1
|
Kang DY, Bae SW, Jang KJ. Natural bioactive gallic acid shows potential anticancer effects by inhibiting the proliferation and invasiveness behavior in human embryonic carcinoma cells. Mol Med Rep 2025; 31:151. [PMID: 40211726 PMCID: PMC11997742 DOI: 10.3892/mmr.2025.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
Embryonic cancer stem cells (CSCs), referred to as self‑renewable cells, are commonly found in liquid and solid cancers and can also be attributed to tumor onset, resistance, expansion, recurrence and metastasis following treatment. Cancer therapy targeting CSCs using natural bioactive products is an optimal option for inhibiting cancer recurrence, thereby improving prognosis. Several natural compounds and extracts have been used to identify direct or indirect therapy effects that reduce the pathological activities of CSCs. Natural gallic acid (GA) is noted to have anticancer properties for oncogene expression, cycle arrest, apoptosis, angiogenesis, migration and metastasis in various cancers. The present study demonstrated that GA has various anticancer activities in NTERA‑2 and NCCIT human embryonic carcinoma cells. In two types of embryonic CSCs, GA effectively induced cell death via late apoptosis. Furthermore, GA showed the G0/G1 cell cycle arrest activity in embryonic CSCs by inducing the increase of p21, p27 and p53 expression and the decrease of CDK4, cyclin E and cyclin D1 expression. The present study showed that GA inhibited the expression levels of mRNA and protein for stem cell markers, such as SOX2, NANOG and OCT4, in NTERA‑2 and NCCIT cells. The induction of cellular and mitochondrial reactive oxygen species by GA also activated the cellular DNA damage response pathway by raising the phosphorylated‑BRCA1, ATM, Chk1, Chk2 and histone. Finally, GA inhibited CSCs invasion and migration by inhibiting the expression of matrix metalloproteinase by the downregulation of EGFR/JAK2/STAT5 signaling pathway. Thus, it is hypothesized that GA could be a potential inhibitor of cancer emergence by suppressing CSC properties.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Immunology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju. Chungcheong 27478, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju, Jejudo 63243, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Integrative Biological Sciences and Industry, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
2
|
Ghaffari MK, Sefati N, Esmaeilpour T, Salari V, Oblak D, Simon C. The impact of ketamine and thiopental anesthesia on ultraweak photon emission and oxidative-nitrosative stress in rat brains. Front Syst Neurosci 2025; 19:1502589. [PMID: 40191280 PMCID: PMC11968709 DOI: 10.3389/fnsys.2025.1502589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Anesthetics such as ketamine and thiopental, commonly used for inducing unconsciousness, have distinct effects on neuronal activity, metabolism, and cardiovascular and respiratory systems. Ketamine increases heart rate and blood pressure while preserving respiratory function, whereas thiopental decreases both and can cause respiratory depression. This study investigates the impact of ketamine (100 mg/kg) and thiopental (45 mg/kg) on ultraweak photon emission (UPE), oxidative-nitrosative stress, and antioxidant capacity in isolated rat brains. To our knowledge, no previous study has investigated and compared UPE in the presence and absence of anesthesia. Here, we compare the effects of ketamine and thiopental anesthetics with each other and with a non-anesthetized control group. Ketamine increased UPE, lipid peroxidation, and antioxidant enzyme activity while reducing thiol levels. Conversely, thiopental decreased UPE, oxidative markers, and antioxidant enzyme activity, while increasing thiol levels. UPE was negatively correlated with thiol levels and positively correlated with oxidative stress markers. These findings suggest that the contrasting effects of ketamine and thiopental on UPE are linked to their differing impacts on brain oxidative stress and antioxidant capacity. This research suggests a potential method to monitor brain oxidative stress via UPE during anesthesia, and opens up new ways for understanding and managing anesthetic effects.
