1
|
Bertrand M, Karkuszewski M, Kersten R, Orban de Xivry JJ, Pruszynski JA. String-pulling by the common marmoset. J Neurophysiol 2025; 133:1222-1233. [PMID: 40095478 DOI: 10.1152/jn.00561.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
Coordinated hand movements used to grasp and manipulate objects are crucial for many daily activities, such as tying shoelaces or opening jars. Recently, the string-pulling task, which involves cyclically reaching, grasping, and pulling a string, has been used to study coordinated hand movements in rodents and humans. Here, we characterize how adult common marmosets perform the string-pulling task and describe changes in performance across the lifespan. Marmosets (n = 15, 7 females) performed a string-pulling task for a food reward using an instrumented apparatus attached to their home-cage. Movement kinematics were acquired using markerless video tracking and we assessed individual hand movements and bimanual coordination using standard metrics. Marmosets oriented their gaze toward the string above their hands and readily performed the task regardless of sex or age. The task required little training and animals routinely engaged in multiple pulling trials per session, despite not being under water or food control. All marmosets showed consistent pulling speed and similar hand movements regardless of age. Adult marmosets exhibited a clear hand effect, performing straighter and faster movements with their right hand despite showing idiosyncratic hand preference according to a traditional food retrieval assay. Hand effects were also evident for younger animals but seemed attenuated in the older animals. In terms of bimanual coordination, all adult marmosets demonstrated alternating movement pattern for vertical hand positions. Two younger and two older marmosets exhibited idiosyncratic coordination patterns even after substantial experience. In general, younger and older animals exhibited higher variability in bimanual coordination than adults.NEW & NOTEWORTHY Bimanual coordination is crucial for daily activities. In this study, we characterized how common marmosets performed the string-pulling task without extensive training, regardless of sex or age, and naturally exhibited a cyclical alternating pattern of hand movements. Although the overall behavior was similar across ages, younger and older marmosets demonstrated higher variability in bimanual coordination. These results establish the string-pulling task as a reliable tool for studying bimanual coordination and its underlying neural substrates.
Collapse
Affiliation(s)
- Mathilde Bertrand
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | | | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Jean-Jacques Orban de Xivry
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Yang L, Cao G, Zhang S, Zhang W, Sun Y, Zhou J, Zhong T, Yuan Y, Liu T, Liu T, Guo L, Yu Y, Jiang X, Li G, Han J, Zhang T. Contrastive machine learning reveals species -shared and -specific brain functional architecture. Med Image Anal 2025; 101:103431. [PMID: 39689450 DOI: 10.1016/j.media.2024.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/19/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently entangled with each other and with other irrelevant factors. Here we develop a novel contrastive machine learning method, called shared-unique variation autoencoder (SU-VAE), to allow disentanglement of the species-shared and species-specific functional connectome variation between macaque and human brains on large-scale resting-state fMRI datasets. The method was validated by confirming that human-specific features are differentially related to cognitive scores, while features shared with macaque better capture sensorimotor ones. The projection of disentangled connectomes to the cortex revealed a gradient that reflected species divergence. In contrast to macaque, the introduction of human-specific connectomes to the shared ones enhanced network efficiency. We identified genes enriched on 'axon guidance' that could be related to the human-specific connectomes. The code contains the model and analysis can be found in https://github.com/BBBBrain/SU-VAE.
Collapse
Affiliation(s)
- Li Yang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Weihan Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yusong Sun
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Jingchao Zhou
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Tianyang Zhong
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yixuan Yuan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Tao Liu
- School of Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, 30602, USA
| | - Lei Guo
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yongchun Yu
- Institutes of Brain Sciences, FuDan University, Shanghai, 200433, China
| | - Xi Jiang
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Gang Li
- Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Junwei Han
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China.
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China.
| |
Collapse
|
3
|
Magrou L, Theodoni P, Arnsten AFT, Rosa MGP, Wang XJ. From comparative connectomics to large-scale working memory modeling in macaque and marmoset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643781. [PMID: 40166341 PMCID: PMC11956980 DOI: 10.1101/2025.03.17.643781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Although macaques and marmosets are both primates of choice for studying the brain mechanisms of cognition, they differ in key aspects of anatomy and behavior. Interestingly, recent connectomic analysis revealed that strong top-down projections from the prefrontal cortex to the posterior parietal cortex, present in macaques and important for executive function, are absent in marmosets. Here, we propose a consensus mapping that bridges the two species' cortical atlases and allows for direct area-to-area comparison of their connectomes, which are then used to build comparative computational large-scale modeling of the frontoparietal circuit for working memory. We found that the macaque model exhibits resilience against distractors, a prerequisite for normal working memory function. By contrast, the marmoset model is sensitive to distractibility commonly observed behaviorally in this species. Surprisingly, this contrasting trend can be swapped by scaling intrafrontal and frontoparietal connections. Finally, the relevance to primate ethology and evolution is discussed.
Collapse
Affiliation(s)
- Loïc Magrou
- Center for Neural Science, New York University, New York, 10003, NY, USA
- Department of Neurobiology, University of Chicago, Chicago, 60637, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, 60637, IL, USA
- These authors contributed equally
| | - Panagiota Theodoni
- Department of Philosophy, National and Kapodistrian University of Athens, Athens, 157 84, Greece
- Department of Psychology, Panteion University of Social and Political Sciences, Athens, 176 71, Greece
- College Year in Athens, Athens, 116 35, Greece
- Faculty of Pure and Applied Sciences, Nicosia, 2231, Cyprus
- These authors contributed equally
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, 06510, CT, USA
| | - Marcello G. P. Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, 3168, VIC, Australia
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, 10003, NY, USA
- Lead contact
| |
Collapse
|
4
|
Nomura S, Terada SI, Ebina T, Uemura M, Masamizu Y, Ohki K, Matsuzaki M. ARViS: a bleed-free multi-site automated injection robot for accurate, fast, and dense delivery of virus to mouse and marmoset cerebral cortex. Nat Commun 2024; 15:7633. [PMID: 39256380 PMCID: PMC11387507 DOI: 10.1038/s41467-024-51986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Genetically encoded fluorescent sensors continue to be developed and improved. If they could be expressed across multiple cortical areas in non-human primates, it would be possible to measure a variety of spatiotemporal dynamics of primate-specific cortical activity. Here, we develop an Automated Robotic Virus injection System (ARViS) for broad expression of a biosensor. ARViS consists of two technologies: image recognition of vasculature structures on the cortical surface to determine multiple injection sites without hitting them, and robotic control of micropipette insertion perpendicular to the cortical surface with 50 μm precision. In mouse cortex, ARViS sequentially injected virus solution into 100 sites over a duration of 100 min with a bleeding probability of only 0.1% per site. Furthermore, ARViS successfully achieved 266-site injections over the frontoparietal cortex of a female common marmoset. We demonstrate one-photon and two-photon calcium imaging in the marmoset frontoparietal cortex, illustrating the effective expression of biosensors delivered by ARViS.
