1
|
van de Mortel LA, Bruin WB, Alonso P, Bertolín S, Feusner JD, Guo J, Hagen K, Hansen B, Thorsen AL, Martínez-Zalacaín I, Menchón JM, Nurmi EL, O'Neill J, Piacentini JC, Real E, Segalàs C, Soriano-Mas C, Thomopoulos SI, Stein DJ, Thompson PM, van den Heuvel OA, van Wingen GA. Development and validation of a machine learning model to predict cognitive behavioral therapy outcome in obsessive-compulsive disorder using clinical and neuroimaging data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.14.25322265. [PMID: 39990555 PMCID: PMC11844585 DOI: 10.1101/2025.02.14.25322265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cognitive behavioral therapy (CBT) is a first-line treatment for obsessive-compulsive disorder (OCD), but clinical response is difficult to predict. In this study, we aimed to develop predictive models using clinical and neuroimaging data from the multicenter Enhancing Neuro-Imaging and Genetics through Meta-Analysis (ENIGMA)-OCD consortium. Baseline clinical and resting-state functional magnetic imaging (rs-fMRI) data from 159 adult patients aged 18-60 years (88 female) with OCD who received CBT at four treatment/neuroimaging sites were included. Fractional amplitude of low frequency fluctuations, regional homogeneity and atlas-based functional connectivity were computed. Clinical CBT response and remission were predicted using support vector machine and random forest classifiers on clinical data only, rs-fMRI data only, and the combination of both clinical and rs-fMRI data. The use of only clinical data yielded an area under the ROC curve (AUC) of 0.69 for predicting remission (p=0.001). Lower baseline symptom severity, younger age, an absence of cleaning obsessions, unmedicated status, and higher education had the highest model impact in predicting remission. The best predictive performance using only rs-fMRI was obtained with regional homogeneity for remission (AUC=0.59). Predicting response with rs-fMRI generally did not exceed chance level. Machine learning models based on clinical data may thus hold promise in predicting remission after CBT for OCD, but the predictive power of multicenter rs-fMRI data is limited.
Collapse
|
2
|
Yu J, Xu Q, Ma L, Huang Y, Zhu W, Liang Y, Wang Y, Tang W, Zhu C, Jiang X. Functional Magnetic Resonance Imaging-Specific Alternations in the Default Mode Network in Obsessive-Compulsive Disorder: A Voxel-Based Meta-Analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00377-X. [PMID: 39675630 DOI: 10.1016/j.bpsc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a common and debilitating mental disorder. Neuroimaging studies have highlighted that a dysfunctional default mode network (DMN) plays a key role in the pathophysiological mechanisms of OCD. However, findings of impaired DMN regions in OCD have been inconsistent. We used meta-analysis to identify functional magnetic resonance imaging (fMRI)-specific abnormalities of the DMN in OCD. METHODS PubMed, Web of Science, and Embase were searched to screen resting-state fMRI studies of the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity of the DMN in patients with OCD. Based on the activation likelihood estimation algorithm, we compared all patients with OCD and a control group in a primary meta-analysis and analyzed unmedicated OCD patients without comorbidities in secondary meta-analyses. RESULTS A total of 26 eligible studies with 1219 patients with OCD (707 men) and 1238 healthy control participants (684 men) were included in the primary meta-analysis. We identified specific changes in brain regions of the DMN, mainly in the left medial frontal gyrus, bilateral superior temporal gyrus, bilateral inferior parietal lobule, bilateral precuneus, bilateral posterior cingulate cortex, and right parahippocampal gyrus. CONCLUSIONS Patients with OCD showed dysfunction in the DMN, including impaired local important nodal brain regions. The parietal cingulate cortex/precuneus appeared to be the most affected regions within the DMN, providing valuable insights into understanding the potential pathophysiology of OCD and targets for clinical interventions.
Collapse
Affiliation(s)
- Jianping Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qianwen Xu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lisha Ma
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqi Huang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Liang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunzhan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenxin Tang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoying Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Chen H, Xie M, Ouyang M, Yuan F, Yu J, Song S, Liu N, Zhang N. The impact of illness duration on brain activity in goal-directed and habit-learning systems in obsessive-compulsive disorder progression: A resting-state functional imaging study. Neuroscience 2024; 553:74-88. [PMID: 38964449 DOI: 10.1016/j.neuroscience.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
It is increasingly evident that structural and functional changes in brain regions associated with obsessive-compulsive disorder (OCD) are often related to the development of the disease. However, limited research has been conducted on how the progression of OCD may lead to an imbalance between goal-directed and habit-learning systems. This study employs resting-state functional imaging to examine the relationship between illness duration and abnormal brain function in goal-directed/habitual-learning systems. Demographic, clinical, and multimodal fMRI data were collected from participants. Our findings suggest that, compared to healthy controls, individuals with OCD exhibit abnormal brain functional indicators in both goal-directed and habit-learning brain regions, with a more pronounced reduction observed in the goal-directed regions. Additionally, abnormal brain activity is associated with illness duration, and the abnormalities observed in goal-directed regions are more effective in distinguishing different courses of OCD patients. Patients with different durations of OCD have functional abnormalities in the goal-directed and habitual-learning brain regions. There are differences in the degree of abnormality in different brain regions, and these abnormalities may disrupt the balance between goal-directed and habitual-learning systems, leading to increasing reliance on repetitive behaviors.
Collapse
Affiliation(s)
- Haocheng Chen
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mengyuan Ouyang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fangzheng Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shasha Song
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
4
|
Perera MPN, Gotsis ES, Bailey NW, Fitzgibbon BM, Fitzgerald PB. Exploring functional connectivity in large-scale brain networks in obsessive-compulsive disorder: a systematic review of EEG and fMRI studies. Cereb Cortex 2024; 34:bhae327. [PMID: 39152672 PMCID: PMC11329673 DOI: 10.1093/cercor/bhae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition that is difficult to treat due to our limited understanding of its pathophysiology. Functional connectivity in brain networks, as evaluated through neuroimaging studies, plays a pivotal role in understanding OCD. While both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been extensively employed in OCD research, few have fully synthesized their findings. To bridge this gap, we reviewed 166 studies (10 EEG, 156 fMRI) published up to December 2023. In EEG studies, OCD exhibited lower connectivity in delta and alpha bands, with inconsistent findings in other frequency bands. Resting-state fMRI studies reported conflicting connectivity patterns within the default mode network (DMN) and sensorimotor cortico-striato-thalamo-cortical (CSTC) circuitry. Many studies observed decreased resting-state connectivity between the DMN and salience network (SN), implicating the 'triple network model' in OCD. Task-related hyperconnectivity within the DMN-SN and hypoconnectivity between the SN and frontoparietal network suggest OCD-related cognitive inflexibility, potentially due to triple network dysfunction. In conclusion, our review highlights diverse connectivity differences in OCD, revealing complex brain network interplay that contributes to symptom manifestation. However, the presence of conflicting findings underscores the necessity for targeted research to achieve a comprehensive understanding of the pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Efstathia S Gotsis
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Neil W Bailey
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Bernadette M Fitzgibbon
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| | - Paul B Fitzgerald
- College of Health and Medicine, Australian National University, Building 4, The Canberra Hospital, Hospital Rd, Garran ACT 2605, Australia
- Monarch Research Institute, Monarch Mental Health Group, Level 4, 131 York Street Sydney NSW 2000, Australia
| |
Collapse
|
5
|
Choi EJ, Vandewouw MM, Taylor MJ, Stevenson RA, Arnold PD, Brian J, Crosbie J, Kelley E, Liu X, Jones J, Lai MC, Schachar RJ, Lerch JP, Anagnostou E. Dorsal Striatal Functional Connectivity and Repetitive Behavior Dimensions in Children and Youths With Neurodevelopmental Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:387-397. [PMID: 38000717 DOI: 10.1016/j.bpsc.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Impairing repetitive behaviors are one of the core diagnostic symptoms in autism spectrum disorder and obsessive-compulsive disorder, but they also manifest in attention-deficit/hyperactivity disorder. Although the dorsal striatal circuit has been implicated in repetitive behaviors, extensive heterogeneity in and cross-diagnostic manifestations of these behaviors have suggested phenotypic and likely neurobiological heterogeneity across neurodevelopmental disorders (NDDs). METHODS Intrinsic dorsal striatal functional connectivity was examined in 3 NDDs (autism spectrum disorder, obsessive-compulsive disorder, and attention-deficit/hyperactivity disorder) and typically developing control participants in a large single-cohort sample (N = 412). To learn how diagnostic labels and overlapping behaviors manifest in dorsal striatal functional connectivity measured with functional magnetic resonance imaging, the main and interaction effects of diagnosis and behavior were examined in 8 models (2 seed functional connectivity [caudate and putamen] × 4 sub-behavioral domains [sameness/ritualistic, self-injury, stereotypy, and compulsions]). RESULTS The obsessive-compulsive disorder group demonstrated distinctive patterns in visual and visuomotor coordination regions compared with the other diagnostic groups. Lower-order repetitive behaviors (self-injury and stereotypy) manifesting across all participants were implicated in regions involved in motor and cognitive control, although the findings did not survive effects of multiple comparisons, suggesting heterogeneity in these behavioral domains. An interaction between self-injurious behavior and an attention-deficit/hyperactivity disorder diagnosis were observed on caudate-cerebellum functional connectivity. CONCLUSIONS These findings confirmed high heterogeneity and overlapping behavioral manifestations in NDDs and their complex underlying neural mechanisms. A call for diagnosis-free symptom measures that can capture not only observable symptoms and severity across NDDs but also the underlying functions and motivations of such behaviors across diagnoses is needed.
