1
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025; 45:800-830. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Liu P, Xue X, Zhang C, Zhou H, Ding Z, Wang L, Jiang Y, Zhang Z, Shen W, Yang S, Wang F. Mid-Infrared Photons Alleviate Tinnitus by Activating the KCNQ2 Channel in the Auditory Cortex. RESEARCH (WASHINGTON, D.C.) 2024; 7:0479. [PMID: 39296986 PMCID: PMC11408936 DOI: 10.34133/research.0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024]
Abstract
Tinnitus is a phantom auditory sensation often accompanied by hearing loss, cognitive impairments, and psychological disturbances in various populations. Dysfunction of KCNQ2 and KCNQ3 channels-voltage-dependent potassium ion channels-in the cochlear nucleus can cause tinnitus. Despite the recognized significance of KCNQ2 and KCNQ3 channels in the auditory cortex, their precise relationship and implications in the pathogenesis of tinnitus remain areas of scientific inquiry. This study aimed to elucidate the pathological roles of KCNQ2 and KCNQ3 channels within the auditory cortex in tinnitus development and examine the therapeutic potential of mid-infrared photons for tinnitus treatment. We utilized a noise-induced tinnitus model combined with immunofluorescence, electrophysiological recording, and molecular dynamic simulation to investigate the morphological and physiological alterations after inducing tinnitus. Moreover, in vivo irradiation was administered to verify the treatment effects of infrared photons. Tinnitus was verified by deficits of the gap ratio with similar prepulse inhibition ratio and auditory brainstem response threshold. We observed an important enhancement in neuronal excitability in the auditory cortex using patch-clamp recordings, which correlated with KCNQ2 and KCNQ3 channel dysfunction. After irradiation with infrared photons, excitatory neuron firing was inhibited owing to increased KCNQ2 current resulting from structural alterations in the filter region. Meanwhile, deficits of the acoustic startle response in tinnitus animals were alleviated by infrared photons. Furthermore, infrared photons reversed the abnormal hyperexcitability of excitatory neurons in the tinnitus group. This study provided a novel method for modulating neuron excitability in the auditory cortex using KCNQ2 channels through a nonthermal effect. Infrared photons effectively mitigated tinnitus-related behaviors by suppressing abnormal neural excitability, potentially laying the groundwork for innovative therapeutic approaches for tinnitus treatment.
Collapse
Affiliation(s)
- Peng Liu
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Xinmiao Xue
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Chi Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Hanwen Zhou
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Zhiwei Ding
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Li Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Yuke Jiang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Zhixin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Weidong Shen
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Fangyuan Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| |
Collapse
|
3
|
Ding L, Gu Z, Chen H, Wang P, Song Y, Zhang X, Li M, Chen J, Han H, Cheng J, Tong Z. Phototherapy for age-related brain diseases: Challenges, successes and future. Ageing Res Rev 2024; 94:102183. [PMID: 38218465 DOI: 10.1016/j.arr.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.
Collapse
Affiliation(s)
- Ling Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ziqi Gu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Panpan Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yilan Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xincheng Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mengyu Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jinhan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
4
|
Joshi H, Sinha P, Bowers D, John JP. Dose response of transcranial near infrared light stimulation on brain functional connectivity and cognition in older adults-A randomized comparison. JOURNAL OF BIOPHOTONICS 2024; 17:e202300215. [PMID: 37776079 DOI: 10.1002/jbio.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Photobiomodulation, also called low-level light therapy, has been reported in animal studies to have an effect on brain activity and cognition. However, studies in humans regarding its effect on cognition and brain functional connectivity, and the required dose threshold for achieving the same have been very limited. We compared the effects of different doses of photobiomodulation (PBM) on cognition and resting state brain functional connectivity in 25 cognitively normal adults aged 55-70 years. They were randomized to a single session of the sham group, "low-dose" and "high-dose" groups receiving NIR light with transcranial fluence of 26 and 52 J/cm2 respectively, and intranasal fluence of 9 and 18 J/cm2 respectively. There was a significant increase in resting state functional connectivity of the left superior frontal gyrus (SFG) with the left planum temporale (PT), p = 0.0016, and with the left inferior frontal gyrus, pars triangularis, p = 0.0235 in the "high-dose" group only compared to the "sham" group. There was also a significant improvement in visual search and processing speed (p = 0.012) in the "high-dose" group. Replication of these findings in an adequately powered randomized sham-controlled study in healthy older adults can pave the way for clinical application of NIRL as a therapeutic modality in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Himanshu Joshi
- Multimodal Brain Image Analysis Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Geriatric Clinic and Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Preeti Sinha
- Geriatric Clinic and Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Non-invasive Brain Stimulation Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dawn Bowers
- Department of Clinical & Health Psychology, College of Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida, USA
