1
|
Mielecki D, Salińska E. Group III metabotropic glutamate receptors: guardians against excitotoxicity in ischemic brain injury, with implications for neonatal contexts. Pharmacol Rep 2024; 76:1199-1218. [PMID: 39298028 PMCID: PMC11582219 DOI: 10.1007/s43440-024-00651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
The group III metabotropic glutamate receptors (mGluRs), comprising mGluR4, mGluR6, mGluR7, and mGluR8, offer neuroprotective potential in mitigating excitotoxicity during ischemic brain injury, particularly in neonatal contexts. They are G-protein coupled receptors that inhibit adenylyl cyclase and reduce neurotransmitter release, mainly located presynaptically and acting as autoreceptors. This review aims to examine the differential expression and function of group III mGluRs across various brain regions such as the cortex, hippocampus, and cerebellum, with a special focus on the neonatal stage of development. Glutamate excitotoxicity plays a crucial role in the pathophysiology of brain ischemia in neonates. While ionotropic glutamate receptors are traditional targets for neuroprotection, their direct inhibition often leads to severe side effects due to their critical roles in normal neurotransmission and synaptic plasticity. Group III mGluRs provide a more nuanced and potentially safer approach by modulating rather than blocking glutamatergic transmission. Their downstream signaling cascade results in the regulation of intracellular calcium levels, neuronal hyperpolarization, and reduced neurotransmitter release, effectively decreasing excitotoxic signaling without completely suppressing essential glutamatergic functions. Importantly, the neuroprotective effects of group III mGluRs extend beyond direct modulation of glutamate release influencing glial cell function, neuroinflammation, and oxidative stress, all of which contribute to secondary injury cascades in brain ischemia. This comprehensive analysis of group III mGluRs multifaceted neuroprotective potential provides valuable insights for developing novel therapeutic strategies to combat excitotoxicity in neonatal ischemic brain injury.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warsaw, 02-106, Poland.
| | - Elżbieta Salińska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warsaw, 02-106, Poland
| |
Collapse
|
2
|
Moloney R, Pavy CL, Kahl RGS, Palliser HK, Hirst JJ, Shaw JC. Protection from oxygen-glucose deprivation by neurosteroid treatment in primary neurons and oligodendrocytes. In Vitro Cell Dev Biol Anim 2024; 60:1068-1084. [PMID: 39075243 PMCID: PMC11534971 DOI: 10.1007/s11626-024-00957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Preterm birth results in an increased risk of neonatal brain injury and neurobehavioural disorders. Despite the seriousness of these adverse outcomes, there are currently no effective therapies to protect the vulnerable developing brain. We propose that neurosteroid replacement therapy may be a novel approach in reducing detrimental neurological outcomes following preterm birth. The use of guinea pig primary neuronal and oligodendrocyte cultures with relevance to late gestation allows insight into the mechanisms behind the effectiveness of these treatments. Primary neuronal and oligodendrocyte cultures were derived from fetal guinea pig frontal cortex brain tissue at gestational age 62 (GA62). Cell cultures were pre-treated with either etifoxine (5 µM) or zuranolone (1 µm) for 24 h prior to insult. Cells were then exposed to either oxygen-glucose deprivation (OGD; 0% O2 and no glucose DMEM; preterm birth insult) or sham (standard cell culture conditions; 25 mM DMEM) for 2 h. Lactate dehydrogenase assay (LDH) was performed following OGD as a measure of cytotoxicity. Relative mRNA expression of key neuronal and oligodendrocyte markers, as well as neuronal receptors and transporters, were quantified using high throughput (Fluidigm) RT-PCR. OGD significantly increased cellular cytotoxicity in both neurons and oligodendrocytes. Additionally, key neuronal marker mRNA expression was reduced following OGD, and oligodendrocytes displayed arrested mRNA expression of key markers of lineage progression. Treatment with etifoxine restored a number of parameters back to control levels, whereas treatment with zuranolone provided a robust improvement in all parameters examined. This study has demonstrated the neuroprotective potential of neurosteroid replacement therapy in a model of hypoxia related to preterm birth. Neuroprotection appears to be mediated through glutamate reduction and increased brain derived neurotrophic factor (BDNF). Future work is warranted in examining these treatments in vivo, with the overall aim to suppress preterm associated brain damage and reduce long term outcomes for affected offspring.
Collapse
Affiliation(s)
- Roisin Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia.
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Jon J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
3
|
Mai N, Wu L, Uruk G, Mocanu E, Swanson RA. Bioenergetic and excitotoxic determinants of cofilactin rod formation. J Neurochem 2024; 168:899-909. [PMID: 38299375 PMCID: PMC11102304 DOI: 10.1111/jnc.16065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.
Collapse
Affiliation(s)
- Nguyen Mai
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Long Wu
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Ebony Mocanu
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, California, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
4
|
Christidis P, Vij A, Petousis S, Ghaemmaghami J, Shah BV, Koutroulis I, Kratimenos P. Neuroprotective effect of Src kinase in hypoxia-ischemia: A systematic review. Front Neurosci 2022; 16:1049655. [PMID: 36507364 PMCID: PMC9730728 DOI: 10.3389/fnins.2022.1049655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality worldwide. While the application of therapeutic hypothermia has improved neurodevelopmental outcomes for some survivors of HIE, this lone treatment option is only available to a subset of affected neonates. Src kinase, an enzyme central to the apoptotic cascade, is a potential pharmacologic target to preserve typical brain development after HIE. Here, we present evidence of the neuroprotective effects of targeting Src kinase in preclinical models of HIE. Methods We performed a comprehensive literature search using the National Library of Medicine's MEDLINE database to compile studies examining the impact of Src kinase regulation on neurodevelopment in animal models. Each eligible study was assessed for bias. Results Twenty studies met the inclusion criteria, and most studies had an intermediate risk for bias. Together, these studies showed that targeting Src kinase resulted in a neuroprotective effect as assessed by neuropathology, enzymatic activity, and neurobehavioral outcomes. Conclusion Src kinase is an effective neuroprotective target in the setting of acute hypoxic injury. Src kinase inhibition triggers multiple signaling pathways of the sub-membranous focal adhesions and the nucleus, resulting in modulation of calcium signaling and prevention of cell death. Despite the significant heterogeneity of the research studies that we examined, the available evidence can serve as proof-of-concept for further studies on this promising therapeutic strategy.
Collapse
Affiliation(s)
- Panagiotis Christidis
- Laboratory of Physiology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Abhya Vij
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynecology, “Hippokrateion” General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Javid Ghaemmaghami
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States
| | - Bhairav V. Shah
- Division of Pediatric Surgery, Department of Pediatrics, School of Medicine, Prisma Health Children's Hospital-Midlands, University of South Carolina, Columbia, SC, United States
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States,Division of Neonatology, Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States,*Correspondence: Panagiotis Kratimenos
| |
Collapse
|
5
|
Tauskela JS, Brunette E, Aylsworth A, Zhao X. Neuroprotection against supra-lethal 'stroke in a dish' insults by an anti-excitotoxic receptor antagonist cocktail. Neurochem Int 2022; 158:105381. [PMID: 35764225 DOI: 10.1016/j.neuint.2022.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM 2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6.
| | - Eric Brunette
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Amy Aylsworth
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Xigeng Zhao
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| |
Collapse
|
6
|
Joseph A, Liao R, Zhang M, Helmbrecht H, McKenna M, Filteau JR, Nance E. Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioeng Transl Med 2020; 5:e10175. [PMID: 33005740 PMCID: PMC7510458 DOI: 10.1002/btm2.10175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemia is a major cause of death in both neonates and adults, and currently has no cure. Nanotechnology represents one promising area of therapeutic development for cerebral ischemia due to the ability of nanoparticles to overcome biological barriers in the brain. ex vivo injury models have emerged as a high-throughput alternative that can recapitulate disease processes and enable nanoscale probing of the brain microenvironment. In this study, we used oxygen-glucose deprivation (OGD) to model ischemic injury and studied nanoparticle interaction with microglia, resident immune cells in the brain that are of increasing interest for therapeutic delivery. By measuring cell death and glutathione production, we evaluated the effect of OGD exposure time and treatment with azithromycin (AZ) on slice health. We found a robust injury response with 0.5 hr of OGD exposure and effective treatment after immediate application of AZ. We observed an OGD-induced shift in microglial morphology toward increased heterogeneity and circularity, and a decrease in microglial number, which was reversed after treatment. OGD enhanced diffusion of polystyrene-poly(ethylene glycol) (PS-PEG) nanoparticles, improving transport and ability to reach target cells. While microglial uptake of dendrimers or quantum dots (QDs) was not enhanced after injury, internalization of PS-PEG was significantly increased. For PS-PEG, AZ treatment restored microglial uptake to normal control levels. Our results suggest that different nanoparticle platforms should be carefully screened before application and upon doing so; disease-mediated changes in the brain microenvironment can be leveraged by nanoscale drug delivery devices for enhanced cell interaction.