Collapse
Affiliation(s)
- Eun Jung Choi
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada.
| | - Marlee M Vandewouw
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Psychology and Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Ryan A Stevenson
- Department of Psychology, Western University, London, Ontario, Canada; Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Paul D Arnold
- Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Brian
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Crosbie
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queens' University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jessica Jones
- Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Meng-Chuan Lai
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Azrieli Adult Neurodevelopmental Centre, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Russell J Schachar
- Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Neurosciences & Mental Health, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Pickenhan L, Milton AL. Opening new vistas on obsessive-compulsive disorder with the observing response task. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:249-265. [PMID: 38316708 PMCID: PMC11039534 DOI: 10.3758/s13415-023-01153-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/07/2024]
Abstract
Obsessive-compulsive disorder (OCD), a highly prevalent and debilitating disorder, is incompletely understood in terms of underpinning behavioural, psychological, and neural mechanisms. This is attributable to high symptomatic heterogeneity; cardinal features comprise obsessions and compulsions, including clinical subcategories. While obsessive and intrusive thoughts are arguably unique to humans, dysfunctional behaviours analogous to those seen in clinical OCD have been examined in nonhuman animals. Genetic, ethological, pharmacological, and neurobehavioural approaches all contribute to understanding the emergence and persistence of compulsive behaviour. One behaviour of particular interest is maladaptive checking, whereby human patients excessively perform checking rituals despite these serving no purpose. Dysfunctional and excessive checking is the most common symptom associated with OCD and can be readily operationalised in rodents. This review considers animal models of OCD, the neural circuitries associated with impairments in habit-based and goal-directed behaviour, and how these may link to the compulsions observed in OCD. We further review the Observing Response Task (ORT), an appetitive instrumental learning procedure that distinguishes between functional and dysfunctional checking, with translational application in humans and rodents. By shedding light on the psychological and neural bases of compulsive-like checking, the ORT has potential to offer translational insights into the underlying mechanisms of OCD, in addition to being a platform for testing psychological and neurochemical treatment approaches.
Collapse
Affiliation(s)
- Luise Pickenhan
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| |
Collapse
|
7
|
Bakay H, Ulasoglu-Yildiz C, Kurt E, Demiralp T, Tükel R. Hyperconnecitivity between dorsal attention and frontoparietal networks predicts treatment response in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2024; 337:111763. [PMID: 38056116 DOI: 10.1016/j.pscychresns.2023.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Obsessive-compulsive disorder (OCD) presented with repetitive obsessions and/or compulsions were associated with disrupted resting-state functional connectivity (rs-FC). To investigate the pharmacological treatment effect on rs-FC changes in OCD patients we conducted the seed-to-voxel FC analyses using dorsal attention network (DAN), default mode network (DMN), salience network (SN) and frontoparietal network (FPN) and basal ganglia seeds. Twenty-two healthy subjects and twenty-four unmedicated OCD patients underwent resting-state functional magnetic resonance imaging. Patients were rescanned after 12 weeks of escitalopram treatment. We found increased FC both within the DAN and between the DAN and the FPN which was ameliorated after medication and correlated significantly with the clinical improvement in obsession scores. We also observed an anticorrelation between the left caudate and the supplementary motor area in unmedicated OCD patients which also normalized with treatment. Results further showed treatment related normalization of orbitofrontal cortex hyperconnectivity with DMN and hypoconnectivity with DAN whereas aberrant FC between the SN and visual areas appears to be a medication effect. We suggest that DAN to FPN hyperconnectivity which is positively correlated with clinical improvement in obsession scores at pre-treatment stage in present study has a potential for being a neuroimaging marker to predict the treatment response in OCD.
Collapse
Affiliation(s)
- Hasan Bakay
- Department of Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Cigdem Ulasoglu-Yildiz
- Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Istanbul, Turkey; Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Kurt
- Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Istanbul, Turkey; Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tamer Demiralp
- Hulusi Behçet Life Sciences Research Laboratory, Istanbul University, Istanbul, Turkey; Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Raşit Tükel
- Department of Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Li H, Wang Y, Xi H, Zhang J, Zhao M, Jia X. Alterations of regional spontaneous brain activity in obsessive-compulsive disorders: A meta-analysis. J Psychiatr Res 2023; 165:325-335. [PMID: 37573797 DOI: 10.1016/j.jpsychires.2023.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Recent studies using resting-state functional magnetic resonance imaging (rs-fMRI) demonstrate that there is aberrant regional spontaneous brain activity in obsessive-compulsive disorders (OCD). Nevertheless, the results of previous studies are contradictory, especially in the abnormal brain regions and the directions of their activities. It is necessary to perform a meta-analysis to identify the common pattern of altered regional spontaneous brain activity in patients with OCD. METHODS The present study conducted a systematic search for studies in English published up to May 2023 in PubMed, Web of Science, and Embase. These studies measured differences in regional spontaneous brain activity at the whole brain level using regional homogeneity (ReHo), the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF). Then the Anisotropic effect-size version of seed-based d mapping (AES-SDM) was used to investigate the consistent abnormality of regional spontaneous brain activity in patients with OCD. RESULTS 27 studies (33 datasets) were included with 1256 OCD patients (650 males, 606 females) and 1176 healthy controls (HCs) (588 males, 588 females). Compared to HCs, patients with OCD showed increased spontaneous brain activity in the right inferior parietal gyrus (Brodmann Area 39), left median cingulate and paracingulate gyri (Brodmann Area 24), bilateral inferior cerebellum, right middle frontal gyrus (Brodmann Area 46), left inferior frontal gyrus in triangular part (Brodmann Area 45) and left middle frontal gyrus in orbital part (Brodmann Area 11). Meanwhile, decreased spontaneous brain activity was identified in the right precentral gyrus (Brodmann Area 4), right insula (Brodmann Area 48), left postcentral gyrus (Brodmann Area 43), bilateral superior cerebellum and left caudate (Brodmann Area 25). CONCLUSIONS This meta-analysis provided a quantitative review of spontaneous brain activity in OCD. The results demonstrated that the brain regions in the frontal lobe, sensorimotor cortex, cerebellum, caudate and insula are crucially involved in the pathophysiology of OCD. This research contributes to the understanding of the pathophysiologic mechanism underlying OCD and could provide a new perspective on future diagnosis and treatment of OCD.
Collapse
Affiliation(s)
- Huayun Li
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China; Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, China.
| | - Yihe Wang
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China; Intelligent Laboratory of Zhejiang Province in Mental Health and Crisis Intervention for Children and Adolescents, Jinhua, China
| | - Hongyu Xi
- School of Western Language, Heilongjiang University, Harbin, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China; Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
9
|
Huang FF, Wang PC, Yang XY, Luo J, Yang XJ, Li ZJ. Predicting responses to cognitive behavioral therapy in obsessive-compulsive disorder based on multilevel indices of rs-fMRI. J Affect Disord 2023; 323:345-353. [PMID: 36470552 DOI: 10.1016/j.jad.2022.11.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to identify neuroimaging predictors to predict the response of cognitive behavioral therapy (CBT) in patients with obsessive-compulsive disorder (OCD) based on indices of resting-state functional magnetic resonance imaging (rs-fMRI). METHODS Fifty patients with OCD were enrolled and allocated to either high or low responder groups after CBT using a 50 % response rate as the delineator. The pre-treatment amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) in each cerebrum region, defined by automated anatomical labeling atlas, were extracted. Least absolute shrinkage and selection operator and logistic regression were used to select features and establish models. RESULTS The combination of multilevel rs-fMRI indices achieved the best performance, with a cross-validation area under the receiver operating characteristic curve (AUC) of 0.900. In this combined model, an increase of interquartile range (IQR) in fALFF of right inferior orbital frontal gyrus (IOFG), and ReHo of left hippocampus and superior occipital gyrus (SOG) corresponded to a 26.52 %, 38.67 % and 24.38 % increase in the possibility to be high responders of CBT, respectively. ALFF of left thalamus and ReHo of left putamen were negatively associated with the response to CBT, with a 14.30 % and 19.91 % decrease per IQR increase of the index value. CONCLUSION The combination of ALFF, fALFF and ReHo achieved a better predictive performance than separate index. Pre-treatment ALFF of the left thalamus, fALFF of the right IOFG, ReHo of the left hippocampus, SOG and putamen can be used as predictors of CBT response.
