1
|
Zahavi EE, Koppel I, Kawaguchi R, Oses-Prieto JA, Briner A, Monavarfeshani A, Dalla Costa I, van Niekerk E, Lee J, Matoo S, Hegarty S, Donahue RJ, Sahoo PK, Ben-Dor S, Feldmesser E, Ryvkin J, Leshkowitz D, Perry RBT, Cheng Y, Farber E, Abraham O, Samra N, Okladnikov N, Alber S, Albus CA, Rishal I, Ulitsky I, Tuszynski MH, Twiss JL, He Z, Burlingame AL, Fainzilber M. Repeat-element RNAs integrate a neuronal growth circuit. Cell 2025:S0092-8674(25)00498-2. [PMID: 40381624 DOI: 10.1016/j.cell.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/12/2024] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Neuronal growth and regeneration are regulated by local translation of mRNAs in axons. We examined RNA polyadenylation changes upon sensory neuron injury and found upregulation of a subset of polyadenylated B2-SINE repeat elements, hereby termed GI-SINEs (growth-inducing B2-SINEs). GI-SINEs are induced from ATF3 and other AP-1 promoter-associated extragenic loci in injured sensory neurons but are not upregulated in lesioned retinal ganglion neurons. Exogenous GI-SINE expression elicited axonal growth in injured sensory, retinal, and corticospinal tract neurons. GI-SINEs interact with ribosomal proteins and nucleolin, an axon-growth-regulating RNA-binding protein, to regulate translation in neuronal cytoplasm. Finally, antisense oligos against GI-SINEs perturb sensory neuron outgrowth and nucleolin-ribosome interactions. Thus, a specific subfamily of transposable elements is integral to a physiological circuit linking AP-1 transcription with localized RNA translation.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Indrek Koppel
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel; Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam Briner
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Aboozar Monavarfeshani
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Erna van Niekerk
- Department of Neurosciences, University of California, San Diego, and Veterans Administration Medical Center, San Diego, CA 92093, USA
| | - Jinyoung Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Shane Hegarty
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Donahue
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Ryvkin
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Ben-Tov Perry
- Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yuyan Cheng
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eli Farber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ofri Abraham
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Samra
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Stefanie Alber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Christin A Albus
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel; Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, and Veterans Administration Medical Center, San Diego, CA 92093, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Xu J, Bang S, Chen O, Li Y, McGinnis A, Zhang Q, Ji RR. Neuroprotectin D1 and GPR37 protect against chemotherapy-induced peripheral neuropathy and the transition from acute to chronic pain. Pharmacol Res 2025; 216:107746. [PMID: 40287118 DOI: 10.1016/j.phrs.2025.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) significantly impacts patient's quality of life and complicates cancer treatment. Neuroprotectin D1 (NPD1)/protectin D1 (PD1), derived from docosahexaenoic acid (DHA), exhibits analgesic actions in animal models of inflammatory pain and neuropathic pain. GPR37, a receptor for NPD1/PD1, is known to regulate macrophage phagocytosis and inflammatory cytokine expression, but its role in primary sensory neurons and CIPN remains poorly understood. We found Gpr37 mRNA expression in both neurons and macrophages in mouse dorsal root ganglia (DRG), furthermore, GPR37 is downregulated by the chemotherapy agent paclitaxel. Gpr37 mRNA was notably high in neonatal mouse DRG neurons. In contrast, Gpr37l1 is primarily expressed by satellite glial cells in DRG. Chemotherapy-induced neuropathic pain symptom (mechanical allodynia) resolved within seven weeks in wild-type mice, but it persisted in Gpr37 knockout mice, highlighting GPR37's role in acute-to-chronic pain transition. Consistently, intra-DRG knockdown of Gpr37 in naive animals was sufficient to induce mechanical allodynia. In primary DRG cultures, NPD1 facilitated neurite outgrowth of sensory neurons in the presence of paclitaxel, in a GPR37-dependent manner. NPD1 treatment also mitigated mechanical allodynia and prevented the loss of intraepidermal nerve fibers in hind paw skins in wild-type mice undergoing chemotherapy, but these protective effects are absent in Gpr37 knockout mice. Finally, spatial transcriptomics analysis revealed macrophage and neuronal expression of GPR37 in human DRG. Our findings indicate that GPR37 deficiency drives pain chronicity in CIPN. This study also underscores the potential of NPD1 in safeguarding against sensory neuron degeneration and neuropathic pain in CIPN through GPR37.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Qin Zhang
