1
|
Subramanian N, Leong LM, Salemi Mokri Boukani P, Storace DA. Recent odor experience selectively modulates olfactory sensitivity across the glomerular output in the mouse olfactory bulb. Chem Senses 2025; 50:bjae045. [PMID: 39786438 PMCID: PMC11753175 DOI: 10.1093/chemse/bjae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 01/12/2025] Open
Abstract
Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations. Processing within the mouse olfactory bulb is likely involved in generating adaptation, although there are conflicting models of how it transforms the glomerular output of the mouse olfactory bulb. Here we performed 2-photon Ca2+ imaging from mitral/tufted glomeruli in awake mice to determine the time course of recovery from adaptation, and whether it acts broadly or selectively across the glomerular population. Individual glomerular responses, as well as the overall population odor representation were similar across imaging sessions. However, odor-concentration pairings presented with interstimulus intervals upwards of 30-s evoked heterogeneous adaptation that was concentration-dependent. We demonstrate that this form of adaptation is unrelated to variations in respiration, and olfactory receptor neuron glomerular measurements indicate that it is unlikely to be inherited from the periphery. Our results indicate that the olfactory bulb output can reliably transmit stable odor representations, but recent odor experiences can selectively shape neural responsiveness for upwards of 30 seconds. We propose that neural circuits that allow for non-uniform adaptation across mitral/tufted glomeruli could be important for making dynamic adjustments in complex odor environments.
Collapse
Affiliation(s)
- Narayan Subramanian
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Lee Min Leong
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Paria Salemi Mokri Boukani
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Douglas A Storace
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Subramanian N, Leong LM, Boukani PSM, Storace DA. Recent odor experience selectively modulates olfactory sensitivity across the glomerular output in the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604478. [PMID: 39386559 PMCID: PMC11463640 DOI: 10.1101/2024.07.21.604478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations. Processing within the mouse olfactory bulb is likely involved in generating adaptation, although there are conflicting models of how it transforms the glomerular output of the mouse olfactory bulb. Here we performed 2-photon Ca2+ imaging from mitral/tufted glomeruli in awake mice to determine the time course of recovery from adaptation, and whether it acts broadly or selectively across the glomerular population. Individual glomerular responses, as well as the overall population odor representation was similar across imaging sessions. However, odor-concentration pairings presented with interstimulus intervals upwards of 30-s evoked heterogeneous adaptation that was concentration-dependent. We demonstrate that this form of adaptation is unrelated to variations in respiration, and olfactory receptor neuron glomerular measurements indicate that it is unlikely to be inherited from the periphery. Our results indicate that the olfactory bulb output can reliably transmit stable odor representations, but recent odor experiences can selectively shape neural responsiveness for upwards of 30 seconds. We propose that neural circuits that allow for non-uniform adaptation across mitral/tufted glomerular could be important for making dynamic adjustments in complex odor environments.
Collapse
Affiliation(s)
| | - Lee Min Leong
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Paria Salemi Mokri Boukani
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
3
|
Kuerbitz J, Madhavan M, Ehrman LA, Kohli V, Waclaw RR, Campbell K. Temporally Distinct Roles for the Zinc Finger Transcription Factor Sp8 in the Generation and Migration of Dorsal Lateral Ganglionic Eminence (dLGE)-Derived Neuronal Subtypes in the Mouse. Cereb Cortex 2020; 31:1744-1762. [PMID: 33230547 DOI: 10.1093/cercor/bhaa323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Progenitors in the dorsal lateral ganglionic eminence (dLGE) are known to give rise to olfactory bulb (OB) interneurons and intercalated cells (ITCs) of the amygdala. The dLGE enriched transcription factor Sp8 is required for the normal generation of ITCs as well as OB interneurons, particularly the calretinin (CR)-expressing subtype. In this study, we used a genetic gain-of-function approach in mice to examine the roles Sp8 plays in controlling the development of dLGE-derived neuronal subtypes. Misexpression of Sp8 throughout the ventral telencephalic subventricular zone (SVZ) from early embryonic stages, led to an increased generation of ITCs which was dependent on Tshz1 gene dosage. Additionally, Sp8 misexpression impaired rostral migration of OB interneurons with clusters of CR interneurons seen in the SVZ along with decreased differentiation of calbindin OB interneurons. Sp8 misexpression throughout the ventral telencephalon also reduced ventral LGE neuronal subtypes including striatal projection neurons. Delaying Sp8 misexpression until E14-15 rescued the striatal and amygdala phenotypes but only partially rescued OB interneuron reductions, consistent with an early window of striatal and amygdala neurogenesis and ongoing OB interneuron generation at this late stage. Our results demonstrate critical roles for the timing and neuronal cell-type specificity of Sp8 expression in mouse LGE neurogenesis.