- Cognitive Neuroscience Laboratory, Department of Neurology, Fixel Center of Neurological Diseases, University of Florida Health Science Center, Gainesville, Florida, USA
| | - John P John
- Multimodal Brain Image Analysis Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Herkes G, McGee C, Liebert A, Bicknell B, Isaac V, Kiat H, McLachlan CS. A novel transcranial photobiomodulation device to address motor signs of Parkinson's disease: a parallel randomised feasibility study. EClinicalMedicine 2023; 66:102338. [PMID: 38094162 PMCID: PMC10716000 DOI: 10.1016/j.eclinm.2023.102338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Parkinson's disease is a progressive neurological disease with limited treatment options. Animal models and a proof-of-concept case series have suggested that photobiomodulation may be an effective adjunct treatment for the symptoms of Parkinson's disease. The aim was to determine the safety and feasibility of transcranial photobiomodulation (tPBM) to reduce the motor signs of Parkinson's disease. METHODS In this double-blind, randomised, sham-controlled feasibility trial, patients (aged 59-85 years) with idiopathic Parkinson's disease were treated with a tPBM helmet for 12 weeks (72 treatments with either active or sham therapy; stage 1). Treatment was delivered in the participants' homes, monitored by internet video conferencing (Zoom). Stage 1 was followed by 12 weeks of no treatment for those on active therapy (active-to-no-treatment group), and 12 weeks of active treatment for those on sham (sham-to-active group), for participants who chose to continue (stage 2). The active helmet device delivered red and infrared light to the head for 24 min, 6 days per week. The primary endpoints were safety and motor signs, as assessed by a modified Movement Disorders Society revision of the Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III)-motor scale. This trial is registered with ANZCTR, ACTRN 12621001722886. FINDINGS Between Dec 6, 2021, and Aug 12, 2022, 20 participants were randomly allocated to each of the two groups (10 females plus 10 males per group). All participants in the active group and 18 in the sham group completed 12 weeks of treatment. 14 participants in the sham group chose to continue to active treatment and 12 completed the full 12 weeks of active treatment. Treatment was well tolerated and feasible to deliver, with only minor, temporary adverse events. Of the nine suspected adverse events that were identified, two minor reactions may have been attributable to the device in the sham-to-active group during the active treatment weeks of the trial. One participant experienced temporary leg weakness. A second participant reported decreased fine motor function in the right hand. Both participants continued the trial. The mean modified MDS-UPDRS-III scores for the sham-to-active group at baseline, after 12 weeks of sham treatment, and after 12 weeks of active treatment were 26.8 (sd 14.6), 20.4 (sd 12.8), and 12.2 (sd 8.9), respectively, and for the active-to-no-treatment group these values were 21.3 (sd 9.4), 16.5 (sd 9.4), and 15.3 (sd 10.8), respectively. There was no significant difference between groups at any assessment point. The mean difference between groups at baseline was 5.5 (95% confidence interval (CI) -2.4 to 13.4), after stage 1 was 3.9 (95% CI -3.5 to 11.3 and after stage 2 was -3.1 (95% CI 2.7 to -10.6). INTERPRETATION Our findings add to the evidence base to suggest that tPBM is a safe, tolerable, and feasible non-pharmaceutical adjunct therapy for Parkinson's disease. While future work is needed our results lay the foundations for an adequately powered randomised placebo-controlled clinical trial. FUNDING SYMBYX Pty Ltd.
Collapse
Affiliation(s)
- Geoffrey Herkes
- Department of Neurology, Sydney Adventist Hospital, Wahroonga, NSW, 2076, Australia
| | - Claire McGee
- Faculty of Health Sciences, Torrens University Australia, Sydney, NSW, 2000, Australia
| | - Ann Liebert
- Sydney Adventist Hospital, Wahroonga, NSW, 2076, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW, 2145, Australia
| | - Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW, 2145, Australia
| | - Vivian Isaac
- School of Allied Health, Exercise & Sports Sciences, Charles Sturt University, Albury, NSW, 2640, Australia
| | - Hosen Kiat
- Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- College of Health and Medicine, Australian National University, Canberra, ACT, 2601, Australia
- Cardiac Health Institute, Sydney, NSW, 2010, Australia
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, 2000, Australia
| | - Craig S. McLachlan
- Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, 2000, Australia
| |
Collapse
|
6
|
Mineroff J, Austin E, Jagdeo J. Cutaneous effects of photobiomodulation with 1072 nm light. Arch Dermatol Res 2023; 315:1481-1486. [PMID: 36495337 DOI: 10.1007/s00403-022-02480-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Photobiomodulation, also known as low-level light therapy, has gained popularity in treating a variety of dermatologic and non-dermatologic conditions. The near-infrared (NIR) portion ranging from 700 to 1440 nm has a broad spectrum but most current research focuses on relatively shorter wavelengths. To date, clinical research regarding the application of 1072 NIR is limited to treatments for infections and photorejuvenation treatment in females. However, 1072 NIR light therapy may benefit male patients. This theoretical application is based on the biological properties of this subgroup having increased cutaneous density and thickness and the physical properties of 1072 NIR allowing it to penetrate increased depth. 1072 NIR can reach more cells throughout the epidermis and dermis compared to other parts of the electromagnetic spectrum traditionally used in phototherapy to provide unique and targeted benefits. 1072 NIR light-emitting diodes are commercially available and therefore hold tremendous potential to become accessible, affordable treatment options. Given the increased demand and market size for aesthetics for men that remains untapped, there is opportunity for future research to elucidate the potential for this wavelength as a safe and effective treatment.