- Department of Anesthesiology, Duke University, Durham, NC 27708, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
3
|
Ho IHT, Zou Y, Luo K, Qin F, Jiang Y, Li Q, Jin T, Zhang X, Chen H, Tan L, Zhang L, Gin T, Wu WKK, Chan MTV, Jiang C, Liu X. Sodium butyrate restored TRESK current controlling neuronal hyperexcitability in a mouse model of oxaliplatin-induced peripheral neuropathic pain. Neurotherapeutics 2025; 22:e00481. [PMID: 39542827 PMCID: PMC11742850 DOI: 10.1016/j.neurot.2024.e00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain are common challenges for patients receiving oxaliplatin chemotherapy. Oxaliplatin accumulation in dorsal root ganglion (DRGs) is known to impair gene transcription by epigenetic dysregulation. We hypothesized that sodium butyrate, a pro-resolution short-chain fatty acid, inhibited histone acetylation in DRGs and abolished K+ channel dysregulation-induced neuronal hyperexcitability after oxaliplatin treatment. Mechanical allodynia and cold hyperalgesia of mice receiving an accumulation of 15 mg/kg oxaliplatin, with or without intraperitoneal sodium butyrate supplementation, were assessed using von Frey test and acetone evaporation test. Differential expressions of histone deacetylases (HDACs) and pain-related K+ channels were quantified with rt-qPCR and protein assays. Immunofluorescence assays of histone acetylation at H3K9/14 were performed in primary DRG cultures treated with sodium butyrate. Current clamp recording of action potentials and persistent outward current of Twik-related-spinal cord K+ (TRESK) channel were recorded in DRG neurons with small diameters extract. Accompanied by mechanical allodynia and cold hyperalgesia, HDAC1 was upregulated in mice receiving oxaliplatin treatment. Sodium butyrate enhanced global histone acetylation at H3K9/14 in DRG neurons. In vivo sodium butyrate supplementation restored oxaliplatin-induced Kcnj9 and Kcnk18 expression and pain-related behaviors in mice for at least 14 days. Oxaliplatin-induced increase in action potentials frequencies and decrease in magnitudes of KCNK18-related current were reversed in mice receiving sodium butyrate supplementation. This study suggests that sodium butyrate was a useful agent to relieve oxaliplatin-mediated neuropathic pain.
Collapse
Affiliation(s)
- Idy H T Ho
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yidan Zou
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kele Luo
- The Chinese University of Hong Kong, Shenzhen, China
| | - Fenfen Qin
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qian Li
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tingting Jin
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinyi Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Likai Tan
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lin Zhang
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Microbiota I Centre (MagIC), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; The Chinese University of Hong Kong, Shenzhen, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
4
|
Tusnim J, Kutuzov P, Grasman JM. In Vitro Models for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401605. [PMID: 39324286 DOI: 10.1002/adhm.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Peripheral nerve injury (PNI) resulting in lesions is highly prevalent clinically, but current therapeutic approaches fail to provide satisfactory outcomes in many patients. While peripheral nerves have intrinsic regenerative capacity, the regenerative capabilities of peripheral nerves are often insufficient to restore full functionality. This highlights an unmet need for developing more effective strategies to repair damaged peripheral nerves and improve regenerative success. Consequently, researchers are actively exploring a variety of therapeutic strategies, encompassing the local delivery of trophic factors or bioactive molecules, the design of advanced biomaterials that interact with regenerating axons, and augmentation with nerve guidance conduits or complex prostheses. However, clinical translation of these technologies remains limited, emphasizing the need for continued research on peripheral nerve regeneration modalities that can enhance functional restoration. Experimental models that accurately recapitulate key aspects of peripheral nerve injury and repair biology can accelerate therapeutic development by enabling systematic testing of new techniques. Advancing regenerative therapies for PNI requires bridging the gap between basic science discoveries and clinical application. This review discusses different in vitro models of peripheral nerve injury and repair, including their advantages, limitations, and potential applications.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Peter Kutuzov
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
5
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024; 20:1037-1052. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
6
|