Collapse
Affiliation(s)
- J Kuerbitz
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M Madhavan
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - L A Ehrman
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - V Kohli
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - R R Waclaw
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - K Campbell
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Li J, Wang C, Zhang Z, Wen Y, An L, Liang Q, Xu Z, Wei S, Li W, Guo T, Liu G, Tao G, You Y, Du H, Fu Z, He M, Chen B, Campbell K, Alvarez-Buylla A, Rubenstein JL, Yang Z. Transcription Factors Sp8 and Sp9 Coordinately Regulate Olfactory Bulb Interneuron Development. Cereb Cortex 2019; 28:3278-3294. [PMID: 28981617 DOI: 10.1093/cercor/bhx199] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells in the postnatal telencephalic ventricular-subventricular zone (V-SVZ) generate new interneurons, which migrate tangentially through the rostral migratory stream (RMS) into the olfactory bulb (OB). The Sp8 and Sp9 transcription factors are expressed in neuroblasts, as well as in the immature and mature interneurons in the V-SVZ-RMS-OB system. Here we show that Sp8 and Sp9 coordinately regulate OB interneuron development: although Sp9 null mutants show no major OB interneuron defect, conditional deletion of both Sp8 and Sp9 resulted in a much more severe reduction of OB interneuron number than that observed in the Sp8 conditional mutant mice, due to defects in neuronal differentiation, tangential and radial migration, and increased cell death in the V-SVZ-RMS-OB system. RNA-Seq and RNA in situ hybridization reveal that, in Sp8/Sp9 double mutant mice, but not in Sp8 or Sp9 single mutant mice, newly born neuroblasts in the V-SVZ-RMS-OB system fail to express Prokr2 and Tshz1 expression, genes with known roles in promoting OB interneuron differentiation and migration, and that are involved in human Kallmann syndrome.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chunyang Wang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhuangzhi Zhang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan Wen
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei An
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Qifei Liang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Song Wei
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weiwei Li
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Teng Guo
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoping Liu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guangxu Tao
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan You
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Heng Du
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhuoning Fu
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Miao He
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - John L Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Zhengang Yang
- Department of Translational Neuroscience, Shanghai Pudong Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Gaborieau E, Hurtado-Chong A, Fernández M, Azim K, Raineteau O. A dual role for the transcription factor Sp8 in postnatal neurogenesis. Sci Rep 2018; 8:14560. [PMID: 30266956 PMCID: PMC6162233 DOI: 10.1038/s41598-018-32134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells (NSCs) of the postnatal subventricular zone (SVZ) continue producing distinct subtypes of olfactory bulb (OB) interneurons throughout life. Understanding the transcriptional coding of this diversity remains a great challenge of modern neurosciences. Interneurons expressing calretinin (CalR) represent the main interneuron subtype produced in the glomerular cell layer (GL) after birth. Previous studies have suggested that their specification relies on expression of the transcription factor Sp8 by SVZ NSCs. In this study, we performed fate mapping of NSCs that generate CalR+ or non-CalR+ interneurons, in order to assess the pattern of Sp8 expression during postnatal neurogenesis. We highlight a complex pattern of Sp8 expression, which appears to be expressed in all interneurons lineages, before getting gradually restricted to maturing CalR+ interneurons. To decipher the early and late functions of Sp8 in postnatal OB neurogenesis, we combined transient, permanent and conditional genetic approaches to manipulate Sp8 at distinct neurogenic stages. While Sp8 plays an early role in controlling proliferation in all lineages, it is not involved in the early specification of CalR+ periglomerular interneurons, but plays a crucial role in their long term survival. Together, our results highlight a crucial and dual role for Sp8 during postnatal neurogenesis.