Collapse
Affiliation(s)
- Shinnosuke Nomura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Teppei Ebina
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masato Uemura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yoshito Masamizu
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyoto, 610-0394, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
5
|
Ebina T, Sasagawa A, Hong D, Setsuie R, Obara K, Masamizu Y, Kondo M, Terada SI, Ozawa K, Uemura M, Takaji M, Watakabe A, Kobayashi K, Ohki K, Yamamori T, Murayama M, Matsuzaki M. Dynamics of directional motor tuning in the primate premotor and primary motor cortices during sensorimotor learning. Nat Commun 2024; 15:7127. [PMID: 39164245 PMCID: PMC11336224 DOI: 10.1038/s41467-024-51425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Sensorimotor learning requires reorganization of neuronal activity in the premotor cortex (PM) and primary motor cortex (M1). To reveal PM- and M1-specific reorganization in a primate, we conducted calcium imaging in common marmosets while they learned a two-target reaching (pull/push) task after mastering a one-target reaching (pull) task. Throughout learning of the two-target reaching task, the dorsorostral PM (PMdr) showed peak activity earlier than the dorsocaudal PM (PMdc) and M1. During learning, the reaction time in pull trials increased and correlated strongly with the peak timing of PMdr activity. PMdr showed decreasing representation of newly introduced (push) movement, whereas PMdc and M1 maintained high representation of pull and push movements. Many task-related neurons in PMdc and M1 exhibited a strong preference to either movement direction. PMdc neurons dynamically switched their preferred direction depending on their performance in push trials in the early learning stage, whereas M1 neurons stably retained their preferred direction and high similarity of preferred direction between neighbors. These results suggest that in primate sensorimotor learning, dynamic directional motor tuning in PMdc converts the sensorimotor association formed in PMdr to the stable and specific motor representation of M1.
Collapse
Grants
- JP19dm0207069 Japan Agency for Medical Research and Development (AMED)
- JP19dm0107150 Japan Agency for Medical Research and Development (AMED)
- JP19dm0207085 Japan Agency for Medical Research and Development (AMED)
- JP19dm0207085 Japan Agency for Medical Research and Development (AMED)
- JP15dm0207001 Japan Agency for Medical Research and Development (AMED)
- JP15dm0207001 Japan Agency for Medical Research and Development (AMED)
- 22H05160 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H00388 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H00302 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04977 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H03546 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 17H04982 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Teppei Ebina
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitaka Sasagawa
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Dokyeong Hong
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rieko Setsuie
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Keitaro Obara
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshito Masamizu
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuya Ozawa
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Masato Uemura
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Takaji
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Aichi, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
- Central Institute of Experimental Animals, Kanagawa, Japan
| | - Masanori Murayama
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Kaiser M. Connectomes: from a sparsity of networks to large-scale databases. Front Neuroinform 2023; 17:1170337. [PMID: 37377946 PMCID: PMC10291062 DOI: 10.3389/fninf.2023.1170337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The analysis of whole brain networks started in the 1980s when only a handful of connectomes were available. In these early days, information about the human connectome was absent and one could only dream about having information about connectivity in a single human subject. Thanks to non-invasive methods such as diffusion imaging, we now know about connectivity in many species and, for some species, in many individuals. To illustrate the rapid change in availability of connectome data, the UK Biobank is on track to record structural and functional connectivity in 100,000 human subjects. Moreover, connectome data from a range of species is now available: from Caenorhabditis elegans and the fruit fly to pigeons, rodents, cats, non-human primates, and humans. This review will give a brief overview of what structural connectivity data is now available, how connectomes are organized, and how their organization shows common features across species. Finally, I will outline some of the current challenges and potential future work in making use of connectome information.
Collapse
Affiliation(s)
- Marcus Kaiser
- NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Itoh Y, Sahni V, Shnider SJ, McKee H, Macklis JD. Inter-axonal molecular crosstalk via Lumican proteoglycan sculpts murine cervical corticospinal innervation by distinct subpopulations. Cell Rep 2023; 42:112182. [PMID: 36934325 PMCID: PMC10167627 DOI: 10.1016/j.celrep.2023.112182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
How CNS circuits sculpt their axonal arbors into spatially and functionally organized domains is not well understood. Segmental specificity of corticospinal connectivity is an exemplar for such regional specificity of many axon projections. Corticospinal neurons (CSN) innervate spinal and brainstem targets with segmental precision, controlling voluntary movement. Multiple molecularly distinct CSN subpopulations innervate the cervical cord for evolutionarily enhanced precision of forelimb movement. Evolutionarily newer CSNBC-lat exclusively innervate bulbar-cervical targets, while CSNmedial are heterogeneous; distinct subpopulations extend axons to either bulbar-cervical or thoraco-lumbar segments. We identify that Lumican controls balance of cervical innervation between CSNBC-lat and CSNmedial axons during development, which is maintained into maturity. Lumican, an extracellular proteoglycan expressed by CSNBC-lat, non-cell-autonomously suppresses cervical collateralization by multiple CSNmedial subpopulations. This inter-axonal molecular crosstalk between CSN subpopulations controls murine corticospinal circuitry refinement and forelimb dexterity. Such crosstalk is generalizable beyond the corticospinal system for evolutionary incorporation of new neuron populations into preexisting circuitry.
