1
|
Zhang L, Yang H. Research progress of neural stem cells as a source of dopaminergic neurons for cell therapy in Parkinson's disease. Mol Biol Rep 2024; 51:347. [PMID: 38400887 DOI: 10.1007/s11033-024-09294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, the most characteristic pathological feature is the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compactus (SNpc) of the mesencephalon, along with reduced dopamine content in the striatum. Researchers have been searching for drugs and therapies to treat PD in decades. However, no approach could stop the progression of the disease, and even some of them caused adverse clinical side effects. PD has a well-defined lesion. Therefore, it is considered to be one of the most curable central nervous system diseases by cell replacement treatment. Fetal ventral mesencephalic tissue transplantation has been used to treat patients with PD and obtained positive treatment results. However, ethical issues, such as limited donor tissue, and side effects including graft-induced dyskinesias, limit its clinical applications. Neural stem cell (NSC) transplantation is a viable therapy choice because it possesses multipotency, self-renewal ability, and differentiation into DA neurons, which may substitute for lost DA neurons and slow down the neurodegenerative process in PD. Studies that investigated the delivery of NSCs by using animal models of PD revealed survival, migration, and even amelioration of behavioral deficits. Here, the research progress of NSCs or NSC-derived DA neurons in treating PD was reviewed, and the practicability of present manufacturing processes for clinical testing was considered. This review is expected to offer ideas for practical strategies to solve the present technical and biological problems related to the clinical application of NSCs in PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China
| |
Collapse
|
2
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
3
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Liu T, Su K, Cai W, Ao H, Li M. Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol 2023:175695. [PMID: 36977450 DOI: 10.1016/j.ejphar.2023.175695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future research on the therapeutic use of puerarin in cerebral diseases.
Collapse
|
5
|
Hou Y, Li X, Liu C, Zhang M, Zhang X, Ge S, Zhao L. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson's disease. Exp Gerontol 2021; 150:111376. [PMID: 33905875 DOI: 10.1016/j.exger.2021.111376] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Gut microbial metabolites, SCFAs, were related with the occurrence and development of Parkinson's disease (PD). But the effects of different short-chain fatty acids (SCFAs) on PD and involving mechanisms are still undefined. In this study we evaluate the effects of three dominant SCFAs (acetate, propionate and butyrate) on motor damage, dopaminergic neuronal degeneration and underlying neuroinflammation related mechanisms in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mice. High (2.0 g/kg) or low doses (0.2 g/kg) of sodium acetate (NaA), sodium propionate (NaP) or sodium butyrate (NaB) were gavaged into PD mice for 6 weeks. High doses of NaA reduced the turning time of PD mice. NaB significantly reduced the turning and total time in pole test, and increased the average velocity in open field test when compared with PD mice, indicating the most effective alleviation of PD-induced motor disorder. Low and high doses of NaB significantly increased the content of tyrosine hydroxylase (TH) by 12.3% and 20.2%, while reduced α-synuclein activation by 159.4% and 132.7% in the substantia nigra pars compacta (SNpc), compared with PD groups. Butyrate reached into the midbrain SNpc and suppressed microglia over-activation. It inhibited the levels of pro-inflammatory factors (IL-6, IL-1β and TNF-α) (P < 0.01) and iNOS. Besides, butyrate inhibited the activation of NF-κB and MAPK signaling pathways in the SNpc region. Consequently, sodium butyrate could inhibit neuroinflammation and alleviate neurological damage of PD.