Collapse
Affiliation(s)
- Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sefati
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salari
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Chen P, Zou F, Liu W. Recent advancement in prevention against hepatotoxicity, molecular mechanisms, and bioavailability of gallic acid, a natural phenolic compound: challenges and perspectives. Front Pharmacol 2025; 16:1549526. [PMID: 40191418 PMCID: PMC11968354 DOI: 10.3389/fphar.2025.1549526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Drug-induced liver injury (DILI) results from the liver toxicity caused by drugs or their metabolites. Gallic acid (GA) is a naturally occurring secondary metabolite found in many fruits, plants, and nuts. Recently, GA has drawn increasing attention due to its potent pharmacological properties, particularly its anti-inflammatory and antioxidant capabilities. To the best of our knowledge, this is the first review to focus on the pharmacological properties of GA and related molecular activation mechanisms regarding protection against hepatotoxicity. We also provide a thorough explanation of the physicochemical properties, fruit sources, toxicity, and pharmacokinetics of GA after reviewing a substantial number of studies. Pharmacokinetic studies have shown that GA is quickly absorbed and eliminated when taken orally, which restricts its use in development. However, the bioavailability of GA can be increased by optimizing its structure or changing its form of administration. Notably, according to toxicology studies conducted on a range of animals and clinical trials, GA rarely exhibits toxicity or side effects. The antioxidation mechanisms mainly involved Nrf2, while anti-inflammatory mechanisms involved MAPKs and NF-κB signaling pathways. Owing to its marked pharmacological properties, GA is a prospective candidate for the management of diverse xenobiotic-induced hepatotoxicity. We also discuss the applications of cutting-edge technologies (nano-delivery systems, network pharmacology, and liver organoids) in DILI. In addition to guiding future research and development of GA as a medicine, this study offers a theoretical foundation for its clinical application.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fanzhao Zou
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Wijaya GYA, Vornoli A, Giambastiani L, Digiacomo M, Macchia M, Szymczak B, Wójcik M, Pozzo L, Longo V. Solid-State Fermented Cereals: Increased Phenolics and Their Role in Attenuating Liver Diseases. Nutrients 2025; 17:900. [PMID: 40077770 PMCID: PMC11901820 DOI: 10.3390/nu17050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Liver diseases, a leading cause of global mortality, necessitate effective dietary strategies. Fermented cereals, traditionally recognized for benefits in glucose regulation, lipid profiles, and antioxidant activity, hold potential for managing conditions such as type 2 diabetes, hypertension, and obesity. However, their specific impact on liver health requires further investigation. Fermentation, particularly solid-state fermentation (SSF), enhances the bioavailability of beneficial compounds, including phenolics. This review summarizes recent studies on the phenolic content of fermented cereals, highlighting variations based on microbial strains and cereal types. It examines the hepatoprotective effects of these phenolics, drawing on in vivo and in vitro research. Furthermore, the review explores recent findings on the impact of fermented cereals on liver health and related diseases. This work provides a foundation for future research exploring fermented cereals as a dietary intervention for liver disease prevention and management.
Collapse
Affiliation(s)
- Ganesha Yanuar Arief Wijaya
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy;
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
| | - Andrea Vornoli
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Lucia Giambastiani
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland;
| | - Marta Wójcik
- Veterinary Oncology Lab., Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Luisa Pozzo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Vincenzo Longo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| |
Collapse
|
5
|
Khan AN, Jawarkar RD, Zaki MEA, Al Mutairi AA. Natural compounds for oxidative stress and neuroprotection in schizophrenia: composition, mechanisms, and therapeutic potential. Nutr Neurosci 2024; 27:1306-1320. [PMID: 38462971 DOI: 10.1080/1028415x.2024.2325233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.
Collapse
Affiliation(s)
- Anam N Khan
- Department of Pharamacognosy, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A Al Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Xiao Y, Yuan S, Luo R, Tang Y, Wang X, Xiang P, Di B. Monitoring of ketamine-based emerging contaminants in wastewater: a direct-injection method and fragmentation pathway study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:389-402. [PMID: 39308124 DOI: 10.1080/10934529.2024.2403280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 11/05/2024]
Abstract
The ketamine (KET) and its analogs consumed by humans are becoming emerging contaminants (ECs), as they at present in surface waters after being carried through wastewater systems. Drugs in wastewater can be analyzed using the direct-injection method, a simple wastewater analysis (WWA) method that can provide objective, continuous and nearly to real-time findings. This article describes an ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification and confirmation of seven KET-based ECs in wastewater by direct injection. After optimization of the UPLC-MS/MS and sample pretreatment conditions, the method was validated and applied to samples (n = 157) collected from several wastewater treatment plants (WWTPs) in southern China in which KET had the highest detection rate. The established direct-injection method was not only simple to perform but also had better sensitivity, shorter detection times, and analyzed more KET-based ECs than currently published methods, meeting the requirements for the monitoring and high-throughput analysis of common KET-based ECs. We also analyzed the fragmentation pathway of KET-based ECs to obtain product ion information on other unknown substances. Additional studies are needed to establish a comprehensive direct-injection screening method of ECs in wastewater on model-based assessment.