Collapse
Affiliation(s)
- Andrea Joseph
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Rick Liao
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Mengying Zhang
- Molecular Engineering and Sciences InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Hawley Helmbrecht
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Michael McKenna
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Jeremy R. Filteau
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Elizabeth Nance
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Molecular Engineering and Sciences InstituteUniversity of WashingtonSeattleWashingtonUSA
- Department of RadiologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
7
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Toyoda H, Kawano T, Sato H, Kato T. Cellular mechanisms underlying the rapid depolarization caused by oxygen and glucose deprivation in layer III pyramidal cells of the somatosensory cortex. Neurosci Res 2020; 164:1-9. [PMID: 32171781 DOI: 10.1016/j.neures.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
Cortical pyramidal neurons show rapid and irreversible membrane depolarization in response to oxygen-glucose depolarization (OGD). In this study, we investigated cellular mechanisms responsible for rapid depolarization caused by OGD in layer III pyramidal neurons of the mouse somatosensory cortex. When OGD solution was perfused in the presence of Ca2+ chelator and inhibitors of ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in the pipette solution or in the presence of inhibitors of NMDA receptors (NMDARs), voltage-gated Ca2+ channels (VGCCs), and canonical transient receptor potential (TRPC) channels in the perfusion solution, the latency of the rapid depolarization was significantly prolonged compared to the control. In addition, when OGD solution was perfused in the presence of scavengers of nitric oxide and reactive oxygen species in the perfusion solution or in the presence of calcineurin inhibitors in the pipette solution, the latency of the rapid depolarization was significantly prolonged compared to the control. These data indicate that OGD-induced intracellular Ca2+ increases mediated by Ca2+ influx through NMDARs, VGCCs and TRPC channels as well as by Ca2+ release from RyRs and IP3Rs lead to mitochondrial impairment, which may facilitate the generation of the rapid depolarization via dysfunction of Na+-K+-ATPase due to decreased ATP production.
Collapse
Affiliation(s)
- Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.
| | - Tsutomu Kawano
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hajime Sato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
9
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6316059. [PMID: 30112410 PMCID: PMC6077516 DOI: 10.1155/2018/6316059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/12/2018] [Indexed: 01/30/2023]
Abstract
Following cerebral ischemia/reperfusion (I/R) injury, a series of pathophysiological processes are stimulated in both the central nervous system (CNS) and the periphery, including, but not limited to, the peripheral immune and endocrine systems and underregulation of the neuroendocrine-immune network. Glutamate (Glu) is an important excitatory neurotransmitter in the CNS; its excitotoxicity following cerebral ischemia has been a focus of study for several decades. In addition, as a novel immunoregulator, Glu also regulates immune activity in both the CNS and periphery and may connect the CNS and periphery through regulation of the neuroendocrine-immune network. Ischemic postconditioning (IPostC) is powerful and activates various endogenous neuroprotective mechanisms following cerebral I/R, but only a few studies have focused on the mechanisms associated with Glu to date. Given that Glu plays an important and complex pathophysiological role, the understanding of Glu-related mechanisms of IPostC is an interesting area of research, which we review here.
Collapse
|
11
|
Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes. J Neurosci 2017; 36:7109-27. [PMID: 27383588 DOI: 10.1523/jneurosci.4518-15.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Recently, mitochondria have been localized to astrocytic processes where they shape Ca(2+) signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca(2+) channel blocker), two inhibitors of reversed Na(+)/Ca(2+) exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca(2+) indicator Lck-GCaMP-6S, we observed two types of Ca(2+) signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca(2+) through reversed Na(+)/Ca(2+) exchange triggers mitochondrial loss and dramatic increases in Ca(2+) signaling in astrocytic processes. SIGNIFICANCE STATEMENT Astrocytes, the most abundant cell type in the brain, are vital integrators of signaling and metabolism. Each astrocyte consists of many long, thin branches, called processes, which ensheathe vasculature and thousands of synapses. Mitochondria occupy the majority of each process. This occupancy is decreased by ∼50% 24 h after an in vitro model of ischemia/reperfusion injury, due to delayed fragmentation and mitophagy. The mechanism appears to be independent of neuropathology, instead involving an extended period of high glutamate uptake into astrocytes. Our data suggest that mitochondria serve as spatial buffers, and possibly even as a source of calcium signals in astrocytic processes. Loss of mitochondria resulted in drastically altered calcium signaling that could disrupt neurovascular coupling and gliotransmission.
Collapse
|
12
|
SIRT1 plays a neuroprotective role in traumatic brain injury in rats via inhibiting the p38 MAPK pathway. Acta Pharmacol Sin 2017; 38:168-181. [PMID: 28017962 DOI: 10.1038/aps.2016.130] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of disability and death in patients who experience a traumatic injury. Mitochondrial dysfunction is one of the main factors contributing to secondary injury in TBI-associated brain damage. Evidence of compromised mitochondrial function after TBI has been, but the molecular mechanisms underlying the pathogenesis of TBI are not well understood. Silent information regulator family protein 1 (SIRT1), a member of the NAD+-dependent protein deacetylases, has been shown to exhibit neuroprotective activities in animal models of various pathologies, including ischemic brain injury, subarachnoid hemorrhage and several neurodegenerative diseases. In this study, we investigated whether SIRT1 also exert neuroprotective effect post-TBI, and further explored the possible regulatory mechanisms involved in TBI pathogenesis. A lateral fluid-percussion (LFP) brain injury model was established in rats to mimic the insults of TBI. The expression levels of SIRT1, p-p38, cleaved caspase-9 and cleaved caspase-3 were all markedly increased and reached a maximum at 12 h post-TBI. In addition, mitochondrial function was impaired, evidenced by the presence of swollen and irregularly shaped mitochondria with disrupted and poorly defined cristae, a relative increase of the percentage of neurons with low ΔΨm, the opening of mPTP, and a decrease in neuronal ATP content, especially at 12 h post-TBI. Pretreatment with the SIRT1 inhibitor sirtinol (10 mg/kg, ip) induced p-p38 activation, exacerbated mitochondrial damage, and promoted the activation of the mitochondrial apoptosis pathway. In contrast, pretreatment with the p38 inhibitor SB203580 (200 μg/kg, ip) significantly attenuated post-TBI-induced expression of both cleaved caspase-9 and cleaved caspase-3 and mitochondrial damage, whereas it had no effects on SIRT1 expression. Together, these results reveal that the 12 h after TBI may be a crucial time at which secondary damage occurs; the activation of SIRT1 expression and inhibition of the p38 MAPK pathway may play a neuroprotective role in preventing secondary damage post-TBI. For this reason, both SIRT1 and p38 are likely to be important targets to prevent secondary damage post-TBI.
Collapse
|
13
|
Differential Presynaptic ATP Supply for Basal and High-Demand Transmission. J Neurosci 2017; 37:1888-1899. [PMID: 28093477 DOI: 10.1523/jneurosci.2712-16.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
The relative contributions of glycolysis and oxidative phosphorylation to neuronal presynaptic energy demands are unclear. In rat hippocampal neurons, ATP production by either glycolysis or oxidative phosphorylation alone sustained basal evoked synaptic transmission for up to 20 min. However, combined inhibition of both ATP sources abolished evoked transmission. Neither action potential propagation failure nor depressed Ca2+ influx explained loss of evoked synaptic transmission. Rather, inhibition of ATP synthesis caused massive spontaneous vesicle exocytosis, followed by arrested endocytosis, accounting for the disappearance of evoked postsynaptic currents. In contrast to its weak effects on basal transmission, inhibition of oxidative phosphorylation alone depressed recovery from vesicle depletion. Local astrocytic lactate shuttling was not required. Instead, either ambient monocarboxylates or neuronal glycolysis was sufficient to supply requisite substrate. In summary, basal transmission can be sustained by glycolysis, but strong presynaptic demands are met preferentially by oxidative phosphorylation, which can be maintained by bulk but not local monocarboxylates or by neuronal glycolysis.SIGNIFICANCE STATEMENT Neuronal energy levels are critical for proper CNS function, but the relative roles for the two main sources of ATP production, glycolysis and oxidative phosphorylation, in fueling presynaptic function in unclear. Either glycolysis or oxidative phosphorylation can fuel low-frequency synaptic function and inhibiting both underlies loss of synaptic transmission via massive vesicle release and subsequent failure to endocytose lost vesicles. Oxidative phosphorylation, fueled by either glycolysis or endogenously released monocarboxylates, can fuel more metabolically demanding tasks such as vesicle recovery after depletion. Our work demonstrates the flexible nature of fueling presynaptic function to maintain synaptic function.
