1
|
Kaka GR, Modarresi F. Conditioned medium derived from mesenchymal stem cells and spinal cord injury: A review of the current therapeutic capacities. IBRO Neurosci Rep 2025; 18:293-299. [PMID: 40026846 PMCID: PMC11869877 DOI: 10.1016/j.ibneur.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition of the nervous system that imposes considerable challenges for subjects, such as bladder and bowel incontinence and infections. The standard therapeutic strategy is methylprednisolone utilization accompanied by surgical decompression. However, achieving an effective therapy with the minimum side effects for SCI is still a puzzle. Nowadays, mesenchymal stem cell (MSC) therapy has received much consideration in scientific communities in light of its pharmacological and therapeutic properties, for instance, anti-inflammatory, regenerative, analgesic, and immunomodulatory influences. Despite the mentioned advantages for MSCs, their tumorigenic potential is a limiting agent for its wide therapeutic application. Recent documents show that the use of conditioned medium (CM) derived from MSCs can largely solve these problems. CM encompasses neuroprotective growth factors and cytokines, such as stem cell factor (SCF), vascular endothelial growth factor (VEGF), and glial cell line-derived neurotrophic factor (GDNF). The persuasive evidence from experimental studies revealed that CM originating from MSCs can have a considerable role in the amelioration of SCI. Hence, in the current papers, we will review and summarize evidence indicating the anti-SCI mechanisms of MSC-derived CM by relying the current experimental data.
Collapse
Affiliation(s)
- Gholam Reza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farrokh Modarresi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL) Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sun S, Tian R, Alford A, Yin D, Shi R. An analog of phenelzine demonstrates effective acrolein scavenging and neuroprotection without monoamine oxidase inhibition in a rat SCI model. Neuroscience 2025; 574:54-64. [PMID: 40189130 DOI: 10.1016/j.neuroscience.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Oxidative stress is widely recognized as a critical factor in the functional deficits after spinal cord injury (SCI). Oxidative stress and lipid peroxidation-derived aldehydes such as acrolein are known to play a key role in SCI pathology and have therefore emerged as valuable therapeutic targets. This study introduces a novel phenelzine analogue (PhzA), designed to retain the acrolein scavenging capability of phenelzine (Phz) while removing its undesirable monoamine oxidase (MAO) inhibition effects through structure-based modification. Using a rat model of contusion SCI, we showed that PhzA significantly reduced acrolein levels in both the acute and chronic stages of SCI with minimal MAO inhibition. In addition, PhzA reduced excessive microglial and astrocytic activation, dampening inflammation and gliosis. Furthermore, PhzA-treated rats exhibited significant improvements in motor function and reduction in mechanical hypersensitivity for up to 28 days post-injury compared to untreated rats. These findings further underscore the crucial role of aldehydes in SCI pathology and strengthen the notion that acrolein could serve as an effective therapeutic target for mitigating post-SCI neurodegeneration. These results also indicate that the expansion of acrolein-scavenging drug discovery through structure-based modification of existing repurposed drugs, such as with Phz, is a viable strategy with the benefit of a likely accelerated path towards clinical application. This effort may also benefit a range of neuronal diseases and injuries beyond SCI where acrolein is implicated, advancing the health of millions of patients.
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
| | - Ran Tian
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - Anna Alford
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - David Yin
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; West Lafayette Junior/Senior High School, West Lafayette, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Qian M, Wang Z, Liu H, Zhang X, Xu J, Zhang Y, Chen L, Zhou Z, Yu Y, Dong W. Reactive astrocytes in spinal cord injury: An analysis of heterogeneity based on temporality and spatiality, potential therapies, and limitations. J Neuropathol Exp Neurol 2025:nlaf042. [PMID: 40314931 DOI: 10.1093/jnen/nlaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Spinal cord injury (SCI) constitutes a profound central nervous system disorder characterized by significant neurological dysfunction and sensory loss below the injury site. SCI elicits a multifaceted cellular response in which the proliferation of reactive astrocytes and the ensuing diversity in their functions and phenotypes play pivotal roles within the injury microenvironment, especially during the secondary phases of the condition. This review explores the activation and heterogeneity of astrocytes following SCI. It underscores the necessity of delineating the heterogeneity among reactive astrocyte subpopulations throughout the secondary injury phase of SCI. Developing therapeutic strategies that capitalize on the beneficial properties of certain reactive astrocyte subpopulations while mitigating the adverse effects of others could have profound implications for future clinical management of SCI.