Collapse
Affiliation(s)
- Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Vibhu Sahni
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sara J Shnider
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Holly McKee
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Kosugi A, Saga Y, Kudo M, Koizumi M, Umeda T, Seki K. Time course of recovery of different motor functions following a reproducible cortical infarction in non-human primates. Front Neurol 2023; 14:1094774. [PMID: 36846141 PMCID: PMC9947718 DOI: 10.3389/fneur.2023.1094774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
A major challenge in human stroke research is interpatient variability in the extent of sensorimotor deficits and determining the time course of recovery following stroke. Although the relationship between the extent of the lesion and the degree of sensorimotor deficits is well established, the factors determining the speed of recovery remain uncertain. To test these experimentally, we created a cortical lesion over the motor cortex using a reproducible approach in four common marmosets, and characterized the time course of recovery by systematically applying several behavioral tests before and up to 8 weeks after creation of the lesion. Evaluation of in-cage behavior and reach-to-grasp movement revealed consistent motor impairments across the animals. In particular, performance in reaching and grasping movements continued to deteriorate until 4 weeks after creation of the lesion. We also found consistent time courses of recovery across animals for in-cage and grasping movements. For example, in all animals, the score for in-cage behaviors showed full recovery at 3 weeks after creation of the lesion, and the performance of grasping movement partially recovered from 4 to 8 weeks. In addition, we observed longer time courses of recovery for reaching movement, which may rely more on cortically initiated control in this species. These results suggest that different recovery speeds for each movement could be influenced by what extent the cortical control is required to properly execute each movement.
Collapse
Affiliation(s)
- Akito Kosugi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yosuke Saga
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Moeko Kudo
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masashi Koizumi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsuya Umeda
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Integrated Neuroanatomy and Neuroimaging, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,*Correspondence: Kazuhiko Seki ✉
| |
Collapse
|
9
|
Kwan C, Kang MS, Nuara SG, Gourdon JC, Bédard D, Tardif CL, Hopewell R, Ross K, Bdair H, Hamadjida A, Massarweh G, Soucy JP, Luo W, Del Cid Pellitero E, Shlaifer I, Durcan TM, Fon EA, Rosa-Neto P, Frey S, Huot P. Co-registration of Imaging Modalities (MRI, CT and PET) to Perform Frameless Stereotaxic Robotic Injections in the Common Marmoset. Neuroscience 2021; 480:143-154. [PMID: 34774970 DOI: 10.1016/j.neuroscience.2021.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
The common marmoset has emerged as a popular model in neuroscience research, in part due to its reproductive efficiency, genetic and neuroanatomical similarities to humans and the successful generation of transgenic lines. Stereotaxic procedures in marmosets are guided by 2D stereotaxic atlases, which are constructed with a limited number of animals and fail to account for inter-individual variability in skull and brain size. Here, we developed a frameless imaging-guided stereotaxic system that improves upon traditional approaches by using subject-specific registration of computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) data to identify a surgical target, namely the putamen, in two marmosets. The skull surface was laser-scanned to create a point cloud that was registered to the 3D reconstruction of the skull from CT. Reconstruction of the skull, as well as of the brain from MR images, was crucial for surgical planning. Localisation and injection into the putamen was done using a 6-axis robotic arm controlled by a surgical navigation software (Brainsight™). Integration of subject-specific registration and frameless stereotaxic navigation allowed target localisation specific to each animal. Injection of alpha-synuclein fibrils into the putamen triggered progressive neurodegeneration of the nigro-striatal system, a key feature of Parkinson's disease. Four months post-surgery, a PET scan found evidence of nigro-striatal denervation, supporting accurate targeting of the putamen during co-registration and subsequent surgery. Our results suggest that this approach, coupled with frameless stereotaxic neuronavigation, is accurate in localising surgical targets and can be used to assess endpoints for longitudinal studies.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Min Su Kang
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Robert Hopewell
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Karen Ross
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Hussein Bdair
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Gassan Massarweh
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Wen Luo
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; The Neuro's Early Drug Discovery Unit, McGill University, Montreal, QC, Canada
| | - Esther Del Cid Pellitero
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada
| | - Irina Shlaifer
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; The Neuro's Early Drug Discovery Unit, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; The Neuro's Early Drug Discovery Unit, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | | | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neuroscience, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
10
|
D'Souza JF, Price NSC, Hagan MA. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal-parietal network. Brain Struct Funct 2021; 226:3007-3022. [PMID: 34518902 PMCID: PMC8541938 DOI: 10.1007/s00429-021-02367-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023]
Abstract
The technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal–parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP). Activity in these cortical areas has independently been tied to oculomotor control, motor preparation, visual attention and decision-making. Strong, bidirectional anatomical connections have also been traced between FEF and area LIP, suggesting that the aforementioned visual functions depend on these inter-area interactions. However, advancements in our knowledge about the interactions between area LIP and FEF are limited with the main animal model, the rhesus macaque, because these key regions are buried in the sulci of the brain. In this review, we propose that the common marmoset is the ideal model for investigating how anatomical connections give rise to functionally-complex cognitive visual behaviours, such as those modulated by the frontal–parietal network, because of the homology of their cortical networks with humans and macaques, amenability to transgenic technology, and rich behavioural repertoire. Furthermore, the lissencephalic structure of the marmoset brain enables application of powerful techniques, such as array-based electrophysiology and optogenetics, which are critical to bridge the gaps in our knowledge about structure and function in the brain.