Collapse
Affiliation(s)
- Jessica Mineroff
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
| | - Evan Austin
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA.
| |
Collapse
|
7
|
Gordon LC, Martin KL, Torres N, Benabid A, Mitrofanis J, Stone J, Moro C, Johnstone DM. Remote photobiomodulation targeted at the abdomen or legs provides effective neuroprotection against parkinsonian MPTP insult. Eur J Neurosci 2023; 57:1611-1624. [PMID: 36949610 PMCID: PMC10947039 DOI: 10.1111/ejn.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.
Collapse
Affiliation(s)
- Luke C. Gordon
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Kristy L. Martin
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Napoleon Torres
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | | | - John Mitrofanis
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Jonathan Stone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Cecile Moro
- Univ. Grenoble Alpes, CEA, LETI, Clinatec38000GrenobleFrance
| | - Daniel M. Johnstone
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biomedical Sciences & PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
8
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
9
|
Neuwirth LS, Verrengia MT, Harikinish-Murrary ZI, Orens JE, Lopez OE. Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization. Front Mol Neurosci 2022; 15:912146. [PMID: 36061362 PMCID: PMC9428565 DOI: 10.3389/fnmol.2022.912146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20–22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
- *Correspondence: Lorenz S. Neuwirth
| | - Michael T. Verrengia
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Zachary I. Harikinish-Murrary
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Jessica E. Orens
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Oscar E. Lopez
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| |
Collapse
|
10
|
da Cruz Tobelem D, Silva T, Araujo T, Andreo L, Malavazzi TCDS, Horliana ACRT, Fernandes KPS, Bussadori SK, Mesquita-Ferrari RA. Effects of photobiomodulation in experimental spinal cord injury models: A systematic review. JOURNAL OF BIOPHOTONICS 2022; 15:e202200059. [PMID: 35484784 DOI: 10.1002/jbio.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This systematic review investigated the repercussions of photobiomodulation using low-level laser therapy (LLLT) for the treatment of spinal cord injury (SCI) in experimental models. Studies were identified from relevant databases published between January 2009 and December 2021. Nineteen original articles were selected and 68.4% used light at an infrared wavelength. There was a considerable variation of the power used (from 25 to 200 mW), total application time (8-3000 s) and total energy (0.3-450 J). In 79% of the studies, irradiation was initiated immediately after or within 2 h of the SCI, and treatment time ranged continuously from 5 to 21 days. In conclusion, LLLT can be an auxiliary therapy in the treatment of SCI, playing a neuroprotective role, enabling functional recovery, increasing the concentration of nerve connections around the injury site and reducing pro-inflammatory cytokines. However, there is a need for standardization in the dosimetric parameters.
Collapse
Affiliation(s)
- Daysi da Cruz Tobelem
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Tamiris Silva
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Tamires Araujo
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Lucas Andreo
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Moro C, Valverde A, Dole M, Hoh Kam J, Hamilton C, Liebert A, Bicknell B, Benabid AL, Magistretti P, Mitrofanis J. The effect of photobiomodulation on the brain during wakefulness and sleep. Front Neurosci 2022; 16:942536. [PMID: 35968381 PMCID: PMC9366035 DOI: 10.3389/fnins.2022.942536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain.
Collapse
Affiliation(s)
- Cecile Moro
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Audrey Valverde
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Marjorie Dole
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | - Jaimie Hoh Kam
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
| | | | - Ann Liebert
- Governance and Research Department, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | | | - Pierre Magistretti
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - John Mitrofanis
- FDD and CEA-LETI, Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: John Mitrofanis,
| |
Collapse
|
12
|
Marashian SM, Hashemian M, Pourabdollah M, Nasseri M, Mahmoudian S, Reinhart F, Eslaminejad A. Photobiomodulation Improves Serum Cytokine Response in Mild to Moderate COVID-19: The First Randomized, Double-Blind, Placebo Controlled, Pilot Study. Front Immunol 2022; 13:929837. [PMID: 35874678 PMCID: PMC9304695 DOI: 10.3389/fimmu.2022.929837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023] Open
Abstract
BackgroundBecause the major event in COVID-19 is the release of pre- and inflammatory cytokines, finding a reliable therapeutic strategy to inhibit this release, help patients manage organ damage and avoid ICU admission or severe disease progression is of paramount importance. Photobiomodulation (PBM), based on numerous studies, may help in this regard, and the present study sought to evaluate the effects of said technology on cytokine reduction.MethodsThis study was conducted in the 2nd half of 2021. The current study included 52 mild-to-moderately ill COVID-19, hospitalized patients. They were divided in two groups: a Placebo group and a PBM group, treated with PBM (620-635 nm light via 8 LEDs that provide an energy density of 45.40 J/cm2 and a power density of 0.12 W/cm2), twice daily for three days, along with classical approved treatment. 28 patients were in Placebo group and 24 in PBM group. In both groups, blood samples were taken four times in three days and serum IL-6, IL-8, IL-10, and TNF-α levels were determined.ResultsDuring the study period, in PBM group, there was a significant decrease in serum levels of IL-6 (-82.5% +/- 4, P<0.001), IL-8 (-54.4% ± 8, P<0.001), and TNF-α (-82.4% ± 8, P<0.001), although we did not detect a significant change in IL-10 during the study. The IL-6/IL-10 Ratio also improved in PBM group. The Placebo group showed no decrease or even an increase in these parameters. There were no reported complications or sequelae due to PBM therapy throughout the study.ConclusionThe major cytokines in COVID-19 pathophysiology, including IL-6, IL-8, and TNF-α, responded positively to PBM therapy and opened a new window for inhibiting and managing a cytokine storm within only 3-10 days.