Wang W, Hassan MM, Kapoor-Kaushik N, Livni L, Musrie B, Tang J, Mahmud Z, Lai S, Wich PR, Ananthanarayanan V, Moalem-Taylor G, Mao G. Neural Tracing Protein-Functionalized Nanoparticles Capable of Fast Retrograde Axonal Transport in Live Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311921. [PMID: 38647340 PMCID: PMC11427170 DOI: 10.1002/smll.202311921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Neural tracing proteins like horseradish peroxidase-conjugated wheat germ agglutinin (WGA-HRP) can target the central nervous system (CNS) through anatomic retrograde transport without crossing the blood-brain barrier (BBB). Conjugating WGA-HRP to nanoparticles may enable the creation of BBB-bypassing nanomedicine. Microfluidics and two-photon confocal microscopy is applied to screen nanocarriers for transport efficacy and gain mechanistic insights into their interactions with neurons. Protein modification of gold nanoparticles alters their cellular uptake at the axonal terminal and activates fast retrograde transport. Trajectory analysis of individual endosomes carrying the nanoparticles reveals a run-and-pause pattern along the axon with endosomes carrying WGA-HRP-conjugated gold nanoparticles exhibiting longer run duration and faster instantaneous velocity than those carrying nonconjugated nanoparticles. The results offer a mechanistic explanation of the different axonal transport dynamics as well as a cell-based functional assay of neuron-targeted nanoparticles with the goal of developing BBB-bypassing nanomedicine for the treatment of nervous system disorders.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Lital Livni
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Benjamin Musrie
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Zaheri Mahmud
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Saluo Lai
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Peter Richard Wich
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Zhao H, Xiong T, Chu Y, Hao W, Zhao T, Sun X, Zhuang Y, Chen B, Zhao Y, Wang J, Chen Y, Dai J. Biomimetic Dual-Network Collagen Fibers with Porous and Mechanical Cues Reconstruct Neural Stem Cell Niche via AKT/YAP Mechanotransduction after Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311456. [PMID: 38497893 DOI: 10.1002/smll.202311456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun Chu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Wangping Hao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tongtong Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyue Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
8
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|
9
|
Matsuda K, Han X, Matsuda N, Yamanaka M, Suzuki I. Development of an In Vitro Assessment Method for Chemotherapy-Induced Peripheral Neuropathy (CIPN) by Integrating a Microphysiological System (MPS) with Morphological Deep Learning of Soma and Axonal Images. TOXICS 2023; 11:848. [PMID: 37888698 PMCID: PMC10611258 DOI: 10.3390/toxics11100848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Several anticancer drugs used in cancer therapy induce chemotherapy-induced peripheral neuropathy (CIPN), leading to dose reduction or therapy cessation. Consequently, there is a demand for an in vitro assessment method to predict CIPN and mechanisms of action (MoA) in drug candidate compounds. In this study, a method assessing the toxic effects of anticancer drugs on soma and axons using deep learning image analysis is developed, culturing primary rat dorsal root ganglion neurons with a microphysiological system (MPS) that separates soma from neural processes and training two artificial intelligence (AI) models on soma and axonal area images. Exposing the control compound DMSO, negative compound sucrose, and known CIPN-causing drugs (paclitaxel, vincristine, oxaliplatin, suramin, bortezomib) for 24 h, results show the somatic area-learning AI detected significant cytotoxicity for paclitaxel (* p < 0.05) and oxaliplatin (* p < 0.05). In addition, axonal area-learning AI detected significant axonopathy with paclitaxel (* p < 0.05) and vincristine (* p < 0.05). Combining these models, we detected significant toxicity in all CIPN-causing drugs (** p < 0.01) and could classify anticancer drugs based on their different MoA on neurons, suggesting that the combination of MPS-based culture segregating soma and axonal areas and AI image analysis of each area provides an effective evaluation method to predict CIPN from low concentrations and infer the MoA.
Collapse
Affiliation(s)
- Kazuki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai 982-8577, Japan; (K.M.); (X.H.); (N.M.)
| | - Xiaobo Han
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai 982-8577, Japan; (K.M.); (X.H.); (N.M.)
| | - Naoki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai 982-8577, Japan; (K.M.); (X.H.); (N.M.)
| | - Makoto Yamanaka
- Business Creation Division Organs on Chip Project, Usio Inc., 1-6-5 Marunouchi, Chiyoda-ku, Tokyo 100-8150, Japan;
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai 982-8577, Japan; (K.M.); (X.H.); (N.M.)