Collapse
Affiliation(s)
- Fang-Fang Huang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Department of Preventive Medicine, School of Basic Medical Sciences, Henan University of Science and Technology, Henan, China
| | - Peng-Chong Wang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang-Yun Yang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jia Luo
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiao-Jie Yang
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhan-Jiang Li
- Department of Clinical Psychology, The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Chu M, Xu T, Wang Y, Wang P, Gu Q, Liu Q, Cheung EFC, Chan RCK, Wang Z. The impact of childhood trauma on thalamic functional connectivity in patients with obsessive-compulsive disorder. Psychol Med 2022; 52:2471-2480. [PMID: 33213536 DOI: 10.1017/s0033291720004328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Childhood trauma is a vulnerability factor for the development of obsessive-compulsive disorder (OCD). Empirical findings suggest that trauma-related alterations in brain networks, especially in thalamus-related regions, have been observed in OCD patients. However, the relationship between childhood trauma and thalamic connectivity in patients with OCD remains unclear. The present study aimed to examine the impact of childhood trauma on thalamic functional connectivity in OCD patients. METHODS Magnetic resonance imaging resting-state scans were acquired in 79 patients with OCD, including 22 patients with a high level of childhood trauma (OCD_HCT), 57 patients with a low level of childhood trauma (OCD_LCT) and 47 healthy controls. Seven thalamic subdivisions were chosen as regions of interest (ROIs) to examine the group difference in thalamic ROIs and whole-brain resting-state functional connectivity (rsFC). RESULTS We found significantly decreased caudate-thalamic rsFC in OCD patients as a whole group and also in OCD_LCT patients, compared with healthy controls. However, OCD_HCT patients exhibited increased thalamic rsFC with the prefrontal cortex when compared with both OCD_LCT patients and healthy controls. CONCLUSIONS Taken together, OCD patients with high and low levels of childhood trauma exhibit different pathological alterations in thalamic rsFC, suggesting that childhood trauma may be a predisposing factor for some OCD patients.
Collapse
Affiliation(s)
- Minyi Chu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Xu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiumeng Gu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administration Region, China
| | - Raymond C K Chan
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
11
|
Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci 2022; 16:893903. [PMID: 35958984 PMCID: PMC9359080 DOI: 10.3389/fnins.2022.893903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Decreased tolerance in response to specific every-day sounds (misophonia) is a serious, debilitating disorder that is gaining rapid recognition within the mental health community. Emerging research findings suggest that misophonia may have a unique neural signature. Specifically, when examining responses to misophonic trigger sounds, differences emerge at a physiological and neural level from potentially overlapping psychopathologies. While these findings are preliminary and in need of replication, they support the hypothesis that misophonia is a unique disorder. In this theoretical paper, we begin by reviewing the candidate networks that may be at play in this complex disorder (e.g., regulatory, sensory, and auditory). We then summarize current neuroimaging findings in misophonia and present areas of overlap and divergence from other mental health disorders that are hypothesized to co-occur with misophonia (e.g., obsessive compulsive disorder). Future studies needed to further our understanding of the neuroscience of misophonia will also be discussed. Next, we introduce the potential of neurostimulation as a tool to treat neural dysfunction in misophonia. We describe how neurostimulation research has led to novel interventions in psychiatric disorders, targeting regions that may also be relevant to misophonia. The paper is concluded by presenting several options for how neurostimulation interventions for misophonia could be crafted.
Collapse
Affiliation(s)
- Andrada D. Neacsiu
- Duke Center for Misophonia and Emotion Regulation, Duke Brain Stimulation Research Center, Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria Szymkiewicz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jeffrey T. Galla
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Brenden Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Yashaswini Kulkarni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Cade W. Spector
- Department of Philosophy, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Yan H, Shan X, Li H, Liu F, Guo W. Abnormal spontaneous neural activity in hippocampal-cortical system of patients with obsessive-compulsive disorder and its potential for diagnosis and prediction of early treatment response. Front Cell Neurosci 2022; 16:906534. [PMID: 35910254 PMCID: PMC9334680 DOI: 10.3389/fncel.2022.906534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Early brain functional changes induced by pharmacotherapy in patients with obsessive-compulsive disorder (OCD) in relation to drugs per se or because of the impact of such drugs on the improvement of OCD remain unclear. Moreover, no neuroimaging biomarkers are available for diagnosis of OCD and prediction of early treatment response. We performed a longitudinal study involving 34 patients with OCD and 36 healthy controls (HCs). Patients with OCD received 5-week treatment with paroxetine (40 mg/d). Resting-state functional magnetic resonance imaging (fMRI), regional homogeneity (ReHo), support vector machine (SVM), and support vector regression (SVR) were applied to acquire and analyze the imaging data. Compared with HCs, patients with OCD had higher ReHo values in the right superior temporal gyrus and bilateral hippocampus/parahippocampus/fusiform gyrus/cerebellum at baseline. ReHo values in the left hippocampus and parahippocampus decreased significantly after treatment. The reduction rate (RR) of ReHo values was positively correlated with the RRs of the scores of Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and obsession. Abnormal ReHo values at baseline could serve as potential neuroimaging biomarkers for OCD diagnosis and prediction of early therapeutic response. This study highlighted the important role of the hippocampal-cortical system in the neuropsychological mechanism underlying OCD, pharmacological mechanism underlying OCD treatment, and the possibility of building models for diagnosis and prediction of early treatment response based on spontaneous activity in the hippocampal-cortical system.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
13
|
Yan H, Shan X, Li H, Liu F, Guo W. Abnormal spontaneous neural activity as a potential predictor of early treatment response in patients with obsessive-compulsive disorder. J Affect Disord 2022; 309:27-36. [PMID: 35472471 DOI: 10.1016/j.jad.2022.04.125] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND We aimed to explore the value of early improvement in obsessive-compulsive disorder (OCD) along with potential imaging changes after treatment with paroxetine in building diagnostic models and predicting treatment response. METHODS The clinical symptoms of patients with OCD were assessed at baseline and post-treatment (four weeks). Resting-state functional magnetic resonance imaging, fractional amplitudes of low-frequency fluctuations (fALFF) indicator, support vector machine (SVM), support vector regression (SVR), and correlation analysis were performed to acquire and analyze the data. RESULTS In comparison with healthy controls, OCD patients at baseline had abnormal fALFF in several brain regions. The abnormal fALFF in the left precuneus/ posterior cingulate cortex (PCC) (r = -0.526, p = 0.001) and right middle cingulate cortex (MCC) (r = -0.588, p < 0.001) were negatively correlated with the severity of compulsions. Patients with OCD showed significantly clinical improvement along with significantly decreased fALFF in the left precuneus after treatment. The SVM analysis showed that the classifier had an accuracy of 90.00% based on the fALFF in the right precentral gyrus and right MCC at baseline. The SVR analysis showed that the actual remission of OCD was positively correlated with the predicted remission based on the fALFF in the left precuneus/PCC and right MCC at baseline. LIMITATIONS This monocentric study with the relatively small sample size might restrict the generalizability of the results to other centers. CONCLUSIONS Abnormal spontaneous neural activities in patients with OCD could serve as potential neuroimaging biomarkers for diagnosis and prediction of early treatment response.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Psychiatry, The Third People's Hospital of Foshan, Foshan 528000, Guangdong, China.
| |
Collapse
|
14
|
Ottoni R, Pellegrini C, Mora L, Marchesi C, Tonna M. Psychopathology of insight in obsessive–compulsive disorder. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Liu J, Cao L, Li H, Gao Y, Bu X, Liang K, Bao W, Zhang S, Qiu H, Li X, Hu X, Lu L, Zhang L, Hu X, Huang X, Gong Q. Abnormal resting-state functional connectivity in patients with obsessive-compulsive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 135:104574. [DOI: 10.1016/j.neubiorev.2022.104574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
|
16
|
Huang BL, Wang JR, Yang XH, Ren YM, Guo HR. A study on diffusion tensor imaging in patients with untreated first-episode obsessive-compulsive disorder. Quant Imaging Med Surg 2022; 12:1467-1474. [PMID: 35111639 DOI: 10.21037/qims-21-682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The present study provides an overview of studies investigating white matter (WM) integrity in patients with obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI). Furthermore, it studies the correlation of fractional anisotropy (FA) in abnormal cerebral WM areas with the course and clinical signs of the disease. METHODS The study subjects were divided into two groups, the OCD group (n=38) and the control group (n=40), based on the Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5) diagnostic criteria for OCD. Patients with untreated first-episode OCD were assigned to the OCD group, while healthy volunteers were assigned to the control group. The study group was evaluated in accordance with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), Self-Rating Depression Scale (SDS) and Self-Rating Anxiety Scale (SAS). Subjects who met the inclusion criteria underwent whole-brain scanning via 3.0 T structural magnetic resonance imaging (sMRI). The WM FA values in different brain areas were compared between the two groups using voxel-based analysis (VBA). Subsequently, the correlations of the patient Y-BOCS score and disorder course with the FA values in significantly improved encephalic areas were analyzed. RESULTS (I) The FA values of the right precentral gyrus (PreCG.R), left insular lobe, left inferior frontal gyrus and right inferior occipital gyrus (Occipital_Inf_R) WM were significantly lower in the OCD group than in the control group (P<0.05). Elevated FA values were not observed in the OCD group. (II) FA values of PreCG.R, left insular lobe/left inferior frontal gyrus, and Occipital_Inf_R were not found in relation to the total Y-BOCS score (P=0.122; P=0.401; P=0.134), obsessional thoughts score (P=0.299; P=0.760; P=0.062), compulsive activities checklist (P=0.487; P=0.420; P=0.431), and disease course (P=0.604; P=0.380; P=0.182). CONCLUSIONS Multiple microstructural cerebral WM changes were observed in the frontal lobe, occipital lobe, and insula in patients with untreated first-episode OCD, presenting the correlation of these changes with OCD occurrence.