Collapse
Affiliation(s)
- Seyed Mehran Marashian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Nasseri
- Department of Immunology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Saeed Mahmoudian
- National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Florian Reinhart
- Medical Research & Innovation Department, Medical and Biomedical Consultancy Office “Innolys”, Illkirch-Graffenstaden, France
- *Correspondence: Florian Reinhart,
| | - Alireza Eslaminejad
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Belova AN, Israelyan YA, Sushin VO, Shabanova MA, Rezenova AM. [Transcranial photobiomodulation in therapy of neurodegenerative diseases of the brain: theoretical background and clinical effectiveness]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 98:61-67. [PMID: 34965698 DOI: 10.17116/kurort20219806161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial photobiomodulation (tPBM) is a form of light therapy that uses monochromatic visible and infrared light from non-ionizing radiation sources (lasers, LEDs) placed on the scalp, forehead, or intranasally to project light directly to target areas of the brain. Accumulated experimental and clinical data indicate the safety and potential efficacy of tPBM in some central nervous system diseases.This article briefly reviews the general concepts of tPBM, the results of experimental and clinical studies on the efficacy of tPBM in Alzheimer's disease, Parkinson's disease, and brain stroke. The possible mechanisms of the tPBM therapeutic effect and the need to choose optimal exposure parameters are discussed. Although the evidence base regarding the efficacy of tPBM in neurodegenerative and vascular brain diseases is still insufficient, analysis of the published data justifies considering tPBM as a promising method of adjuvant therapy for some central nervous system diseases.
Collapse
Affiliation(s)
- A N Belova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Yu A Israelyan
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - V O Sushin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - M A Shabanova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - A M Rezenova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
14
|
Montazeri K, Farhadi M, Fekrazad R, Akbarnejad Z, Chaibakhsh S, Mahmoudian S. Transcranial photobiomodulation in the management of brain disorders. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112207. [PMID: 34119804 DOI: 10.1016/j.jphotobiol.2021.112207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/10/2023]
Abstract
Transcranial photobiomodulation (tPBM) is the process of delivering light photons through the skull to benefit from its modifying effect. Brain disorders are important health problems. The aim of this review was to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Parkinson, and Alzheimer's disease as the common brain disorders. Four online databases, including Cochrane, Pub Med, Embase, and Google scholar were searched according to the Preferred Reporting Items for Systematic Reviews and meta-analyses (PRISMA) guidelines. 4728 articles were obtained in the initial search. Only those articles that were published until September 2020 and designed as randomized clinical trials (RCTs) or animal-controlled studies were included. 6 RCTs, 2 related supplementary articles, and 38 controlled animal studies met the inclusion criteria of this study. No RCTs were performed in the fields of Alzheimer's and Parkinson's diseases. The human RCTs and animal studies reported no adverse events resulted from the use of tPBM. Useful parameters of tPBM were identified according to the controlled animal studies. Since the investigated RCTs had no homogenous results, making an evidence-based decision for definite therapeutic application of tPBM is still unattainable. Altogether, these data support the need for large confirmatory well-designed RCTs for using tPBM as a novel, safe, and easy-to-administer treatment of brain disorders. EVIDENCE BEFORE THIS STUDY High prevalence and complications of brain disorders and also side effects of neuropsychiatric medications have encouraged researchers to find alternative therapeutic techniques which tPBM can be one of them. In present review we tried to determine the existing evidence of effectiveness, useful parameters, and safety of tPBM in the management of traumatic brain injury, stroke, Alzheimer, and Parkinson's disease as common brain disorders. Four online databases, including "Cochrane", "Pub Med", "Embase", and "Google scholar" were searched. Only those articles that were published until September 2020 and designed as RCTs or animal-controlled studies were included. Search keywords were the followings: transcranial photobiomodulation" OR "transcranial low-level laser therapy" AND "stroke" OR "traumatic brain injury" OR "Alzheimer" OR "Parkinson". Several studies have confirmed effectiveness of tPBM in treatment of different brain disorders but the level of evidence of its effectiveness remain to be determined. ADDED VALUE OF THIS STUDY In this study we systematically reviewed human RCTs to determine the existing evidence of tPBM effectiveness in management of four mentioned brain disorders. Since the outcomes of the reviewed RCTs were not homogeneous, further well-designed RCTs are required to decide more definitively on the evidence of this noninvasive and probably safe therapeutic intervention. We hypothesized that non-homogeneous outcomes could be due to inefficiency of PBM parameters. Controlled animal studies have the advantage of using objective tests to evaluate the results and compare them with the control group. We determined useful tPBM parameters based on these studies. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE This research is part of our main project of tinnitus treatment using photobiomodulation (PBM). Evidence of central nervous system involvement in tinnitus led us to believe that treatment protocol of tinnitus should also include transcranial PBM. The determined useful parameters can be helpful in designing more efficient tPBM protocols in the management of brain disorders and tinnitus as a common debilitating symptom that can be associated with these disorders.