Collapse
|
14
|
Domin H, Przykaza Ł, Jantas D, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuropeptide Y Y2 and Y5 receptors as promising targets for neuroprotection in primary neurons exposed to oxygen-glucose deprivation and in transient focal cerebral ischemia in rats. Neuroscience 2017; 344:305-325. [PMID: 28057538 DOI: 10.1016/j.neuroscience.2016.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023]
Abstract
It was postulated that neuropeptide Y (NPY)-ergic system could be involved in the ischemic pathophysiology, however, the role of particular subtypes of NPY receptors (YRs) in neuroprotection against ischemia is still not well known. Therefore, we investigated the effect of NPY and YR ligands using in vitro and in vivo experimental ischemic stroke models. Our in vitro findings showed that NPY (0.5-1μM) and specific agonists of Y2R (0.1-1μM) and Y5R (0.5-1μM) but not that of Y1R produced neuroprotective effects against oxygen-glucose deprivation (OGD)-induced neuronal cell death, being also effective when given 30min after the end of OGD. The neuroprotective effects of Y2R and Y5R agonists were reversed by appropriate antagonists. Neuroprotection mediated by NPY, Y2R and Y5R agonists was accompanied by the inhibition of both OGD-induced calpain activation and glutamate release. Data from in vivo studies demonstrated that Y2R agonist (10μg/6μl; i.c.v.) not only diminished the infarct volume in rats subjected to transient middle cerebral artery occlusion (MCAO) but also improved selected gait parameters in CatWalk behavioral test, being also effective after delayed treatment. Moreover, we found that a Y5R agonist (10μg/6μl; i.c.v.) did not reduce MCAO-evoked brain damage but improved stride length, when it was given 30min after starting the occlusion. In conclusion, our studies indicate that Y5 and especially Y2 receptors may be promising targets for neuroprotection against ischemic damage.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland.
| | - Łukasz Przykaza
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, Pawińskiego Street 5, 02-106 Warsaw, Poland
| | - Danuta Jantas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Kraków, Smętna Street 12, Poland
| | - Ewa Kozniewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Department of Neurosurgery, Laboratory of Experimental Neurosurgery, Pawińskiego Street 5, 02-106 Warsaw, Poland; Medical University of Warsaw, Department of Experimental and Clinical Physiology, Pawińskiego Street 3C, 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna Street 12, Poland
| |
Collapse
|
15
|
Vahidinia Z, Alipour N, Atlasi MA, Naderian H, Beyer C, Azami Tameh A. Gonadal steroids block the calpain-1-dependent intrinsic pathway of apoptosis in an experimental rat stroke model. Neurol Res 2016; 39:54-64. [PMID: 27832728 DOI: 10.1080/01616412.2016.1250459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Apoptosis plays an important role in the progression of the ischemic penumbra after reperfusion. Estrogen and progesterone have neuroprotective effects against ischemic brain damage, however the exact mechanisms of neuroprotection and signaling pathways is not completely understood. In this study, we investigated the possible regulatory effects of a combined steroid treatment on extrinsic and intrinsic apoptotic signaling pathways after cerebral ischemia. METHODS Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (tMCAO) using an intraluminal filament technique for 1 h followed by 23 h reperfusion. Estrogen and progesterone were immediately injected after tMCAO subcutaneously. Sensorimotor functional tests and the infarct volume were evaluated 24 h after ischemia. Protein expression of calpain-1 and Fas receptor (FasR), key members of intrinsic and extrinsic apoptosis, were determined in the penumbra region of the ischemic brain using western blot analysis, immunohistochemistry, and TUNEL staining. RESULTS Neurological deficits and infarct volume were significantly reduced following hormone therapy. Calpain-1 up-regulation and caspase-3 activation were apparent 24 h after ischemia in the peri-infarct area of the cerebral cortex. Steroid hormone treatment reduced infarct pathology and attenuated the induction of both proteases. FasR protein levels were not affected by ischemia and hormone application. CONCLUSION We conclude that a combined steroid treatment inhibits ischemia-induced neuronal apoptosis through the regulation of intrinsic pathways.
Collapse
Key Words
- Apoptosis
- CBF, Cerebral blood flow
- CCA, Common carotid artery
- CNS, Central nervous system
- Calpain-1
- DISC, Death inducing signaling complex
- Estrogen
- FasR, Fas receptor
- GFAP, Glial fibrillary acidic protein
- HRP, Horseradish peroxidase
- I/R, Ischemia/reperfusion
- ICA, Internal carotid artery
- IHC, Immunohistochemistry
- MCA, Middle cerebral artery
- MCAO, Middle cerebral artery occlusion
- NeuN, Neuronal nuclear antigen
- PBS, Phosphate-buffered saline
- PU, Perfusion units
- PVDF, Polyvinylidene fluoride
- Progesterone
- RIPA, Radioimmunoprecipitation assay
- ROS, Reactive oxygen species
- SDS, Sodium dodecyl sulfate
- TBI, Traumatic brain ischemia
- TNF, Tumor necrosis factor
- TTC, Triphenyltetrazolium chloride
- TUNEL, Terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick-end labeling
- tMCAO
- tMCAO, transient middle cerebral artery occlusion
Collapse
Affiliation(s)
- Zeinab Vahidinia
- a Anatomical Sciences Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Nasim Alipour
- a Anatomical Sciences Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Mohammad Ali Atlasi
- a Anatomical Sciences Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Homayoun Naderian
- a Anatomical Sciences Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Cordian Beyer
- b Faculty of Medicine , Institute of Neuroanatomy, RWTH Aachen University , Aachen , Germany
| | - Abolfazl Azami Tameh
- a Anatomical Sciences Research Center , Kashan University of Medical Sciences , Kashan , Iran.,c Department of Anatomy, School of Medicine , Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
16
|
Bettio LEB, Gil-Mohapel J, Rodrigues ALS. Guanosine and its role in neuropathologies. Purinergic Signal 2016; 12:411-26. [PMID: 27002712 PMCID: PMC5023624 DOI: 10.1007/s11302-016-9509-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer's disease, Parkinson's disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.
Collapse
Affiliation(s)
- Luis E B Bettio
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Sweda R, Phillips AW, Marx J, Johnston MV, Wilson MA, Fatemi A. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact. Stem Cells Dev 2016; 25:975-85. [PMID: 27149035 PMCID: PMC4931309 DOI: 10.1089/scd.2015.0378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/04/2016] [Indexed: 01/04/2023] Open
Abstract
Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration.
Collapse
Affiliation(s)
- Romy Sweda
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Andre W. Phillips
- Kennedy Krieger Institute, Baltimore, Maryland
- The Hussman Institute for Autism, Baltimore, Maryland
| | - Joel Marx
- Kennedy Krieger Institute, Baltimore, Maryland
| | - Michael V. Johnston
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
| | - Mary Ann Wilson
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Ali Fatemi
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
18
|
Domin H, Przykaza Ł, Jantas D, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuroprotective potential of the group III mGlu receptor agonist ACPT-I in animal models of ischemic stroke: In vitro and in vivo studies. Neuropharmacology 2016; 102:276-94. [DOI: 10.1016/j.neuropharm.2015.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/07/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
|
19
|
Karmacharya MB, Kim KH, Kim SY, Chung J, Min BH, Park SR, Choi BH. Low intensity ultrasound inhibits brain oedema formation in rats: potential action on AQP4 membrane localization. Neuropathol Appl Neurobiol 2016; 41:e80-94. [PMID: 25201550 DOI: 10.1111/nan.12182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022]
Abstract
AIMS Brain oedema is a major contributing factor to the morbidity and mortality of a variety of brain disorders. Although there has been considerable progress in our understanding of pathophysiological and molecular mechanisms associated with brain oedema so far, more effective treatment is required and is still awaited. Here we intended to study the effects of low intensity ultrasound (LIUS) on brain oedema. METHODS We prepared the rat hippocampal slice in vitro and acute water intoxication in vivo models of brain oedema. We applied LIUS stimulation in these models and studied the molecular mechanisms of LIUS action on brain oedema. RESULTS We found that LIUS stimulation markedly inhibited the oedema formation in both of these models. LIUS stimulation significantly reduced brain water content and intracranial pressure resulting in increased survival of the rats. Here, we showed that the AQP4 localization was increased in the astrocytic foot processes in the oedematous hippocampal slices, while it was significantly reduced in the LIUS-stimulated hippocampal slices. In the in vivo model too, AQP4 expression was markedly increased in the microvessels of the cerebral cortex and hippocampus after water intoxication but was reduced in the LIUS-stimulated rats. CONCLUSIONS These data show that LIUS has an inhibitory effect on cytotoxic brain oedema and suggest its therapeutic potential to treat brain oedema. We propose that LIUS reduces the AQP4 localization around the astrocytic foot processes thereby decreasing water permeability into the brain tissue.