Collapse
Affiliation(s)
- Joanita F D'Souza
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia. .,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Hori Y, Cléry JC, Schaeffer DJ, Menon RS, Everling S. Functional Organization of Frontoparietal Cortex in the Marmoset Investigated with Awake Resting-State fMRI. Cereb Cortex 2021; 32:1965-1977. [PMID: 34515315 DOI: 10.1093/cercor/bhab328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/12/2022] Open
Abstract
Frontoparietal networks contribute to complex cognitive functions in humans and macaques, such as working memory, attention, task-switching, response suppression, grasping, reaching, and eye movement control. However, there has been no comprehensive examination of the functional organization of frontoparietal networks using functional magnetic resonance imaging in the New World common marmoset monkey (Callithrix jacchus), which is now widely recognized as a powerful nonhuman primate experimental animal. In this study, we employed hierarchical clustering of interareal blood oxygen level-dependent signals to investigate the hypothesis that the organization of the frontoparietal cortex in the marmoset follows the organizational principles of the macaque frontoparietal system. We found that the posterior part of the lateral frontal cortex (premotor regions) was functionally connected to the anterior parietal areas, while more anterior frontal regions (frontal eye field [FEF]) were connected to more posterior parietal areas (the region around the lateral intraparietal area [LIP]). These overarching patterns of interareal organization are consistent with a recent macaque study. These findings demonstrate parallel frontoparietal processing streams in marmosets and support the functional similarities of FEF-LIP and premotor-anterior parietal pathways between marmoset and macaque.
Collapse
Affiliation(s)
- Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
12
|
Turk AZ, SheikhBahaei S. Morphometric analysis of astrocytes in vocal production circuits of common marmoset (Callithrix jacchus). J Comp Neurol 2021; 530:574-589. [PMID: 34387357 PMCID: PMC8716418 DOI: 10.1002/cne.25230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022]
Abstract
Astrocytes, the star-shaped glial cells, are the most abundant non-neuronal cell population in the central nervous system. They play a key role in modulating activities of neural networks, including those involved in complex motor behaviors. Common marmosets (Callithrix jacchus), the most vocal non-human primate (NHP), have been used to study the physiology of vocalization and social vocal production. However, the neural circuitry involved in vocal production is not fully understood. In addition, even less is known about the involvement of astrocytes in this circuit. To understand the role, that astrocytes may play in the complex behavior of vocalization, the initial step may be to study their structural properties in the cortical and subcortical regions that are known to be involved in vocalization. Here, in the common marmoset, we identify all astrocytic subtypes seen in other primate's brains, including intralaminar astrocytes. In addition, we reveal detailed structural characteristics of astrocytes and perform morphometric analysis of astrocytes residing in the cortex and midbrain regions that are associated with vocal production. We found that cortical astrocytes in these regions illustrate a higher level of complexity when compared to those in the midbrain. We hypothesize that this complexity that is expressed in cortical astrocytes may reflect their functions to meet the metabolic/structural needs of these regions.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Theodoni P, Majka P, Reser DH, Wójcik DK, Rosa MGP, Wang XJ. Structural Attributes and Principles of the Neocortical Connectome in the Marmoset Monkey. Cereb Cortex 2021; 32:15-28. [PMID: 34274966 PMCID: PMC8634603 DOI: 10.1093/cercor/bhab191] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
The marmoset monkey has become an important primate model in Neuroscience. Here, we characterize salient statistical properties of interareal connections of the marmoset cerebral cortex, using data from retrograde tracer injections. We found that the connectivity weights are highly heterogeneous, spanning 5 orders of magnitude, and are log-normally distributed. The cortico-cortical network is dense, heterogeneous and has high specificity. The reciprocal connections are the most prominent and the probability of connection between 2 areas decays with their functional dissimilarity. The laminar dependence of connections defines a hierarchical network correlated with microstructural properties of each area. The marmoset connectome reveals parallel streams associated with different sensory systems. Finally, the connectome is spatially embedded with a characteristic length that obeys a power law as a function of brain volume across rodent and primate species. These findings provide a connectomic basis for investigations of multiple interacting areas in a complex large-scale cortical system underlying cognitive processes.
Collapse
Affiliation(s)
- Panagiota Theodoni
- Center for Neural Science, New York University, New York, NY 10003, USA.,New York University Shanghai, Shanghai 200122, China.,NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai 200062, China
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - David H Reser
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia.,Graduate Entry Medicine Program, Monash Rural Health-Churchill, Monash University, Churchill, VIC 3842, Australia
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Marcello G P Rosa
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
14
|
Bakola S, Burman KJ, Bednarek S, Chan JM, Jermakow N, Worthy KH, Majka P, Rosa MGP. Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cereb Cortex 2021; 32:41-62. [PMID: 34255833 DOI: 10.1093/cercor/bhab193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cortical projections to the caudomedial frontal cortex were studied using retrograde tracers in marmosets. We tested the hypothesis that cytoarchitectural area 6M includes homologues of the supplementary and pre-supplementary motor areas (SMA and pre-SMA) of other primates. We found that, irrespective of the injection sites' location within 6M, over half of the labeled neurons were located in motor and premotor areas. Other connections originated in prefrontal area 8b, ventral anterior and posterior cingulate areas, somatosensory areas (3a and 1-2), and areas on the rostral aspect of the dorsal posterior parietal cortex. Although the origin of afferents was similar, injections in rostral 6M received higher percentages of prefrontal afferents, and fewer somatosensory afferents, compared to caudal injections, compatible with differentiation into SMA and pre-SMA. Injections rostral to 6M (area 8b) revealed a very different set of connections, with increased emphasis on prefrontal and posterior cingulate afferents, and fewer parietal afferents. The connections of 6M were also quantitatively different from those of the primary motor cortex, dorsal premotor areas, and cingulate motor area 24d. These results show that the cortical motor control circuit is conserved in simian primates, indicating that marmosets can be valuable models for studying movement planning and control.