Collapse
Affiliation(s)
- Yue Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Shuai Yuan
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ruxin Luo
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Yiling Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Xin Wang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
7
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
8
|
Luo J, Luo M, Kaminga AC, Wei J, Dai W, Peng Y, Zhao K, Duan Y, Xiao X, Ouyang S, Yao Z, Liu Y, Pan X. Integrative metabolomics highlights gut microbiota metabolites as novel NAFLD-related candidate biomarkers in children. Microbiol Spectr 2024; 12:e0523022. [PMID: 38445874 PMCID: PMC10986516 DOI: 10.1128/spectrum.05230-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Altered gut microbiota and metabolites are important for non-alcoholic fatty liver disease (NAFLD) in children. We aimed to comprehensively examine the effects of gut metabolites on NAFLD progression. We performed integrative metabolomics (untargeted discovery and targeted validation) analysis of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and obesity in children. Fecal samples were collected from 75 subjects in the discovery cohort (25 NAFL, 25 NASH, and 25 obese control children) and 145 subjects in an independent validation cohort (53 NAFL, 39 NASH, and 53 obese control children). Among 2,491 metabolites, untargeted metabolomics revealed a complete NAFLD metabolic map containing 318 increased and 123 decreased metabolites. Then, machine learning selected 65 important metabolites that can distinguish the severity of the NAFLD. Furthermore, precision-targeted metabolomics selected 5 novel gut metabolites from 20 typical metabolites. The functionality of candidate metabolites was validated in hepatocyte cell lines. In the end, this study annotated two novel elevated pathogenic metabolites (dodecanoic acid and creatinine) and a relationship between depleted protective gut microbiota (Butyricicoccus and Alistipes), increased inflammation (IL-1β), lipid metabolism (TG), and liver function (ALT and AST). This study demonstrates the role of novel gut metabolites (dodecanoic acid and creatinine), as the fatty acid metabolism regulator contributing to NAFLD development through its influence on inflammation and liver function. IMPORTANCE Altered gut microbiota and metabolites are a major cause of non-alcoholic fatty liver disease (NAFLD) in children. This study demonstrated a complete gut metabolic map of children with NAFLD, containing 318 increased and 123 decreased metabolites by untargeted metabolomic. Multiple validation approaches (machine learning and targeted metabolomic) selected five novel gut metabolites for targeted metabolomics, which can distinguish NAFLD status and severity. The gut microbiota (Butyricicoccus and Alistipes) and metabolites (creatinine and dodecanoic acid) were novel biomarkers associated with impaired liver function and inflammation and validated by experiments of hepatocyte cell lines. The data provide a better understanding of the importance of gut microbiota and metabolite alterations in NAFLD, which implies that the altered gut microbiota and metabolites may represent a potential target to prevent NAFLD development.
Collapse
Affiliation(s)
- Jiayou Luo
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Miyang Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Jia Wei
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wen Dai
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yunlong Peng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Kunyan Zhao
- School of Public Health, University of South China, Hengyang, China
| | - Yamei Duan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiang Xiao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - SiSi Ouyang
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhenzhen Yao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yixu Liu
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
9
|
Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, Dang R, Li M, Wang C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024; 180:114068. [PMID: 38395544 DOI: 10.1016/j.foodres.2024.114068] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
10
|
Sathiyaseelan A, Zhang X, Wang MH. Biosynthesis of gallic acid fabricated tellurium nanoparticles (GA-Te NPs) for enhanced antibacterial, antioxidant, and cytotoxicity applications. ENVIRONMENTAL RESEARCH 2024; 240:117461. [PMID: 37890834 DOI: 10.1016/j.envres.2023.117461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The development of antibiotic resistance and the onset of diverse forms of cancer necessitate the utilization of innovative multifunctional biocompatible materials. The synthesis of metal and metalloid nanoparticles through eco-friendly means demonstrates promising potential in therapeutic and diagnostic domains. Among these materials, Tellurium (Te) exhibits exceptional characteristics and finds application in numerous fields; nevertheless, its usage in biological applications has been somewhat limited, primarily due to its inherent toxicity. Furthermore, nanomaterials developed from Te have not garnered adequate research attention. Conversely, nanomaterials fashioned using biomolecules augment their biological efficacy and applicability. Therefore, the present work focuses on synthesizing the tellurium nanoparticles (Te NPs) using the antioxidant molecule gallic acid (GA) and evaluating their biological activity and