Collapse
Affiliation(s)
- Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zheng Wang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hang Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Otani M, Kushida Y, Kuroda Y, Wakao S, Oguma Y, Sasaki K, Katahira S, Terai R, Ryoke R, Nonaka H, Kawashima R, Saiki Y, Dezawa M. New rat model of spinal cord infarction with long-lasting functional disabilities generated by intraspinal injection of endothelin-1. Stroke Vasc Neurol 2025; 10:e002962. [PMID: 38906547 DOI: 10.1136/svn-2023-002962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The current method for generating an animal model of spinal cord (SC) infarction is highly invasive and permits only short-term observation, typically limited to 28 days. OBJECTIVE We aimed to establish a rat model characterised by long-term survival and enduring SC dysfunction by inducing selective ischaemic SC damage. METHODS In 8-week-old male Wistar rats, a convection-enhanced delivery technique was applied to selectively deliver endothelin-1 (ET-1) to the anterior horn of the SC at the Th13 level, leading to SC infarction. The Basso, Beattie and Bresnahan (BBB) locomotor score was assessed for 56 days. The SC was examined by a laser tissue blood flowmeter, MRI, immunohistochemistry, triphenyl tetrazolium chloride (TTC) staining, Western blots and TUNEL staining. RESULTS The puncture method was used to bilaterally inject 0.7 µL ET-1 (2.5 mg/mL) from the lateral SC into the anterior horns (40° angle, 1.5 mm depth) near the posterior root origin. Animals survived until day 56 and the BBB score was stably maintained (5.5±1.0 at day 14 and 6.2±1.0 at day 56). Rats with BBB scores ≤1 on day 1 showed stable scores of 5-6 after day 14 until day 56 while rats with BBB scores >1 on day 1 exhibited only minor dysfunction with BBB scores >12 after day 14. TTC staining, immunostaining and TUNEL staining revealed selective ischaemia and neuronal cell death in the anterior horn. T2-weighted MR images showed increasing signal intensity at the SC infarction site over time. Western blots revealed apoptosis and subsequent inflammation in SC tissue after ET-1 administration. CONCLUSIONS Selective delivery of ET-1 into the SC allows for more precise localisation of the infarcted area at the targeted site and generates a rat SC infarction model with stable neurological dysfunction lasting 56 days.
Collapse
Affiliation(s)
- Masayuki Otani
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keisuke Sasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shintaro Katahira
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryohei Terai
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rie Ryoke
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Cai J, Wang Y, Zhai C, Jiang K, Wang Z, Fang L, Li X, Zhu C, Liu W, Wang T, Wu Q. Body weight-supported treadmill training reduces glial scar overgrowth in SCI rats by decreasing the reactivity of astrocytes during the subacute phase. BMC Neurosci 2025; 26:30. [PMID: 40295901 PMCID: PMC12039159 DOI: 10.1186/s12868-025-00947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Spinal cord injury is followed by glial scar formation, which was long seen mainly as a physical barrier preventing axonal regeneration. Glial scar astrocytes lead to glial scar formation and produce inhibitory factors to prevent axons from growing through the scar, while inhibiting the conversion of reactive astrocytes into glial scar-forming astrocytes may represent an ideal treatment for CNS injury. Exercise is a non-invasive and effective therapeutic intervention for clinical rehabilitation of spinal cord injury. However, its precise therapeutic mechanisms still need to be continuously explored. METHODS 30 rats were randomly assigned to three groups (Sham, SCI, SCI + BWSTT; n = 10 rats per group). In this study, we employed the BBB scales and gait analysis system to examine the behavioral functions of the rats in each group. Furthermore, we utilized immunoblotting of spinal cord tissue at the injury site, in addition to histological staining and immunofluorescence staining, to explore glial scar aggregation and axonal regeneration in each group of rats. RESULTS Our results revealed that hindlimb motor function was significantly improved in SCI rats after a sustained subacute period of BWSTT, accompanied by the promotion of histological repair and nerve regeneration. Subsequent immunofluorescence staining and immunoblotting showed diminished astrocyte reactivity in the region surrounding the spinal cord injury as well as reduced expression and distribution of collagen fibers near the lesion after BWSTT. Additionally, a significant decrease in the expression of MMP-2/9, which is closely related to astrocyte migration, was observed in the vicinity of spinal cord tissue lesions. CONCLUSION Our study demonstrates that a sustained BWSTT intervention during the subacute phase of spinal cord injury can effectively reduce astrocyte reactivity and glial scarring overgrowth, thereby facilitating functional recovery after SCI.