Collapse
Affiliation(s)
- Katayoon Montazeri
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samira Chaibakhsh
- Neuromusculoskeletal Research Center, Firoozgar Hospital, Iran; Eye Research Center, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center, The Five Senses Health eInstitute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
15
|
Yang M, Yang Z, Wang P, Sun Z. Current application and future directions of photobiomodulation in central nervous diseases. Neural Regen Res 2021; 16:1177-1185. [PMID: 33269767 PMCID: PMC8224127 DOI: 10.4103/1673-5374.300486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions. Photobiomodulation can promote neurogenesis and elicit anti-apoptotic, anti-inflammatory and antioxidative responses. Its therapeutic effects have been demonstrated in studies on neurological diseases, peripheral nerve injuries, pain relief and wound healing. We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019. The NCBI PubMed database, EMBASE database, Cochrane Library and ScienceDirect database were searched. We reviewed 95 papers and analyzed. Photobiomodulation has wide applicability in the treatment of stroke, traumatic brain injury, Parkinson's disease, Alzheimer's disease, major depressive disorder, and other diseases. Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases. However, additional studies with adequate sample size are needed to optimize treatment parameters.
Collapse
Affiliation(s)
- Muyue Yang
- Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Yang
- Core Facility of West China Hospital, Chengdu, Sichuan Province, China
| | - Pu Wang
- Department of Rehabilitation Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhihui Sun
- Department of Psychosomatic Medicine, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu Province, China
| |
Collapse
|
16
|
Johnstone DM, Hamilton C, Gordon LC, Moro C, Torres N, Nicklason F, Stone J, Benabid AL, Mitrofanis J. Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson's Disease: A Comparison of Direct and Indirect Systemic Stimulations. J Alzheimers Dis 2021; 83:1399-1413. [PMID: 33843683 DOI: 10.3233/jad-210052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent times, photobiomodulation has been shown to be beneficial in animal models of Parkinson's disease, improving locomotive behavior and being neuroprotective. Early observations in people with Parkinson's disease have been positive also, with improvements in the non-motor symptoms of the disease being evident most consistently. Although the precise mechanisms behind these improvements are not clear, two have been proposed: direct stimulation, where light reaches and acts directly on the distressed neurons, and remote stimulation, where light influences cells and/or molecules that provide systemic protection, thereby acting indirectly on distressed neurons. In relation to Parkinson's disease, given that the major zone of pathology lies deep in the brain and that light from an extracranial or external photobiomodulation device would not reach these vulnerable regions, stimulating the distressed neurons directly would require intracranial delivery of light using a device implanted close to the vulnerable regions. For indirect systemic stimulation, photobiomodulation could be applied to either the head and scalp, using a transcranial helmet, or to a more remote body part (e.g., abdomen, leg). In this review, we discuss the evidence for both the direct and indirect neuroprotective effects of photobiomodulation in Parkinson's disease and propose that both types of treatment modality, when working together using both intracranial and extracranial devices, provide the best therapeutic option.
Collapse
Affiliation(s)
| | | | - Luke C Gordon
- Department of Physiology, University of Sydney, Australia
| | - Cecile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Napoleon Torres
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - Frank Nicklason
- Department of Anatomy, University of Sydney, Australia.,Geriatric Medicine, Royal Hobart Hospital, Hobart, Australia
| | - Jonathan Stone
- Department of Physiology, University of Sydney, Australia
| | - Alim-Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy, University of Sydney, Australia.,University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, Grenoble, France
| |
Collapse
|
17
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
18
|
Liu YL, Gong SY, Xia ST, Wang YL, Peng H, Shen Y, Liu CF. Light therapy: a new option for neurodegenerative diseases. Chin Med J (Engl) 2020; 134:634-645. [PMID: 33507006 PMCID: PMC7990011 DOI: 10.1097/cm9.0000000000001301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Given the increasing incidence of neurodegenerative disease (ND), recent research efforts have intensified the search for curative treatments. Despite significant research, however, existing therapeutic options for ND can only slow down the progression of the disease, but not provide a cure. Light therapy (LT) has been used to treat some mental and sleep disorders. This review illustrates recent studies of the use of LT in patients with ND and highlights its potential for clinical applications. The literature was collected from PubMed through June 2020. Selected studies were primarily English articles or articles that could be obtained with English abstracts and Chinese main text. Articles were not limited by type. Additional potential publications were also identified from the bibliographies of identified articles and the authors' reference libraries. The identified literature suggests that LT is a safe and convenient physical method of treatment. It may alleviate sleep disorders, depression, cognitive function, and other clinical symptoms. However, some studies have reported limited or no effects. Therefore, LT represents an attractive therapeutic approach for further investigation in ND. LT is an effective physical form of therapy and a new direction for research into treatments for ND. However, it requires further animal experiments to elucidate mechanisms of action and large, double-blind, randomized, and controlled trials to explore true efficacy in patients with ND.