Collapse
Affiliation(s)
| | - Kil Hwan Kim
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - See Yoon Kim
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Joonho Chung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung-Hyun Min
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
20
|
Wu HF, Yen HJ, Huang CC, Lee YC, Wu SZ, Lee TS, Lin HC. Soluble epoxide hydrolase inhibitor enhances synaptic neurotransmission and plasticity in mouse prefrontal cortex. J Biomed Sci 2015; 22:94. [PMID: 26494028 PMCID: PMC4618874 DOI: 10.1186/s12929-015-0202-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/09/2015] [Indexed: 12/29/2022] Open
Abstract
Background The soluble epoxide hydrolase (sEH) is an important enzyme chiefly involved in the metabolism of fatty acid signaling molecules termed epoxyeicosatrienoic acids (EETs). sEH inhibition (sEHI) has proven to be protective against experimental cerebral ischemia, and it is emerging as a therapeutic target for prevention and treatment of ischemic stroke. However, the role of sEH on synaptic function in the central nervous system is still largely unknown. This study aimed to test whether sEH C-terminal epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) affects basal synaptic transmission and synaptic plasticity in the prefrontal cortex area (PFC). Whole cell and extracellular recording examined the miniature excitatory postsynaptic currents (mEPSCs) and field excitatory postsynaptic potentials (fEPSPs); Western Blotting determined the protein levels of glutamate receptors and ERK phosphorylation in acute medial PFC slices. Results Application of the sEH C-terminal epoxide hydrolase inhibitor, AUDA significantly increased the amplitude of mEPSCs and fEPSPs in prefrontal cortex neurons, while additionally enhancing long term potentiation (LTP). Western Blotting demonstrated that AUDA treatment increased the expression of the N-methyl-D-aspartate receptor (NMDA) subunits NR1, NR2A, NR2B; the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1, GluR2, and ERK phosphorylation. Conclusions Inhibition of sEH induced an enhancement of PFC neuronal synaptic neurotransmission. This enhancement of synaptic neurotransmission is associated with an enhanced postsynaptic glutamatergic receptor and postsynaptic glutamatergic receptor mediated synaptic LTP. LTP is enhanced via ERK phosphorylation resulting from the delivery of glutamate receptors into the PFC by post-synapse by treatment with AUDA. These findings provide a possible link between synaptic function and memory processes.
Collapse
Affiliation(s)
- Han-Fang Wu
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hsin-Ju Yen
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan
| | - Su-Zhen Wu
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tzong-Shyuan Lee
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hui-Ching Lin
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
21
|
Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:606981. [PMID: 26557222 PMCID: PMC4628655 DOI: 10.1155/2015/606981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/19/2014] [Accepted: 10/22/2014] [Indexed: 01/07/2023]
Abstract
Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.
Collapse
|
22
|
Neuroprotective effect of phytoceramide against transient focal ischemia-induced brain damage in rats. Arch Pharm Res 2015; 38:2241-50. [DOI: 10.1007/s12272-015-0647-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022]
|
23
|
Neuroprotective effect of noscapine on cerebral oxygen–glucose deprivation injury. Pharmacol Rep 2015; 67:281-8. [DOI: 10.1016/j.pharep.2014.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/17/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
|
24
|
Bikis C, Moris D, Vasileiou I, Patsouris E, Theocharis S. FAK/Src family of kinases: protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin Ther Targets 2015; 19:539-549. [PMID: 25474489 DOI: 10.1517/14728222.2014.990374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The focal adhesion kinase (FAK) and the Src families of kinases are subfamilies of the non-receptor protein tyrosine kinases. FAK activity is regulated by gene amplification, alternative splicing and phosporylation/dephosphorylation. FAK/Src complex has been found to participate through various pathways in neuronal models of ischemia-reperfusion injury (IRI) with conflicting results. The aim of the present review is to summarize the currently available data on this subject. AREAS COVERED The MEDLINE/PubMed database was searched for publications with the medical subject heading IRI and FAK and/or Src, nervous system. We restricted our search till 2014. We identified 93 articles that were available in English as abstracts or/and full-text articles that were deemed appropriate for our review. EXPERT OPINION FAK has been found to have a beneficial preconditioning effect on IRI through activation via the protein kinase C (PKC) pathway by anesthetic agents. Of great importance are the interactions between FAK/Src and VEGF that has been already detected as a protective mean for IRI. The effect of VEGF administration might depend on dose as well as on time of administration. A Ca(2+)/calmodulin-dependent protein kinase II or PKC inhibitors seem to have protective effects on IRI by inhibiting ion channels activation.
Collapse
Affiliation(s)
- Christos Bikis
- National and Kapodistrian University of Athens , Anastasiou Gennadiou 56, 11474, Athens , Greece +30 210 6440590 ;
| | | | | | | | | |
Collapse
|
25
|
Domin H, Jantas D, Śmiałowska M. Neuroprotective effects of the allosteric agonist of metabotropic glutamate receptor 7 AMN082 on oxygen-glucose deprivation- and kainate-induced neuronal cell death. Neurochem Int 2015; 88:110-23. [PMID: 25576184 DOI: 10.1016/j.neuint.2014.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/07/2014] [Accepted: 12/17/2014] [Indexed: 12/24/2022]
Abstract
Although numerous studies demonstrated a neuroprotective potency of unspecific group III mGluR agonists in in vitro and in vivo models of excitotoxicity, little is known about the protective role of group III mGlu receptor activation against neuronal cell injury evoked by ischemic conditions. The aim of the present study was to assess neuroprotective potential of the allosteric agonist of mGlu7 receptor, N,N'-Bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082) against oxygen-glucose deprivation (OGD)- and kainate (KA)-evoked neuronal cell damage in primary neuronal cultures, with special focus on its efficacy after delayed application. We demonstrated that in cortical neuronal cultures exposed to a 180 min OGD, AMN082 (0.01-1 µM) in a concentration- and time-dependent way attenuated the OGD-induced changes in the LDH release and MTT reduction assays. AMN082 (0.5 and 1 µM) produced also neuroprotective effects against KA-evoked neurotoxicity both in cortical and hippocampal cultures. Of particular importance was the finding that AMN082 attenuated excitotoxic neuronal injury after delayed application (30 min after OGD, or 30 min-1 h after KA). In both models of neurotoxicity, namely OGD- and KA-induced injury, the neuroprotective effects of AMN082 (1 µM) were reversed by the selective mGlu7 antagonist, 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP, 1 µM), suggesting the mGlu7-dependent mechanism of neuroprotective effects of AMN082. Next, we showed that AMN082 (0.5 and 1 µM) attenuated the OGD-induced increase in the number of necrotic nuclei as well inhibited the OGD-evoked calpain activation, suggesting the participation of these processes in the mechanism of AMN082-mediated protection. Additionally, we showed that protection evoked by AMN082 (1 µM) in KA model was connected with the inhibition of toxin-induced caspase-3 activity, and this effect was abolished by the mGlu7 receptor antagonist. The obtained results indicated that the activation of mGlu7 receptors may be a promising target for neuroprotection against ischemic and excitotoxic insults.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Maria Śmiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
26
|
Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism. J Physiol Biochem 2014; 70:901-13. [DOI: 10.1007/s13105-014-0358-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
|
27
|
Soria FN, Pérez-Samartín A, Martin A, Gona KB, Llop J, Szczupak B, Chara JC, Matute C, Domercq M. Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage. J Clin Invest 2014; 124:3645-55. [PMID: 25036707 DOI: 10.1172/jci71886] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 05/21/2014] [Indexed: 01/21/2023] Open
Abstract
During brain ischemia, an excessive release of glutamate triggers neuronal death through the overactivation of NMDA receptors (NMDARs); however, the underlying pathways that alter glutamate homeostasis and whether synaptic or extrasynaptic sites are responsible for excess glutamate remain controversial. Here, we monitored ischemia-gated currents in pyramidal cortical neurons in brain slices from rodents in response to oxygen and glucose deprivation (OGD) as a real-time glutamate sensor to identify the source of glutamate release and determined the extent of neuronal damage. Blockade of excitatory amino acid transporters or vesicular glutamate release did not inhibit ischemia-gated currents or neuronal damage after OGD. In contrast, pharmacological inhibition of the cystine/glutamate antiporter dramatically attenuated ischemia-gated currents and cell death after OGD. Compared with control animals, mice lacking a functional cystine/glutamate antiporter exhibited reduced anoxic depolarization and neuronal death in response to OGD. Furthermore, glutamate released by the cystine/glutamate antiporter activated extrasynaptic, but not synaptic, NMDARs, and blockade of extrasynaptic NMDARs reduced ischemia-gated currents and cell damage after OGD. Finally, PET imaging showed increased cystine/glutamate antiporter function in ischemic rats. Altogether, these data suggest that cystine/glutamate antiporter function is increased in ischemia, contributing to elevated extracellular glutamate concentration, overactivation of extrasynaptic NMDARs, and ischemic neuronal death.
