1
|
Zhang N, Zhang H, Liang X, Xu Y, Wang G, Bai Y, Zhou Z, Pu Y, Zhou Y, Xue M, Liang H. Neuroprotective effect of folic acid by maintaining DNA stability and mitochondrial homeostasis through the ATM/CHK2/P53/PGC-1α pathway in alcohol-exposed mice. Food Funct 2025. [PMID: 40421718 DOI: 10.1039/d5fo00260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Excessive drinking leads to alcoholic brain injury, which is characterized by neuroinflammation, cognitive decline and motor dysfunction. These pathological features are closely related to chromosomal DNA damage and mitochondrial dysfunction. In this study, we aimed to uncover the neuroprotective effects of folic acid (FA) in mice with alcoholic brain injury. C57BL/6J mice were used to establish the murine model of alcoholic brain injury after 12 weeks of alcohol exposure. FA treatment significantly increased the levels of ATP and mitochondrial DNA (mtDNA) copy number in brain tissues of alcohol-exposed mice, and regulated the imbalance of mitochondrial homeostasis in cortical nerve cells. Furthermore, it could reduce the leakage of mtDNA into the cytoplasm, thereby inhibiting the cGAS/STING/NLRP3 inflammatory pathway and alleviating neuroinflammation. In addition, FA treatment reduced DNA damage in peripheral blood lymphocytes and decreased the expression of 53BP1 and γ-H2AX proteins in brain tissues of alcohol-exposed mice. At the molecular level, FA reduced DNA damage by downregulating the ATM/CHK2/P53 pathway and induced the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which further inversely enhanced mitochondrial function through positive feedback. Collectively, this study provides experimental evidence that FA protects DNA stability and mitochondrial homeostasis in alcohol-exposed mice by downregulating the ATM/CHK2/P53/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Yan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Guifa Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Yixian Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Zijian Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Yexin Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Yifan Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
2
|
Dhillon VS, Deo P, Fenech M. Low magnesium in conjunction with high homocysteine increases DNA damage in healthy middle aged Australians. Eur J Nutr 2024; 63:2555-2565. [PMID: 38864865 PMCID: PMC11490467 DOI: 10.1007/s00394-024-03449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Magnesium is one of the most common elements in the human body and plays an important role as a cofactor of enzymes required for DNA replication and repair and many other biochemical mechanisms including sensing and regulating one-carbon metabolism deficiencies. Low intake of magnesium can increase the risk of many diseases, in particular, chronic degenerative disorders. However, its role in prevention of DNA damage has not been studied fully in humans so far. Therefore, we tested the hypothesis that magnesium deficiency either on its own or in conjunction with high homocysteine (Hcy) induces DNA damage in vivo in humans. METHODS The present study was carried out in 172 healthy middle aged subjects from South Australia. Blood levels of magnesium, Hcy, folate and vitamin B12 were measured. Cytokinesis-Block Micronucleus cytome assay was performed to measure three DNA damage biomarkers: micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) in peripheral blood lymphocytes. RESULTS Data showed that magnesium and Hcy are significantly inversely correlated with each other (r = - 0.299, p < 0.0001). Furthermore, magnesium is positively correlated both with folate (p = 0.002) and vitamin B12 (p = 0.007). Magnesium is also significantly inversely correlated with MN (p < 0.0001) and NPB (p < 0.0001). Individuals with low magnesium and high Hcy exhibited significantly higher frequency of MN and NPBs compared to those with high magnesium and low Hcy (p < 0.0001). Furthermore, there was an interactive effect between these two factors as well in inducing MN (p = 0.01) and NPB (p = 0.048). CONCLUSIONS The results obtained in the present study indicate for the first time that low in vivo levels of magnesium either on its own or in the presence of high Hcy increases DNA damage as evident by higher frequencies of MN and NPBs.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia.