Collapse
Affiliation(s)
- Jili Cai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenyuan Zhai
- Department of Rehabilitation, Suzhou Hospital, Nanjing Medical University, Suzhou, 215008, China
| | - Kunmao Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zun Wang
- Rehabilitation Medicine Department, School of Acupuncture and Tuina, School of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lu Fang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiangzhe Li
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, Jiangsu, China
| | - Chenchen Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Qi Wu
- Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Sun W, Dion E, Laredo F, Okonak A, Sepeda JA, Haykal E, Zhou M, El-Hodiri HM, Fischer AJ, Silver J, Peng J, Sas A, Tedeschi A. In vivo programming of adult pericytes aids axon regeneration by providing cellular bridges for SCI repair. Mol Ther 2025:S1525-0016(25)00294-1. [PMID: 40253585 DOI: 10.1016/j.ymthe.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Pericytes are contractile cells of the microcirculation that participate in wound healing after spinal cord injury (SCI). Thus far, the extent to which pericytes cause or contribute to axon growth and regeneration failure after SCI remains controversial. Here, we found that SCI leads to profound changes in vasculature architecture and pericyte coverage. We demonstrated that pericytes constrain sensory axons on their surface, causing detrimental structural and functional changes in adult dorsal root ganglion neurons that contribute to axon regeneration failure after SCI. Perhaps more excitingly, we discovered that in vivo programming of adult pericytes via local administration of platelet-derived growth factor BB (PDGF-BB) effectively promotes axon regeneration and recovery of hindlimb function by contributing to the formation of cellular bridges that span the lesion. Ultrastructural analysis showed that PDGF-BB induced fibronectin fibril alignment and extension, effectively converting adult pericytes into a permissive substrate for axon growth. In addition, PDGF-BB localized delivery positively affects the physical and chemical nature of the lesion environment, thereby creating more favorable conditions for SCI repair. Thus, therapeutic manipulation rather than wholesale ablation of pericytes can be exploited to prime axon regeneration and SCI repair.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Elliot Dion
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; University of Nottingham, Nottingham NG7 2QL, UK
| | - Allyson Okonak
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jesse A Sepeda
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Esraa Haykal
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Min Zhou
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juan Peng
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Sas
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Wu A, Yang G, Liu G, Zhang J. SGK1 upregulation in GFAP + neurons in the frontal association cortex protects against neuronal apoptosis after spinal cord injury. Cell Death Dis 2025; 16:237. [PMID: 40175324 PMCID: PMC11965300 DOI: 10.1038/s41419-025-07542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Spinal cord injury (SCI) casts devastating and long-lasting impacts on the well-being of patients. Cognitive deficits and emotional disorders are common in individuals with SCI, yet the underlying mechanisms are not completely understood. Astrogliosis and glial scar formation occur during the subacute phase post-injury, playing complicated roles in remyelination and neurite regrowth. Therefore, we constructed a GFAP-IRES-Venus-AkaLuc knock-in mouse model for the corresponding studies. Surprisingly, complete spinal cord transection (SCT) surgery led to earlier and more prominent augmentation of bioluminescence in the brain than in the spinal cord. Bulk RNA sequencing revealed the activation of apoptotic signaling and the upregulation of serum and glucocorticoid-regulated kinase 1 (SGK1). The pattern of GFAP signals changed throughout the brain after SCT, as indicated by tissue clearing and immunostaining. Specifically, GFAP signals were intensified in the frontal association cortex (FrA), an encephalic region involved in associative learning and recognition memory processes. Further exploration unraveled that intensified GFAP signals in the FrA were attributed to apoptotic neurons with SGK1 upregulation, which was induced by sustained high glucocorticoid levels after SCT. The introduction of SGK1 silencing vectors confirmed that SGK upregulation in these FrA neurons exerted anti-apoptotic effects through NRF2/HO-1 signaling. In addition, SGK1 knockdown in FrA neurons aggravated the post-SCI depressive-like behaviors. Thus, ectopic SGK1 expression designated for limbic neurons could serve as a promising therapeutic target for the future development of treatments for spinal cord injuries.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Genyu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