Collapse
Affiliation(s)
- Yichao Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingqi Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chang Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaoying Zhang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010080, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Zhang L, Yang H. Promotive effects of tetrahydroxystilbene glucoside on the differentiation of neural stem cells from the mesencephalon into dopaminergic neurons. Neurosci Lett 2021; 742:135520. [PMID: 33246026 DOI: 10.1016/j.neulet.2020.135520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are the most promising cells for cell-replacement therapy for PD. However, the poor differentiation and maturation of DA neurons and decreased cell survival after transplantation are a challenge. Tetrahydroxystilbene glucoside (2,3,5,4'-tetrahydroxystilbene-2-O-glucoside; TSG), an active component of the popular traditional Chinese medicinal plant Polygonum multiflorum Thunb, possesses multiple pharmacological actions. In this study, we determined whether TSG can induce neural stem cell (NSCs) differentiation into neurons, especially DA neurons, and the possible involvement of Wnt/β-catenin signaling pathways. Results revealed that NSCs differentiated primarily into astrocytes when cultured in 2 % serum-containing medium. However, TSG treatment during NSC differentiation in vitro increased the number of Tuj-1-positive neurons, as well as the proportion of tyrosine hydroxylase(TH)-positive cells and dopamine- transporter- positive neurons, a late marker of mature DA neurons. We also found that TSG enhanced the expression of nuclear receptor related factor 1, a transcription factor specific for the development and maintenance of midbrain DA neurons in inducing NSC differentiation into TH -immunoreactive DA neurons. Moreover, TSG upregulated the expression of Wnt/β-catenin signaling molecules (Wnt1, Wnt3a, Wnt5a, and β-catenin). However, these promoting effects were significantly inhibited by the application of IWR1, a Wnt signaling-specific blocker in culture. Our findings suggested that TSG may have potential in inducing the DA neuronal differentiation of mouse NSCs mediated by triggering the Wnt/β-catenin signaling pathway. These results indicated the possible role for TSG in the transplantation of NSCs for PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
7
|
Wu Y, Zhang X, Wang J, Jin G, Zhang X. Research progress of the transcription factor Brn4 (Review). Mol Med Rep 2021; 23:179. [PMID: 33398372 PMCID: PMC7809911 DOI: 10.3892/mmr.2020.11818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain 4 (Brn4) is a transcription factor belonging to the POU3 family, and it is important for the embryonic development of the neural tube, inner ear and pancreas. In addition, it serves a crucial role in neural stem cell differentiation and reprogramming. The present review aimed to summarize the chromosomal location, species homology, protein molecular structure and tissue distribution of Brn4, in addition to its biological processes, with the aim of providing a reference of its structure and function for further studies, and its potential use as a gene therapy target.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xunrui Zhang
- Department of Clinical Medicine, Faculty of Medicine, Xinglin College, Nantong University, Nantong, Jiangsu 226008, P.R. China
| | - Jue Wang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guohua Jin
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinhua Zhang
- Department of Anatomy, Co-Innovation Center of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
8
|
Pang AL, Xiong LL, Xia QJ, Liu F, Wang YC, Liu F, Zhang P, Meng BL, Tan S, Wang TH. Neural Stem Cell Transplantation Is Associated with Inhibition of Apoptosis, Bcl-xL Upregulation, and Recovery of Neurological Function in a Rat Model of Traumatic Brain Injury. Cell Transplant 2018; 26:1262-1275. [PMID: 28933221 PMCID: PMC5657736 DOI: 10.1177/0963689717715168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) is a common disease that usually causes severe neurological damage, and current treatment is far from satisfactory. The neuroprotective effects of neural stem cell (NSC) transplantation in the injured nervous system have largely been known, but the underlying mechanisms remain unclear, and their limited sources impede their clinical application. Here, we established a rat model of TBI by dropping a weight onto the cortical motor area of the brain and explored the effect of engrafted NSCs (passage 3, derived from the hippocampus of embryonic 12- to 14-d green fluorescent protein transgenic mice) on TBI rats. Moreover, RT-PCR and Western blotting were employed to investigate the possible mechanism associated with NSC grafts. We found rats with TBI exhibited a severe motor and equilibrium dysfunction, while NSC transplantation could partly improve the motor function and significantly reduce cell apoptosis and increase B-cell lymphoma–extra large (Bcl-xL) expression at 7 d postoperation. However, other genes including Bax, B-cell lymphoma 2, Fas ligand, and caspase3 did not exhibit significant differences in expression. Moreover, to test whether Bcl-xL could be used as a therapeutic target, herpes simplex virus (HSV) 1 carrying Bcl-xL recombinant was constructed and injected into the pericontusional cortices. Bcl-xL overexpression not only resulted in a significant improvement in neurological function but also inhibits cell apoptosis, as compared with the TBI rats, and exhibits the same effects as the administration of NSC. The present study therefore indicated that NSC transplantation could promote the recovery of TBI rats in a manner similar to that of Bcl-xL overexpression. Therefore, Bcl-xL overexpression, to some extent, could be considered as a useful strategy to replace NSC grafting in the treatment of TBI in future clinical practices.