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
- Genome Health Foundation, North Brighton, 5048, Australia
| |
Collapse
|
3
|
Zhang X, Zhang Q, Zhang Q, Wang H, Yin Y, Li H, Huang Q, Guo C, Zhong J, Zhou T, Chen Y, Chen Z, Shan Q, Hu R. Tetrahydrofolate Attenuates Cognitive Impairment after Hemorrhagic Stroke by Promoting Hippocampal Neurogenesis via PTEN Signaling. eNeuro 2024; 11:ENEURO.0021-24.2024. [PMID: 38729764 PMCID: PMC11149488 DOI: 10.1523/eneuro.0021-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Intracerebral hemorrhage (ICH), the most common subtype of hemorrhagic stroke, leads to cognitive impairment and imposes significant psychological burdens on patients. Hippocampal neurogenesis has been shown to play an essential role in cognitive function. Our previous study has shown that tetrahydrofolate (THF) promotes the proliferation of neural stem cells (NSCs). However, the effect of THF on cognition after ICH and the underlying mechanisms remain unclear. Here, we demonstrated that administration of THF could restore cognition after ICH. Using Nestin-GFP mice, we further revealed that THF enhanced the proliferation of hippocampal NSCs and neurogenesis after ICH. Mechanistically, we found that THF could prevent ICH-induced elevated level of PTEN and decreased expressions of phosphorylated AKT and mTOR. Furthermore, conditional deletion of PTEN in NSCs of the hippocampus attenuated the inhibitory effect of ICH on the proliferation of NSCs and abnormal neurogenesis. Taken together, these results provide molecular insights into ICH-induced cognitive impairment and suggest translational clinical therapeutic strategy for hemorrhagic stroke.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qingzhu Zhang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Haomiao Wang
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huanhuan Li
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chao Guo
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Zhong
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Tengyuan Zhou
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qiao Shan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
4
|
Bou Ghanem A, Hussayni Y, Kadbey R, Ratel Y, Yehya S, Khouzami L, Ghadieh HE, Kanaan A, Azar S, Harb F. Exploring the complexities of 1C metabolism: implications in aging and neurodegenerative diseases. Front Aging Neurosci 2024; 15:1322419. [PMID: 38239489 PMCID: PMC10794399 DOI: 10.3389/fnagi.2023.1322419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
The intricate interplay of one-carbon metabolism (OCM) with various cellular processes has garnered substantial attention due to its fundamental implications in several biological processes. OCM serves as a pivotal hub for methyl group donation in vital biochemical reactions, influencing DNA methylation, protein synthesis, and redox balance. In the context of aging, OCM dysregulation can contribute to epigenetic modifications and aberrant redox states, accentuating cellular senescence and age-associated pathologies. Furthermore, OCM's intricate involvement in cancer progression is evident through its capacity to provide essential one-carbon units crucial for nucleotide synthesis and DNA methylation, thereby fueling uncontrolled cell proliferation and tumor development. In neurodegenerative disorders like Alzheimer's and Parkinson's, perturbations in OCM pathways are implicated in the dysregulation of neurotransmitter synthesis and mitochondrial dysfunction, contributing to disease pathophysiology. This review underscores the profound impact of OCM in diverse disease contexts, reinforcing the need for a comprehensive understanding of its molecular complexities to pave the way for targeted therapeutic interventions across inflammation, aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ayman Bou Ghanem
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yaman Hussayni
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Raghid Kadbey
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Yara Ratel
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Shereen Yehya
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Khouzami
- College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amjad Kanaan
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Frederic Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
- AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Petrović DJ, Jagečić D, Krasić J, Sinčić N, Mitrečić D. Effect of Fetal Bovine Serum or Basic Fibroblast Growth Factor on Cell Survival and the Proliferation of Neural Stem Cells: The Influence of Homocysteine Treatment. Int J Mol Sci 2023; 24:14161. [PMID: 37762465 PMCID: PMC10531752 DOI: 10.3390/ijms241814161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vitro cell culture is a routinely used method which is also applied for in vitro modeling of various neurological diseases. On the other hand, media used for cell culture are often not strictly standardized between laboratories, which hinders the comparison of the obtained results. Here, we compared the effects of homocysteine (Hcy), a molecule involved in neurodegeneration, on immature cells of the nervous system cultivated in basal medium or media supplemented by either fetal bovine serum or basic fibroblast growth factor. The number of cells in basal media supplemented with basic fibroblast growth factor (bFGF) was 2.5 times higher in comparison to the number of cells in basal media supplemented with fetal bovine serum (FBS). We also found that the neuron-specific β-3-tubulin protein expression dose dependently decreased with increasing Hcy exposure. Interestingly, bFGF exerts a protective effect on β-3-tubulin protein expression at a concentration of 1000 µM Hcy compared to FBS-treated neural stem cells on Day 7. Supplementation with bFGF increased SOX2 protein expression two-fold compared to FBS supplementation. GFAP protein expression increased five-fold on Day 3 in FBS-treated neural stem cells, whereas on Day 7, bFGF increased GFAP expression two-fold compared to FBS-treated neural stem cells. Here, we have clearly shown that the selection of culturing media significantly influences various cellular parameters, which, in turn, can lead to different conclusions in experiments based on in vitro models of pathological conditions.