Collapse
Affiliation(s)
- Bai-Ling Huang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Ru Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu-Huan Yang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Ren
- Office of Academic Studies, Xinxiang Medical University, Xinxiang, China
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Naaz F, Chen L, Gold AI, Samuels J, Krasnow J, Wang Y, Nestadt P, Kamath V, Chib VS, Nestadt G, Bakker A. Neural correlates of doubt in decision-making. Psychiatry Res Neuroimaging 2021; 317:111370. [PMID: 34464764 DOI: 10.1016/j.pscychresns.2021.111370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The experience of doubt, the lack of confidence in one's perceptions, internal states, memory and attention, can be due to the variability in occurrence of a phenomenon or can be driven by the internal experience of uncertainty based on subjective evaluation of the environment. Although the experience of some doubt is adaptive in normal cognitive functioning, excessive doubt can significantly impair decision-making and in extreme cases give rise to psychopathology. Although neuroimaging studies have provided some insight into the network of brain areas that is engaged when decision-making involves uncertainty, it remains unclear if dysfunction in these areas also gives rise to the experience and pathological expression of doubt. This study examined the neural correlates of doubt using neuroimaging during the performance of a forced-choice perceptual decision-making task under varying levels of uncertainty in participants who reported either low or high doubt. Participants reporting high doubt exhibited increased activation in the bilateral inferior parietal lobule (IPL) during perceptual decision-making which was not observed in participants who reported low doubt. Furthermore, activity in the IPL in high doubt participants was associated with clinical measures of doubt and showed functional connectivity differences between the high and low doubt groups. The findings of the current study suggest a key role of the IPL and provide a network of brain regions that may play a role in the experience and expression of doubt.
Collapse
Affiliation(s)
- Farah Naaz
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alaina I Gold
- Department of Psychology, University of Southern California, Los Angeles, California, United States
| | - Jack Samuels
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Janice Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ying Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vikram S Chib
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States.
| |
Collapse
|
18
|
Qing X, Gu L, Li D. Abnormalities of Localized Connectivity in Obsessive-Compulsive Disorder: A Voxel-Wise Meta-Analysis. Front Hum Neurosci 2021; 15:739175. [PMID: 34602998 PMCID: PMC8481585 DOI: 10.3389/fnhum.2021.739175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Background: A large amount of resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed abnormalities of regional homogeneity (ReHo, an index of localized intraregional connectivity) in the obsessive-compulsive disorder (OCD) in the past few decades, However, the findings of these ReHo studies have remained inconsistent. Hence, we performed a meta-analysis to investigate the concurrence across ReHo studies for clarifying the most consistent localized connectivity underpinning this disorder. Methods: A systematic review of online databases was conducted for whole-brain rs-fMRI studies comparing ReHo between OCD patients and healthy control subjects (HCS). Anisotropic effect size version of the seed-based d mapping, a voxel-wise meta-analytic approach, was adopted to explore regions of abnormal ReHo alterations in OCD patients relative to HCS. Additionally, meta-regression analyses were conducted to explore the potential effects of clinical features on the reported ReHo abnormalities. Results: Ten datasets comprising 359 OCD patients and 361 HCS were included. Compared with HCS, patients with OCD showed higher ReHo in the bilateral inferior frontal gyri and orbitofrontal cortex (OFC). Meanwhile, lower ReHo was identified in the supplementary motor area (SMA) and bilateral cerebellum in OCD patients. Meta-regression analysis demonstrated that the ReHo in the OFC was negatively correlated with illness duration in OCD patients. Conclusions: Our meta-analysis gave a quantitative overview of ReHo findings in OCD and demonstrated that the most consistent localized connectivity abnormalities in individuals with OCD are in the prefrontal cortex. Meanwhile, our findings provided evidence that the hypo-activation of SMA and cerebellum might be associated with the pathophysiology of OCD.
Collapse
Affiliation(s)
- Xiuli Qing
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children in Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Gu
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children in Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dehua Li
- Nursing Department, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Bowen Z, Changlian T, Qian L, Wanrong P, Huihui Y, Zhaoxia L, Feng L, Jinyu L, Xiongzhao Z, Mingtian Z. Gray Matter Abnormalities of Orbitofrontal Cortex and Striatum in Drug-Naïve Adult Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:674568. [PMID: 34168582 PMCID: PMC8217443 DOI: 10.3389/fpsyt.2021.674568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study examined whether obsessive-compulsive disorder (OCD) patients have gray matter abnormalities in regions related to executive function, and whether such abnormalities are associated with impaired executive function. Methods: Multiple scales were administered to 27 first-episode drug-naïve OCD patients and 29 healthy controls. Comprehensive brain morphometric indicators of orbitofrontal cortex (OFC) and three striatum areas (caudate, putamen, and pallidum) were determined. Hemisphere lateralization index was calculated for each region of interest. Correlations between lateralization index and psychological variables were examined in OCD group. Results: The OCD group had greater local gyrification index for the right OFC and greater gray matter volumes of the bilateral putamen and left pallidum than healthy controls. They also had weaker left hemisphere superiority for local gyrification index of the OFC and gray matter volume of the putamen, but stronger left hemisphere superiority for gray matter volume of the pallidum. Patients' lateralization index for local gyrification index of the OFC correlated negatively with Yale-Brown Obsessive Compulsive Scale and Dysexecutive Questionnaire scores, respectively. Conclusion: Structural abnormalities of the bilateral putamen, left pallidum, and right OFC may underlie OCD pathology. Abnormal lateralization in OCD may contribute to the onset of obsessive-compulsive symptoms and impaired executive function.
Collapse
Affiliation(s)
- Zhang Bowen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Tan Changlian
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Qian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Peng Wanrong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huihui
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Zhaoxia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Liu Jinyu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhu Xiongzhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Medical Psychological Institute, Central South University, Changsha, China
| | - Zhong Mingtian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
20
|
Fitzgerald KD, Schroder HS, Marsh R. Cognitive Control in Pediatric Obsessive-Compulsive and Anxiety Disorders: Brain-Behavioral Targets for Early Intervention. Biol Psychiatry 2021; 89:697-706. [PMID: 33454049 PMCID: PMC8353584 DOI: 10.1016/j.biopsych.2020.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
The DSM provides distinct criteria for obsessive-compulsive disorder (OCD) and various types of anxiety disorders, but phenomenological overlap, high rates of comorbidity, and early onset suggest common underlying mechanisms. This notion is further supported by use of the same treatments-cognitive behavioral therapy and serotonin reuptake inhibitor medication-for managing both OCD and non-OCD anxiety disorders in clinical settings. While early intervention with these gold standard treatments is recommended for pediatric OCD and anxiety disorders, young patients often remain symptomatic even after treatment. To guide the development of novel, mechanistically targeted treatments to better resolve OCD and anxiety symptoms, the identification of neural circuits underlying psychological constructs with relevance across disorders has been recommended. One construct that may be relevant for understanding pediatric OCD and anxiety disorders is cognitive control, given the difficulty that young patients experience in dismissing obsessions, compulsions, and worry despite recognition that these symptoms are excessive and unreasonable. In this review, we examine findings from a growing body of literature implicating brain-behavioral markers of cognitive control in pediatric OCD and anxiety disorders, including before and after treatment. We conclude by suggesting that interventions designed to enhance the functioning of the task control circuits underlying cognitive control may facilitate brain maturation to help affected youth overcome symptoms.
Collapse
Affiliation(s)
- Kate D Fitzgerald
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Hans S Schroder
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan; Center for Bioethics and Social Sciences in Medicine, University of Michigan, Ann Arbor, Michigan
| | - Rachel Marsh
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
21
|
Zhao Q, Xu T, Wang Y, Chen D, Liu Q, Yang Z, Wang Z. Limbic cortico-striato-thalamo-cortical functional connectivity in drug-naïve patients of obsessive-compulsive disorder. Psychol Med 2021; 51:70-82. [PMID: 31640827 DOI: 10.1017/s0033291719002988] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The pathophysiology of obsessive-compulsive disorder (OCD) remains unclear despite extensive neuroimaging work on the disorder. Exposure to medication and comorbid mental disorders can confound the results of OCD studies. The goal of this study was to explore differences in brain functional connectivity (FC) within the cortico-striato-thalamo-cortical (CSTC) loop of drug-naïve and drug-free OCD patients and healthy controls (HCs). METHODS A total of 29 drug-naïve OCD patients, 22 drug-free OCD patients, and 25 HCs matched on age, gender and education level underwent functional magnetic resonance imaging scanning at resting state. Seed-based connectivity analyses were conducted among the three groups. The Yale Brown Obsessive Compulsive Scale and clinical inventories were used to assess the clinical symptoms. RESULTS Compared with HCs, the drug-naïve OCD patients had reduced FC within the limbic CSTC loop. In the drug-naïve OCD participants, we also found hyperconnectivity between the supplementary motor area and ventral and dorsal putamen (p < 0.05, corrected for multiple comparisons). CONCLUSIONS Exposure to antidepressants such as selective serotonin reuptake inhibitors may affect the function of some brain regions. Future longitudinal studies could help to reveal the pharmacotherapeutic mechanisms in these loops.