Collapse
Affiliation(s)
- Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Piotr Majka
- Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Monash University Node, ARC Centre of Excellence for Integrative Brain Function, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
15
|
Kaas JH. Comparative Functional Anatomy of Marmoset Brains. ILAR J 2021; 61:260-273. [PMID: 33550381 PMCID: PMC9214571 DOI: 10.1093/ilar/ilaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Marmosets and closely related tamarins have become popular models for understanding aspects of human brain organization and function because they are small, reproduce and mature rapidly, and have few cortical fissures so that more cortex is visible and accessible on the surface. They are well suited for studies of development and aging. Because marmosets are highly social primates with extensive vocal communication, marmoset studies can inform theories of the evolution of language in humans. Most importantly, marmosets share basic features of major sensory and motor systems with other primates, including those of macaque monkeys and humans with larger and more complex brains. The early stages of sensory processing, including subcortical nuclei and several cortical levels for the visual, auditory, somatosensory, and motor systems, are highly similar across primates, and thus results from marmosets are relevant for making inferences about how these systems are organized and function in humans. Nevertheless, the structures in these systems are not identical across primate species, and homologous structures are much bigger and therefore function somewhat differently in human brains. In particular, the large human brain has more cortical areas that add to the complexity of information processing and storage, as well as decision-making, while making new abilities possible, such as language. Thus, inferences about human brains based on studies on marmoset brains alone should be made with a bit of caution.
Collapse
Affiliation(s)
- Jon H Kaas
- Corresponding Author: Jon H. Kaas, PhD, Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37203, USA. E-mail:
| |
Collapse
|
16
|
Distribution and morphology of calbindin neurons in the Amygdaloid Complex of the marmoset monkey (callithrix jacchus). J Chem Neuroanat 2020; 112:101914. [PMID: 33388377 DOI: 10.1016/j.jchemneu.2020.101914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
Abstract
The location and distribution of the calcium-binding protein calbindin-D28k (CB) has been considered to be of great value as a neuronal marker for identifying distinct brain regions and discrete neuronal populations. In the amygdaloid complex (AC), the balance of excitatory and inhibitory inputs is controlled by CB immunoreactive interneurons. Alterations of inhibitory mechanisms in the AC may play a role in the emotional symptomatology of neurological diseases like Alzheimer's and psychiatric disorders like posttraumatic stress disorder. The present investigation examined the distribution and morphology of CB-containing neurons, neuropils and fibers in marmoset monkey ACs by using immunohistochemical and morphometrical methods. We recognized four types of CB cells in the AC: type 1 (multipolar), type 2 (spherical or bipolar), type 3 (pyramidal) and type 4 (halo cells), a cell type specific to the marmoset located in the basal and central nuclei. We detected CB cells in all nuclei and areas of the AC, where most of the cells were present in the deep nuclei (lateral, basal, accessory basal and paralaminar). In the superficial nuclei (the nucleus of the lateral olfactory tract, medial nucleus, periamygdaloid cortex and cortical nuclei), the CB cells were abundant in layers 2 and 3. The intercalated nuclei contained small densely packed cells. The CB neuropils were particularly dense in layer 1 of the superficial nuclei, in the deep nuclei and in the amygdalohippocampal area. Large CB immunoreactive neurons in the white matter and fibers with varicosities were found in the myelin tracts that surrounded the AC. These findings are the first step in determining whether some of these cells are specifically disrupted in pathological states.
Collapse
|
17
|
Feizpour A, Majka P, Chaplin TA, Rowley D, Yu HH, Zavitz E, Price NSC, Rosa MGP, Hagan MA. Visual responses in the dorsolateral frontal cortex of marmoset monkeys. J Neurophysiol 2020; 125:296-304. [PMID: 33326337 DOI: 10.1152/jn.00581.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The marmoset monkey (Callithrix jacchus) has gained attention in neurophysiology research as a new primate model for visual processing and behavior. In particular, marmosets have a lissencephalic cortex, making multielectrode, optogenetic, and calcium-imaging techniques more accessible than other primate models. However, the degree of homology of brain circuits for visual behavior with those identified in macaques and humans is still being ascertained. For example, whereas the location of the frontal eye fields (FEF) within the dorsolateral frontal cortex has been proposed, it remains unclear whether neurons in the corresponding areas show visual responses-an important characteristic of FEF neurons in other species. Here, we provide the first description of receptive field properties and neural response latencies in the marmoset dorsolateral frontal cortex, based on recordings using Utah arrays in anesthetized animals. We find brisk visual responses in specific regions of the dorsolateral prefrontal cortex, particularly in areas 8aV, 8C, and 6DR. As in macaque FEF, the receptive fields were typically large (10°-30° in diameter) and the median responses latency was brisk (60 ms). These results constrain the possible interpretations about the location of the marmoset FEF and suggest that the marmoset model's significant advantages for the use of physiological techniques may be leveraged in the study of visuomotor cognition.NEW & NOTEWORTHY Behavior and cognition in humans and other primates rely on networks of brain areas guided by the frontal cortex. The marmoset offers exciting new opportunities to study links between brain physiology and behavior, but the functions of frontal cortex areas are still being identified in this species. Here, we provide the first evidence of visual receptive fields in the marmoset dorsolateral frontal cortex, an important step toward future studies of visual cognitive behavior.
Collapse
Affiliation(s)
- Azadeh Feizpour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Piotr Majka
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Tristan A Chaplin
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Declan Rowley
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Hsin-Hao Yu
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Zavitz
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Majka P, Bednarek S, Chan JM, Jermakow N, Liu C, Saworska G, Worthy KH, Silva AC, Wójcik DK, Rosa MGP. Histology-Based Average Template of the Marmoset Cortex With Probabilistic Localization of Cytoarchitectural Areas. Neuroimage 2020; 226:117625. [PMID: 33301940 DOI: 10.1016/j.neuroimage.2020.117625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
The rapid adoption of marmosets in neuroscience has created a demand for three dimensional (3D) atlases of the brain of this species to facilitate data integration in a common reference space. We report on a new open access template of the marmoset cortex (the Nencki-Monash, or NM template), representing a morphological average of 20 brains of young adult individuals, obtained by 3D reconstructions generated from Nissl-stained serial sections. The method used to generate the template takes into account morphological features of the individual brains, as well as the borders of clearly defined cytoarchitectural areas. This has resulted in a resource which allows direct estimates of the most likely coordinates of each cortical area, as well as quantification of the margins of error involved in assigning voxels to areas, and preserves quantitative information about the laminar structure of the cortex. We provide spatial transformations between the NM and other available marmoset brain templates, thus enabling integration with magnetic resonance imaging (MRI) and tracer-based connectivity data. The NM template combines some of the main advantages of histology-based atlases (e.g. information about the cytoarchitectural structure) with features more commonly associated with MRI-based templates (isotropic nature of the dataset, and probabilistic analyses). The underlying workflow may be found useful in the future development of 3D brain atlases that incorporate information about the variability of areas in species for which it may be impractical to ensure homogeneity of the sample in terms of age, sex and genetic background.