Collapse
Affiliation(s)
- Ai-Lan Pang
- 1 Department of Neurology, Zhujiang Hospital Southern Medical University, Guangzhou, Guangdong, China.,4 Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Liu-Lin Xiong
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fen Liu
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - You-Cui Wang
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Piao Zhang
- 2 Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Bu-Liang Meng
- 5 Department of Human Anatomy Histology and Embryology, Kunming Medical University, Kunming, China
| | - Sheng Tan
- 1 Department of Neurology, Zhujiang Hospital Southern Medical University, Guangzhou, Guangdong, China
| | - Ting-Hua Wang
- 2 Institute of Neuroscience, Kunming Medical University, Kunming, China.,3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ghazale H, Ramadan N, Mantash S, Zibara K, El-Sitt S, Darwish H, Chamaa F, Boustany RM, Mondello S, Abou-Kheir W, Soueid J, Kobeissy F. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behav Brain Res 2018; 340:1-13. [PMID: 29126932 DOI: 10.1016/j.bbr.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the subventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule-1, IBA-1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI-induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA+NSCs treated animals showed decreased levels of 38kDa GFAP-BDP (breakdown product) and 145kDa αII-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.
Collapse
Affiliation(s)
- Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Sara Mantash
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Hala Darwish
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rose Mary Boustany
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, A.O.U. "Policlinico G. Martino", Via Consolare Valeria, Messina, 98125, Italy
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon, Lebanon; Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Chen R, Liu Y, Su Q, Yang Y, Wang L, Ma S, Yan J, Xue F, Wang J. Hypoxia stimulates proliferation of rat neural stem/progenitor cells by regulating mir-21: an in vitro study. Neurosci Lett 2017; 661:71-76. [DOI: 10.1016/j.neulet.2017.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
|
11
|
Furchtgott LA, Melton S, Menon V, Ramanathan S. Discovering sparse transcription factor codes for cell states and state transitions during development. eLife 2017; 6:e20488. [PMID: 28296636 PMCID: PMC5352226 DOI: 10.7554/elife.20488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B- and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships.
Collapse
Affiliation(s)
- Leon A Furchtgott
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
- Biophysics Program, Harvard University, Cambridge, United States
| | - Samuel Melton
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, United States
| | - Vilas Menon
- Allen Institute for Brain Science, Seattle, United States
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Sharad Ramanathan
- FAS Center for Systems Biology, Harvard University, Cambridge, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, United States
- Allen Institute for Brain Science, Seattle, United States
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| |
Collapse
|
12
|
Moore IM(K, Merkle CJ, Byrne H, Ross A, Hawkins AM, Ameli SS, Montgomery DW. Effects of Intraventricular Methotrexate on Neuronal Injury and Gene Expression in a Rat Model. Biol Res Nurs 2016; 18:505-14. [DOI: 10.1177/1099800416644780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Central nervous system (CNS)-directed treatment for acute lymphoblastic leukemia, used to prevent disease recurrence in the brain, is essential for survival. Systemic and intrathecal methotrexate, commonly used for CNS-directed treatment, have been associated with cognitive problems during and after treatment. The cortex, hippocampus, and caudate putamen, important brain regions for learning and memory, may be involved in methotrexate-induced brain injury. Objectives of this study were to (1) quantify neuronal degeneration in selected regions of the cortex, hippocampus, and caudate putamen and (2) measure changes in the expression of genes with known roles in oxidant defense, apoptosis/inflammation, and protection from injury. Male Sprague Dawley rats were administered 2 or 4 mg/kg of methotrexate diluted in artificial cerebrospinal fluid (aCSF) or aCSF only into the left cerebral lateral ventricle. Gene expression changes were measured using customized reverse transcription (RT)2 polymerase chain reaction arrays. The greatest percentage of degenerating neurons in methotrexate-treated animals was in the medial region of the cortex; percentage of degenerating neurons in the dentate gyrus and cornu ammonis 3 regions of the hippocampus was also greater in rats treated with methotrexate compared to perfusion and vehicle controls. There was a greater percentage of degenerating neurons in the inferior cortex of control versus methotrexate-treated animals. Eight genes involved in protection from injury, oxidant defense, and apoptosis/inflammation were significantly downregulated in different brain regions of methotrexate-treated rats. To our knowledge, this is the first study to investigate methotrexate-induced injury in selected brain regions and gene expression changes using a rat model of intraventricular drug administration.