Collapse
Affiliation(s)
- Qing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Tingting Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yuan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dandan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qiang Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, P.R. China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, P.R. China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Dikmeer N, Besiroglu L, Di Biase MA, Zalesky A, Kasal MI, Bilge A, Durmaz E, Polat S, Gelal F, Zorlu N. White matter microstructure and connectivity in patients with obsessive-compulsive disorder and their unaffected siblings. Acta Psychiatr Scand 2021; 143:72-81. [PMID: 33029781 DOI: 10.1111/acps.13241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We aimed to examine white matter microstructure and connectivity in individuals with obsessive-compulsive disorder (OCD) and their unaffected siblings, relative to healthy controls. METHODS Diffusion-weighted magnetic resonance imaging (dMRI) scans were acquired in 30 patients with OCD, 21 unaffected siblings, and 31 controls. We examined white matter microstructure using measures of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Structural networks were examined using network-based statistic (NBS). RESULTS Compared to controls, OCD patients showed significantly reduced FA and increased RD in clusters traversing the left forceps minor, inferior fronto-occipital fasciculus, anterior thalamic radiation, and cingulum. Furthermore, the OCD group displayed significantly weaker connectivity (quantified by the streamline count) compared to controls in the right hemisphere, most notably in edges connecting subcortical structures to temporo-occipital cortical regions. The sibling group showed intermediate streamline counts, FA and RD values between OCD and healthy control groups in connections found to be abnormal in patients with OCD. However, these reductions did not significantly differ compared to controls. CONCLUSION Therefore, siblings of OCD patients display intermediate levels in dMRI measures of microstructure and connectivity, suggesting white matter abnormalities might be related to the familial predisposition for OCD.
Collapse
Affiliation(s)
- Nur Dikmeer
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Lutfullah Besiroglu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Maria A Di Biase
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Meltem I Kasal
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Aslıhan Bilge
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Ercan Durmaz
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Serap Polat
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Fazil Gelal
- Department of Radiodiagnostics, Katip Celebi University, Ataturk Education and Research Hospital, Ankara, Turkey
| | - Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| |
Collapse
|
23
|
Addabbo F, Baglioni V, Schrag A, Schwarz MJ, Dietrich A, Hoekstra PJ, Martino D, Buttiglione M. Anti-dopamine D2 receptor antibodies in chronic tic disorders. Dev Med Child Neurol 2020; 62:1205-1212. [PMID: 32644201 DOI: 10.1111/dmcn.14613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
AIM To investigate the association between circulating anti-dopamine D2 receptor (D2R) autoantibodies and the exacerbation of tics in children with chronic tic disorders (CTDs). METHOD One hundred and thirty-seven children with CTDs (108 males, 29 females; mean age [SD] 10y 0mo [2y 7mo], range 4-16y) were recruited over 18 months. Patients were assessed at baseline, at tic exacerbation, and at 2 months after exacerbation. Serum anti-D2R antibodies were evaluated using a cell-based assay and blinded immunofluorescence microscopy scoring was performed by two raters. The association between visit type and presence of anti-D2R antibodies was measured with McNemar's test and repeated-measure logistic regression models, adjusting for potential demographic and clinical confounders. RESULTS At exacerbation, 11 (8%) participants became anti-D2R-positive ('early peri-exacerbation seroconverters'), and nine (6.6%) became anti-D2R-positive at post-exacerbation ('late peri-exacerbation seroconverters'). The anti-D2R antibodies were significantly associated with exacerbations when compared to baseline (McNemar's odds ratio=11, p=0.003) and conditional logistic regression confirmed this association (Z=3.49, p<0.001) after adjustment for demographic and clinical data and use of psychotropic drugs. INTERPRETATION There is a potential association between immune mechanisms and the severity course of tics in adolescents with CTDs.
Collapse
Affiliation(s)
- Francesco Addabbo
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Baglioni
- Department of Human Neurosciences, Sapienza University of Rome, Institute of Child and Adolescent Neurology and Psychiatry, Rome, Italy
| | - Anette Schrag
- Department of Clinical Neurosciences, UCL Institute of Neurology, Royal Free Campus, London, UK
| | - Markus J Schwarz
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Health Sciences Centre, Calgary, AB, Canada
| | - Maura Buttiglione
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
24
|
Fajnerova I, Gregus D, Francova A, Noskova E, Koprivova J, Stopkova P, Hlinka J, Horacek J. Functional Connectivity Changes in Obsessive-Compulsive Disorder Correspond to Interference Control and Obsessions Severity. Front Neurol 2020; 11:568. [PMID: 32973642 PMCID: PMC7468468 DOI: 10.3389/fneur.2020.00568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: Deficits in neurocognitive mechanisms such as inhibition control and cognitive flexibility have been suggested to mediate the symptoms in obsessive-compulsive disorder (OCD). These mechanisms are proposedly controlled by the "affective" and "executive" orbitofronto-striato-thalamo-cortical (CSTC) circuits with well-documented morphological and functional alterations in OCD that are associated with OCD symptoms. The precuneus region has been suggested in OCD as another key structure associated with the mechanism of "thought-action fusion." Our study aimed to elucidate the association of the altered functional coupling of the CSTC nodes (and precuneus), the OCD symptoms, and interference control/cognitive flexibility. Methods: In a group of 36 (17 medicated and 19 drug-free) OCD patients and matched healthy volunteers, we tested functional connectivity (FC) within the constituents of the dorsolateral prefrontal cortex "executive" CSTC, the orbitofrontal cortex/anterior cingulate "affective" CSTC, and precuneus. The functional connections showing the strongest effects were subsequently entered as explanatory variables to multiple regression analyses to identify possible associations between observed alterations of functional coupling and cognitive (Stroop test) and clinical measures (obsessions, compulsions, and anxiety level). Results: We observed increased FC (FWE p < 0.05 corr.) between CSTC seeds and regions of the parieto-occipital cortex, and between the precuneus and the angular gyrus and dorsolateral prefrontal cortex. Decreased FC was observed within the CSTC loop (caudate nucleus and thalamus) and between the anterior cingulate cortex and the limbic lobe. Linear regression identified a relationship between the altered functional coupling of thalamus with the right somatomotor parietal cortex and the Stroop color-word score. Similar association of thalamus FC has been identified also for obsessions severity. No association was observed for compulsions and anxiety. Conclusions: Our findings demonstrate altered FC in OCD patients with a prevailing increase in FC originating in CSTC regions toward other cortical areas, and a decrease in FC within the constituents of CSTC loops. Moreover, our results support the role of precuneus in OCD. The association of the cognitive and clinical symptoms with the FC between the thalamus and somatomotor cortex indicates that cognitive flexibility and inhibitory control are strongly linked and both mechanisms might contribute to the symptomatology of OCD.
Collapse
Affiliation(s)
- Iveta Fajnerova
- National Institute of Mental Health (NIMH), Klecany, Czechia
| | - David Gregus
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Anna Francova
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eliska Noskova
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Koprivova
- National Institute of Mental Health (NIMH), Klecany, Czechia
| | - Pavla Stopkova
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Hlinka
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Institute of Computer Science, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Horacek
- National Institute of Mental Health (NIMH), Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
25
|
Simpson HB, van den Heuvel OA, Miguel EC, Reddy YCJ, Stein DJ, Lewis-Fernández R, Shavitt RG, Lochner C, Pouwels PJW, Narayanawamy JC, Venkatasubramanian G, Hezel DM, Vriend C, Batistuzzo MC, Hoexter MQ, de Joode NT, Costa DL, de Mathis MA, Sheshachala K, Narayan M, van Balkom AJLM, Batelaan NM, Venkataram S, Cherian A, Marincowitz C, Pannekoek N, Stovezky YR, Mare K, Liu F, Otaduy MCG, Pastorello B, Rao R, Katechis M, Van Meter P, Wall M. Toward identifying reproducible brain signatures of obsessive-compulsive profiles: rationale and methods for a new global initiative. BMC Psychiatry 2020; 20:68. [PMID: 32059696 PMCID: PMC7023814 DOI: 10.1186/s12888-020-2439-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2-3% and is a leading cause of global disability. Brain circuit abnormalities in individuals with OCD have been identified, but important knowledge gaps remain. The goal of the new global initiative described in this paper is to identify robust and reproducible brain signatures of measurable behaviors and clinical symptoms that are common in individuals with OCD. A global approach was chosen to accelerate discovery, to increase rigor and transparency, and to ensure generalizability of results. METHODS We will study 250 medication-free adults with OCD, 100 unaffected adult siblings of individuals with OCD, and 250 healthy control subjects at five expert research sites across five countries (Brazil, India, Netherlands, South Africa, and the U.S.). All participants will receive clinical evaluation, neurocognitive assessment, and magnetic resonance imaging (MRI). The imaging will examine multiple brain circuits hypothesized to underlie OCD behaviors, focusing on morphometry (T1-weighted MRI), structural connectivity (Diffusion Tensor Imaging), and functional connectivity (resting-state fMRI). In addition to analyzing each imaging modality separately, we will also use multi-modal fusion with machine learning statistical methods in an attempt to derive imaging signatures that distinguish individuals with OCD from unaffected siblings and healthy controls (Aim #1). Then we will examine how these imaging signatures link to behavioral performance on neurocognitive tasks that probe these same circuits as well as to clinical profiles (Aim #2). Finally, we will explore how specific environmental features (childhood trauma, socioeconomic status, and religiosity) moderate these brain-behavior associations. DISCUSSION Using harmonized methods for data collection and analysis, we will conduct the largest neurocognitive and multimodal-imaging study in medication-free subjects with OCD to date. By recruiting a large, ethno-culturally diverse sample, we will test whether there are robust biosignatures of core OCD features that transcend countries and cultures. If so, future studies can use these brain signatures to reveal trans-diagnostic disease dimensions, chart when these signatures arise during development, and identify treatments that target these circuit abnormalities directly. The long-term goal of this research is to change not only how we conceptualize OCD but also how we diagnose and treat it.