Collapse
|
28
|
Krzyżanowska W, Pomierny B, Filip M, Pera J. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin 2014; 35:444-62. [PMID: 24681894 DOI: 10.1038/aps.2014.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
In this review, we briefly describe glutamate (Glu) metabolism and its specific transports and receptors in the central nervous system (CNS). Thereafter, we focus on excitatory amino acid transporters, cystine/glutamate antiporters (system xc-) and vesicular glutamate transporters, specifically addressing their location and roles in CNS and the molecular mechanisms underlying the regulation of Glu transporters. We provide evidence from in vitro or in vivo studies concerning alterations in Glu transporter expression in response to hypoxia or ischemia, including limited human data that supports the role of Glu transporters in stroke patients. Moreover, the potential to induce brain tolerance to ischemia through modulation of the expression and/or activities of Glu transporters is also discussed. Finally we present strategies involving the application of ischemic preconditioning and pharmacological agents, eg β-lactam antibiotics, amitriptyline, riluzole and N-acetylcysteine, which result in the significant protection of nervous tissues against ischemia.
Collapse
|
29
|
Mitochondrial respiratory chain and creatine kinase activities following trauma brain injury in brain of mice preconditioned with N-methyl-d-aspartate. Mol Cell Biochem 2013; 384:129-37. [DOI: 10.1007/s11010-013-1790-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|
30
|
Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease. J Neurochem 2013; 126:191-202. [PMID: 23668663 DOI: 10.1111/jnc.12304] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Memory loss in AD is increasingly attributed to soluble oligomers of the amyloid-β peptide (AβOs), toxins that accumulate in AD brains and target particular synapses. Glutamate receptors appear to be centrally involved in synaptic targeting by AβOs. Once bound to neurons, AβOs dysregulate the activity and reduce the surface expression of both N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) types of glutamate receptors, impairing signaling pathways involved in synaptic plasticity. In the extracellular milieu, AβOs promote accumulation of the excitatory amino acids, glutamate and D-serine. This leads to overactivation of glutamate receptors, triggering abnormal calcium signals with noxious impacts on neurons. Here, we review key findings linking AβOs to deregulated glutamate neurotransmission and implicating this as a primary mechanism of synapse failure in AD. We also discuss strategies to counteract the impact of AβOs on excitatory neurotransmission. In particular, we review evidence showing that inducing neuronal hyperpolarization via activation of inhibitory GABA(A) receptors prevents AβO-induced excitotoxicity, suggesting that this could comprise a possible therapeutic approach in AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- Department of Basic Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
31
|
Neuroprotection of Ilex latifolia and caffeoylquinic acid derivatives against excitotoxic and hypoxic damage of cultured rat cortical neurons. Arch Pharm Res 2012; 35:1115-22. [PMID: 22870822 DOI: 10.1007/s12272-012-0620-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 01/04/2023]
Abstract
Ilex latifolia (Aquifoliaceae), one of the primary components of "Ku-ding-cha", has been used in Chinese folk medicine to treat headaches and various inflammatory diseases. A previous study demonstrated that the ethanol extract of I. latifolia could protect against ischemic apoptotic brain damage in rats. The present study investigated the protective activity of I. latifolia against glutamate-induced neurotoxicity using cultured rat cortical neurons in order to explain a possible mechanism related to its inhibitory effect on ischemic brain damage and identified potentially active compounds from it. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h triggered neuronal cell death. I. latifolia (10-100 μg/mL) inhibited glutamate-induced neuronal death, elevation of intracellular calcium ([Ca(2+)](i)), generation of reactive oxygen species (ROS), the increase of a pro-apoptotic protein, BAX, and the decrease of an anti-apoptotic protein, BcL-2. Hypoxia-induced neuronal cell death was also inhibited by I. latifolia. 3,4-Dicaffeoylquinic acid (diCQA), 3,5-diCQA, and 3,5-diCQA methyl ester isolated from I. latifolia also inhibited the glutamate-induced increase in [Ca(2+)](i), generation of ROS, the change of apoptosis-related proteins, and neuronal cell death; and hypoxia-induced neuronal cell death. These results suggest that I. latifolia and its active compounds prevented glutamate-induced neuronal cell damage by inhibiting increase of [Ca(2+)](i), generation of ROS, and resultantly apoptotic pathway. In addition, the neuroprotective effects of I. latifolia on ischemia-induced brain damage might be associated with the anti-excitatory and anti-oxidative actions and could be attributable to these active compounds, CQAs.
Collapse
|
32
|
Zhao LD, Wang JH, Jin GR, Zhao Y, Zhang HJ. Neuroprotective effect of Buyang Huanwu decoction against focal cerebral ischemia/reperfusion injury in rats--time window and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:339-344. [PMID: 22306289 DOI: 10.1016/j.jep.2012.01.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/19/2011] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction, a traditional Chinese medicine, consists of different herbal medicines, and has been traditionally used for centuries to treat paralysis and stroke. However, its optimal therapeutic time window and the mechanism are still unclear. AIM OF THE STUDY This study was designed to explore the therapeutic time window and mechanism of Buyang Huanwu Decoction on transient focal cerebral ischemia/reperfusion injury. MATERIALS AND METHODS Middle cerebral artery occlusion was conducted in male Sprague-Dawley rats, and 40g/kg of Buyang Huanwu Decoction was intragastrically infused at different time points, and the same dose was infused every 24h for 3 days. The level of glutamate in cerebrospinal fluid and the expression of metabotropic glutamate receptor-1 RNA in striatum were detected before, during, and after ischemia/reperfusion. Neurological deficit scores and brain infarction volumes were measured at 72h after reperfusion. RESULT Cerebral ischemia/reperfusion resulted in significant neurological deficit and extensive cerebral infarct volume, associated with a large amount of glutamate in cerebrospinal fluid and elevation of metabotropic glutamate receptor-1 RNA expression. Buyang Huanwu Decoction significantly suppressed the release of glutamate, and reduced the expression of metabotropic glutamate receptor-1 RNA. The neurological defect score and infarction volume were significantly improved by administration of Buyang Huanwu Decoction, when compared with the Ischemia group. CONCLUSIONS Administration of Buyang Huanwu Decoction, within 4h of post-transient focal stroke, reduced significant cerebral ischemia/reperfusion damage. The neuroprotective mechanism of Buyang Huanwu Decoction is, in part, associated with the down-regulation of metabotropic glutamate receptor-1 RNA and inhibition of glutamate release resulting from cerebral ischemia.
