong to synaptic transmission and plasticity and extracellular matrix (ECM) gene families. Moreover, alterations in the expression of selected BDNF splice variants were observed. Our results provide further mechanistic insights into the vicious negative cycle linking proNGF and neurodegeneration, confirming the regulation of E/I homeostasis as a crucial mediating mechanism.
Collapse
Affiliation(s)
- Luisa Fasulo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| | - Rossella Brandi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | | | - Nicola Berretta
- Department of Experimental Neurology, Fondazione Santa Lucia IRCCS Rome, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore Pisa, Italy
| | - Mara D'Onofrio
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| |
Collapse
|
18
|
The vasculature as a neural stem cell niche. Neurobiol Dis 2017; 107:4-14. [PMID: 28132930 DOI: 10.1016/j.nbd.2017.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing progenitors that generate progeny that differentiate into neurons and glia. NSCs in the adult mammalian brain are generally quiescent. Environmental stimuli such as learning or exercise can activate quiescent NSCs, inducing them to proliferate and produce new neurons and glia. How are these behaviours coordinated? The neurovasculature, the circulatory system of the brain, is a key component of the NSC microenvironment, or 'niche'. Instructive signals from the neurovasculature direct NSC quiescence, proliferation, self-renewal and differentiation. During ageing, a breakdown in the niche accompanies NSC dysfunction and cognitive decline. There is much interest in reversing these changes and enhancing NSC activity by targeting the neurovasculature therapeutically. Here we discuss principles of neurovasculature-NSC crosstalk, and the implications for the design of NSC-based therapies. We also consider the emerging contributions to this field of the model organism Drosophila melanogaster.
Collapse
|
19
|
Mercier F. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci 2016; 73:4661-4674. [PMID: 27475964 PMCID: PMC11108427 DOI: 10.1007/s00018-016-2314-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
The stem cell niche refers to a specific microenvironment where stem cells proliferate and differentiate to produce new specialized cells throughout an organism's adulthood. Growth factors are crucial signaling molecules that diffuse through the extracellular space, reach the stem cell niche, and ultimately promote stem cell proliferation and differentiation. However, it is not well known how multiple growth factors, often with antagonistic activities, work together in the stem cell niche to select target stem cell populations and determine stem cell fate. There is accumulating evidence suggesting that extracellular matrix (ECM) molecules play an important role in promoting growth factor access and activity in the stem cell niche. In the adult brain neurogenic zone, where neural stem cells (NSCs) reside, there exist specialized ECM structures, which we have named fractones. The processes of NSC allow them to come into contact with fractones and interact with its individual components, which include heparan sulfate proteoglycans (HSPGs) and laminins. We have demonstrated that fractone-associated HSPGs bind growth factors and regulate NSC proliferation in the neurogenic zone. Moreover, emerging results show that fractones are structurally altered in animal models with autism and adult hydrocephalus, as demonstrated by changes in fractone size, quantity, or HSPG content. Interestingly, ECM structures similar to fractones have been found throughout β-amyloid plaques in the brain of patients with Alzheimer's disease. Pathological fractones may cause imbalances in growth factor activity and impair neurogenesis, leading to inflammation and disorder. Generally speaking, these stem cell niche structures play a potentially vital role in controlling growth factor activity during both health and disease.
Collapse
Affiliation(s)
- Frederic Mercier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
20
|
Bifari F, Decimo I, Pino A, Llorens-Bobadilla E, Zhao S, Lange C, Panuccio G, Boeckx B, Thienpont B, Vinckier S, Wyns S, Bouché A, Lambrechts D, Giugliano M, Dewerchin M, Martin-Villalba A, Carmeliet P. Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex. Cell Stem Cell 2016; 20:360-373.e7. [PMID: 27889318 DOI: 10.1016/j.stem.2016.10.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 10/08/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2+ neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Ilaria Decimo
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Annachiara Pino
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | | | - Sheng Zhao
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Gabriella Panuccio
- Theoretical Neurobiology and Neuroengineering Laboratory, Department of Biomedical Sciences, Antwerp University, 2610 Wilrijk, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Laboratory for Translational Genetics, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Sabine Wyns
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Michele Giugliano
- Theoretical Neurobiology and Neuroengineering Laboratory, Department of Biomedical Sciences, Antwerp University, 2610 Wilrijk, Belgium; Brain Mind Institute, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland; Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium.