Collapse
Affiliation(s)
- Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Glycoscience Research Laboratory, Genos Ltd., 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jure Krasić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Laboratory for Neurogenomics and In Situ Hybridization, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nino Sinčić
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers (epiMark), Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Bertola N, Regis S, Bruno S, Mazzarello AN, Serra M, Lupia M, Sabatini F, Corsolini F, Ravera S, Cappelli E. Effects of Deacetylase Inhibition on the Activation of the Antioxidant Response and Aerobic Metabolism in Cellular Models of Fanconi Anemia. Antioxidants (Basel) 2023; 12:antiox12051100. [PMID: 37237966 DOI: 10.3390/antiox12051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.
Collapse
Affiliation(s)
- Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Michela Lupia
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Fabio Corsolini
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| |
Collapse
|
7
|
Zhou Z, Luo D, Li M, Lao G, Zhou Z, Dinnyés A, Xu W, Sun Q. A Novel Multicellular Placental Barrier Model to Investigate the Effect of Maternal Aflatoxin B 1 Exposure on Fetal-Side Neural Stem Cells. Toxins (Basel) 2023; 15:toxins15050312. [PMID: 37235346 DOI: 10.3390/toxins15050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species' differences, and testing on humans is ethically impermissible. Here, we developed an in vitro human maternal-fetal multicellular model composed of a human hepatic compartment, a bilayer placental barrier, and a human fetal central nervous system compartment using neural stem cells (NSCs) to investigate the effect of AFB1 on fetal-side NSCs. AFB1 passed through the HepG2 hepatocellular carcinoma cells to mimic the maternal metabolic effects. Importantly, even at the limited concentration (0.0641 ± 0.0046 μM) of AFB1, close to the national safety level standard of China (GB-2761-2011), the mixture of AFB1 crossing the placental barrier induced NSC apoptosis. The level of reactive oxygen species in NSCs was significantly elevated and the cell membrane was damaged, causing the release of intracellular lactate dehydrogenase (p < 0.05). The comet experiment and γ-H2AX immunofluorescence assay showed that AFB1 caused significant DNA damage to NSCs (p < 0.05). This study provided a new model for the toxicological evaluation of the effect of food mycotoxin exposure during pregnancy on fetal neurodevelopment.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Dongmei Luo
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Mengxue Li
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Guangjie Lao
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhiqiang Zhou
- Department of Food Engineering, Sichuan University, Chengdu 610064, China
| | - András Dinnyés
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Godollo, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610064, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
The impact of amino acid metabolism on adult neurogenesis. Biochem Soc Trans 2023; 51:233-244. [PMID: 36606681 DOI: 10.1042/bst20220762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Adult neurogenesis is a multistage process during which newborn neurons are generated through the activation and proliferation of neural stem cells (NSCs) and integrated into existing neural networks. Impaired adult neurogenesis has been observed in various neurological and psychiatric disorders, suggesting its critical role in cognitive function, brain homeostasis, and neural repair. Over the past decades, mounting evidence has identified a strong association between metabolic status and adult neurogenesis. Here, we aim to summarize how amino acids and their neuroactive metabolites affect adult neurogenesis. Furthermore, we discuss the causal link between amino acid metabolism, adult neurogenesis, and neurological diseases. Finally, we propose that systematic elucidation of how amino acid metabolism regulates adult neurogenesis has profound implications not only for understanding the biological underpinnings of brain development and neurological diseases, but also for providing potential therapeutic strategies to intervene in disease progression.