| |
Collapse
|
10
|
Chitrangi S, Vaity P, Jamdar A, Bhatt S. Patient-derived organoids for precision oncology: a platform to facilitate clinical decision making. BMC Cancer 2023; 23:689. [PMID: 37479967 PMCID: PMC10362580 DOI: 10.1186/s12885-023-11078-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Despite recent advances in research, there are still critical lacunae in our basic understanding of the cause, pathogenesis, and natural history of many cancers, especially heterogeneity in patient response to drugs and mediators in the transition from malignant to invasive phenotypes. The explication of the pathogenesis of cancer has been constrained by limited access to patient samples, tumor heterogeneity and lack of reliable biological models. Amelioration in cancer treatment depends on further understanding of the etiologic, genetic, biological, and clinical heterogeneity of tumor microenvironment. Patient-derived organoids recapitulate the basic features of primary tumors, including histological complexity and genetic heterogeneity, which is instrumental in predicting patient response to drugs. METHODS Human iPSCs from healthy donors, breast and ovarian cancer patients were successfully differentiated towards isogenic hepatic, cardiac, neural and endothelial lineages. Multicellular organoids were established using Primary cells isolated from tumor tissues, histologically normal tissues adjacent to the tumors (NATs) and adipose tissues (source of Mesenchymal Stem Cells) from ovarian and breast cancer patients. Further these organoids were propagated and used for drug resistance/sensitivity studies. RESULTS Ovarian and breast cancer patients' organoids showed heterogeneity in drug resistance and sensitivity. iPSCs-derived cardiomyocytes, hepatocytes and neurons showed donor-to-donor variability of chemotherapeutic drug sensitivity in ovarian cancer patients, breast cancer patients and healthy donors. CONCLUSION We report development of a novel integrated platform to facilitate clinical decision-making using the patient's primary cells, iPSCs and derivatives, to clinically relevant models for oncology research.
Collapse
Affiliation(s)
- Swati Chitrangi
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India
| | - Pooja Vaity
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India
| | - Aishwarya Jamdar
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India
| | - Shweta Bhatt
- Department of Integrated Drug Discovery and Development, Yashraj Biotechnology Limited, C-232 and C-113, TTC Industrial Area, MIDC, Pawane, Maharashtra, 400705, India.
- Yashraj Biotechnology GmbH, Uhlandstraße 20-25, 10623, Berlin, Germany.
- Yashraj Biotechnology Limited, 8, The Green STE A, Dover, Delaware State, 19901, USA.
| |
Collapse
|
11
|
Kalvala AK, Bagde A, Arthur P, Kulkarni T, Bhattacharya S, Surapaneni S, Patel NK, Nimma R, Gebeyehu A, Kommineni N, Meckes, Jr. DG, Sun L, Banjara B, Mosley-Kellum K, Dinh TC, Singh M. Cannabidiol-Loaded Extracellular Vesicles from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2023; 15:554. [PMID: 36839877 PMCID: PMC9964872 DOI: 10.3390/pharmaceutics15020554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
In cancer patients, chronic paclitaxel (PTX) treatment causes excruciating pain, limiting its use in cancer chemotherapy. The neuroprotective potential of synthetic cannabidiol (CBD) and CBD formulated in extracellular vesicles (CBD-EVs) isolated from human umbilical cord derived mesenchymal stem cells was investigated in C57BL/6J mice with PTX-induced neuropathic pain (PIPN). The particle size of EVs and CBD-EVs, surface roughness, nanomechanical properties, stability, and release studies were all investigated. To develop neuropathy in mice, PTX (8 mg/kg, i.p.) was administered every other day (four doses). In terms of decreasing mechanical and thermal hypersensitivity, CBD-EVs treatment was superior to EVs treatment or CBD treatment alone (p < 0.001). CBD and CBD-EVs significantly reduced mitochondrial dysfunction in dorsal root ganglions and spinal homogenates of PTX-treated animals by modulating the AMPK pathway (p < 0.001). Studies inhibiting the AMPK and 5HT1A receptors found that CBD did not influence the neurobehavioral or mitochondrial function of PIPN. Based on these results, we hypothesize that CBD and CBD-EVs mitigated PIPN by modulating AMPK and mitochondrial function.
Collapse
Affiliation(s)
- Anil Kumar Kalvala
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Arvind Bagde
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Peggy Arthur
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, FL 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Sunil Surapaneni
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Nil Kumar Patel
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Ramesh Nimma
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Aragaw Gebeyehu
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Nagavendra Kommineni
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - David G. Meckes, Jr.