Collapse
Affiliation(s)
- Yu-Lu Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Si-Yi Gong
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Ting Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yun Shen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology, Suqian First Hospital, Suqian, Jiangsu 223800, China
| |
Collapse
|
19
|
Strübing I, Gröschel M, Schwitzer S, Ernst A, Fröhlich F, Jiang D, Boyle P, Basta D. Neuroprotective Effect of Near-Infrared Light in an Animal Model of CI Surgery. Audiol Neurootol 2020; 26:95-101. [PMID: 33238272 DOI: 10.1159/000508619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The preservation of residual hearing has become an important consideration in cochlear implant (CI) recipients in recent years. It was the aim of the present animal experimental study to investigate the influence of a pretreatment with near-infrared (NIR) light on preservation of sensory hair cells and residual hearing after cochlear implantation. METHODS NIR was applied unilaterally (15 min, 808 nm, 120 mW) to 8 guinea pigs, immediately before a bilateral scala tympani CI electrode insertion was performed. The nonirradiated (contralateral) side served as control. Twenty-eight days postoperatively, auditory brainstem responses (ABRs) were registered from both ears to screen for hearing loss. Thereafter, the animals were sacrificed and inner hair cells (IHCs) and outer hair cells (OHCs) were counted and compared between NIR-pretreated and control (contralateral) cochleae. RESULTS There was no IHC loss upon cochlear implantation. OHC loss was most prominent on both sides at the apical part of the cochlea. NIR pretreatment led to a statistically significant reduction in OHC loss (by 39.8%). ABR recordings (across the frequencies 4-32 kHz) showed a statistically significant difference between the 2 groups and corresponds well with the apical structural damage. Hearing loss was reduced by about 20 dB on average for the NIR-pretreated group (p ≤ 0.05). DISCUSSION/CONCLUSION A single NIR pretreatment in this animal model of CI surgery appears to be neuroprotective for residual hearing. This is in line with other studies where several NIR posttreatments have protected cochlear and other neural tissues. NIR pretreatment is an inexpensive, effective, and noninvasive approach that can complement other ways of preserving residual hearing and, hence, should deserve further clinical evaluation in CI patients.
Collapse
Affiliation(s)
- Ira Strübing
- Department Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Moritz Gröschel
- Department Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Susanne Schwitzer
- Department Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Felix Fröhlich
- Department Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany
| | - Dan Jiang
- Department Otolaryngology, Guys' and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Dietmar Basta
- Department Otolaryngology at UKB, University of Berlin, Charité Medical School, Berlin, Germany,
| |
Collapse
|
20
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
21
|
Photobiomodulation for Parkinson's Disease in Animal Models: A Systematic Review. Biomolecules 2020; 10:biom10040610. [PMID: 32326425 PMCID: PMC7225948 DOI: 10.3390/biom10040610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation (PBM) might be an effective treatment for Parkinson’s disease (PD) in human patients. PBM of the brain uses red or near infrared light delivered from a laser or an LED at relatively low power densities, onto the head (or other body parts) to stimulate the brain and prevent degeneration of neurons. PD is a progressive neurodegenerative disease involving the loss of dopamine-producing neurons in the substantia nigra deep within the brain. PD is a movement disorder that also shows various other symptoms affecting the brain and other organs. Treatment involves dopamine replacement therapy or electrical deep brain stimulation. The present systematic review covers reports describing the use of PBM to treat laboratory animal models of PD, in an attempt to draw conclusions about the best choice of parameters and irradiation techniques. There have already been clinical trials of PBM reported in patients, and more are expected in the coming years. PBM is particularly attractive as it is a non-pharmacological treatment, without any major adverse effects (and very few minor ones).
Collapse
|
22
|
Foo ASC, Soong TW, Yeo TT, Lim KL. Mitochondrial Dysfunction and Parkinson's Disease-Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy. Front Aging Neurosci 2020; 12:89. [PMID: 32308618 PMCID: PMC7145956 DOI: 10.3389/fnagi.2020.00089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
As the main driver of energy production in eukaryotes, mitochondria are invariably implicated in disorders of cellular bioenergetics. Given that dopaminergic neurons affected in Parkinson's disease (PD) are particularly susceptible to energy fluctuations by their high basal energy demand, it is not surprising to note that mitochondrial dysfunction has emerged as a compelling candidate underlying PD. A recent approach towards forestalling dopaminergic neurodegeneration in PD involves near-infrared (NIR) photobiomodulation (PBM), which is thought to enhance mitochondrial function of stimulated cells through augmenting the activity of cytochrome C oxidase. Notwithstanding this, our understanding of the neuroprotective mechanism of PBM remains far from complete. For example, studies focusing on the effects of PBM on gene transcription are limited, and the mechanism through which PBM exerts its effects on distant sites (i.e., its "abscopal effect") remains unclear. Also, the clinical application of NIR in PD proves to be challenging. Efficacious delivery of NIR light to the substantia nigra pars compacta (SNpc), the primary site of disease pathology in PD, is fraught with technical challenges. Concerted efforts focused on understanding the biological effects of PBM and improving the efficiency of intracranial NIR delivery are therefore essential for its successful clinical translation. Nonetheless, PBM represents a potential novel therapy for PD. In this review, we provide an update on the role of mitochondrial dysfunction in PD and how PBM may help mitigate the neurodegenerative process. We also discussed clinical translation aspects of this treatment modality using intracranially implanted NIR delivery devices.