Collapse
Affiliation(s)
- Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Cirong Liu
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Gabriela Saworska
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland; Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, 30-348 Cracow, Poland
| | - Marcello G P Rosa
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Common marmoset as a model primate for study of the motor control system. Curr Opin Neurobiol 2020; 64:103-110. [DOI: 10.1016/j.conb.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
|
20
|
Ghahremani M, Johnston KD, Ma L, Hayrynen LK, Everling S. Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets. J Neurophysiol 2019; 122:1765-1776. [DOI: 10.1152/jn.00417.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The common marmoset ( Callithrix jacchus) is a small-bodied New World primate increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here we addressed this gap by probing the function of posterior parietal cortex of the common marmoset with electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eyeblinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as a valuable model for neurophysiological investigations of oculomotor and cognitive control. NEW & NOTEWORTHY The macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited, as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.
Collapse
Affiliation(s)
- Maryam Ghahremani
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Kevin D. Johnston
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Liya Ma
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Lauren K. Hayrynen
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C. Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm? Cereb Cortex 2019; 28:1700-1717. [PMID: 28369235 DOI: 10.1093/cercor/bhx067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
We report on the corticocortical connections of areas on the mesial surface of the macaque posterior parietal cortex, based on 10 retrograde tracer injections targeting different parts of the precuneate gyrus. Analysis of afferent connections supported the existence of two areas: PGm (also known as 7 m) and area 31. Both areas received major afferents from the V6A complex and from the external subdivision of area 23, but they differed in most other aspects. Area 31 showed greater emphasis on connections with premotor and parietal sensorimotor areas, whereas PGm received a greater proportion of its afferents from visuomotor structures involved in spatial cognition (including the lateral intraparietal cortex, inferior parietal lobule, and the putative visual areas in the ventral part of the precuneus). Medially, the anterior cingulate cortex (area 24) preferentially targeted area 31, whereas retrosplenial areas preferentially targeted PGm. These results indicate that earlier views on the connections of PGm were based on tracer injections that included parts of adjacent areas (including area 31), and prompt a reassessment of the limits of PGm. Our findings are compatible with a primary role of PGm in visuospatial cognition (including navigation), while supporting a role for area 31 in sensorimotor planning and coordination.
Collapse
Affiliation(s)
- Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Sophia Bakola
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
22
|
Buckner RL, Margulies DS. Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey. Nat Commun 2019; 10:1976. [PMID: 31036823 PMCID: PMC6488644 DOI: 10.1038/s41467-019-09812-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Networks of widely distributed regions populate human association cortex. One network, often called the default network, is positioned at the apex of a gradient of sequential networks that radiate outward from primary cortex. Here, extensive anatomical data made available through the Marmoset Brain Architecture Project are explored to show a homologue exists in marmoset. Results reveal that a gradient of networks extend outward from primary cortex to progressively higher-order transmodal association cortex in both frontal and temporal cortex. The apex transmodal network comprises frontopolar and rostral temporal association cortex, parahippocampal areas TH / TF, the ventral posterior midline, and lateral parietal association cortex. The positioning of this network in the gradient and its composition of areas make it a candidate homologue to the human default network. That the marmoset, a physiologically- and genetically-accessible primate, might possess a default-network-like candidate creates opportunities for study of higher cognitive and social functions.
Collapse
Affiliation(s)
- Randy L Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France
| |
Collapse
|
23
|
Risser L, Sadoun A, Mescam M, Strelnikov K, Lebreton S, Boucher S, Girard P, Vayssière N, Rosa MGP, Fonta C. In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain. Brain Struct Funct 2019; 224:1957-1969. [DOI: 10.1007/s00429-019-01869-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
|
24
|
Lin MK, Takahashi YS, Huo BX, Hanada M, Nagashima J, Hata J, Tolpygo AS, Ram K, Lee BC, Miller MI, Rosa MGP, Sasaki E, Iriki A, Okano H, Mitra P. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. eLife 2019; 8:e40042. [PMID: 30720427 PMCID: PMC6384052 DOI: 10.7554/elife.40042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Understanding the connectivity architecture of entire vertebrate brains is a fundamental but difficult task. Here we present an integrated neuro-histological pipeline as well as a grid-based tracer injection strategy for systematic mesoscale connectivity mapping in the common marmoset (Callithrix jacchus). Individual brains are sectioned into ~1700 20 µm sections using the tape transfer technique, permitting high quality 3D reconstruction of a series of histochemical stains (Nissl, myelin) interleaved with tracer labeled sections. Systematic in-vivo MRI of the individual animals facilitates injection placement into reference-atlas defined anatomical compartments. Further, by combining the resulting 3D volumes, containing informative cytoarchitectonic markers, with in-vivo and ex-vivo MRI, and using an integrated computational pipeline, we are able to accurately map individual brains into a common reference atlas despite the significant individual variation. This approach will facilitate the systematic assembly of a mesoscale connectivity matrix together with unprecedented 3D reconstructions of brain-wide projection patterns in a primate brain.