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32301, USA
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32301, USA
| | - Bipika Banjara
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Keb Mosley-Kellum
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Thanh Cong Dinh
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Mandip Singh
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| |
Collapse
|
12
|
Huangqi Guizhi Wuwu Decoction can prevent and treat oxaliplatin-induced neuropathic pain by TNFα/IL-1β/IL-6/MAPK/NF-kB pathway. Aging (Albany NY) 2022; 14:5013-5022. [PMID: 35759577 PMCID: PMC9271291 DOI: 10.18632/aging.203794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study explored the effects and mechanisms of Huangqi Guizhi Wuwu Decoction on chemotherapy-induced neuropathic pain (CINP). METHODS Bodyweight and related behavioral testing of the rat model were utilized to investigate the effects of Huangqi Guizhi Wuwu Decoction on CINP. ELISA was used to measure the levels of TNF-α, IL-1β, and IL-6, in the serum of chronic CINP rats. Immunohistochemistry and Western blot analysis were performed to detect the expression of MAPK pathway related-proteins namely ERK1/2, p38, and JNK, and the expression of downstream essential proteins such as c-Fos, CREB, and NF-κB. RESULTS Body weight and related behavioral testing of the rat model suggests that Huangqi Guizhi Wuwu Decoction can improve the slow weight gain of oxaliplatin-induced chronic CINP model rats and effectively prevent and treat oxaliplatin-induced regular CIPN rat model of hyperalgesia. It can also oppress the mechanical pain threshold, cold pain threshold, and heat pain threshold decreased. Furthermore, by ELISA, immunohistochemistry, and western blot analysis, we found that Huangqi Guizhi Wuwu Decoction can down-regulate the levels of TNF-α, IL-1β, and IL-6 in the serum of chronic CINP rats induced by oxaliplatin. It also suppresses the expression of MAPK pathway related-proteins ERK1/2, p38, and JNK. This results in a decrease in the expression of downstream essential proteins, c-Fos, CREB, and Nf-κB. CONCLUSIONS In conclusion, we found that Huangqi Guizhi Wuwu Decoction can combat nerve cell injury, reduce pain sensitization, and prevent and repair the damage of nerve cells in the oxaliplatin CINP model rats via TNFα/IL-1β/IL-6/MAPK/NF-kB pathway.
Collapse
|
13
|
Livni L, Keating BA, Fiore NT, Lees JG, Goldstein D, Moalem-Taylor G. Effects of combined chemotherapy and anti-programmed cell death protein 1 treatment on peripheral neuropathy and neuroinflammation in mice. Pain 2022; 163:110-124. [PMID: 34224494 DOI: 10.1097/j.pain.0000000000002384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT A modern approach for cancer treatment is the use of immunotherapy, and particularly immune checkpoint inhibitors, such as anti-programmed cell death protein 1 (PD-1), alone and in combination with chemotherapy. The PD-1 pathway plays a crucial role in inhibiting immune responses and recently has been shown to modulate neuronal activity. However, the impact of PD-1 blockade on the development of chemotherapy-induced peripheral neuropathy is currently unknown. In this study, we show that C57BL/6 mice treated with the chemotherapeutic drug paclitaxel or cotherapy (paclitaxel and anti-PD-1), but not with anti-PD-1 alone, exhibited increased mechanical sensitivity of the hind paw. Both chemotherapy and immunotherapy caused a reduction in neurite outgrowth of dorsal root ganglion (DRG) explants derived from treated mice, whereas only paclitaxel reduced the neurite outgrowth after direct in vitro treatment. Mice treated with anti-PD-1 or cotherapy exhibited distinct T-cell changes in the lymph nodes and increased T-cell infiltration into the DRG. Mice treated with paclitaxel or cotherapy had increased macrophage presence in the DRG, and all treated groups presented an altered expression of microglia markers in the dorsal horn of the spinal cord. We conclude that combining anti-PD-1 immunotherapy with paclitaxel does not increase the severity of paclitaxel-induced peripheral neuropathy. However, because anti-PD-1 treatment caused significant changes in DRG and spinal cord immunity, caution is warranted when considering immune checkpoint inhibitors therapy in patients with a high risk of developing neuropathy.
Collapse
Affiliation(s)
- Lital Livni
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Brooke A Keating
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Nathan T Fiore
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Justin G Lees
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Considerations for a Reliable In Vitro Model of Chemotherapy-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9110300. [PMID: 34822690 PMCID: PMC8620674 DOI: 10.3390/toxics9110300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity. There is an urgent need for extensive molecular and functional investigations aimed at understanding the mechanisms of CIPN. Furthermore, a reliable human cell culture system that recapitulates the diversity of neuronal modalities found in vivo and the pathophysiological changes that underlie CIPN would serve to advance the understanding of the pathogenesis of CIPN. The demonstration of experimental reproducibility in a human peripheral neuronal cell system will increase confidence that such an in vitro model is clinically useful, ultimately resulting in deeper exploration for the prevention and treatment of CIPN. Herein, we review current in vitro models with a focus on key characteristics and attributes desirable for an ideal human cell culture model relevant for CIPN investigations.