Collapse
Affiliation(s)
- Elodie Gaborieau
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | | | - Maria Fernández
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Kasum Azim
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Olivier Raineteau
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France. .,Brain Research Institute, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Fogli Iseppe A, Pignatelli A, Belluzzi O. Calretinin-Periglomerular Interneurons in Mice Olfactory Bulb: Cells of Few Words. Front Cell Neurosci 2016; 10:231. [PMID: 27774053 PMCID: PMC5054022 DOI: 10.3389/fncel.2016.00231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
Within the olfactory bulb (OB), periglomerular (PG) cells consist of various types of interneurons, generally classified by their chemical properties such as neurotransmitter and calcium binding proteins. Calretinin (CR) characterizes morphologically and functionally the more numerous and one of the less known subpopulation of PG cells in the OB. Using of transgenic mice expressing eGFP under the CR promoter, we have tried to obtain the first functional characterization of these cells. Electrophysiological recordings were made in these cells using the patch-clamp technique in thin slices. Using ion substitution methods and specific blockers, we dissected the main voltage-dependent conductances present, obtaining a complete kinetic description for each of them. The more peculiar property of these cells from the electrophysiological point of view is the presence only of a single K-current, A-type – there is no trace of delayed rectifier or of Ca-dependent K-current. Other currents identified, isolated and fully characterized are a fast sodium current, a small L-type calcium current, and an inward rectifier, h-type cationic current. As a consequence of the peculiar complement of voltage-dependent conductances present in these cells, and in particular the absence of delayed-rectifier potassium currents, under the functional point of view these cells present two interesting properties. First, in response to prolonged depolarisations, after the inactivation of the A-current these cells behave as a purely ohmic elements, showing no outward rectification. Second, the CR cells studied can respond only with a single action potential to excitatory inputs; since they send inhibitory synapses to projection neurones, they seem to be designed to inhibit responses of the main neurones to isolated, random excitatory signals, rapidly losing their vetoing effect in response to more structured, repetitive excitatory signals. We propose that a possible role for these rather untalkative interneurons in the intense exchange of messages within the OB might be that of improving the signal-to-noise ratio in the first stages of the olfactory information processing.
Collapse
Affiliation(s)
- Alex Fogli Iseppe
- Biology and Evolution - Neurobiology, Department of Life Sciences and Biotechnology, University of FerraraFerrara, Italy; Department of Neurobiology, Physiology and Behavior, University of California at Davis, DavisCA, USA
| | - Angela Pignatelli
- Biology and Evolution - Neurobiology, Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | - Ottorino Belluzzi
- Biology and Evolution - Neurobiology, Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| |
Collapse
|
7
|
Li Z, Zhang T, Lin Z, Hou C, Zhang J, Men Y, Li H, Gao J. Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice. PLoS One 2016; 11:e0162126. [PMID: 27603780 PMCID: PMC5014313 DOI: 10.1371/journal.pone.0162126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022] Open
Abstract
Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice.