Collapse
Affiliation(s)
- Meng Kuan Lin
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | | | - Bing-Xing Huo
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Mitsutoshi Hanada
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Jaimi Nagashima
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | - Junichi Hata
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
| | | | | | - Brian C Lee
- Center for Imaging ScienceJohns Hopkins UniversityMarylandUnited States
| | - Michael I Miller
- Center for Imaging ScienceJohns Hopkins UniversityMarylandUnited States
| | - Marcello GP Rosa
- Department of Physiology and Biomedicine, Discovery InstituteMonash UniversityMelbourneAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionClaytonAustralia
| | - Erika Sasaki
- Central Institute for Experimental AnimalsKawasakiJapan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive DevelopmentRIKEN Center for Brain ScienceWakoJapan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Partha Mitra
- Laboratory for Marmoset Neural ArchitectureRIKEN Center for Brain ScienceWakoJapan
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
25
|
Atapour N, Majka P, Wolkowicz IH, Malamanova D, Worthy KH, Rosa MGP. Neuronal Distribution Across the Cerebral Cortex of the Marmoset Monkey (Callithrix jacchus). Cereb Cortex 2018; 29:3836-3863. [DOI: 10.1093/cercor/bhy263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
Abstract
Using stereological analysis of NeuN-stained sections, we investigated neuronal density and number of neurons per column throughout the marmoset cortex. Estimates of mean neuronal density encompassed a greater than 3-fold range, from >150 000 neurons/mm3 in the primary visual cortex to ~50 000 neurons/mm3 in the piriform complex. There was a trend for density to decrease from posterior to anterior cortex, but also local gradients, which resulted in a complex pattern; for example, in frontal, auditory, and somatosensory cortex neuronal density tended to increase towards anterior areas. Anterior cingulate, motor, premotor, insular, and ventral temporal areas were characterized by relatively low neuronal densities. Analysis across the depth of the cortex revealed greater laminar variation of neuronal density in occipital, parietal, and inferior temporal areas, in comparison with other regions. Moreover, differences between areas were more pronounced in the supragranular layers than in infragranular layers. Calculations of the number of neurons per unit column revealed a pattern that was distinct from that of neuronal density, including local peaks in the posterior parietal, superior temporal, precuneate, frontopolar, and temporopolar regions. These results suggest that neuronal distribution in adult cortex result from a complex interaction of developmental/ evolutionary determinants and functional requirements.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, 770 Blackburn Road, Clayton, Melbourne, VIC, Australia
| | - Piotr Majka
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, 770 Blackburn Road, Clayton, Melbourne, VIC, Australia
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, Warsaw, Poland
| | - Ianina H Wolkowicz
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
| | - Daria Malamanova
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
| | - Katrina H Worthy
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
| | - Marcello G P Rosa
- Neuroscience Program, Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, 770 Blackburn Road, Clayton, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Johnston KD, Barker K, Schaeffer L, Schaeffer D, Everling S. Methods for chair restraint and training of the common marmoset on oculomotor tasks. J Neurophysiol 2018; 119:1636-1646. [DOI: 10.1152/jn.00866.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The oculomotor system is the most thoroughly understood sensorimotor system in the brain, due in large part to electrophysiological studies carried out in macaque monkeys trained to perform oculomotor tasks. A disadvantage of the macaque model is that many cortical oculomotor areas of interest lie within sulci, making high-density array and laminar recordings impractical. Many techniques of molecular biology developed in rodents, such as optogenetic manipulation of neuronal subtypes, are also limited in this species. The common marmoset ( Callithrix jacchus) possesses a smooth cortex, allowing easy access to frontoparietal oculomotor areas, and may bridge the gap between systems neuroscience in macaques and molecular techniques. Techniques for restraint, training, and neural recording in these animals have been well developed in auditory neuroscience. Those for oculomotor neuroscience, however, remain at a relatively early stage. In this article we provide details of a custom-designed restraint chair for marmosets, a combination head restraint/recording chamber allowing access to cortical oculomotor areas and providing stability suitable for eye movement and neural recordings, as well as a training protocol for oculomotor tasks. We additionally report the results of a psychophysical study in marmosets trained to perform a saccade task using these methods, showing that, as in rhesus and humans, marmosets exhibit a “gap effect,” a decrease in reaction time when the fixation stimulus is removed before the onset of a visual saccade target. These results are the first evidence of this effect in marmosets and support the common marmoset model for neurophysiological investigations of oculomotor control. NEW & NOTEWORTHY The ability to carry out neuronal recordings in behaving primates has provided a wealth of information regarding the neural circuits underlying the control of eye movements. Such studies require restraint of the animal within a primate chair, head fixation, methods of acclimating the animals to this restraint, and the use of operant conditioning methods for training on oculomotor tasks. In contrast to the macaque model, relatively few studies have reported in detail methods for use in the common marmoset. In this report we detail custom-designed equipment and methods by which we have used to successfully train head-restrained marmosets to perform basic oculomotor tasks.
Collapse
Affiliation(s)
- Kevin D. Johnston
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | - Stefan Everling
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
27
|
Ghahremani M, Hutchison RM, Menon RS, Everling S. Frontoparietal Functional Connectivity in the Common Marmoset. Cereb Cortex 2018; 27:3890-3905. [PMID: 27405331 DOI: 10.1093/cercor/bhw198] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In contrast to the well established macaque monkey, little is known about functional connectivity patterns of common marmoset monkey (Callithrix jacchus) that is poised to become the leading transgenic primate model. Here, we used resting-state ultra-high-field fMRI data collected from anesthetized marmosets and macaques along with awake human subjects, to examine and compare the brain's functional organization, with emphasis on the saccade system. Exploratory independent component analysis revealed eight resting-state networks in marmosets that greatly overlapped with corresponding macaque and human networks including a distributed frontoparietal network. Seed-region analyses of the superior colliculus (SC) showed homolog areas in macaques and marmosets. The marmoset SC displayed the strongest frontal functional connectivity with area 8aD at the border to area 6DR. Functional connectivity of this frontal region revealed a similar functional connectivity pattern as the frontal eye fields in macaques and humans. Furthermore, areas 8aD, 8aV, PG,TPO, TE2, and TE3 were identified as major hubs based on region-wise evaluation of betweeness centrality, suggesting that these cortical regions make up the functional core of the marmoset brain. The results support an evolutionarily preserved frontoparietal system and provide a starting point for invasive neurophysiological studies in the marmoset saccade and visual systems.