Collapse
Affiliation(s)
- Helen Blair Simpson
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Odile A. van den Heuvel
- grid.12380.380000 0004 1754 9227Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Anatomy and Neuroscience, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Euripedes C. Miguel
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Y. C. Janardhan Reddy
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Roberto Lewis-Fernández
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Roseli Gedanke Shavitt
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Christine Lochner
- grid.11956.3a0000 0001 2214 904XSAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Petra J. W. Pouwels
- grid.12380.380000 0004 1754 9227Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Janardhanan C. Narayanawamy
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Ganesan Venkatasubramanian
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Dianne M. Hezel
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Chris Vriend
- grid.12380.380000 0004 1754 9227Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Anatomy and Neuroscience, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Marcelo C. Batistuzzo
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Marcelo Q. Hoexter
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Niels T. de Joode
- grid.12380.380000 0004 1754 9227Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands ,grid.12380.380000 0004 1754 9227Department of Anatomy and Neuroscience, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, Netherlands
| | - Daniel Lucas Costa
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Maria Alice de Mathis
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Karthik Sheshachala
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Madhuri Narayan
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Anton J. L. M. van Balkom
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health Research Institute, de Boelelaan 1117, Amsterdam, Netherlands ,grid.420193.d0000 0004 0546 0540GGZ inGeest, Specialised Mental Health Care, Amsterdam, The Netherlands
| | - Neeltje M. Batelaan
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health Research Institute, de Boelelaan 1117, Amsterdam, Netherlands ,grid.420193.d0000 0004 0546 0540GGZ inGeest, Specialised Mental Health Care, Amsterdam, The Netherlands
| | - Shivakumar Venkataram
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Anish Cherian
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Clara Marincowitz
- grid.11956.3a0000 0001 2214 904XSAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Nienke Pannekoek
- grid.11956.3a0000 0001 2214 904XSAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Yael R. Stovezky
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Karen Mare
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Feng Liu
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Maria Concepcion Garcia Otaduy
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Institute & Department of Psychiatry, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil ,grid.500696.cNational Institute of Developmental Psychiatry, Sao Paulo, Brazil
| | - Bruno Pastorello
- grid.11899.380000 0004 1937 0722Institute of Radiology, Hospital das Clinicas-HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Rashmi Rao
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Martha Katechis
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Page Van Meter
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| | - Melanie Wall
- grid.21729.3f0000000419368729Columbia University Irving Medical Center, Columbia University, New York, NY 10032 USA ,grid.413734.60000 0000 8499 1112The New York State Psychiatric Institute, New York, NY 10032 USA
| |
Collapse
|
26
|
Park J, Kim T, Kim M, Lee TY, Kwon JS. Functional Connectivity of the Striatum as a Neural Correlate of Symptom Severity in Patient with Obsessive-Compulsive Disorder. Psychiatry Investig 2020; 17:87-95. [PMID: 32000480 PMCID: PMC7047004 DOI: 10.30773/pi.2019.0206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE It is well established that the cortico-striato-thalamo-cortical (CSTC) circuit is implicated in the pathophysiology of obsessive- compulsive disorder (OCD). However, reports on corticostriatal functional connectivity (FC) in OCD have been inconsistent due to the structural and functional heterogeneity of the striatum. Therefore, in the present study, we investigated corticostriatal FC using a fine 12-seed striatal parcellation to overcome this heterogeneity and discover the neural correlates of symptoms in OCD patients. METHODS We recruited 23 OCD patients and 23 healthy controls (HCs). Whole-brain FC based on striatal seeds was examined using resting-state functional magnetic resonance imaging data and compared across OCD patients and HCs. We conducted correlation analysis between FCs of striatal subregions with significant group differences and symptom severity scores on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Hamilton Rating Scale for Depression, and Hamilton Rating Scale for Anxiety (HAM-A). RESULTS Compared to HCs, patients demonstrated increased FC of the dorsal caudal putamen and ventral rostral putamen (VRP) with several cortical regions, such as the intracalcarine cortex, inferior frontal gyrus, supramarginal/angular gyrus (SMG/AG), and postcentral gyrus (PCG). Furthermore, FC between the VRP and SMG/AG and between the VRP and PCG was negatively correlated with scores on the Y-BOCS compulsive subscale and the HAM-A, respectively. CONCLUSION These findings suggest that striatal subregions have strengthened FC with extensive cortical regions, which may reflect neural correlates of compulsive and anxious symptoms in OCD patients. These results contribute to an improved understanding of OCD pathophysiology by complementing the current evidence regarding striatal FC.
Collapse
Affiliation(s)
- Junha Park
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University-Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
27
|
Jia C, Ou Y, Chen Y, Li P, Lv D, Yang R, Zhong Z, Sun L, Wang Y, Zhang G, Guo H, Sun Z, Wang W, Wang Y, Wang X, Guo W. Decreased Resting-State Interhemispheric Functional Connectivity in Medication-Free Obsessive-Compulsive Disorder. Front Psychiatry 2020; 11:559729. [PMID: 33101081 PMCID: PMC7522198 DOI: 10.3389/fpsyt.2020.559729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Decreased homotopic connectivity of brain networks such as the cortico-striato-thalamo-cortical (CSTC) circuits may contribute to the pathophysiology of obsessive-compulsive disorder (OCD). However, little is known about interhemispheric functional connectivity (FC) at rest in OCD. In this study, the voxel-mirrored homotopic connectivity (VMHC) method was applied to explore interhemispheric coordination at rest in OCD. METHODS Forty medication-free patients with OCD and 38 sex-, age-, and education level-matched healthy controls (HCs) underwent a resting-state functional magnetic resonance imaging. The VMHC and support vector machine (SVM) methods were used to analyze the data. RESULTS Patients with OCD had remarkably decreased VMHC values in the orbitofrontal cortex, thalamus, middle occipital gyrus, and precentral and postcentral gyri compared with HCs. A combination of the VMHC values in the thalamus and postcentral gyrus could optimally distinguish patients with OCD from HCs. CONCLUSIONS Our findings highlight the contribution of decreased interhemispheric FC within and outside the CSTC circuits in OCD and provide evidence to the pathophysiology of OCD.
Collapse
Affiliation(s)
- Cuicui Jia
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoxi Zhong
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lei Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yuhua Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Guangfeng Zhang
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hong Guo
- Department of Radiology, The First Hospital of Qiqihar, Qiqihar, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Wei Wang
- Department of Library, Qiqihar Medical University, Qiqihar, China
| | - Yefu Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Xiaoping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Hao H, Chen C, Mao W, Xia W, Yi Z, Zhao P, Pan P, Dai Z. Alterations in resting-state local functional connectivity in obsessive-compulsive disorder. J Affect Disord 2019; 245:113-119. [PMID: 30368070 DOI: 10.1016/j.jad.2018.10.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is increasingly conceptualized as a brain connectivity disorder. Recently, abnormalities in remote resting-state functional connectivity (FC) have been well demonstrated in the frontoparietal areas that linked impairments in large-scale intrinsic brain networks with aberrant fronto-striatal interactions. Beyond the remote FC abnormalities in OCD, many studies using regional homogeneity (ReHo) analysis have reported local FC alterations. However, their results were not entirely consistent. METHODS We conducted a voxel-wise meta-analysis of ReHo studies to identify consistent local FC abnormalities in patients with OCD. A seed-based d mapping approach was used. RESULTS Eight studies that compared 200 patients with OCD and 187 healthy controls were included. Increased ReHo in the lateral orbitofrontal cortices and dorsomedial prefrontal cortices bilaterally, and decreased ReHo in the fusiform gyri bilaterally were the most consistent and reliable findings in patients with OCD relative to healthy controls. LIMITATIONS The number of available studies included in the meta-analysis was relatively small. Many potential confounds on changes in ReHo warrant further attention. CONCLUSIONS These regions are critically implicated in the pathophysiology of OCD. Our findings in local FC alterations are complementary to the abnormalities in remote FC in OCD, contributing to the modeling of brain functional connectomes in OCD.