Collapse
Affiliation(s)
- Zhenzu Li
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Tingting Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Zhuchun Lin
- Jinan First People's Hospital, Jinan, 250011, Shandong, China
| | - Congzhe Hou
- The Second Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Yuqin Men
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Huashun Li
- SARITEX Center for Stem Cell, Engineering Translational Medicine, Shanghai East Hospital, Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, 200123, China.,Center for Stem Cell&Nano-Medicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200123, China.,Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China
| | - Jiangang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| |
Collapse
|
8
|
Abstract
T-box transcription factors play key roles in the regulation of developmental processes such as cell differentiation and migration. Mammals have 17 T-box genes, of which several regulate brain development. The Tbr1 subfamily of T-box genes is particularly important in development of the cerebral cortex, olfactory bulbs (OBs), and cerebellum. This subfamily is comprised of Tbr1, Tbr2 (also known as Eomes), and Tbx21. In developing cerebral cortex, Tbr2 and Tbr1 are expressed during successive stages of differentiation in the pyramidal neuron lineage, from Tbr2+ intermediate progenitors to Tbr1+ postmitotic glutamatergic neurons. At each stage, Tbr2 and Tbr1 regulate laminar and regional identity of cortical projection neurons, cell migration, and axon guidance. In the OB, Tbr1 subfamily genes regulate neurogenesis of mitral and tufted cells, and glutamatergic juxtaglomerular interneurons. Tbr2 is also prominent in the development of retinal ganglion cells in nonimage-forming pathways. Other regions that require Tbr2 or Tbr1 in development or adulthood include the cerebellum and adult dentate gyrus. In humans, de novo mutations in TBR1 are important causes of sporadic autism and intellectual disability. Further studies of T-box transcription factors will enhance our understanding of neurodevelopmental disorders and inform approaches to new therapies.
Collapse
|
9
|
Fujiwara N, Cave JW. Partial Conservation between Mice and Humans in Olfactory Bulb Interneuron Transcription Factor Codes. Front Neurosci 2016; 10:337. [PMID: 27489533 PMCID: PMC4951497 DOI: 10.3389/fnins.2016.00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
The mammalian main olfactory bulb (OB) has a large population of GABAergic inhibitory interneurons that contains several subtypes defined by the co-expression other neurotransmitters and calcium binding proteins. The three most commonly studied OB interneuron subtypes co-express either Calretinin, Calbindin, or Tyrosine hydroxylase (Th). Combinations of transcription factors used to specify the phenotype of progenitors are referred to as transcription factor codes, and the current understanding of transcription factor codes that specify OB inhibitory neuron phenotypes are largely based on studies in mice. The conservation of these transcription factor codes in the human OB, however, has not been investigated. The aim of this study was to establish whether transcription factor codes in OB interneurons are conserved between mice and humans. This study compared the co-expression of Foxp2, Meis2, Pax6, and Sp8 transcription factors with Calretinin, Calbindin, or Th in human and mouse OB interneurons. This analysis found strong conservation of Calretinin co-expression with Sp8 and Meis2 as well as Th co-expression with Pax6 and Meis2. This analysis also showed that selective Foxp2 co-expression with Calbindin was conserved between mice and humans, which suggests Foxp2 is a novel determinant of the OB Calbindin interneuron phenotype. Together, the findings in this study provide insight into the conservation of transcription codes for OB interneuron phenotypes between humans and mice, as well as reveal some important differences between the species. This advance in our understanding of transcription factor codes in OB interneurons provides an important complement to the codes that have been established for other regions within the mammalian central nervous system, such as the cortex and spinal cord.