Collapse
Affiliation(s)
| | | | | | - Adam Ross
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | | | - Sara S. Ameli
- College of Nursing, The University of Arizona, Tucson AZ, USA
| | - David W. Montgomery
- College of Nursing, The University of Arizona, Tucson AZ, USA
- Southern Arizona VA Healthcare System, Tucson AZ, USA
| |
Collapse
|
13
|
Zhu B, Caldwell M, Song B. Development of stem cell-based therapies for Parkinson's disease. Int J Neurosci 2016; 126:955-62. [DOI: 10.3109/00207454.2016.1148034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Fu MH, Li CL, Lin HL, Chen PC, Calkins MJ, Chang YF, Cheng PH, Yang SH. Stem cell transplantation therapy in Parkinson's disease. SPRINGERPLUS 2015; 4:597. [PMID: 26543732 PMCID: PMC4628010 DOI: 10.1186/s40064-015-1400-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson’s disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson’s disease.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301 Taiwan
| | - Chia-Ling Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Hsiu-Lien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Division of Breeding and Genetics, Livestock Research Institute, Council of Agriculture, Tainan, 71246 Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yu-Fan Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
15
|
Transplanted Neural Stem Cells: Playing a Neuroprotective Role by Ceruloplasmin in the Substantia Nigra of PD Model Rats? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:618631. [PMID: 26146528 PMCID: PMC4469843 DOI: 10.1155/2015/618631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/23/2023]
Abstract
Although mounting evidence suggests that ceruloplasmin (CP) deficiency and iron deposition are pivotal factors responsible for exacerbating demise of dopaminergic neurons in the substantia nigra (SN) of the Parkinsonism and neural stem cells (NSCs) are believed to be excellent candidates for compensating the lost dopaminergic neurons, there are few researches to explore the change of CP expression and of iron deposition in the pathological microenvironment of SN after NSCs transplantation and the ability of grafted NSCs to differentiate directionally into dopaminergic neurons under the changed homeostasis. With substantia nigral stereotaxic technique and NSCs transplantation, we found that tyrosine hydroxylase and CP expression decreased and iron deposition increased in the lesioned SN after 6-OHDA administration compared with control, while tyrosine hydroxylase and CP expression increased and iron deposition decreased after NSCs transplantation compared to 6-OHDA administration alone. Only a small number of embedding NSCs are able to differentiate into dopaminergic neurons. These results suggest that grafted NSCs have an influence on improving the content of CP expression, which may play a neuroprotective role by decreasing iron deposition and ameliorating damage of dopaminergic neurons and possibly underline the iron-related common mechanism of Parkinson's disease and Wilson's disease.
Collapse
|
16
|
Wang M, Banerjee K, Baker H, Cave JW. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter. ACTA ACUST UNITED AC 2014; 10:74-90. [PMID: 25774193 DOI: 10.1007/s11515-014-1341-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis and its gene proximal promoter ( < 1 kb upstream from the transcription start site) is essential for regulating transcription in both the developing and adult nervous systems. Several putative regulatory elements within the TH proximal promoter have been reported, but evolutionary conservation of these elements has not been thoroughly investigated. Since many vertebrate species are used to model development, function and disorders of human catecholaminergic neurons, identifying evolutionarily conserved transcription regulatory mechanisms is a high priority. In this study, we align TH proximal promoter nucleotide sequences from several vertebrate species to identify evolutionarily conserved motifs. This analysis identified three elements (a TATA box, cyclic AMP response element (CRE) and a 5'-GGTGG-3' site) that constitute the core of an ancient vertebrate TH promoter. Focusing on only eutherian mammals, two regions of high conservation within the proximal promoter were identified: a ∼250 bp region adjacent to the transcription start site and a ∼85 bp region located approximately 350 bp further upstream. Within both regions, conservation of previously reported cis-regulatory motifs and human single nucleotide variants was evaluated. Transcription reporter assays in a TH -expressing cell line demonstrated the functionality of highly conserved motifs in the proximal promoter regions and electromobility shift assays showed that brain-region specific complexes assemble on these motifs. These studies also identified a non-canonical CRE binding (CREB) protein recognition element in the proximal promoter. Together, these studies provide a detailed analysis of evolutionary conservation within the TH promoter and identify potential cis-regulatory motifs that underlie a core set of regulatory mechanisms in mammals.
Collapse
Affiliation(s)
- Meng Wang
- Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | - Harriet Baker
- Burke Medical Research Institute, White Plains, NY 10605, USA ; Weill Cornell Medical College Brain and Mind Research Institute, NY 10065, USA
| | - John W Cave
- Burke Medical Research Institute, White Plains, NY 10605, USA ; Weill Cornell Medical College Brain and Mind Research Institute, NY 10065, USA
| |
Collapse
|