Collapse
|
15
|
ExplantAnalyzer: An advanced automated neurite outgrowth analysis evaluated by means of organotypic auditory neuron explant cultures. J Neurosci Methods 2021; 363:109341. [PMID: 34474047 DOI: 10.1016/j.jneumeth.2021.109341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuronal outgrowth assays using organotypic explant cultures are commonly utilized to study neuroregenerative and -protective effects of drugs such as neurotrophins. While this approach offers higher organized tissue compared to single cell cultures and less experimental effort than in-vivo studies, quantitative evaluation of the neuronal network is often time consuming. Thus, we developed ExplantAnlayzer, a time-saving high-throughput evaluation method, yielding numerous metrics to objectively describe neuronal outgrowth. NEW METHOD Spiral ganglion explants were cultured in 24-well plates, mechanically fixed in a collagen matrix and immunolabeled against beta-III-tubulin. The explants were imaged using a fluorescent tile-scan microscope and resulting images were stitched. The evaluation was developed as an open-source MATLAB routine and involves several image processing steps, including adaptive thresholding. The neurite network was eventually converted to a graph to track neurites from their terminals back to the explant body. COMPARISON WITH EXISTING METHOD(S) We compared ExplantAnlayzer quantitatively and qualitatively to common existing methods, such as Sholl analyses and manual fiber tracing, using representative explant images. ExplantAnlayzer is able to achieve similar and as detailed results as manual tracing while decreasing manual interaction and required time dramatically. RESULTS After an initial setup phase, the explant images could be batch-processed altogether. Bright bundles as well as faint fibers were reliably detected. Several metrics describing the outgrowth morphology, including total outgrowth, neurite numbers and length estimations, as well as their growth directions, were computed. CONCLUSIONS ExplantAnalyzer is a time-saving and objective method for an in-depth evaluation of organotypic explant outgrowth.
Collapse
|
16
|
Park KY, Kim S, Kim MS. Effects of taxol on neuronal differentiation of postnatal neural stem cells cultured from mouse subventricular zone. Differentiation 2021; 119:1-9. [PMID: 33848959 DOI: 10.1016/j.diff.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Taxol (paclitaxel), a chemotherapeutic agent for several cancers, can adversely affect the peripheral nervous system. Recently, its negative impact on cognitive function in cancer patients has become evident. In rodents, taxol impaired learning and memory, with other possible negative effects on the brain. In this study, we investigated the effects of taxol on cultured neural stem cells (NSCs) from the mouse neurogenic region, the subventricular zone (SVZ). Taxol significantly decreased both proliferation and neuronal differentiation of NSCs. Transient treatment with taxol for one day during a 4-day differentiation greatly decreased neurogenesis along with an abnormal cell cycle progression. Yet, taxol did not kill differentiated Tuj1+ neurons and those neurons had longer neurites than neurons under control conditions. For glial differentiation, taxol significantly reduced oligodendrogenesis as observed by immunostaining for Olig2 and O4. However, differentiation of astrocytes was not affected by taxol. In contrast, differentiated oligodendrocytes were extremely sensitive to taxol. Almost no Olig2-positive cells were observed after three days of treatment with taxol. Taxol has distinct effects on neurons and glial cells during their production through differentiation from NSCs as well as post-differentiation. Thus, we suggest that taxol might interfere with neurogenesis of NSCs possibly through a disturbance in the cell cycle and may eliminate differentiated oligodendrocytes.
Collapse
Affiliation(s)
- Ki-Youb Park
- Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 614-100, South Korea.
| | - Seokyung Kim
- Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 614-100, South Korea
| | - Man Su Kim
- College of Pharmacy, Inje University, Gimhae, 50834, South Korea
| |
Collapse
|
17
|
Wei G, Gu Z, Gu J, Yu J, Huang X, Qin F, Li L, Ding R, Huo J. Platinum accumulation in oxaliplatin-induced peripheral neuropathy. J Peripher Nerv Syst 2021; 26:35-42. [PMID: 33462873 PMCID: PMC7986112 DOI: 10.1111/jns.12432] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a common and dose-limiting toxic effect that markedly limits the use of oxaliplatin and affects the quality of life. Although it is common, the underlying mechanisms of OIPN remain ambiguous. Recent studies have shown that the platinum accumulation in peripheral nervous system, especially in dorsal root ganglion, is a significant mechanism of OIPN. Several specific transporters, including organic cation transporters, high-affinity copper uptake protein1 (CTR1), ATPase copper transporting alpha (ATP7A) and multidrug and toxin extrusion protein 1 (MATE1), could be associated with this mechanism. This review summarizes the current research progress about the relationship between platinum accumulation and OIPN, as well as suggests trend for the future research.