Collapse
Affiliation(s)
- Lian-Dong Zhao
- Department of Neurology, The Xuzhou Medical College Affiliated Huai'an Hospital, Huai'an, Jiangsu, China
| | | | | | | | | |
Collapse
|
33
|
Vega Rasgado LA, Ceballos Reyes G, Vega-Díaz F. Anticonvulsant drugs, brain glutamate dehydrogenase activity and oxygen consumption. ISRN PHARMACOLOGY 2012; 2012:295853. [PMID: 22530138 PMCID: PMC3317040 DOI: 10.5402/2012/295853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/18/2011] [Indexed: 11/23/2022]
Abstract
Glutamate dehydrogenase (GDH, E.C. 1.4.1.3.) is a key enzyme for the biosynthesis and modulation of glutamate (GLU) metabolism and an indirect γ-aminobutyric acid (GABA) source, here we studied the effect of anticonvulsants such as pyridoxal phosphate (PPAL), aminooxyacetic acid (AAOA), and hydroxylamine (OHAMINE) on GDH activity in mouse brain. Moreover, since GLU is a glucogenic molecule and anoxia is a primary cause of convulsions, we explore the effect of these drugs on oxygen consumption. Experiments were performed in vitro as well as in vivo for both oxidative deamination of GLU and reductive amination of α-ketoglutarate (αK). Results in vitro showed that PPAL decreased oxidative deamination of GLU and oxygen consumption, whereas AAOA and OHAMINE inhibited GDH activity competitively and also inhibited oxygen consumption when αK reductive amination was carried out. In contrast, results showed that in vivo, all anticonvulsants enhanced GLU utilization by GDH and also decreased oxygen consumption. Together, results suggest that GDH activity has repercussions on oxygen consumption, which may indicate that the enzyme activity is highly regulated by energy requirements for metabolic activity. Besides, GDH may participate in regulation of GLU and, indirectly GABA levels, hence in neuronal excitability, becoming a key enzyme in seizures mechanism.
Collapse
Affiliation(s)
- Lourdes A Vega Rasgado
- Neurochemistry Laboratory, Department of Biochemistry, National School of Biological Sciences, National Polytechnic Institute, Carpio Y Plan de Ayala S/No., Col. Casco de Santo Tomás, 11340 México, DF, Mexico
| | | | | |
Collapse
|
34
|
Zhou J, Wang H, Xiong Y, Li Z, Feng Y, Chen J. Puerarin attenuates glutamate-induced neurofilament axonal transport impairment. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:150-156. [PMID: 20727960 DOI: 10.1016/j.jep.2010.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/09/2010] [Accepted: 08/06/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Puerarin (Pur) is a primary component of the most functional extracts of Pueraria lobata used in traditional Chinese medicine for centuries. Since it has been postulated that Pur protects the brain against glutamate (Glu) neurotoxicity, we investigated the effects of Pur on Glu-induced axonal transport impairment in primary hippocampal neurons in this study. MATERIALS AND METHODS Primary hippocampal cultures were prepared from 2-day-old Sprague-Dawley rats. Intracellular calcium concentration [Ca(2+)](i), neurofilament (NF) phosphorylation and protein kinase activity for Cdk5 were measured. Time-lapse imaging technology was used to capture the NF axonal transport in the cultured neurons with transiently transfected fluorescence protein linked to the N-terminus of NF-M (EGFP-NFM). RESULTS The results showed that Pur significantly diminished the Glu-induced elevation of [Ca(2+)](i) in dose-dependent manner and antagonized the Glu-evoked increases in NF phosphorylation at protein levels. The neurons under the Glu treatment displayed the accumulation of immobile NF clusters in the cell body and the reduced rates of axonal transport of NFs by 72.8% compared to the control neurons. Intriguingly, Pur reversed the slowed rate of the axonal transport by 35.6%. Pur also remarkably attenuated Glu-evoked activation of Cdk5. CONCLUSIONS Pur may play a role in protecting against Glu-induced NF axonal transport impairment in rat primary hippocampal neurons by inhibiting the increased [Ca(2+)](i) and by impeding the activation of Cdk5.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | |
Collapse
|
35
|
Jia J, Hu YS, Wu Y, Yu HX, Liu G, Zhu DN, Xia CM, Cao ZJ, Zhang X, Guo QC. Treadmill pre-training suppresses the release of glutamate resulting from cerebral ischemia in rats. Exp Brain Res 2010; 204:173-9. [PMID: 20535454 DOI: 10.1007/s00221-010-2320-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/09/2010] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the neuroprotective effect of treadmill pre-training against the over-release of glutamate resulting from cerebral ischemia. Sprague-Dawley rats underwent 2 weeks of treadmill run-training before cerebral ischemia was performed by middle cerebral artery occlusion. The level of glutamate in brain extracellular fluid was detected before, during and after ischemia/reperfusion. The expression of metabotropic glutamate receptor-1 (mGluR1) mRNA in striatum was examined after ischemia for 80 min and reperfusion for 240 min. Neurological defect score and brain infarction volumes were measured. The treadmill pre-training significantly suppressed the release of glutamate, and reduced the expression of mGluR1 mRNA at 59% (P < 0.01) and 62% (P < 0.05), respectively, as compared with the ischemia group. The neurological defect score and infarction volume were significantly improved by 75% (P < 0.01) and 74% (P < 0.01), respectively, in the pre-training group, as compared to the ischemia group. Treadmill pre-training has a significant neuroprotective function against ischemia/reperfusion injury, by suppressing glutamate release resulting from cerebral ischemia, and this effect may be mediated by downregulation of mGluR1.
Collapse
Affiliation(s)
- Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singh G, Siddiqui MA, Khanna VK, Kashyap MP, Yadav S, Gupta YK, Pant KK, Pant AB. Oxygen glucose deprivation model of cerebral stroke in PC-12 cells: glucose as a limiting factor. Toxicol Mech Methods 2009; 19:154-60. [PMID: 19778261 DOI: 10.1080/15376510802355216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Optimum time points for oxygen-glucose deprivation (OGD) and re-oxygenation have been identified to suggest the suitability of PC-12 cells as rapid and sensitive in vitro model of cerebral stroke. Further, the precise role of glucose as one of the limiting factors was ascertained. PC-12 cells were subjected to receive OGD of 1-8 h followed by re-oxygenation for 6 to 96 h in medium having glucose 0-10 mg/ml. Loss of cell viability was assessed using trypan blue dye exclusion and MTT assays. The significant (p < 0.05) reduction in percent viable cell count was started at 2 h of OGD (80.7 +/- 2.0) and continued in further OGD periods (3, 4, 5, 6, 7, and 8 h), i.e. 65.7 +/- 3.5, 59.7 +/- 4.6, 54.3 +/- 3.2, 44.7 +/- 2.9, 20.3 +/- 4.3, 5.7 +/- 2.0 of counted cells, respectively. Cells growing in glucose-free medium have shown a gradual (p < 0.001) decrease in cell viability throughout the re-oxygenation. Re-oxygenation of 24 h was found to be first statistically significant time point for all the glucose concentrations. Glucose concentration during re-oxygenation was found to be one of the key factors involved in the growth and proliferation in PC-12 cells. The OGD of 6 h followed by a re-oxygenation period of 24 h with 4-6 mg/ml glucose concentration could be recorded as optimum conditions under our experimental conditions.
Collapse
Affiliation(s)
- G Singh
- Industrial Toxicology Research Centre, Lucknow, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Early modifications in N-methyl-d-aspartate receptor subunit mRNA levels in an oxygen and glucose deprivation model using rat hippocampal brain slices. Neuroscience 2009; 164:1119-26. [DOI: 10.1016/j.neuroscience.2009.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 11/19/2022]
|
38
|
Milo M, Cacciabue-Rivolta D, Kneebone A, Van Doorninck H, Johnson C, Lawoko-Kerali G, Niranjan M, Rivolta M, Holley M. Genomic analysis of the function of the transcription factor gata3 during development of the mammalian inner ear. PLoS One 2009; 4:e7144. [PMID: 19774072 PMCID: PMC2742898 DOI: 10.1371/journal.pone.0007144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022] Open
Abstract
We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKBbeta, a dramatic increase in Akt1/PKBalpha protein and relocation of Akt1/PKBalpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome.