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium.
| |
Collapse
|
21
|
Bifari F, Berton V, Pino A, Kusalo M, Malpeli G, Di Chio M, Bersan E, Amato E, Scarpa A, Krampera M, Fumagalli G, Decimo I. Meninges harbor cells expressing neural precursor markers during development and adulthood. Front Cell Neurosci 2015; 9:383. [PMID: 26483637 PMCID: PMC4591429 DOI: 10.3389/fncel.2015.00383] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.
Collapse
Affiliation(s)
- Francesco Bifari
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marijana Kusalo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Giorgio Malpeli
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marzia Di Chio
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Emanuela Bersan
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Eliana Amato
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Aldo Scarpa
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| |
Collapse
|
22
|
Kerever A, Yamada T, Suzuki Y, Mercier F, Arikawa-Hirasawa E. Fractone aging in the subventricular zone of the lateral ventricle. J Chem Neuroanat 2015; 66-67:52-60. [PMID: 26079194 DOI: 10.1016/j.jchemneu.2015.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 06/06/2015] [Indexed: 11/13/2022]
Abstract
In adulthood, the subventricular zone (SVZ) is one of the restricted places where neurogenesis persists. In this neurogenic niche, specialized extracellular matrix (ECM) structures termed fractones contact neural stem cells and their immediate progeny. Fractones are composed of ubiquitous ECM components including heparan sulfate proteoglycans such as perlecan and agrin. We have previously shown that fractones can capture growth factors and promote growth factor activity through a heparin binding mechanism in order to regulate neurogenesis. With aging, neurogenesis is known to decrease. However, the effect of aging on fractones structure and composition remains unknown. Here, we report that, while fractone number decreased, fractone size dramatically increased with aging. Despite the changes in fractones morphology, niche cells expressing glial fibrillary acidic protein kept direct contact with fractones. Furthermore, we have observed that heparan sulfate chains contained in fractones were modified with aging. However, FGF-2 was still captured by fractones via heparan sulfates. Together, our results suggest that the changes observed in fractones structure and composition are critically related to aging of the SVZ neurogenic niche.
Collapse
Affiliation(s)
- Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taihei Yamada
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuji Suzuki
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Frederic Mercier
- Department of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
23
|
Choi JL, Tan JKY, Sellers DL, Wei H, Horner PJ, Pun SH. Guanidinylated block copolymers for gene transfer: A comparison with amine-based materials for in vitro and in vivo gene transfer efficiency. Biomaterials 2015; 54:87-96. [PMID: 25907042 DOI: 10.1016/j.biomaterials.2015.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 11/29/2022]
Abstract
There is currently no cure for neuron loss in the brain, which can occur due to traumatic injury or neurodegenerative disease. One proposed method to enhance brain neurogenesis is gene transfer to neural progenitor cells. In this work, a guanidine-based copolymer was synthesized and compared to an amine-based copolymer analog previously shown to effectively deliver genes in the murine brain. The guanidine-based copolymer was more efficient at gene transfer to immortalized, cultured cell lines; however, the amine-based copolymer was more effective at gene transfer in the brain. DNA condensation studies revealed that the nucleic acid complexes formed with the guanidine-based copolymer were more susceptible to unpackaging in the presence of anionic proteoglycans compared to complexes formed with the amine-based copolymer. Therefore, polyplexes formed from the amine-based copolymer may be more resistant to destabilization by the heparan sulfate proteoglycans present in the stem cell niches of the brain.
Collapse
Affiliation(s)
- Jennifer L Choi
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Drew L Sellers
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA
| | - Hua Wei
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Philip J Horner
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA.