Collapse
Affiliation(s)
- Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Zhancheng Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xiaofei Huang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Fengxia Qin
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Rong Ding
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| |
Collapse
|
18
|
Verma P, Eaton M, Kienle A, Flockerzi D, Yang Y, Ramkrishna D. Examining Sodium and Potassium Channel Conductances Involved in Hyperexcitability of Chemotherapy-Induced Peripheral Neuropathy: A Mathematical and Cell Culture-Based Study. Front Comput Neurosci 2020; 14:564980. [PMID: 33178002 PMCID: PMC7593680 DOI: 10.3389/fncom.2020.564980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/02/2020] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a prevalent, painful side effect which arises due to a number of chemotherapy agents. CIPN can have a prolonged effect on quality of life. Chemotherapy treatment is often reduced or stopped altogether because of the severe pain. Currently, there are no FDA-approved treatments for CIPN partially due to its complex pathogenesis in multiple pathways involving a variety of channels, specifically, voltage-gated ion channels. One aspect of neuropathic pain in vitro is hyperexcitability in dorsal root ganglia (DRG) peripheral sensory neurons. Our study employs bifurcation theory to investigate the role of voltage-gated ion channels in inducing hyperexcitability as a consequence of spontaneous firing due to the common chemotherapy agent paclitaxel. Our mathematical investigation of a reductionist DRG neuron model comprised of sodium channel Nav1.7, sodium channel Nav1.8, delayed rectifier potassium channel, A-type transient potassium channel, and a leak channel suggests that Nav1.8 and delayed rectifier potassium channel conductances are critical for hyperexcitability of small DRG neurons. Introducing paclitaxel into the model, our bifurcation analysis predicts that hyperexcitability is highest for a medium dose of paclitaxel, which is supported by multi-electrode array (MEA) recordings. Furthermore, our findings using MEA reveal that Nav1.8 blocker A-803467 and delayed rectifier potassium enhancer L-alpha-phosphatidyl-D-myo-inositol 4,5-diphosphate, dioctanoyl (PIP2) can reduce paclitaxel-induced hyperexcitability of DRG neurons. Our approach can be readily extended and used to investigate various other contributors of hyperexcitability in CIPN.
Collapse
Affiliation(s)
- Parul Verma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Muriel Eaton
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Achim Kienle
- Process Synthesis and Dynamics Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Automation/Modeling, Otto von Guericke University, Magdeburg, Germany
| | - Dietrich Flockerzi
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Otto von Guericke University, Magdeburg, Germany
| | - Yang Yang
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Doraiswami Ramkrishna
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
19
|
Moschetti G, Kalpachidou T, Amodeo G, Lattanzi R, Sacerdote P, Kress M, Franchi S. Prokineticin Receptor Inhibition With PC1 Protects Mouse Primary Sensory Neurons From Neurotoxic Effects of Chemotherapeutic Drugs in vitro. Front Immunol 2020; 11:2119. [PMID: 33072073 PMCID: PMC7541916 DOI: 10.3389/fimmu.2020.02119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is a common side effect of chemotherapeutics that often leads to the development of chemotherapy-induced peripheral neuropathy (CIPN). The peptide Prokineticin 2 (PK2) has a key role in experimental models of CIPN and can be considered an insult-inducible endangering mediator. Since primary afferent sensory neurons are highly sensitive to anticancer drugs, giving rise to dysesthesias, the aim of our study was to evaluate the alterations induced by vincristine (VCR) and bortezomib (BTZ) exposure in sensory neuron cultures and the possible preventive effect of blocking PK2 signaling. Both VCR and BTZ induced a concentration-dependent reduction of total neurite length that was prevented by the PK receptor antagonist PC1. Antagonizing the PK system also reduced the upregulation of PK2, PK-R1, TLR4, IL-6, and IL-10 expression induced by chemotherapeutic drugs. In conclusion, inhibition of PK signaling with PC1 prevented the neurotoxic effects of chemotherapeutics, suggesting a promising strategy for neuroprotective therapies against the sensory neuron damage induced by exposure to these drugs.