toxicity for the first time. The study evidenced that GA-Te NPs are spherical and monodispersed, with an average size of 19.74 ± 5.3 nm. XRD analysis confirmed a hexagonal crystalline structure for GA-Te NPs, and FTIR analysis evidenced the capping of GA on Te NPs. GA-Te NPs (MIC: 1.56 μg/mL) strongly reduce the growth and biofilm formation of S. aureus, E. coli, and S. enterica. Additionally, GA-Te NPs at a concentration of 50 μg/mL cause a significant level of toxicity in BT474 breast cancer cells but not in NIH3T3 cells. Unexpectedly, GA-Te NPs at concentrations <250 μg/mL do not cause hemolysis in red blood cells (RBC) Besides, the way of utilizing the lower concentrations of therapeutics could result in ecological safety. Therefore, the study concludes that GA-Te NPs could be used as potential multifunctional agents.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
11
|
Wang X, Cong J, Zhang L, Han Z, Jiang X, Yu L. Antiultraviolet, Antioxidant, and Antimicrobial Properties and Anticancer Potential of Novel Environmentally Friendly Amide-Modified Gallic Acid Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15352-15362. [PMID: 37802117 DOI: 10.1021/acs.jafc.3c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Polyphenols and amides isolated from natural products have various biological functions, such as antioxidant, antimicrobial, anticancer, and antiviral activities, and they are widely used in the fields of food and medicine. In this work, four novel and environmentally friendly amide-modified gallic acid derivatives (AMGADs), which were prepared by using different amides to modify gallic acid (GA) from Polygonaceae plants, displayed good antiultraviolet (anti-UV), antioxidant, antimicrobial, and anticancer effects. Significantly, the anti-UV capability of compounds n1 and n2 was notably superior to that of the UV absorber GA. Moreover, compound n2 possessed better 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) scavenging ability and ferric reducing antioxidant power than vitamin C. The antibacterial activities of all AMGADs, with inhibition rates of more than 96.00 and 79.00% for Escherichia coli and Staphylococcus aureus, respectively, were better than those of GA. Compound n1 had broad-spectrum anticancer activity, and its inhibitory effect on HepG2 cells exceeded that of 5-fluorouracil. The good and rich bioactivities of these AMGADs revealed that combining GA with amides is conducive to improving the activity of GA, and this study laid a good foundation for their scientific application in the fields of food and medicine.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Jinyue Cong
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Linghui Zhang
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Zhicheng Han
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Xiaohui Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China
| |
Collapse
|
12
|
Salimi A, Shabani M, Bayrami D, Saray A, Farshbaf Moghimi N. Gallic acid and sesame oil exert cardioprotection via mitochondrial protection and antioxidant properties on Ketamine-Induced cardiotoxicity model in rats. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Armin Saray
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
13
|
Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A, Hushmandi K, Ang HL, Sethi G, Kumar AP, Ahn KS, Nabavi N, Khan H, Makvandi P, Varma RS. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol 2021; 157:112576. [PMID: 34571052 DOI: 10.1016/j.fct.2021.112576] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 07/23/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Phd student of pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Phochantachinda S, Chatchaisak D, Temviriyanukul P, Chansawang A, Pitchakarn P, Chantong B. Ethanolic Fruit Extract of Emblica officinalis Suppresses Neuroinflammation in Microglia and Promotes Neurite Outgrowth in Neuro2a Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6405987. [PMID: 34539802 PMCID: PMC8443350 DOI: 10.1155/2021/6405987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Inhibiting neuroinflammation and modulating neurite outgrowth could be a promising strategy to prevent neurological disorders. Emblica officinalis (EO) may be a potent agent against them. Although EO extract reportedly has anti-inflammatory properties in macrophages, there is limited knowledge about its neuroprotective activity by suppressing microglia-mediated proinflammatory cytokine production and inducing neurite outgrowth. The present study aimed to elucidate the effect of EO fruit extract on the lipopolysaccharide- (LPS-) induced neuroinflammation using microglial (BV2) and neuroblastoma (Neuro2a) cells. The results demonstrated that, in LPS-treated BV2 cells, EO fruit extract reduced nitric oxide, interleukin-6, and tumor necrotic factor-α production. It also enhanced the neurite length of Neuro2a cells, which was linked to the upregulation of TuJ1 and MAP2 expressions. In conclusion, these findings indicate that the ethanolic extract of EO fruits has promising neuroprotective potential to exhibit antineuroinflammation activity and accelerative effect on neurite outgrowth in vitro. Therefore, EO fruit extract can be considered a novel herbal medicine candidate for managing neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sataporn Phochantachinda
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
15
|