Collapse
Affiliation(s)
- Aaron Song Chuan Foo
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Division of Neurosurgery, Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
23
|
Photobiomodulation Mitigates Cerebrovascular Leakage Induced by the Parkinsonian Neurotoxin MPTP. Biomolecules 2019; 9:biom9100564. [PMID: 31590236 PMCID: PMC6843129 DOI: 10.3390/biom9100564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson’s disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain’s vasculature. Photobiomodulation (PBM), the irradiation of tissue with low-intensity red light, mitigates MPTP-induced loss of dopaminergic neurons in the midbrain, but whether PBM also mitigates MPTP-induced damage to the cerebrovasculature has not been investigated. This study aimed to characterize the time course of cerebrovascular disruption following MPTP exposure and to determine whether PBM can mitigate this disruption. Young adult male C57BL/6 mice were injected with 80 mg/kg MPTP or isotonic saline and perfused with fluorescein isothiocyanate FITC-labelled albumin at various time points post-injection. By 7 days post-injection, there was substantial and significant leakage of FITC-labelled albumin into both the substantia nigra pars compacta (SNc; p < 0.0001) and the caudate-putamen complex (CPu; p ≤ 0.0003); this leakage partly subsided by 14 days post-injection. Mice that were injected with MPTP and treated with daily transcranial PBM (670 nm, 50 mW/cm2, 3 min/day), commencing 24 h after MPTP injection, showed significantly less leakage of FITC-labelled albumin in both the SNc (p < 0.0001) and CPu (p = 0.0003) than sham-treated MPTP mice, with levels of leakage that were not significantly different from saline-injected controls. In summary, this study confirms that MPTP damages the brain’s vasculature, delineates the time course of leakage induced by MPTP out to 14 days post-injection, and provides the first direct evidence that PBM can mitigate this leakage. These findings provide new understanding of the use of the MPTP mouse model as an experimental tool and highlight the potential of PBM as a therapeutic tool for reducing vascular dysfunction in neurological conditions.
Collapse
|
24
|
Salehpour F, Cassano P, Rouhi N, Hamblin MR, De Taboada L, Farajdokht F, Mahmoudi J. Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:581-595. [PMID: 31553265 DOI: 10.1089/photob.2019.4676] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background and objective: Photobiomodulation (PBM) therapy is a promising and noninvasive approach to stimulate neuronal function and improve brain repair. The optimization of PBM parameters is important to maximize effectiveness and tolerability. Several studies have reported on the penetration of visible-to-near-infrared (NIR) light through various animal and human tissues. Scientific findings on the penetration of PBM light vary, likely due to use of different irradiation parameters and to different characteristics of the subject such as species, age, and gender. Materials and methods: In this article, we review published data on PBM penetration through the tissues of the head in both animal and human species. The patterns of visible-to-NIR light penetration are summarized based on the following study specifications: wavelength, coherence, operation mode, beam type and size, irradiation site, species, age, and gender. Results: The average penetration of transcranial red/NIR (630-810 nm) light ranged 60-70% in C57BL/6 mouse (skull), 1-10% in BALB/c mouse (skull), 10-40% in Sprague-Dawley rats (scalp plus skull), 20% in Oryctolagus cuniculus rabbit (skull), 0.11% in pig (scalp plus skull), and 0.2-10% in humans (scalp plus skull). The observed variation in the reported values is due to the difference in factors (e.g., wavelengths, light coherence, tissue thickness, and anatomic irradiation site) used by researchers. It seems that these data challenge the applicability of the animal model data on transcranial PBM to humans. Nevertheless, two animal models seem particularly promising, as they approximate penetration in humans: (I) Penetration of 808 nm laser through the scalp plus skull was 0.11% in the pig head; (II) Penetration of 810 nm laser through intact skull was 1.75% in BALB/c mouse. Conclusions: In conclusion, it is worthwhile mentioning that since the effectiveness of brain PBM is closely dependent on the amount of light energy reaching the target neurons, further quantitative estimation of light penetration depth should be performed to validate the current findings.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Niraxx Light Therapeutics, Inc., Irvine, California
| | - Paolo Cassano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Naser Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Hamilton CL, El Khoury H, Hamilton D, Nicklason F, Mitrofanis J. "Buckets": Early Observations on the Use of Red and Infrared Light Helmets in Parkinson's Disease Patients. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:615-622. [PMID: 31536464 DOI: 10.1089/photob.2019.4663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Parkinson's disease is a well-known neurological disorder with distinct motor signs and non-motor symptoms. Objective: We report on six patients with Parkinson's disease that used in-house built photobiomodulation (PBM) helmets. Methods: We used "buckets" lined with light-emitting diodes (LEDs) of wavelengths across the red to near-infrared range (i.e., 670, 810, and 850 nm; n = 5) or an homemade intranasal LED device (660 nm; n = 1). Progress was assessed by the patients themselves, their spouse, or their attending medical practitioners. Results: We found that 55% of the initial signs and symptoms of the six patients showed overall improvement, whereas 43% stayed the same and only 2% got worse. We also found that PBM did not target a specific sign or symptom, with both motor and nonmotor ones being affected, depending on the patient. Conclusions: In summary, our early observations are the first to note the impact of PBM on patients' signs and symptoms over an extended period, up to 24 months, and lays the groundwork for further development to clinical trial.