Collapse
|
9
|
Dhillon VS, Deo P, Thomas P, Fenech M. Low Magnesium in Conjunction with High Homocysteine and Less Sleep Accelerates Telomere Attrition in Healthy Elderly Australian. Int J Mol Sci 2023; 24:ijms24020982. [PMID: 36674498 PMCID: PMC9866301 DOI: 10.3390/ijms24020982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The relationship between sleep and micronutrients, including magnesium, is implicated in its regulation. The effects of low magnesium and other micronutrients on sleep disruption and telomere loss are not well understood. The present study was carried out in 172 healthy elderly subjects from South Australia. Plasma micronutrients including magnesium were measured. Each participant provided information about their sleep hours (<7 h or ≥7 h). Lymphocyte telomere length (TL) was measured by real-time qPCR assay. Plasma magnesium level was significantly low in subjects who sleep less than 7 h (p = 0.0002). TL was significantly shorter in people who are low in magnesium and sleep less than 7 h (p = 0.01). Plasma homocysteine (Hcy) is negatively associated with magnesium (r = −0.299; p < 0.0001). There is a significant interaction effect of magnesium and Hcy on sleep duration (p = 0.04) and TL (p = 0.003). Our results suggest that inadequate magnesium levels have an adverse impact on sleep and telomere attrition rate in cognitively normal elderly people, and this may be exacerbated by low levels of vitamin B12 and folate that elevate Hcy concentration.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: (V.S.D.); (M.F.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide, SA 5001, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Genome Health Foundation, North Brighton, SA 5048, Australia
- Correspondence: (V.S.D.); (M.F.)
| |
Collapse
|
10
|
Xu X, Johnson Z, Wang A, Padget RL, Smyth JW, Xie H. Folate regulates RNA m 5C modification and translation in neural stem cells. BMC Biol 2022; 20:261. [PMID: 36424632 PMCID: PMC9686110 DOI: 10.1186/s12915-022-01467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. RESULTS NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. CONCLUSIONS Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.
Collapse
Affiliation(s)
- Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zachary Johnson
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda Wang
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rachel L Padget
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
| | - James W Smyth
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA.
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
11
|
Tetrahydrofolate Alleviates the Inhibitory Effect of Oxidative Stress on Neural Stem Cell Proliferation through PTEN/Akt/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9021474. [PMID: 35265266 PMCID: PMC8898800 DOI: 10.1155/2022/9021474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Neural stem cell (NSC) proliferation is the initial step for NSC participating in neurorehabilitation after central nervous system (CNS) injury. During this process, oxidative stress is always involved in restricting the regenerative ability of NSC. Tetrahydrofolate (THF) is susceptible to oxidative stress and exhibits a high antioxidant activity. While its effect on NSC proliferation under oxidative stress condition remains obscure. Here, NSC were isolated from embryonic mice and identified using immunofluorescent staining. Meanwhile, the results showed that THF (5 μM and 10 μM) attenuated oxidative stress induced by 50 μM hydrogen peroxide (H2O2) in NSC using mitochondrial hydroxyl radical detection and Western blotting assays. Afterward, administration of THF markedly alleviated the inhibitory effect of oxidative stress on NSC proliferation, which was evidenced by Cell Counting Kit-8 (CCK8), neurosphere formation, and immunofluorescence of Ki67 assays. Thereafter, the results revealed that PTEN/Akt/mTOR signaling pathway played a pivotal role in counteracting oxidative stress to rescue the inhibitory effect of oxidative stress on NSC proliferation using Western blotting assays and gene knockdown techniques. Collectively, these results demonstrate that THF mitigates the inhibitory effect of oxidative stress on NSC proliferation via PTEN/Akt/mTOR signaling pathway, which provides evidence for administrating THF to potentiate the neuro-reparative capacity of NSC in the treatment of CNS diseases with the presence of oxidative stress.