Collapse
Affiliation(s)
- Marta Milo
- NIHR Cardiovascular Biomedical Research Unit, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | | | - Adam Kneebone
- Department of Biomedical Science, Addison Building, Western Bank, Sheffield, United Kingdom
| | - Hikke Van Doorninck
- Department of Neurosciences, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Claire Johnson
- Pfizer Global Research UK, Sandwich, Kent, United Kingdom
| | - Grace Lawoko-Kerali
- Department of Biomedical Science, Addison Building, Western Bank, Sheffield, United Kingdom
| | - Mahesan Niranjan
- Department of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
| | - Marcelo Rivolta
- Department of Biomedical Science, Addison Building, Western Bank, Sheffield, United Kingdom
| | - Matthew Holley
- Department of Biomedical Science, Addison Building, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
39
|
Ibi D, Nitta A, Ishige K, Cen X, Ohtakara T, Nabeshima T, Ito Y. Piccolo knockdown-induced impairments of spatial learning and long-term potentiation in the hippocampal CA1 region. Neurochem Int 2009; 56:77-83. [PMID: 19766155 DOI: 10.1016/j.neuint.2009.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neurotransmitter release is regulated at a specific site in nerve terminals called the "active zone", which is composed of various cytomatrix proteins such as Piccolo (also known as Aczonin) and Bassoon. These proteins share regions of high sequence similarity and have very high molecular weights (>400 kDa). Since Piccolo knockout mice have not yet been established, the role of Piccolo in the neuronal system remains unclear. In this study, we investigated the effects of Piccolo antisense oligonucleotide injected into the ventricle on hippocampal long-term potentiation (LTP) and learning and memory assessed with the novel object recognition test and the Morris water maze test. There was no significant difference in cognitive memory between Piccolo antisense-treated and vehicle- or sense-treated mice; however, spatial learning in Piccolo antisense-treated mice was impaired but not in sense- or vehicle-treated mice. Next, we investigated LTP formation in these groups in area CA1 and dentate gyrus of the same hippocampal slices. The magnitude of LTP in Piccolo antisense-treated mice was significantly lower than in sense- or vehicle-treated mice, with no change in basal level. Moreover, the level of high K(+)-induced glutamate release in the antisense-treated mice was significantly lower than in sense-treated mice. Taken together, these results indicate that Piccolo plays a pivotal role in synaptic plasticity in area CA1 and in hippocampus-dependent learning in mice, and that the extracellular levels of glutamate in the hippocampus under stimulated conditions are controlled by Piccolo.
Collapse
Affiliation(s)
- Daisuke Ibi
- Research Unit of Pharmacology, College of Pharmacy, Nihon University, Funabashi-shi, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 2009; 29:5536-45. [PMID: 19403821 DOI: 10.1523/jneurosci.0831-09.2009] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The central hypothesis of excitotoxicity is that excessive stimulation of neuronal NMDA-sensitive glutamate receptors is harmful to neurons and contributes to a variety of neurological disorders. Glial cells have been proposed to participate in excitotoxic neuronal loss, but their precise role is defined poorly. In this in vivo study, we show that NMDA induces profound nuclear factor kappaB (NF-kappaB) activation in Müller glia but not in retinal neurons. Intriguingly, NMDA-induced death of retinal neurons is effectively blocked by inhibitors of NF-kappaB activity. We demonstrate that tumor necrosis factor alpha (TNFalpha) protein produced in Müller glial cells via an NMDA-induced NF-kappaB-dependent pathway plays a crucial role in excitotoxic loss of retinal neurons. This cell loss occurs mainly through a TNFalpha-dependent increase in Ca(2+)-permeable AMPA receptors on susceptible neurons. Thus, our data reveal a novel non-cell-autonomous mechanism by which glial cells can profoundly exacerbate neuronal death following excitotoxic injury.
Collapse
|
41
|
Nakatsu Y, Kotake Y, Hino A, Ohta S. Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death. Toxicol Appl Pharmacol 2008; 230:358-63. [PMID: 18511093 DOI: 10.1016/j.taap.2008.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 02/29/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
AMP-activated protein kinase (AMPK), a member of the metabolite-sensing protein kinase family, is activated by energy deficiency and is abundantly expressed in neurons. The environmental pollutant, tributyltin chloride (TBT), is a neurotoxin, and has been reported to decrease cellular ATP in some types of cells. Therefore, we investigated whether TBT activates AMPK, and whether its activation contributes to neuronal cell death, using primary cultures of cortical neurons. Cellular ATP levels were decreased 0.5 h after exposure to 500 nM TBT, and the reduction was time-dependent. It was confirmed that most neurons in our culture system express AMPK, and that TBT induced phosphorylation of AMPK. Compound C, an AMPK inhibitor, reduced the neurotoxicity of TBT, suggesting that AMPK is involved in TBT-induced cell death. Next, the downstream target of AMPK activation was investigated. Nitric oxide synthase, p38 phosphorylation and Akt dephosphorylation were not downstream of TBT-induced AMPK activation because these factors were not affected by compound C, but glutamate release was suggested to be controlled by AMPK. Our results suggest that activation of AMPK by TBT causes neuronal death through mediating glutamate release.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | |
Collapse
|
42
|
Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 2008; 28:2221-30. [PMID: 18305255 DOI: 10.1523/jneurosci.5643-07.2008] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After an ischemic stroke, neurons in the core are rapidly committed to die, whereas neuron death in the slowly developing penumbra is more amenable to therapeutic intervention. Microglia activation contributes to delayed inflammation, but because neurotoxic mechanisms in the penumbra are not well understood, we developed an in vitro model of microglia activation and propagated neuron killing. To recapitulate inflammatory triggers in the core, microglia were exposed to oxygen glucose-deprived neurons and astrocytes. To model the developing penumbra, the microglia were washed and allowed to interact with healthy naive neurons and astrocytes. We found that oxygen-glucose deprivation (OGD)-stressed neurons released glutamate, which activated microglia through their group II metabotropic glutamate receptors (mGluRs). Microglia activation involved nuclear factor kappaB (NF-kappaB), a transcription factor that promotes their proinflammatory functions. The activated microglia became neurotoxic, killing naive neurons through an apoptotic mechanism that was mediated by tumor necrosis factor-alpha (TNF-alpha), and involved activation of both caspase-8 and caspase-3. In contrast to some earlier models (e.g., microglia activation by lipopolysaccharide), neurotoxicity was not decreased by an inducible nitric oxide synthase (iNOS) inhibitor (S-methylisothiourea) or a peroxynitrite scavenger [5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphinato iron (III) chloride], and did not require p38 mitogen-activated protein kinase (MAPK) activation. The same microglia neurotoxic behavior was evoked without exposure to OGD-stressed neurons, by directly activating microglial group II mGluRs with (2S,2'R,3'R)-2-(2'3'-dicarboxycyclopropyl) glycine or glutamate, which stimulated production of TNF-alpha (not nitric oxide) and mediated TNF-alpha-dependent neurotoxicity through activation of NF-kappaB (not p38 MAPK). Together, these results support potential therapeutic strategies that target microglial group II mGluRs, TNFalpha overproduction, and NF-kappaB activation to reduce neuron death in the ischemic penumbra.
Collapse
|
43
|
Kim EJ, Park SY, Park KS, Ju UJ, Kim JS, Lee SY. The influence of propofol administration time on oxygen-glucose deprivation-reperfusion injury in rat mixed cortical cultures focused on N-Methyl-D-Aspartate (NMDA) receptors. Korean J Anesthesiol 2008. [DOI: 10.4097/kjae.2008.55.2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Eun-jin Kim
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Sung Yong Park
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Kwan-Sik Park
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Un-jin Ju
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Jin-Soo Kim
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Sook Young Lee
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
44
|
Protective effects of paeonol on cultured rat hippocampal neurons against oxygen–glucose deprivation-induced injury. J Neurol Sci 2008; 264:50-5. [DOI: 10.1016/j.jns.2007.06.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/17/2007] [Accepted: 06/28/2007] [Indexed: 11/17/2022]
|
45
|
Thomazi AP, Boff B, Pires TD, Godinho G, Battú CE, Gottfried C, Souza DO, Salbego C, Wofchuk ST. Profile of glutamate uptake and cellular viability in hippocampal slices exposed to oxygen and glucose deprivation: developmental aspects and protection by guanosine. Brain Res 2007; 1188:233-40. [PMID: 18053975 DOI: 10.1016/j.brainres.2007.10.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/30/2022]
Abstract
Stroke syndromes are a major cause of disability in middle and later life resulting in severe neuronal degeneration and loss of brain functions. In situations with energy failure, glutamate transport is impaired and high levels of this amino acid accumulate on the synaptic cleft. Our group has showed that guanosine exerts neuroprotection against neurotoxicity situations. The aim of this work is draw a post-ischemic profile of glutamate uptake and cell damage using an oxygen and glucose deprivation model (OGD) in hippocampal slices from young (P10) and adult (P60) rats, analyzing guanosine effect. OGD decreases glutamate uptake in both ages and recovery times, although decrease in cell viability was only observed 1 and 3 h after OGD in young and adult animals, respectively. Guanosine partially protected cell damage from 1 h in P10 and at 3 h in P60 rats and avoided glutamate uptake decrease from P10 rats at 3 h. The impairment of glutamate transporters since immediately after the insult observed here is probably due to an energetic failure; loss of cell viability was only observed from 1 h after OGD. The mechanism by which guanosine acts in the 'ischemic' model used here is still unknown, but evidence leads to its antiapoptotic effect.