Collapse
Affiliation(s)
| | - Hala El Khoury
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| | - David Hamilton
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| | - Frank Nicklason
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia.,Geriatric Medicine, Royal Hobart Hospital, Hobart, Australia
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, 2006, Sydney, Australia
| |
Collapse
|
26
|
O'Brien JA, Austin PJ. Effect of Photobiomodulation in Rescuing Lipopolysaccharide-Induced Dopaminergic Cell Loss in the Male Sprague-Dawley Rat. Biomolecules 2019; 9:biom9080381. [PMID: 31430990 PMCID: PMC6723099 DOI: 10.3390/biom9080381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Photobiomodulation (PBM) provides neuroprotection against dopaminergic cell death and associated motor deficits in rodent and primate models of Parkinson’s disease (PD). However, it has not yet been tested in the lipopolysaccharide (LPS) model of PD, which leads to dopaminergic cell death through microglia-evoked neuroinflammation. We investigated whether transcranial PBM could protect against dopaminergic cell death within the substantia nigra in male Sprague–Dawley rats following supranigral LPS injection. PBM fully protected rats from 10 µg LPS which would have otherwise caused 15% cell loss, but there was no significant neuroprotection at a 20 µg dose that led to a 50% lesion. Cell loss at this dose varied according to the precise site of injection and correlated with increased local numbers of highly inflammatory amoeboid microglia. Twenty microgram LPS caused motor deficits in the cylinder, adjusted stepping and rotarod tests that correlated with dopaminergic cell loss. While PBM caused no significant improvement at the group level, motor performance on all three tests no longer correlated with the lesion size caused by 20 µg LPS in PBM-treated rats, suggesting extranigral motor improvements in some animals. These results provide support for PBM as a successful neuroprotective therapy against the inflammatory component of early PD, provided inflammation has not reached a devastating level, as well as potential benefits in other motor circuitries.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Salehpour F, Farajdokht F, Mahmoudi J, Erfani M, Farhoudi M, Karimi P, Rasta SH, Sadigh-Eteghad S, Hamblin MR, Gjedde A. Photobiomodulation and Coenzyme Q 10 Treatments Attenuate Cognitive Impairment Associated With Model of Transient Global Brain Ischemia in Artificially Aged Mice. Front Cell Neurosci 2019; 13:74. [PMID: 30983970 PMCID: PMC6434313 DOI: 10.3389/fncel.2019.00074] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 01/11/2023] Open
Abstract
Disturbances in mitochondrial biogenesis and bioenergetics, combined with neuroinflammation, play cardinal roles in the cognitive impairment during aging that is further exacerbated by transient cerebral ischemia. Both near-infrared (NIR) photobiomodulation (PBM) and Coenzyme Q10 (CoQ10) administration are known to stimulate mitochondrial electron transport that potentially may reverse the effects of cerebral ischemia in aged animals. We tested the hypothesis that the effects of PBM and CoQ10, separately or in combination, improve cognition in a mouse model of transient cerebral ischemia superimposed on a model of aging. We modeled aging by 6-week administration of D-galactose (500 mg/kg subcutaneous) to mice. We subsequently induced transient cerebral ischemia by bilateral occlusion of the common carotid artery (BCCAO). We treated the mice with PBM (810 nm transcranial laser) or CoQ10 (500 mg/kg by gavage), or both, for 2 weeks after surgery. We assessed cognitive function by the Barnes and Lashley III mazes and the What-Where-Which (WWWhich) task. PBM or CoQ10, and both, improved spatial and episodic memory in the mice. Separately and together, the treatments lowered reactive oxygen species and raised ATP and general mitochondrial activity as well as biomarkers of mitochondrial biogenesis, including SIRT1, PGC-1α, NRF1, and TFAM. Neuroinflammatory responsiveness declined, as indicated by decreased iNOS, TNF-α, and IL-1β levels with the PBM and CoQ10 treatments. Collectively, the findings of this preclinical study imply that the procognitive effects of NIR PBM and CoQ10 treatments, separately or in combination, are beneficial in a model of transient global brain ischemia superimposed on a model of aging in mice.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
- ProNeuroLIGHT LLC, Phoenix, AZ, United States
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Higher Educational Institute of Rab-Rashid, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, United States
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Departments of Clinical Research and Nuclear Medicine, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
28
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
29
|
Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging 2017; 58:140-150. [PMID: 28735143 DOI: 10.1016/j.neurobiolaging.2017.06.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/11/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm2) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Ahmadian
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran; School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|