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
25
|
Mercier F, Douet V. Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone. J Chem Neuroanat 2014; 57-58:54-61. [PMID: 24681169 DOI: 10.1016/j.jchemneu.2014.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 01/24/2023]
Abstract
Fractones are extracellular matrix structures that display a fractal ultrastructure and that are visualized as puncta after immunolabeling for laminin or heparan sulfate proteoglycans. In the adult brain, fractones are found throughout the subventricular zone (SVZ). The role of fractones is just emerging. We have recently shown that fractones sequester fibroblast growth factor-2 and bone morphogenetic protein-7 from the brain ventricles to regulate cell proliferation in the SVZ of the lateral ventricle, the primary neural stem cell niche and neurogenic zone in adulthood. Here, we have examined in vivo the effect of bone morphogenetic protein-4 (BMP-4) on cell proliferation in the SVZ and we have determined whether BMP-4 interacts with fractones to promote this effect. To examine BMP-4 effect on cell proliferation, BMP-4 was intracerebroventricularly injected, and bromodeoxyuridine immunolabeling was performed on frozen sections of the adult mouse brain. To identify the location of BMP-4 binding, biotinylated-BMP-4 was injected, and its binding localized post-mortem with streptavidin, Texas red conjugate. Injection of heparitinase-1 was used to desulfate fractones and determine whether the binding and the effect of BMP-4 on cell proliferation are heparan sulfate-dependent. BMP-4 inhibited cell proliferation in the SVZ neurogenic zone. Biotinylated-BMP-4 bound to fractones and some adjacent blood vessels. Co-injection of heparitinase-1 and biotinylated-BMP-4 resulted in the absence of signal for biotinylated-BMP-4, indicating that the binding was heparan sulfate dependent. Moreover, preventing the binding of BMP-4 to fractones by heparitinase-1 reinforced the inhibitory effect of BMP-4 on cell proliferation in the SVZ. These results show that BMP-4 inhibits cell proliferation in the SVZ neurogenic zone and that the binding of BMP-4 to fractone-associated heparan sulfates moderates this inhibitory effect. Together with our previous results, these data support the view that fractones capture growth factors and modulate their activity in the neural tissues lining the ventricles.
Collapse
Affiliation(s)
- Frederic Mercier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Biomed T401, 1960 East-West Road, Honolulu, HI 96822, USA.
| | - Vanessa Douet
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Biomed T401, 1960 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
26
|
Nogueira AB, Sogayar MC, Colquhoun A, Siqueira SA, Nogueira AB, Marchiori PE, Teixeira MJ. Existence of a potential neurogenic system in the adult human brain. J Transl Med 2014; 12:75. [PMID: 24655332 PMCID: PMC3998109 DOI: 10.1186/1479-5876-12-75] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 03/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background Prevailingly, adult mammalian neurogenesis is thought to occur in discrete, separate locations known as neurogenic niches that are best characterized in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). The existence of adult human neurogenic niches is controversial. Methods The existence of neurogenic niches was investigated with neurogenesis marker immunostaining in histologically normal human brains obtained from autopsies. Twenty-eight adult temporal lobes, specimens from limbic structures and the hypothalamus of one newborn and one adult were examined. Results The neural stem cell marker nestin stained circumventricular organ cells and the immature neuronal marker doublecortin (DCX) stained hypothalamic and limbic structures adjacent to circumventricular organs; both markers stained a continuous structure running from the hypothalamus to the hippocampus. The cell proliferation marker Ki-67 was detected predominately in structures that form the septo-hypothalamic continuum. Nestin-expressing cells were located in the fimbria-fornix at the insertion of the choroid plexus; ependymal cells in this structure expressed the putative neural stem cell marker CD133. From the choroidal fissure in the temporal lobe, a nestin-positive cell layer spread throughout the SVZ and subpial zone. In the subpial zone, a branch of this layer reached the hippocampal sulcus and ended in the SGZ (principally in the newborn) and in the subiculum (principally in the adults). Another branch of the nestin-positive cell layer in the subpial zone returned to the optic chiasm. DCX staining was detected in the periventricular and middle hypothalamus and more densely from the mammillary body to the subiculum through the fimbria-fornix, thus running through the principal neuronal pathway from the hippocampus to the hypothalamus. The column of the fornix forms part of this pathway and appears to coincide with the zone previously identified as the human rostral migratory stream. Partial co-labeling with DCX and the neuronal marker βIII-tubulin was also observed. Conclusions Collectively, these findings suggest the existence of an adult human neurogenic system that rises from the circumventricular organs and follows, at minimum, the circuitry of the hypothalamus and limbic system.