Collapse
|
12
|
Gou Y, Ye Q, Liang X, Zhang Q, Luo S, Liu H, Wang X, Sai N, Zhang X. Homocysteine restrains hippocampal neurogenesis in focal ischemic rat brain by inhibiting DNA methylation. Neurochem Int 2021; 147:105065. [PMID: 33940063 DOI: 10.1016/j.neuint.2021.105065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Ischemic stroke represents a major cause of mortality worldwide. An elevated level of homocysteine (Hcy) is recognized as a powerful risk factor of ischemic stroke. We previously reported that Hcy induces cytotoxicity and proliferation inhibition in neural stem cells (NSCs) derived from the neonatal rat hippocampus in vitro. However, the toxic potential of Hcy on NSCs and its underlying mechanisms are not entirely clear in ischemic brain. Since DNA methylation is critical for establishing the diverse cell fates in the central nervous system, we hypothesized that negative effect of Hcy (an intermediate in the one-carbon metabolism) on neurogenesis might be link to DNA methylation in ischemic stroke. In our study, the rats in Hcy intervention group were intraperitoneally injected with 2% Hcy solution (5 mL/kg/d) for 7 consecutive days before MCAO surgery until they were sacrificed. Our study indicated that Hcy inhibited NSCs self-renewal capacity, which was exhibited by lowering the number of DCX+/BrdU+ and NeuN+/BrdU+ in ischemic brain hippocampus. A reduction in the activity of the DNA methyltransferases (DNMTs), total methylation level and the number of 5mC+/NeuN+ and DCX+/5mC+ cells was observed in Hcy-treated ischemic brains. Additionally, Hcy also induced an increase in S-adenosylhomocysteine (SAH), and a decrease in the ratio of S-adenosylmethionine (SAM) to SAH. These results suggest that the alterations in DNA methylation may be an important mechanism by which Hcy inhibits neurogenesis after stroke. Hcy-induced DNA hypomethylation may be mainly caused by a reduction in the DNMT activity which is regulated by the concentrations of SAM and SAH. Maintaining normal DNA methylation by lowering Hcy level may possess therapeutic potential for promoting neurological recovery and reconstruction after stroke.
Collapse
Affiliation(s)
- Yun Gou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Department of Nutriology, Tianjin Children's Hospital, Tianjin, 300074, China
| | - Qi Ye
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Suhui Luo
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
13
|
Cobalamin Deficiency: Effect on Homeostasis of Cultured Human Astrocytes. Cells 2019; 8:cells8121505. [PMID: 31771278 PMCID: PMC6952958 DOI: 10.3390/cells8121505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023] Open
Abstract
Cobalamin deficiency is an important health problem. The major non-hematological symptoms of hypocobalaminemia are nervous system disorders, but the molecular and cellular mechanisms underlying this phenomenon have not yet been fully explained. Increasing scientific evidence is stressing the pivotal role of astrocyte dysfunction in the pathogenesis of a wide range of neurological disorders. In light of the above, the aim of this study was to develop an in vitro model of cobalamin deficiency by optimizing the conditions of astrocyte culture in the presence of vitamin B12 antagonist, and then the model was used for multidirectional analysis of astrocyte homeostasis using image cytometry, immunoenzymatic and colorimetric assays, and fluorescence spectroscopy. Our results indicated that long-term incubation of normal human astrocytes with hydroxycobalamin(c-lactam) causes an increase of extracellular homocysteine level, a reduction of cell proliferation, and an accumulation of cells in the G2/M cell cycle phase. Moreover, we observed dramatic activation of caspases and an increase of catalase activity. Interestingly, we excluded extensive apoptosis and oxidative stress. The study provided significant evidence for astrocyte homeostasis disturbance under hypocobalaminemia, thus indicating an important element of the molecular mechanism of nervous system diseases related to vitamin B12 deficiency.