Collapse
Affiliation(s)
- HuiHui Hao
- Department of Inspection and Pharmacy, Jiangsu College of Nursing, Huai'an, PR China
| | - Chuang Chen
- Huai'an Hospital Affiliated to Xuzhou Medical University, Second People's Hospital of Huai'an City, Huai'an, PR China
| | - WeiBing Mao
- Department of Psychiatry, WuXi Xishan People's Hospital, Affiliated to ZhongDa Hospital, School of Medicine, Southeast University, Wuxi, PR China
| | - Wei Xia
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - ZhongQuan Yi
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - PanWen Zhao
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - PingLei Pan
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China; Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| | - ZhenYu Dai
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| |
Collapse
|
29
|
Pujol J, Blanco-Hinojo L, Maciá D, Alonso P, Harrison BJ, Martínez-Vilavella G, Deus J, Menchón JM, Cardoner N, Soriano-Mas C. Mapping Alterations of the Functional Structure of the Cerebral Cortex in Obsessive–Compulsive Disorder. Cereb Cortex 2019; 29:4753-4762. [DOI: 10.1093/cercor/bhz008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractWe mapped alterations of the functional structure of the cerebral cortex using a novel imaging approach in a sample of 160 obsessive–compulsive disorder (OCD) patients. Whole-brain functional connectivity maps were generated using multidistance measures of intracortical neural activity coupling defined within isodistant local areas. OCD patients demonstrated neural activity desynchronization within the orbitofrontal cortex and in primary somatosensory, auditory, visual, gustatory, and olfactory areas. Symptom severity was significantly associated with the degree of functional structure alteration in OCD-relevant brain regions. By means of a novel imaging perspective, we once again identified brain alterations in the orbitofrontal cortex, involving areas purportedly implicated in the pathophysiology of OCD. However, our results also indicated that weaker intracortical activity coupling is also present in each primary sensory area. On the basis of previous neurophysiological studies, such cortical activity desynchronization may best be interpreted as reflecting deficient inhibitory neuron activity and altered sensory filtering.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Dídac Maciá
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Pino Alonso
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Ben J Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | | | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - José M Menchón
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Spain
| | - Narcís Cardoner
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Mental Health Department, Parc Taulí Sabadell University Hospital, Institut d’Investigació i Innovació Sanitària Parc Taulí (I3PT), Barelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Spain
| | - Carles Soriano-Mas
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
30
|
Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc Natl Acad Sci U S A 2019; 116:2743-2748. [PMID: 30692255 PMCID: PMC6377471 DOI: 10.1073/pnas.1815129116] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lysergic acid diethylamide (LSD) is a psychedelic drug that reliably induces an altered state of consciousness. Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and potential clinical applications. However, there are major knowledge gaps regarding LSD’s neuropharmacology. Using cutting-edge neuroimaging methods we investigated directed connectivity between cortico–striato–thalamo-cortical (CSTC) regions after administration of LSD together with the specific role of the serotonin 2A receptor. Our results provide evidence that LSD alters directed connectivity within CSTC pathways in humans, suggesting that a disintegration of information processing within these loops is underlying the psychedelic state. These results inform the neurobiology of altered states of consciousness with critical implications for rational development of novel treatments. Psychedelics exert unique effects on human consciousness. The thalamic filter model suggests that core effects of psychedelics may result from gating deficits, based on a disintegration of information processing within cortico–striato–thalamo-cortical (CSTC) feedback loops. To test this hypothesis, we characterized changes in directed (effective) connectivity between selected CTSC regions after acute administration of lysergic acid diethylamide (LSD), and after pretreatment with Ketanserin (a selective serotonin 2A receptor antagonist) plus LSD in a double-blind, randomized, placebo-controlled, cross-over study in 25 healthy participants. We used spectral dynamic causal modeling (DCM) for resting-state fMRI data. Fully connected DCM models were specified for each treatment condition to investigate the connectivity between the following areas: thalamus, ventral striatum, posterior cingulate cortex, and temporal cortex. Our results confirm major predictions proposed in the CSTC model and provide evidence that LSD alters effective connectivity within CSTC pathways that have been implicated in the gating of sensory and sensorimotor information to the cortex. In particular, LSD increased effective connectivity from the thalamus to the posterior cingulate cortex in a way that depended on serotonin 2A receptor activation, and decreased effective connectivity from the ventral striatum to the thalamus independently of serotonin 2A receptor activation. Together, these results advance our mechanistic understanding of the action of psychedelics in health and disease. This is important for the development of new pharmacological therapeutics and also increases our understanding of the mechanisms underlying the potential clinical efficacy of psychedelics.
Collapse
|
31
|
Deng K, Qi T, Xu J, Jiang L, Zhang F, Dai N, Cheng Y, Xu X. Reduced Interhemispheric Functional Connectivity in Obsessive-Compulsive Disorder Patients. Front Psychiatry 2019; 10:418. [PMID: 31249539 PMCID: PMC6584782 DOI: 10.3389/fpsyt.2019.00418] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Neuroimaging studies have shown that the high synchrony of spontaneous neural activity in the homotopic regions between hemispheres is an important functional structural feature of normal human brains, and this feature is abnormal in the patients with various mental disorders. However, little is known about this feature in obsessive-compulsive disorder (OCD). This study aimed to further analyze the underlying neural mechanisms of OCD and to explore whether clinical characteristics are correlated with the alerted homotopic connectivity in patients with OCD. Methods: Using voxel-mirrored homotopic connectivity (VMHC) during resting state, we compared 46 OCD patients and 46 healthy controls (HCs) matched for age, gender, and education level. A partial correlation analysis was used to investigate the relationship between altered VMHC and clinical characteristics in patients with OCD. Results: Patients with OCD showed lower VMHC than HCs in fusiform gyrus/inferior occipital gyrus, lingual gyrus, postcentral gyrus/precentral gyrus, putamen, and orbital frontal gyrus. A significant positive correlation was observed between altered VMHC in the angular gyrus/middle occipital gyrus and illness duration in patients. Conclusions: Interhemispheric functional imbalance may be an essential aspect of the pathophysiological mechanism of OCD, which is reflected not only in the cortico-striato-thalamo-cortical (CSTC) loop but also elsewhere in the brain.
Collapse
Affiliation(s)
- Ke Deng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tianfu Qi
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Linlin Jiang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Fengrui Zhang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Nan Dai
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
32
|
Calzà J, Gürsel DA, Schmitz-Koep B, Bremer B, Reinholz L, Berberich G, Koch K. Altered Cortico-Striatal Functional Connectivity During Resting State in Obsessive-Compulsive Disorder. Front Psychiatry 2019; 10:319. [PMID: 31133898 PMCID: PMC6524661 DOI: 10.3389/fpsyt.2019.00319] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 01/30/2023] Open
Abstract
Background: Neuroimaging studies show that obsessive-compulsive disorder (OCD) is characterized by an alteration of the cortico-striato-thalamo-cortical (CSTC) system in terms of an imbalance of activity between the direct and the indirect loop of the CSTC. As resting-state functional connectivity (FC) studies investigated only specific parts of the CSTC in patients with OCD up to now, the present study aimed at exploring FC in the CSTC as a whole. Methods: We investigated potential alterations in resting-state FC within the CSTC system in 44 OCD patients and 40 healthy controls by taking into consideration all relevant nodes of the direct and indirect CSTC loop. Results: Compared to healthy controls, OCD patients showed an increased FC between the left subthalamic nucleus (STN) and the left external globus pallidus (GPe), as well as an increased FC between the left GPe and the left internal globus pallidus (GPi). Conclusion: These findings may contribute to a better understanding of the OCD pathophysiology by providing further information on the connectivity alterations within specific regions of the CSTC system. In particular, increased FC between the STN and the left GPe may play a major role in OCD pathology. This assumption is consistent with the fact that these regions are also the main target sites of therapeutic deep brain stimulation in OCD.
Collapse
Affiliation(s)
- Jessica Calzà
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Deniz A Gürsel
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Benno Bremer
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Lena Reinholz
- Department of Psychology, Ludwigs-Maximilians-Universität, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy (WINTR), Windach, Germany
| | - Kathrin Koch
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany.,Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich, Germany
| |
Collapse
|
33
|
Apergis-Schoute AM, Bijleveld B, Gillan CM, Fineberg NA, Sahakian BJ, Robbins TW. Hyperconnectivity of the ventromedial prefrontal cortex in obsessive-compulsive disorder. Brain Neurosci Adv 2018; 2:1-10. [PMID: 31742235 PMCID: PMC6861127 DOI: 10.1177/2398212818808710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuroimaging research has highlighted maladaptive thalamo-cortico-striatal interactions in obsessive-compulsive disorder as well as a more general deficit in prefrontal functioning linked with compromised executive functioning. More specifically, dysfunction in the ventromedial prefrontal cortex, a central hub in coordinating flexible behaviour, is thought to be central to obsessive-compulsive disorder symptomatology. We sought to determine the intrinsic alterations of the ventromedial prefrontal cortex in obsessive-compulsive disorder employing resting-state functional connectivity magnetic resonance imaging analyses with a ventromedial prefrontal cortex seed region of interest. A total of 38 obsessive-compulsive disorder patients and 33 matched controls were included in our analyses. We found widespread ventromedial prefrontal cortex hyperconnectivity during rest in patients with obsessive-compulsive disorder, displaying increased connectivity with its own surrounding region in addition to hyperconnectivity with several areas along the thalamo-cortico-striatal loop: thalamus, caudate and frontal gyrus. Obsessive-compulsive disorder patients also exhibited increased functional connectivity from the ventromedial prefrontal cortex to temporal and occipital lobes, cerebellum and the motor cortex, reflecting ventromedial prefrontal cortex hyperconnectivity in large-scale brain networks. Furthermore, hyperconnectivity of the ventromedial prefrontal cortex and caudate correlated with obsessive-compulsive disorder symptomatology. Additionally, we used three key thalamo-cortico-striatal regions that were hyperconnected with our ventromedial prefrontal cortex seed as supplementary seed regions, revealing hypoconnectivity along the orbito- and lateral prefrontal cortex-striatal pathway. Taken together, these results confirm a central role of a hyperconnected ventromedial prefrontal cortex in obsessive-compulsive disorder, with a special role for maladaptive crosstalk with the caudate, and indications for hypoconnectivity along the lateral and orbito pathways.