Collapse
Affiliation(s)
- Maryam Ghahremani
- Graduate Program in Neuroscience, University of Western Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Ravi S Menon
- Graduate Program in Neuroscience, University of Western Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
O'Shea DJ, Kalanithi P, Ferenczi EA, Hsueh B, Chandrasekaran C, Goo W, Diester I, Ramakrishnan C, Kaufman MT, Ryu SI, Yeom KW, Deisseroth K, Shenoy KV. Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys. Sci Rep 2018; 8:6775. [PMID: 29712920 PMCID: PMC5928036 DOI: 10.1038/s41598-018-24362-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies.
Collapse
Affiliation(s)
- Daniel J O'Shea
- Neurosciences Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Paul Kalanithi
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Werapong Goo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ilka Diester
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Otophysiologie, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Matthew T Kaufman
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Development of stereotaxic recording system for awake marmosets (Callithrix jacchus). Neurosci Res 2018; 135:37-45. [PMID: 29317247 DOI: 10.1016/j.neures.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/21/2022]
Abstract
The common marmoset has been proposed as a potential alternative to macaque monkey as a primate model for neuroscience and medical research. Here, we have newly developed a stereotaxic neuronal recording system for awake marmosets under the head-fixed condition by modifying that for macaque monkeys. Using this system, we recorded neuronal activity in the cerebral cortex of awake marmosets and successfully identified the primary motor cortex by intracortical microstimulation. Neuronal activities of deep brain structures, such as the basal ganglia, thalamus, and cerebellum, in awake marmosets were also successfully recorded referring to magnetic resonance images. Our system is suitable for functional mapping of the brain, since the large recording chamber allows access to arbitrary regions over almost the entire brain, and the recording electrode can be easily moved stereotaxically from one site to another. In addition, our system is desirable for neuronal recording during task performance to assess motor skills and cognitive function, as the marmoset sits in the marmoset chair and can freely use its hands. Moreover, our system can be used in combination with cutting-edge techniques, such as two-photon imaging and optogenetic manipulation. This recording system will contribute to boosting neuroscience and medical research using marmosets.
Collapse
|
30
|
Majka P, Chaplin TA, Yu HH, Tolpygo A, Mitra PP, Wójcik DK, Rosa MGP. Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template. J Comp Neurol 2017; 524:2161-81. [PMID: 27099164 PMCID: PMC4892968 DOI: 10.1002/cne.24023] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
Abstract
The marmoset is an emerging animal model for large‐scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl‐stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human‐based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161–2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Piotr Majka
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Nencki Institute of Experimental Biology, Warsaw, Poland.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Tristan A Chaplin
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| | - Hsin-Hao Yu
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| | | | - Partha P Mitra
- Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia.,Monash Vision Group, Monash University, Clayton, VIC, Australia
| |
Collapse
|
31
|
Tia B, Takemi M, Kosugi A, Castagnola E, Ansaldo A, Nakamura T, Ricci D, Ushiba J, Fadiga L, Iriki A. Cortical control of object-specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study. J Physiol 2017; 595:7203-7221. [PMID: 28791721 PMCID: PMC5709338 DOI: 10.1113/jp274629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Key points The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase‐slope index). Analyses were performed in beta (16–35 Hz) and gamma (75–100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch‐related modulation. Strength and direction of inter‐area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms.
Abstract The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp‐and‐pull three objects eliciting different hand configurations: whole‐hand, finger and scissor grips. The animals were then chronically implanted with 64‐channel electrocorticogram arrays positioned over the left premotor, primary motor and somatosensory cortex. Power spectra, reflecting predominantly cortical activity, and phase‐slope index, reflecting the direction of information flux, were studied in beta (16–35 Hz) and gamma (75–100 Hz) bands. Differences related to grip type, epoch (reach, grasp) and cortical area were statistically assessed. Results showed that whole‐hand and scissor grips triggered stronger beta desynchronization than finger grip. Task epochs clearly modulated gamma power, especially for finger and scissor grips. Considering effective connectivity, finger and scissor grips evoked stronger outflow from primary motor to premotor cortex, whereas whole‐hand grip displayed the opposite pattern. These findings suggest that fundamental control mechanisms, relying on adjustments of cortical activity and connectivity, are conserved across primates. Consistently, marmosets could represent a good model to investigate primate brain mechanisms. The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase‐slope index). Analyses were performed in beta (16–35 Hz) and gamma (75–100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch‐related modulation. Strength and direction of inter‐area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms.
Collapse
Affiliation(s)
- Banty Tia
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Mitsuaki Takemi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Akito Kosugi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Takafumi Nakamura
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.,Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, Kanagawa, Japan
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
32
|
3D reconstruction of brain section images for creating axonal projection maps in marmosets. J Neurosci Methods 2017; 286:102-113. [DOI: 10.1016/j.jneumeth.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 01/27/2023]
|
33
|
Abstract
Structural plasticity of the axon initial segment (AIS), the site of action potential initiation, is observed as part of the normal early development of the cortex, as well as in association with injury and disease. Here, we show that structural AIS plasticity also occurs with normal aging in adult marmosets. Immunohistochemical techniques were used to reveal the extent of the AIS of layer 2/3A pyramidal cells in 8 neocortical areas. We found that the AIS length varied significantly between areas in young adult (2-3 years old) marmosets, with neurons in frontal area 14C having the longest AIS, and those in the primary visual cortex the shortest. Similar interareal differences were observed in aged (12-14 year old) monkeys, but the AIS was significantly shortened in many areas, relative to the corresponding length in young adults. Shortening of the AIS is likely to represent a compensatory response to changes in the excitation-inhibition balance, associated with the loss of GABAergic interneurons in the aged cortex.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia.
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Walker J, MacLean J, Hatsopoulos NG. The marmoset as a model system for studying voluntary motor control. Dev Neurobiol 2016; 77:273-285. [DOI: 10.1002/dneu.22461] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jeff Walker
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
| | - Jason MacLean
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
- Department of Neurobiology; University of Chicago; Chicago Illinois 60637
| | - Nicholas G. Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
- Department of Organismal Biology and Anatomy; University of Chicago; Chicago Illinois 60637
| |
Collapse
|
35
|
|