Collapse
|
14
|
Subclinical inflammation, telomere shortening, homocysteine, vitamin B6, and mortality: the Ludwigshafen Risk and Cardiovascular Health Study. Eur J Nutr 2019; 59:1399-1411. [PMID: 31129702 PMCID: PMC7230054 DOI: 10.1007/s00394-019-01993-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/07/2019] [Indexed: 01/08/2023]
Abstract
Purpose Short telomeres and B vitamin deficiencies have been proposed as risk factors for age-related diseases and mortality that interact through oxidative stress and inflammation. However, available data to support this concept are insufficient. We aimed to investigate the predictive role of B vitamins and homocysteine (HCY) for mortality in cardiovascular patients. We explored potential relationships between HCY, B vitamins, relative telomere length (RTL), and indices of inflammation. Methods Vitamin B6, HCY, interleukin-6 (IL-6), high-sensitive-C-reactive protein (hs-CRP), and RTL were measured in participants of the Ludwigshafen Risk and Cardiovascular Health Study. Death events were recorded over a median follow-up of 9.9 years. Results All-cause mortality increased with higher concentrations of HCY and lower vitamin B6. Patients in the 4th quartile of HCY and vitamin B6 had hazard ratios (HR) for all-cause mortality of 2.77 (95% CI 2.28–3.37) and 0.41(95% CI 0.33–0.49), respectively, and for cardiovascular mortality of 2.78 (95% CI 2.29–3.39) and 0.40 (95% CI 0.33–0.49), respectively, compared to those in the 1st quartile. Multiple adjustments for confounders did not change these results. HCY and vitamin B6 correlated with age-corrected RTL (r = − 0.086, p < 0.001; r = 0.04, p = 0.031, respectively), IL-6 (r = 0.148, p < 0.001; r = − 0.249, p < 0.001, respectively), and hs-CRP (r = 0.101, p < 0.001; r = − 0.320, p < 0.001, respectively). Subjects with the longest telomeres had a significantly higher concentration of vitamin B6, but lower concentrations of HCY, IL-6, and hs-CRP. Multiple regression analyses identified HCY as an independent negative predictor of age-corrected RTL. Conclusions In conclusion, hyperhomocysteinemia and vitamin B6 deficiency are risk factors for death from any cause. Hyperhomocysteinemia and vitamin B6 deficiency correlate with increased mortality. This correlation might, at least partially, be explained by accelerated telomere shortening induced by oxidative stress and systemic inflammation in these circumstances. Electronic supplementary material The online version of this article (10.1007/s00394-019-01993-8) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Rainero I, Vacca A, Roveta F, Govone F, Gai A, Rubino E. Targeting MTHFR for the treatment of migraines. Expert Opin Ther Targets 2018; 23:29-37. [PMID: 30451038 DOI: 10.1080/14728222.2019.1549544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Migraine is a common neurovascular disorder classified by the World Health Organization as one of the most debilitating diseases. Migraine is a complex disease and is a consequence of an interaction between genetic, epigenetic and environmental factors. The MTHFR gene is one of the few replicated genetic risk factors for migraine and encodes an enzyme that is crucial for the folate and the methionine cycles. Individuals carrying the T allele of the MTHFR C677T polymorphism have increased plasma concentrations of homocysteine which leads to endothelial cell injury and alterations in coagulant properties of blood. Areas covered: This review focuses on the recent advances in genetics and the role of the MTHFR gene and homocysteine metabolism in migraine etiopathogenesis. The article summarizes the potential of targeting MTHFR and homocysteine for disease prevention. Expert opinion: Determination of MTHFR C677T polymorphisms as well as measurement of homocysteine concentrations may be useful to migraine patients, particularly those suffering from migraine with aura. Preliminary studies support the use of folate, vitamin B6 and vitamin B12 for the prevention of migraine. However, the results of these studies await replication in larger randomized controlled clinical trials.
Collapse
Affiliation(s)
- Innocenzo Rainero
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Alessandro Vacca
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Fausto Roveta
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Flora Govone
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Annalisa Gai
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Elisa Rubino
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| |
Collapse
|
16
|
Rzepka Z, Respondek M, Rok J, Beberok A, Ó Proinsias K, Gryko D, Wrześniok D. Vitamin B 12 Deficiency Induces Imbalance in Melanocytes Homeostasis-A Cellular Basis of Hypocobalaminemia Pigmentary Manifestations. Int J Mol Sci 2018; 19:ijms19092845. [PMID: 30235895 PMCID: PMC6163934 DOI: 10.3390/ijms19092845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/12/2023] Open
Abstract