Blas-Valdivia V, Franco-Colín M, Rojas-Franco P, Chao-Vazquez A, Cano-Europa E. Gallic Acid Prevents the Oxidative and Endoplasmic Reticulum Stresses in the Hippocampus of Adult-Onset Hypothyroid Rats. Front Pharmacol 2021; 12:671614. [PMID: 34295248 PMCID: PMC8290492 DOI: 10.3389/fphar.2021.671614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone is essential for hippocampal redox environment and neuronal viability in adulthood, where its deficiency causes hypothyroidism related to oxidative and endoplasmic reticulum stresses in the hippocampus, resulting in neuronal death. One option of treatment is antioxidants; however, they must be transported across the blood-brain barrier. Gallic acid is a polyphenol that meets these criteria. Thus, this study aimed to prove that the neuroprotective mechanism of GA is associated with the prevention of oxidative and endoplasmic reticulum stresses in the hippocampus of adult-onset hypothyroid rats. Male Wistar rats were divided into euthyroid (n = 20) and hypothyroid groups (n = 20). Thyroidectomy with parathyroid gland reimplementation caused hypothyroidism. Each group was subdivided into two: vehicle and 50 mg/kg/d of gallic acid. 3 weeks after thyroidectomy, six animals of each group were euthanized, and the hippocampus was dissected to evaluate oxidative and endoplasmic reticulum stress markers. The rest of the animals were euthanized after 4 weeks of treatment for histological analysis of the hippocampus. The results showed that hypothyroidism increased lipid peroxidation, reactive oxygen species, and nitrites; it also increased endoplasmic reticulum stress by activating the inositol-requiring enzyme-1α (IRE1α) pathway, the protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activated transcription factor 6α (ATF6α) pathways associated with a proapoptotic state that culminates in hippocampal neuronal damage. Meanwhile, the hypothyroid rat treated with gallic acid reduced oxidative stress and increased endoplasmic reticulum-associated degradation (ERAD) through IRE1α and ATF6. Also, the gallic acid treatment prevented the Bax/BCl2 ratio from increasing and the overexpression of p53 and caspase 12. This treatment in hypothyroid animals was associated with the neuronal protection observed in the hippocampus. In conclusion, gallic acid prevents hypothyroidism-induced hippocampal damage associated with oxidative and endoplasmic reticulum stresses.
Collapse
Affiliation(s)
- Vanessa Blas-Valdivia
- Lab. Neurobiología, Departamento de Fisiología "Dr. Mauricio Russek Berman", Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Margarita Franco-Colín
- Lab. de Metabolismo I, Departamento de Fisiología "Dr. Mauricio Russek Berman", Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Placido Rojas-Franco
- Lab. de Metabolismo I, Departamento de Fisiología "Dr. Mauricio Russek Berman", Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alberto Chao-Vazquez
- Lab. Neurobiología, Departamento de Fisiología "Dr. Mauricio Russek Berman", Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.,Lab. de Metabolismo I, Departamento de Fisiología "Dr. Mauricio Russek Berman", Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Edgar Cano-Europa
- Lab. de Metabolismo I, Departamento de Fisiología "Dr. Mauricio Russek Berman", Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
16
|
Traore KF, Kone KY, Ahi AP, Soro D, Assidjo NE, Fauconnier ML, Sindic M. Phenolic compounds characterisation and antioxidant activity of black plum (Vitex doniana) fruit pulp and peel from Côte d’Ivoire. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00719-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Chírico MTT, Guedes MR, Vieira LG, Reis TO, Dos Santos AM, Souza ABF, Ribeiro IML, Noronha SISR, Nogueira KO, Oliveira LAM, Gomes FAR, Silva FC, Chianca-Jr DA, Bezerra FS, de Menezes RCA. Lasting effects of ketamine and isoflurane administration on anxiety- and panic-like behavioral responses in Wistar rats. Life Sci 2021; 276:119423. [PMID: 33785344 DOI: 10.1016/j.lfs.2021.119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
In clinical and laboratory practice, the use of anesthetics is essential in order to perform surgeries. Anesthetics, besides causing sedation and muscle relaxation, promote several physiological outcomes, such as psychotomimetic alterations, increased heart rate, and blood pressure. However, studies depicting the behavioral effect induced by ketamine and isoflurane are conflicting. In the present study, we assessed the behavioral effects precipitated by ketamine and isoflurane administration. We have also evaluated the ketamine effect on cell cytotoxicity and viability in an amygdalar neuronal primary cell culture. Ketamine (80 mg/kg) caused an anxiogenic effect in rats exposed to the elevated T-maze test (ETM) 2 and 7 days after ketamine administration. Ketamine (40 and 80 mg/kg) administration also decreased panic-like behavior in the ETM. In the light/dark test, ketamine had an anxiogenic effect. Isoflurane did not change animal behavior on the ETM. Neither ketamine nor isoflurane changed the spontaneous locomotor activity in the open field test. However, isoflurane-treated animals explored less frequently the OF central area seven days after treatment. Neither anesthetic caused oxidative damage in the liver. Ketamine also reduced cellular metabolism and led to neuronal death in amygdalar primary cell cultures. Thus, our work provides evidence that ketamine and isoflurane induce pronounced long lasting anxiety-related behaviors in male rats.