Collapse
Affiliation(s)
- Ana Paula Thomazi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Ramiro Barcelos, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu X, Zheng X. Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons. JOURNAL OF ETHNOPHARMACOLOGY 2007; 113:421-6. [PMID: 17698307 DOI: 10.1016/j.jep.2007.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 05/29/2007] [Accepted: 06/29/2007] [Indexed: 05/16/2023]
Abstract
The aim of this study was to clarify the mechanisms underlying neuroprotection of puerarin (Pur) against cerebral hypoxia-ischemia. Primary hippocampal cultures were prepared from 2-day-old Sprague-Dawley rats. After 8 days in vitro, the cultures subjected to 3h oxygen/glucose deprivation (OGD). Flow cytometric analysis of annexin-V and propidium iodide (PI) labeling cells found that apoptosis and necrosis were significantly reduced in the cultured hippocampal neurons by addition of Pur during 3h OGD and for the following 24h. Pur (40 and 100 microM) also attenuated glutamate (Glu) induced neuronal damage, suppressing apoptosis and necrosis induced by Glu of 0.5mM. Furthermore, the changes in intracellular Ca(2+) and generation of nitric oxide (NO) were measured by confocal laser scanning microscopy with Fluo-3, a Ca(2+) probe, and diaminofluorescein diacetate (DAF DA), a NO probe, respectively. In agreement with the results from flow cytometric analysis, Pur (40 and 100 microM) markedly slowed down OGD-induced Ca(2+) influx and lowered the intracellular Ca(2+) peak. Meanwhile, NO synthesis induced by OGD was significantly inhibited by Pur. Our findings suggest that Pur can ameliorate hippocampal neuronal death induced by OGD in vitro. The protective effects of Pur are associated with inhibiting the action of glutaminergic transmitter, intracellular Ca(2+) elevation and neuronal NO synthesis.
Collapse
Affiliation(s)
- Xiaohong Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | | |
Collapse
|
47
|
Katsuki H, Watanabe Y, Fujimoto S, Kume T, Akaike A. Contribution of endogenous glycine and d-serine to excitotoxic and ischemic cell death in rat cerebrocortical slice cultures. Life Sci 2007; 81:740-9. [PMID: 17698151 DOI: 10.1016/j.lfs.2007.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/16/2007] [Accepted: 07/06/2007] [Indexed: 12/27/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors, whose activation requires glycine site stimulation, play crucial roles in various physiological and pathological conditions in the brain. We investigated the regulatory roles of potential endogenous glycine site agonists, glycine and d-serine, in excitotoxic and ischemic cell death in the cerebral cortex. Cytotoxicity of NMDA on rat cerebrocortical slice cultures was potentiated by addition of glycine or d-serine. In contrast, cell death induced by oxygen/glucose deprivation (OGD) was not affected by exogenous glycine or d-serine, although blockade of NMDA receptors by MK-801 abolished cell death. In addition, higher concentrations of 2,7-dichlorokynurenic acid (DCKA), a competitive glycine site antagonist, were required to suppress OGD-induced cell death than those to suppress NMDA cytotoxicity. We also found that OGD triggered a robust increase in extracellular glycine. A glycine transporter blocker ALX 5407 increased the extracellular level of glycine, and the protective effect of DCKA against NMDA cytotoxicity was diminished in the presence of ALX 5407. Sensitivity of NMDA cytotoxicity to DCKA was also diminished by l-serine that increased the extracellular level of d-serine. These results indicate that both glycine and d-serine can act as endogenous ligands for NMDA receptor glycine site in the cerebral cortex, and that endogenous glycine may saturate the glycine site under ischemic conditions. The present findings are important for the interpretation of the mechanisms of NMDA and OGD cytotoxicity.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
48
|
Greenwood SM, Mizielinska SM, Frenguelli BG, Harvey J, Connolly CN. Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem 2007; 282:26235-44. [PMID: 17616519 DOI: 10.1074/jbc.m704488200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction (depolarization and structural collapse), cytosolic ATP depletion, and neuritic beading are early hallmarks of neuronal toxicity induced in a variety of pathological conditions. We show that, following global exposure to glutamate, mitochondrial changes are spatially and temporally coincident with dendritic bead formation. During oxygen-glucose deprivation, mitochondrial depolarization precedes mitochondrial collapse, which in turn is followed by dendritic beading. These events travel as a wave of activity from distal dendrites toward the neuronal cell body. Despite the spatiotemporal relationship between dysfunctional mitochondria and dendritic beads, mitochondrial depolarization and cytoplasmic ATP depletion do not trigger these events. However, mitochondrial dysfunction increases neuronal vulnerability to these morphological changes during normal physiological activity. Our findings support a mechanism whereby, during glutamate excitotoxicity, Ca(2+) influx leads to mitochondrial depolarization, whereas Na(+) influx leads to an unsustainable increase in ATP demand (Na(+),K(+)-ATPase activity). This leads to a drop in ATP levels, an accumulation of intracellular Na(+) ions, and the subsequent influx of water, leading to microtubule depolymerization, mitochondrial collapse, and dendritic beading. Following the removal of a glutamate challenge, dendritic recovery is dependent upon the integrity of the mitochondrial membrane potential, but not on a resumption of ATP synthesis or Na(+),K(+)-ATPase activity. Thus, dendritic recovery is not a passive reversal of the events that induce dendritic beading. These findings suggest that the degree of calcium influx and mitochondrial depolarization inflicted by a neurotoxic challenge, determines the ability of the neuron to recover its normal morphology.
Collapse
Affiliation(s)
- Sam M Greenwood
- Neurosciences Institute, Ninewells Medical School, University of Dundee, Dundee DD19SY, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Ouyang C, Guo L, Lu Q, Xu X, Wang H. Enhanced activity of GABA receptors inhibits glutamate release induced by focal cerebral ischemia in rat striatum. Neurosci Lett 2007; 420:174-8. [PMID: 17531382 DOI: 10.1016/j.neulet.2007.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/22/2007] [Accepted: 05/01/2007] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia causes an excess release of glutamate, which can injure neurons. The striatum is one of the important regions vulnerable to hypoxia and ischemia. Using push-pull perfusion technique, we investigated the regulatory role of gamma-aminobutyric acid (GABA) and its receptors in modifying the amount of glutamate in rat striatum with ischemia. Perfusion with exogenous GABA (1 mM) inhibited cerebral ischemia-induced glutamate release by as much as 47%. We further characterized relative roles of subtype receptors of GABA on glutamate release by using pharmacological tools. While baclofen (500 microM), a GABA(B) receptor agonist, suppressed ischemia-induced glutamate release by 52%, GABA(B) receptor antagonist saclofen (500 microM) failed to produce a significant increase of glutamate release. The GABA(A) receptor agonist muscimol (500 microM) also reduced by 38% the release of glutamate induced by cerebral ischemia but the GABA(A) receptor antagonist bicuculline (500 microM) had very little effect. The present study demonstrates that the excessive release of glutamate or the overly activated glutamate receptor, triggered by cerebral ischemia, can be down-regulated by exogenous GABA or by increased activity of GABA receptors, especially the presynaptic GABA(B) receptors, which might be one of the important mechanisms to protect against striatum neuronal damage from over stimulation by excessive glutamate during ischemia.
Collapse
Affiliation(s)
- Changhan Ouyang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | |
Collapse
|
50
|
Klusa V, Klimaviciusa L, Duburs G, Poikans J, Zharkovsky A. Anti-neurotoxic effects of tauropyrone, a taurine analogue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:499-508. [PMID: 17153637 DOI: 10.1007/978-0-387-33504-9_56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vija Klusa
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1A Sarlotes Str., LV-1001, Riga, Latvia.
| | | | | | | | | |
Collapse
|