Vitamin B12 deficiency causes significant changes in cellular metabolism leading to various clinical symptoms, such as hematological, psychiatric, and neurological disorders. We hypothesize that skin pigmentation disorders may be a diagnostically important manifestation of vitamin B12 deficiency, however the cellular and molecular mechanisms underlying these effects remain unknown. The aim of this study was to examine the effect of vitamin B12 deficiency on melanocytes homeostasis. Hypocobalaminemia in vitro model was developed by treating epidermal melanocytes with synthesized vitamin B12 antagonist—hydroxycobalamin(c-lactam). The cells were examined using immunoenzymatic, spectrophotometric, and fluorimetric assays as well as image cytometry. Significant melanogenesis stimulation—the increase of relative melanin content and tyrosinase activity up to 131% and 135%, respectively—has been indicated. Cobalamin-deficient cells displayed the elevation (by 120%) in reactive oxygen species level. Moreover, the redox status imbalance was stated. The study provided a scientific evidence for melanocytes homeostasis disturbance under hypocobalaminemia, thus indicating a significant element of the hyperpigmentation mechanism due to vitamin B12 deficiency. Furthermore, the implication between pigmentary and hematological and/or neuropsychiatric symptoms in cobalamin-deficient patients may be an important issue.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Keith Ó Proinsias
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
17
|
Snyder B, Shell B, Cunningham JT, Cunningham RL. Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol Rep 2018; 5:5/9/e13258. [PMID: 28473320 PMCID: PMC5430123 DOI: 10.14814/phy2.13258] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/18/2023] Open
Abstract
Sleep apnea is a common comorbidity of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Previous studies have shown an association between elevated oxidative stress and inflammation with severe sleep apnea. Elevated oxidative stress and inflammation are also hallmarks of neurodegenerative diseases. We show increased oxidative stress and inflammation in a manner consistent with early stages of neurodegenerative disease in an animal model of mild sleep apnea. Male rats were exposed to 7 days chronic intermittent hypoxia (CIH) for 8 h/day during the light period. Following CIH, plasma was collected and tested for circulating oxidative stress and inflammatory markers associated with proinflammatory M1 or anti-inflammatory M2 profiles. Tissue punches from brain regions associated with different stages of neurodegenerative diseases (early stage: substantia nigra and entorhinal cortex; intermediate: hippocampus; late stage: rostral ventrolateral medulla and solitary tract nucleus) were also assayed for inflammatory markers. A subset of the samples was examined for 8-hydroxydeoxyguanosine (8-OHdG) expression, a marker of oxidative stress-induced DNA damage. Our results showed increased circulating oxidative stress and inflammation. Furthermore, brain regions associated with early-stage (but not late-stage) AD and PD expressed oxidative stress and inflammatory profiles consistent with reported observations in preclinical neurodegenerative disease populations. These results suggest mild CIH induces key features that are characteristic of early-stage neurodegenerative diseases and may be an effective model to investigate mechanisms contributing to oxidative stress and inflammation in those brain regions.
Collapse
Affiliation(s)
- Brina Snyder
- Institute for Health Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Brent Shell
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Institute for Health Aging, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
18
|
Wei J, Zhang L, Ren L, Zhang J, Liu J, Duan J, Yu Y, Li Y, Peng C, Zhou X, Sun Z. Endosulfan induces cell dysfunction through cycle arrest resulting from DNA damage and DNA damage response signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:97-106. [PMID: 28273598 DOI: 10.1016/j.scitotenv.2017.02.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Our previous study showed that endosulfan increases the risk of cardiovascular disease. To identify toxic mechanism of endosulfan, we conducted an animal study for which 32 male Wistar rats were randomly and equally divided into four groups: Control group (corn oil only) and three treatment groups (1, 5 and 10mgkg-1·d-1). The results showed that exposure to endosulfan resulted in injury of cardiac tissue with impaired mitochondria integrity and elevated 8-OHdG expression in myocardial cells. Moreover, endosulfan increased the expressions of Fas, FasL, Caspase-8, Cleaved Caspase-8, Caspase-3 and Cleaved Caspase-3 in cardiac tissue. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of endosulfan (1, 6 and 12μgmL-1) for 24h. An inhibitor for Ataxia Telangiectasia Mutated Protein (ATM) (Ku-55933, 10μM) was added in 12μgmL-1 group for 2h before exposure to endosulfan. Results showed that endosulfan induced DNA damage and activated DNA damage response signaling pathway (ATM/Chk2 and ATR/Chk1) and consequent cell cycle checkpoint. Furthermore, endosulfan promoted the cell apoptosis through death receptor pathway resulting from oxidative stress. The results provide a new insight for mechanism of endosulfan-induced cardiovascular toxicity which will be helpful in future prevention of cardiovascular diseases induced by endosulfan.
Collapse
Affiliation(s)
- Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Cheng Peng
- National Research Centre for Environmental Toxicology (Entox), Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|