Collapse
Affiliation(s)
- Giorgia Moschetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Theodora Kalpachidou
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Giada Amodeo
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michaela Kress
- Department of Physiology and Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Johnstone AFM, Mack CM, Valdez MC, Shafer TJ, LoPachin RM, Herr DW, Kodavanti PRS. Acute in vitro effects on embryonic rat dorsal root ganglion (DRG) cultures by in silico predicted neurotoxic chemicals: Evaluations on cytotoxicity, neurite length, and neurophysiology. Toxicol In Vitro 2020; 69:104989. [PMID: 32882341 DOI: 10.1016/j.tiv.2020.104989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
Abstract
The Hard-Soft Acid and Base hypothesis can be used to predict the potential bio-reactivity (electrophilicity) of a chemical with intracellular proteins, resulting in neurotoxicity. Twelve chemicals predicted to be neurotoxic were evaluated in vitro in rat dorsal root ganglia (DRG) for effects on cytotoxicity (%LDH), neuronal structure (total neurite length/neuron, NLPN), and neurophysiology (mean firing rate, MFR). DRGs were treated acutely on days in vitro (DIV) 7 (1-100 μM) with test chemical; %LDH and NLPN were measured after 48 h. 4-cyclohexylhexanone (4-C) increased %LDH release at 50 (29%) and 100 μM (56%), citronellal (Cit) and 1-bromopropane increased %LDH at 100 μM (22% and 26%). 4-C, Cit, 2,5 Hexanedione (2,5Hex), phenylacetylaldehyde (PAA) and 2-ethylhexanal decreased mean NLPN at 48 h; 50 and 100 μM for 4-C (28% and 60%), 100 μM Cit (52%), 100 μM 2,5- Hex (37%) 100 μM PAA (41%) and 100 μM for 2-ethylhexanal (23%). Separate DRG cultures were treated on DIV 14 and changes in MFR measured. Four compounds decreased MFR at 50 or 100 μM: Acrylamide (-83%), 3,4-dichloro-1-butene (-93%), 4-C (-89%) and hexane (-79%, 50 μM). Changes in MFR and NLPN occurred in absence of cytotoxicity. While the current study showed little cytotoxicity, it gave insight to initial changes in MFR. Results provide insight for future chronic exposure experiments to evaluate neurotoxicity.
Collapse
Affiliation(s)
- Andrew F M Johnstone
- Clinical Research Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Cina M Mack
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Matthew C Valdez
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Timothy J Shafer
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, CCTE/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx, NY 10467, United States of America
| | - David W Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
21
|
Eldridge S, Guo L, Hamre J. A Comparative Review of Chemotherapy-Induced Peripheral Neuropathy in In Vivo and In Vitro Models. Toxicol Pathol 2020; 48:190-201. [PMID: 31331249 PMCID: PMC6917839 DOI: 10.1177/0192623319861937] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse effect caused by several classes of widely used anticancer therapeutics. Chemotherapy-induced peripheral neuropathy frequently leads to dose reduction or discontinuation of chemotherapy regimens, and CIPN symptoms can persist long after completion of chemotherapy and severely diminish the quality of life of patients. Differences in the clinical presentation of CIPN by widely diverse classifications of anticancer agents have spawned multiple mechanistic hypotheses that seek to explain the pathogenesis of CIPN. Despite its clinical relevance, common occurrence, and extensive investigation, the pathophysiology of CIPN remains unclear. Furthermore, there is no unequivocal gold standard for the prevention and treatment of CIPN. Herein, we review in vivo and in vitro models of CIPN with a focus on histopathological changes and morphological features aimed at understanding the pathophysiology of CIPN and identify gaps requiring deeper exploration. An elucidation of the underlying mechanisms of CIPN is imperative to identify potential targets and approaches for prevention and treatment.
Collapse
Affiliation(s)
- Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John Hamre
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
22
|
Malacrida A, Meregalli C, Rodriguez-Menendez V, Nicolini G. Chemotherapy-Induced Peripheral Neuropathy and Changes in Cytoskeleton. Int J Mol Sci 2019; 20:E2287. [PMID: 31075828 PMCID: PMC6540147 DOI: 10.3390/ijms20092287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the different antineoplastic mechanisms of action, peripheral neurotoxicity induced by all chemotherapy drugs (anti-tubulin agents, platinum compounds, proteasome inhibitors, thalidomide) is associated with neuron morphological changes ascribable to cytoskeleton modifications. The "dying back" degeneration of distal terminals (sensory nerves) of dorsal root ganglia sensory neurons, observed in animal models, in in vitro cultures and biopsies of patients is the most evident hallmark of the perturbation of the cytoskeleton. On the other hand, in highly polarized cells like neurons, the cytoskeleton carries out its role not only in axons but also has a fundamental role in dendrite plasticity and in the organization of soma. In the literature, there are many studies focused on the antineoplastic-induced alteration of microtubule organization (and consequently, fast axonal transport defects) while very few studies have investigated the effect of the different classes of drugs on microfilaments, intermediate filaments and associated proteins. Therefore, in this review, we will focus on: (1) Highlighting the fundamental role of the crosstalk among the three filamentous subsystems and (2) investigating pivotal cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| |
Collapse
|