Collapse
Affiliation(s)
- Adriano Barreto Nogueira
- Division of Neurosurgery Clinic, Hospital das Clínicas, Faculty of Medicine, University of São Paulo, Avenida Dr, Eneas de Carvalho Aguiar 255, 05403-900 São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Matrix regulators in neural stem cell functions. Biochim Biophys Acta Gen Subj 2014; 1840:2520-5. [PMID: 24447567 DOI: 10.1016/j.bbagen.2014.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism. SCOPE OF REVIEW In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior. MAJOR CONCLUSIONS The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors. GENERAL SIGNIFICANCE The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
28
|
Jakeman LB, Williams KE, Brautigam B. In the presence of danger: The extracellular matrix defensive response to central nervous system injury. Neural Regen Res 2014; 9:377-384. [PMID: 24999352 PMCID: PMC4079057 DOI: 10.4103/1673-5374.128238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glial cells in the central nervous system (CNS) contribute to formation of the extracellular matrix, which provides adhesive sites, signaling molecules, and a diffusion barrier to enhance efficient neurotransmission and axon potential propagation. In the normal adult CNS, the extracellular matrix (ECM) is relatively stable except in selected regions characterized by dynamic remodeling. However, after trauma such as a spinal cord injury or cortical contusion, the lesion epicenter becomes a focus of acute neuroinflammation. The activation of the surrounding glial cells leads to a dramatic change in the composition of the ECM at the edges of the lesion, creating a perilesion environment dominated by growth inhibitory molecules and restoration of the peripheral/central nervous system border. An advantage of this response is to limit the invasion of damaging cells and diffusion of toxic molecules into the spared tissue regions, but this occurs at the cost of inhibiting migration of endogenous repair cells and preventing axonal regrowth. The following review was prepared by reading and discussing over 200 research articles in the field published in PubMed and selecting those with significant impact and/or controversial points. This article highlights structural and functional features of the normal adult CNS ECM and then focuses on the reactions of glial cells and changes in the perilesion border that occur following spinal cord or contusive brain injury. Current research strategies directed at modifying the inhibitory perilesion microenvironment without eliminating the protective functions of glial cell activation are discussed.
Collapse
Affiliation(s)
- Lyn B Jakeman
- Professor of Physiology and Cell Biology, 1645 Neil Avenue, Columbus, OH 43210
| | - Kent E Williams
- The Ohio State University Wexner Medical Center, Center for Brain and Spinal Cord Repair, Neuroscience Graduate Studies Program, Columbus, OH 43210
| | - Bryan Brautigam
- The Ohio State University Wexner Medical Center, Center for Brain and Spinal Cord Repair, Biomedical Sciences Graduate Program, Columbus, OH 43210
| |
Collapse
|
29
|
Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hattori N, Yamada Y, Arikawa-Hirasawa E. Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res 2013; 12:492-505. [PMID: 24434631 DOI: 10.1016/j.scr.2013.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/26/2013] [Accepted: 12/21/2013] [Indexed: 01/21/2023] Open
Abstract
In the adult subventricular zone (neurogenic niche), neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.
Collapse
Affiliation(s)
- Aurelien Kerever
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Frederic Mercier
- Department of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Risa Nonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Oda
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Bernard Zalc
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière (CRICM), UMRS 975, Paris, 75013 France; Inserm, U 975, Paris, 75013 France; CNRS, UMR 7225, Paris, 75013 France
| | - Yohei Okada
- Department of Physiology and Kanrinmaru project, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshihiko Yamada
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
30
|
Douet V, Kerever A, Arikawa‐Hirasawa E, Mercier F. Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif 2013; 46:137-45. [PMID: 23510468 PMCID: PMC6495915 DOI: 10.1111/cpr.12023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/07/2012] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Fractones are extracellular matrix structures that form a niche for neural stem cells and their immediate progeny in the subventricular zone of the lateral ventricle (SVZa), the primary neurogenic zone in the adult brain. We have previously shown that heparan sulphates (HS) associated with fractones bind fibroblast growth factor-2 (FGF-2), a powerful mitotic growth factor in the SVZa. Here, our objective was to determine whether the binding of FGF-2 to fractone-HS is implicated in the mechanism leading to cell proliferation in the SVZa. MATERIALS AND METHODS Heparitinase-1 was intracerebroventricularly injected with FGF-2 to N-desulfate HS proteoglycans and determine whether the loss of HS and of FGF-2 binding to fractones modifies FGF-2 effect on cell proliferation. We also examined in vivo the binding of Alexa-Fluor-FGF-2 in relationship with the location of HS immunoreactivity in the SVZa. RESULTS Heparatinase-1 drastically reduced the stimulatory effect of FGF-2 on cell proliferation in the SVZa. Alexa-Fluor-FGF-2 binding was strictly co-localized with HS immunoreactivity in fractones and adjacent vascular basement membranes in the SVZa. CONCLUSIONS Our results demonstrate that FGF-2 requires HS to stimulate cell proliferation in the SVZa and suggest that HS associated with fractones and vascular basement membranes are responsible for activating FGF-2. Therefore, fractones and vascular basement membranes may function as a HS niche to drive cell proliferation in the adult neurogenic zone.