Collapse
Affiliation(s)
- Máira Tereza Talma Chírico
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Mariana Reis Guedes
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Lucas Gabriel Vieira
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Thayane Oliveira Reis
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Aline Maria Dos Santos
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias Souza
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Iara Mariana Léllis Ribeiro
- Department of Biological Sciences, Laboratory of Biomaterials and Experimental Pathology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Sylvana I S R Noronha
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Katiane O Nogueira
- Department of Biological Sciences, Laboratory of Biomaterials and Experimental Pathology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Laser Antonio Machado Oliveira
- Department of Biological Sciences, Laboratory of Biomaterials and Experimental Pathology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Fabiana Aparecida Rodrigues Gomes
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Fernanda Cacilda Silva
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Rodrigo Cunha Alvim de Menezes
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| |
Collapse
|
18
|
Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 2021; 133:110985. [DOI: 10.1016/j.biopha.2020.110985] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
|
19
|
Binge and Subchronic Exposure to Ketamine Promote Memory Impairments and Damages in the Hippocampus and Peripheral Tissues in Rats: Gallic Acid Protective Effects. Neurotox Res 2020; 38:274-286. [DOI: 10.1007/s12640-020-00215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
|
20
|
Diaz A, Muñoz-Arenas G, Caporal-Hernandez K, Vázquez-Roque R, Lopez-Lopez G, Kozina A, Espinosa B, Flores G, Treviño S, Guevara J. Gallic acid improves recognition memory and decreases oxidative-inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse 2020; 75:e22186. [PMID: 32780904 DOI: 10.1002/syn.22186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MS) results from excessive consumption of high-calorie foods and sedentary lifestyles. Clinically, insulin resistance, abdominal obesity, hyperglycemia, dyslipidemia, and hypertension are observed. MS has been considered a risk factor in the development of dementia. In the brain, a metabolically impaired environment generates oxidative stress and excessive production of pro-inflammatory cytokines that deteriorate the morphology and neuronal function in the hippocampus, leading to cognitive impairment. Therapeutic alternatives suggest that phenolic compounds can be part of the treatment for neuropathies and metabolic diseases. In recent years, the use of Gallic Acid (GA) has demonstrated antioxidant and anti-inflammatory effects that contribute to neuroprotection and memory improvement in animal models. However, the effect of GA on hippocampal neurodegeneration and memory impairment under MS conditions is still unclear. In this work, we administered GA (20 mg/kg) for 60 days to rats with MS. The results show that GA treatment improved zoometric and biochemical parameters, as well as the recognition memory, in animals with MS. Additionally, GA administration increased hippocampal dendritic spines and decreased oxidative stress and inflammation. Our results show that GA treatment improves metabolism: reducing the oxidative and inflammatory environment that facilitates the recovery of the neuronal morphology in the hippocampus of rats with MS. Consequently, the recognition of objects by these animals, suggesting that GA could be used therapeutically in metabolic disorders that cause dementia.
Collapse
Affiliation(s)
- Alfonso Diaz
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | | | - Rubén Vázquez-Roque
- Laboratorio de Neuropsiquiatria, Instituto de Fisiologia, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Anna Kozina
- Instituto de Química, Universidad Nacional Autonoma de México, Ciudad de Mexico, Mexico
| | - Blanca Espinosa
- Departamento de Bioquimica, Instituto Nacional de Enfermedades Respiratorias, ICV, Ciudad de Mexico, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatria, Instituto de Fisiologia, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Jorge Guevara
- Departamento de Bioquimica, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|