Collapse
Affiliation(s)
- Nana Fujiwara
- Burke Medical Research Institute White Plains, NY, USA
| | - John W Cave
- Burke Medical Research InstituteWhite Plains, NY, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew York, NY, USA
| |
Collapse
|
10
|
Zhang XM, Cai Y, Wang F, Wu J, Mo L, Zhang F, Patrylo PR, Pan A, Ma C, Fu J, Yan XX. Sp8 expression in putative neural progenitor cells in guinea pig and human cerebrum. Dev Neurobiol 2015; 76:939-55. [PMID: 26585436 DOI: 10.1002/dneu.22367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022]
Abstract
Neural stem/progenitor cells have been characterized at neurogenic sites in adult mammalian brain with various molecular markers. Here it has been demonstrated that Sp8, a transcription factor typically expressed among mature GABAergic interneurons, also labels putative neural precursors in adult guinea pig and human cerebrum. In guinea pigs, Sp8 immunoreactive (Sp8+) cells were localized largely in the superficial layers of the cortex including layer I, as well as the subventricular zone (SVZ) and subgranular zone (SGZ). Sp8+ cells at the SGZ showed little colocalization with mature and immature neuronal markers, but co-expressed neural stem cell markers including Sox2. Some layer I Sp8+ cells also co-expressed Sox2. The amount of Sp8+ cells in the dentate gyrus was maintained 2 weeks after X-ray irradiation, while that of doublecortin (DCX+) cells was greatly reduced. Mild ischemic insult caused a transient increase of Sp8+ cells in the SGZ and layer I, with the subgranular Sp8+ cells exhibited an increased colabeling for the mitotic marker Ki67 and pulse-chased bromodeoxyuridine (BrdU). Sp8+ cells in the dentate gyrus showed an age-related decline in guinea pigs, in parallel with the loss of DCX+ cells in the same region. In adult humans, Sp8+ cells exhibited comparable morphological features as seen in guinea pigs, with those at the SGZ and some in cortical layer I co-expressed Sox2. Together, these results suggested that Sp8 may label putative neural progenitors in guinea pig and human cerebrum, with the labeled cells in the SGZ appeared largely not mitotically active under normal conditions. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 939-955, 2016.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China
| | - Fang Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Wu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Mo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peter R Patrylo
- Southern Illinois University School of Medicine, Center for Integrated Research in Cognitive and Neural Sciences, Carbondale, Illinois
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China
| | - Chao Ma
- Department of Human Anatomy, Histology & Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| |
Collapse
|
11
|
Abstract
Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing.
Collapse
|
12
|
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 2014; 8:98. [PMID: 25232305 PMCID: PMC4153298 DOI: 10.3389/fncir.2014.00098] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Ryota Homma
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
13
|
Cai Y, Zhang Y, Shen Q, Rubenstein JLR, Yang Z. A subpopulation of individual neural progenitors in the mammalian dorsal pallium generates both projection neurons and interneurons in vitro. Stem Cells 2014; 31:1193-201. [PMID: 23417928 DOI: 10.1002/stem.1363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 02/01/2013] [Indexed: 01/27/2023]
Abstract
There are two major classes of neurons in nervous systems: projection neurons and interneurons. During Drosophila nervous system development, a subpopulation of individual stem/progenitor cells gives rise to both motor neurons and interneurons. However, it remains unknown whether individual stem/progenitor cells in the mammalian brain also have the potential to give rise to both projection neurons and interneurons. Here we present evidence that single mouse neocortical progenitors generated both projection neurons and GABAergic interneurons based on studies using fluorescence-activated cell sorting (to obtain individual progenitors) and in vitro clonal analysis using time-lapse video microscopy and immunostaining. We determined that a subpopulation of individual dorsal pallial progenitors from E11.5 Dlx5/6-cre-IRES-EGFP and GAD67-GFP mice can generate both GFP-negative/Tbr1-positive (GFP(-) /Tbr1+)/Tuj1+ cells and GFP+/Sp8+/calretinin+/Tuj1+ cells. The GFP(-) /Tbr1+/Tuj1+ cells had morphological features of cultured projection neurons. Quantitative analysis of the reconstructed lineage trees derived from single progenitors showed that the projection neuron lineage appeared earlier than the interneuron lineage; however, more interneuron-like cells were produced than projection neuron-like cells. Thus, our results provide direct in vitro evidence that individual progenitors of the mammalian dorsal pallium can generate both projection neurons and interneurons.