Collapse
Affiliation(s)
- V. Douet
- Department of Tropical Medicine, Medical Microbiology and PharmacologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHI96822USA
| | - A. Kerever
- Department of NeurologyResearch Institute for Diseases of Old AgeJuntendo University Faculty of MedicineTokyo113‐8421Japan
| | - E. Arikawa‐Hirasawa
- Department of NeurologyResearch Institute for Diseases of Old AgeJuntendo University Faculty of MedicineTokyo113‐8421Japan
| | - F. Mercier
- Department of Tropical Medicine, Medical Microbiology and PharmacologyJohn A. Burns School of MedicineUniversity of HawaiiHonoluluHI96822USA
| |
Collapse
|
31
|
Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ. Proteoglycans and their roles in brain cancer. FEBS J 2013; 280:2399-417. [PMID: 23281850 DOI: 10.1111/febs.12109] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022]
Abstract
Glioblastoma, a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase signalling pathways and a poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signalling and migration via interactions with extracellular ligands, growth factor receptors and extracellular matrix components, as well as intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumour cells and promote critical tumour-microenvironment interactions. In the present review, we summarize the evidence for proteoglycan function in gliomagenesis and examine the expression of proteoglycans and their modifying enzymes in human glioblastoma using data obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in receptor tyrosine kinases. Based on these data, we propose a model in which proteoglycans and their modifying enzymes promote receptor tyrosine kinase signalling and progression in glioblastoma, and we suggest that cancer-associated proteoglycans are promising biomarkers for disease and therapeutic targets.
Collapse
Affiliation(s)
- Anna Wade
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
32
|
Mercier F, Weatherby TM, Hartline DK. Meningeal-like organization of neural tissues in calanoid copepods (Crustacea). J Comp Neurol 2013; 521:760-90. [DOI: 10.1002/cne.23173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 04/04/2012] [Accepted: 06/20/2012] [Indexed: 11/07/2022]
|
33
|
Pearson BL, Corley MJ, Vasconcellos A, Blanchard DC, Blanchard RJ. Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles. Behav Brain Res 2013; 243:138-45. [PMID: 23318464 DOI: 10.1016/j.bbr.2012.12.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/20/2023]
Abstract
Abnormal cellular growth and organization have been characterized in postmortem tissue from brains of autistic individuals, suggestive of pathology in a critical neurogenic niche, the subventricular zone (SVZ) of the brain lateral ventricles (LV). We examined cellular organization, cell proliferation, and constituents of the extracellular matrix such as N-sulfated heparan sulfate (HS) and laminin (LAM) in postmortem brain tissue from the LV-SVZ of young to elderly individuals with autism (n=4) and age-matched typically developing (TD) individuals (n=4) using immunofluorescence techniques. Strong and systematic reductions in HS immunofluorescence were observed in the LV-SVZ of the TD individuals with increasing age. For young through mature, but not elderly, autistic pair members, HS was reduced compared to their matched TDs. Cellular proliferation (Ki67+) was higher in the autistic individual of the youngest age-matched pair. These preliminary data suggesting that HS may be reduced in young to mature autistic individuals are in agreement with previous findings from the BTBR T+tf/J mouse, an animal model of autism; from mice with genetic modifications reducing HS; and with genetic variants in HS-related genes in autism. They suggest that aberrant extracellular matrix glycosaminoglycan function localized to the subventricular zone of the lateral ventricles may be a biomarker for autism, and potentially involved in the etiology of the disorder.
Collapse
Affiliation(s)
- Brandon L Pearson
- Department of Psychology, University of Hawaii, 2530 Dole Street, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
34
|
Douet V, Arikawa-Hirasawa E, Mercier F. Fractone-heparan sulfates mediate BMP-7 inhibition of cell proliferation in the adult subventricular zone. Neurosci Lett 2012; 528:120-5. [DOI: 10.1016/j.neulet.2012.08.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/30/2012] [Accepted: 08/14/2012] [Indexed: 01/17/2023]
|
35
|
Santos T, Maia J, Agasse F, Xapelli S, Ferreira L, Bernardino L. Nanomedicine boosts neurogenesis: new strategies for brain repair. Integr Biol (Camb) 2012; 4:973-81. [DOI: 10.1039/c2ib20129a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|