Collapse
Affiliation(s)
- Annemieke M Apergis-Schoute
- Department of Psychology, University of Cambridge, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester UK
| | - Bastiaan Bijleveld
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Claire M Gillan
- School of Psychology and Trinity College Institute of Neuroscience and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Naomi A Fineberg
- Hertfordshire Partnership University NHS Foundation Trust, University of Hertfordshire, Welwyn Garden City, UK.,Postgraduate Medical School, University of Hertfordshire, Hatfield, UK
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Drepper C, Geißler J, Pastura G, Yilmaz R, Berg D, Romanos M, Gerlach M. Transcranial sonography in psychiatry as a potential tool in diagnosis and research. World J Biol Psychiatry 2018; 19:484-496. [PMID: 28971725 DOI: 10.1080/15622975.2017.1386325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES During the last two decades transcranial sonography (TCS) of the brain parenchyma evolved from a pure research tool to a clinical relevant neuroimaging method especially in Parkinson's disease and related movement disorders. The aim of this systematic review is to update and summarise the published TCS findings in psychiatric disorders and critically address the question whether TCS may be a valuable tool for the diagnosis or differential diagnosis of psychiatric disorders similarly to the field of movement disorders. METHODS This paper provides detailed information about the perspectives and limitations of TCS, including guidelines for the scanning procedures, assessment of midbrain structures and discusses the potential causes of the ultrasound abnormalities in psychiatric disorders. RESULTS Changes in the echogenicity of subcortical brain structures were detected in different disorders, such as obsessive-compulsive disorder, autism spectrum disorder, schizophrenia, panic disorder, attention-deficit/hyperactivity (ADHD), bipolar disorder and depressive disorder. Although the physical properties of brain tissue underlying the echogenic features in TCS are largely unknown, no alternative technique provides the same insight into the specific central nervous structural characteristics. CONCLUSIONS Urgent research questions to further clarify the underlying pathophysiological and structural alterations are further outlined to bring this promising technique to the clinic.
Collapse
Affiliation(s)
- Carsten Drepper
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| | - Julia Geißler
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| | - Giuseppe Pastura
- b Department of Pediatrics , The Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Rezzak Yilmaz
- c Department of Neurology , Christian-Albrecht-University , Kiel , Germany
| | - Daniela Berg
- c Department of Neurology , Christian-Albrecht-University , Kiel , Germany.,d Department of Neurodegeneration , University of Tübingen , Tübingen , Germany
| | - Marcel Romanos
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| | - Manfred Gerlach
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| |
Collapse
|
35
|
Brennan BP, Wang D, Li M, Perriello C, Ren J, Elias JA, Van Kirk NP, Krompinger JW, Pope HG, Haber SN, Rauch SL, Baker JT, Liu H. Use of an Individual-Level Approach to Identify Cortical Connectivity Biomarkers in Obsessive-Compulsive Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:27-38. [PMID: 30262337 DOI: 10.1016/j.bpsc.2018.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Existing functional connectivity studies of obsessive-compulsive disorder (OCD) support a model of circuit dysfunction. However, these group-level observations have failed to yield neuroimaging biomarkers sufficient to serve as a test for the OCD diagnosis, predict current or future symptoms, or predict treatment response, perhaps because these studies failed to account for the substantial intersubject variability in structural and functional brain organization. METHODS We used functional regions, localized in each of 41 individual OCD patients, to identify cortical connectivity biomarkers of both global and dimension-specific symptom severity and to detect functional connections that track changes in symptom severity following intensive residential treatment. RESULTS Global OCD symptom severity was directly linked to dysconnectivity between large-scale intrinsic brain networks-particularly among the dorsal attention, default, and frontoparietal networks. Changes within a subset of connections among these networks were associated with symptom resolution. Additionally, distinct and nonoverlapping cortical connectivity biomarkers were identified that were significantly associated with the severity of contamination/washing and responsibility for harm/checking symptoms, highlighting the contribution of dissociable neural networks to specific OCD symptom dimensions. By contrast, when we defined functional regions conventionally, using a population-level brain atlas, we could no longer identify connectivity biomarkers of severity or improvement for any of the symptom dimensions. CONCLUSIONS Our findings would seem to encourage the use of individual-level approaches to connectivity analyses to better delineate the cortical and subcortical networks underlying symptom severity and improvement at the dimensional level in OCD patients.
Collapse
Affiliation(s)
- Brian P Brennan
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts; Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meiling Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu
| | - Chris Perriello
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts
| | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason A Elias
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Nathaniel P Van Kirk
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jason W Krompinger
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Suzanne N Haber
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Justin T Baker
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China; Institute for Research and Medical Consultations, Imam Abdulahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
36
|
Li L, Zhi M, Hou Z, Zhang Y, Yue Y, Yuan Y. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study. Oncotarget 2018; 8:6283-6294. [PMID: 28009983 PMCID: PMC5351631 DOI: 10.18632/oncotarget.14060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.
Collapse
Affiliation(s)
- Ling Li
- Department of Endocrinology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Mengmeng Zhi
- Department of Endocrinology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yuqun Zhang
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.,Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
37
|
Koh MJ, Seol J, Kang JI, Kim BS, Namkoong K, Chang JW, Kim SJ. Altered resting-state functional connectivity in patients with obsessive-compulsive disorder: A magnetoencephalography study. Int J Psychophysiol 2017; 123:80-87. [PMID: 29107610 DOI: 10.1016/j.ijpsycho.2017.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023]
Abstract
Aberrant cortical-striatal-thalamic-cortical circuits have been implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, the neurobiological basis of OCD remains unclear. We compared patterns of functional connectivity in patients with OCD and in healthy controls using resting-state magnetoencephalography (MEG). Participants comprised 24 patients with OCD (21 men, 3 women) and 22 age- and sex-matched healthy controls (19 men, 3 women). Resting-state measurements were obtained over a 6-min period using a 152-channel whole-head MEG system. We examined group differences in oscillatory activity and distribution of functional cortical hubs based on the nodal centrality of phase-locking value (PLV) maps. Differences in resting-state functional connectivity were examined through PLV analysis in selected regions of interest based on these two findings. Patients with OCD demonstrated significantly lower delta band activity in the cortical regions of the limbic lobe, insula, orbitofrontal, and temporal regions, and theta band activity in the parietal lobe regions than healthy controls. Patients with OCD exhibited fewer functional hubs in the insula and orbitofrontal cortex and additional hubs in the cingulate and temporo-parietal regions. The OCD group exhibited significantly lower phase synchronization among the insula, orbitofrontal cortex, and cortical regions of the limbic lobe in all band frequencies, except in the delta band. Altered functional networks in the resting state may be associated with the pathophysiology of OCD. These MEG findings indicate that OCD is associated with decreased functional connectivity in terms of phase synchrony, particularly in the insula, orbitofrontal cortex, and cortical regions of the limbic lobe.
Collapse
Affiliation(s)
- Min Jung Koh
- Medical Affairs, Janssen Korea, Seoul, Republic of Korea; Department of Psychiatry, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jaeho Seol
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Jee In Kang
- Department of Psychiatry & Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bong Soo Kim
- EIT/LOFUS Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Kee Namkoong
- Department of Psychiatry & Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Joo Kim
- Department of Psychiatry & Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Gonçalves ÓF, Carvalho S, Leite J, Fernandes-Gonçalves A, Carracedo A, Sampaio A. Cognitive and emotional impairments in obsessive-compulsive disorder: Evidence from functional brain alterations. Porto Biomed J 2016; 1:92-105. [PMID: 32258557 DOI: 10.1016/j.pbj.2016.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is a common agreement on the existence of dysfunctional cortico-striatal-thalamus-cortical pathways in OCD. Despite this consensus, recent studies showed that brain regions other than the CSTC loops are needed to understand the complexity and diversity of cognitive and emotional deficits in OCD. This review presents examples of research using functional neuroimaging, reporting abnormal brain processes in OCD that may underlie specific cognitive/executive (inhibitory control, cognitive flexibility, working memory), and emotional impairments (fear/defensive, disgust, guilt, shame). Studies during resting state conditions show that OCD patients have alterations in connectivity not only within the CSTC pathways but also in more extended resting state networks, particularly the default mode network and the fronto-parietal network. Additionally, abnormalities in brain functioning have been found in several cognitive and emotionally task conditions, namely: inhibitory control (e.g., CSTC loops, fronto-parietal networks, anterior cingulate); cognitive flexibility (e.g., CSTC loops, extended temporal, parietal, and occipital regions); working memory (e.g., CSTC loops, frontal parietal networks, dorsal anterior cingulate); fear/defensive (e.g., amygdala, additional brain regions associated with perceptual - parietal, occipital - and higher level cognitive processing - prefrontal, temporal); disgust (e.g., insula); shame (e.g., decrease activity in middle frontal gyrus and increase in frontal, limbic, temporal regions); and guilt (e.g., decrease activity anterior cingulate and increase in frontal, limbic, temporal regions). These findings may contribute to the understanding of OCD as both an emotional (i.e., anxiety) and cognitive (i.e., executive control) disorder.
Collapse
Affiliation(s)
- Óscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, Boston, USA
| | - Sandra Carvalho
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Leite
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal.,Spaulding Center of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Angel Carracedo
- Forensic Genetics Unit, Institute of Legal Medicine, Faculty of Medicine, University of Santiago de Compostela, Galicia, Spain
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|
39
|
Data on the impact of SSRIs and depression symptoms on the neural activities in obsessive-compulsive disorder at rest. Data Brief 2016; 8:324-8. [PMID: 27504477 PMCID: PMC4961786 DOI: 10.1016/j.dib.2016.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
The data provided here related to our research article (Chen et al., 2016) [1]. We provide whole-brain intrinsic functional connectivity patterns in obsessive-compulsive disorder at resting-state [1]. This article also provides supplementary information to our research article, i.e., between - group comparisons of the effect of selective serotonin reuptake inhibitors (SSRIs) and combined depression symptoms on resting-state neural activities in obsessive-compulsive disorder. The data presented here provide novel insights into the effect of SSRIs and combined depression symptoms on the neural activities at rest.
Collapse
|