Collapse
Affiliation(s)
- Yuqun Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Kosaka K, Kosaka T. Secretagogin-containing neurons in the mouse main olfactory bulb. Neurosci Res 2013; 77:16-32. [PMID: 24008127 DOI: 10.1016/j.neures.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 11/24/2022]
Abstract
Secretagogin (SCGN) is a recently discovered calcium binding protein of the EF hand family. We studied the structural features of SCGN-positive neurons in the mouse main olfactory bulb (MOB). SCGN-positive neurons were localized throughout layers but clustered in the glomerular layer (GL), mitral cell layer (MCL) and granule cell layer (GCL). They were heterogeneous, including numerous juxtaglomerular neurons, granule cells, small to medium-sized neurons in the external plexiform layer (EPL), and a few small cells in the ependymal/subependymal layer. Calretinin and/or tyrosine hydroxylase occasionally colocalized in SCGN-positive juxtaglomerular neurons. Calretinin also frequently colocalized in SCGN-positive EPL and GCL neurons. Morphologically some of juxtaglomerular SCGN-positive neurons were classical periglomerular cells, whereas others were apparently different from those periglomerular cells, although they were further heterogeneous. Some extended one slender process into a glomerulus which passed the glomerulus and further penetrated into another nearby glomeruli, and thus their dendritic processes spanned two or three or more glomeruli. We named this type of juxtaglomerular neurons "transglomerular cells." With the stereological analysis we estimated total number of juxtaglomerular SCGN-positive neurons at about 80,000/single MOB. The present study revealed the diversity of SCGN-positive neurons in the mouse MOB and their particular structural properties hitherto unknown.
Collapse
Affiliation(s)
- Katsuko Kosaka
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
15
|
Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C. Transcriptional Regulation of Olfactory Bulb Neurogenesis. Anat Rec (Hoboken) 2013; 296:1364-82. [DOI: 10.1002/ar.22733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| |
Collapse
|
16
|
Cholecystokinin: an excitatory modulator of mitral/tufted cells in the mouse olfactory bulb. PLoS One 2013; 8:e64170. [PMID: 23691163 PMCID: PMC3655022 DOI: 10.1371/journal.pone.0064170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 04/12/2013] [Indexed: 12/02/2022] Open
Abstract
Cholecystokinin (CCK) is widely distributed in the brain as a sulfated octapeptide (CCK-8S). In the olfactory bulb, CCK-8S is concentrated in two laminae: an infraglomerular band in the external plexiform layer, and an inframitral band in the internal plexiform layer (IPL), corresponding to somata and terminals of superficial tufted cells with intrabulbar projections linking duplicate glomerular maps of olfactory receptors. The physiological role of CCK in this circuit is unknown. We made patch clamp recordings of CCK effects on mitral cell spike activity in mouse olfactory bulb slices, and applied immunohistochemistry to localize CCKB receptors. In cell-attached recordings, mitral cells responded to 300 nM –1 µM CCK-8S by spike excitation, suppression, or mixed excitation-suppression. Antagonists of GABAA and ionotropic glutamate receptors blocked suppression, but excitation persisted. Whole-cell recordings revealed that excitation was mediated by a slow inward current, and suppression by spike inactivation or inhibitory synaptic input. Similar responses were elicited by the CCKB receptor-selective agonist CCK-4 (1 µM). Excitation was less frequent but still occurred when CCKB receptors were blocked by LY225910, or disrupted in CCKB knockout mice, and was also observed in CCKA knockouts. CCKB receptor immunoreactivity was detected on mitral and superficial tufted cells, colocalized with Tbx21, and was absent from granule cells and the IPL. Our data indicate that CCK excites mitral cells postsynaptically, via both CCKA and CCKB receptors. We hypothesize that extrasynaptic CCK released from tufted cell terminals in the IPL may diffuse to and directly excite mitral cell bodies, creating a positive feedback loop that can amplify output from pairs of glomeruli receiving sensory inputs encoded by the same olfactory receptor. Dynamic plasticity of intrabulbar projections suggests that this could be an experience-dependent amplification mechanism for tuning and optimizing olfactory bulb signal processing in different odor environments.
Collapse
|
17
|
Patterns of heterogeneous expression of pannexin 1 and pannexin 2 transcripts in the olfactory epithelium and olfactory bulb. J Mol Histol 2012; 43:651-60. [PMID: 22945868 DOI: 10.1007/s10735-012-9443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.
Collapse
|