O'Connor C, Mullally RE, McComish SF, O'Sullivan J, Woods I, Schoen I, Garre M, Caldwell MA, Dervan A, O'Brien FJ. Neurotrophic extracellular matrix proteins promote neuronal and iPSC astrocyte progenitor cell- and nano-scale process extension for neural repair applications. J Anat 2025; 246:585-601. [PMID: 39463075 PMCID: PMC11911129 DOI: 10.1111/joa.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications. This study aimed to provide an in-depth analysis of how different commonly used extracellular matrix proteins- laminin-1, Fn, collagen IV, and collagen I-affect the morphology and growth of trophic induced pluripotent stem cell (iPSC)-derived astrocyte progenitors and mouse motor neuron-like cells. Following a 7-day culture period, morphological assessments revealed that laminin-1, fibronectin, and collagen-IV, but not collagen I, promoted increased process extension and a stellate morphology in astrocytes, with collagen-IV yielding the greatest increases. Subsequent analysis of neurons grown on the different extracellular matrix proteins revealed a similar pattern with laminin-1, fibronectin, and collagen-IV supporting robust neurite outgrowth. fibronectin promoted the greatest increase in neurite extension, while collagen-I did not enhance neurite growth compared to poly-L-lysine controls. Super-resolution microscopy highlighted extracellular matrix-specific nanoscale changes in cytoskeletal organization, with distinct patterns of actin filament distribution where the three basement membrane-associated proteins (laminin-1, fibronectin, and collagen-IV) promoted the extension of fine cellular processes. Overall, this study demonstrates the potent effect of laminin-1, fibronectin and collagen-IV to promote both iPSC-derived astrocyte progenitor and neuronal growth, yielding detailed insights into the effect of extracellular matrix proteins on neural cell morphology at both the whole cell and nanoscale levels. The ability of laminin-1, collagen-IV and fibronectin to elicit strong growth-promoting effects highlight their suitability as optimal extracellular matrix proteins to incorporate into neurotrophic biomaterial scaffolds for the delivery of cell cargoes for neural repair.
Collapse
Affiliation(s)
- Cian O'Connor
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Rena E. Mullally
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Sarah F. McComish
- Department of Physiology, School of MedicineTCDDublinIreland
- Trinity College Institute of NeuroscienceTCDDublinIreland
| | - Julia O'Sullivan
- Department of Physiology, School of MedicineTCDDublinIreland
- Trinity College Institute of NeuroscienceTCDDublinIreland
| | - Ian Woods
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRCSIDublinIreland
| | - Massimiliano Garre
- Super‐Resolution Imaging ConsortiumDepartment of Chemistry RCSIDublinIreland
| | - Maeve A. Caldwell
- Department of Physiology, School of MedicineTCDDublinIreland
- Trinity College Institute of NeuroscienceTCDDublinIreland
| | - Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| |
Collapse
|
9
|
Tao X, Chen H, Zhu Z, Ren T, Zhen H, Sun X, Song Y, Xu X, Song Z, Liu J. Astrocyte-conditional knockout of MOB2 inhibits the phenotypic conversion of reactive astrocytes from A1 to A2 following spinal cord injury in mice. Int J Biol Macromol 2025; 300:140289. [PMID: 39863205 DOI: 10.1016/j.ijbiomac.2025.140289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice. MOB2 modulated A1/A2 transformation in a primary astrocyte reactive cell model. Therefore, we constructed MOB2 conditional knockout mice (MOB2GFAP-CKO) and discovered that conditional knockout of MOB2 inhibited the conversion of reactive astrocytes from A1 to A2 and hindered spinal cord function recovery. Mechanistically, MOB2 increased the activation of PI3K-AKT signaling to promote A1/A2 transformation in vitro, whereas sc79 (an AKT activator) reversed the subtype transformation of reactive astrocytes and improved functional recovery in MOB2GFAP-CKO mice after SCI. Taken together, study provides the first insights into how MOB2 acts as a novel regulator to promote the conversion this of the reactive astrocyte phenotype from A1 to A2, showing great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Xin Tao
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China; Department of Orthopedics, The People's Hospital of Liyang, Liyang 213300, Jiangsu, People's Republic of China
| | - Haining Chen
- Department of Orthopedics, The First Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, People's Republic of China
| | - Zhenghuan Zhu
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Tianran Ren
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Hongming Zhen
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xiaoliang Sun
- Department of Orthopedics, Changzhou Maternal and Child Health Care Hospital, Changzhou 213000, Jiangsu, People's Republic of China
| | - Yu Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China
| | - Zhiwen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| | - Jinbo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Tang W, Wang A, Liu S, Wen G, Qi H, Gu Y, Xu C, Ren S, Zhang S, He Y. Calycosin regulates astrocyte reactivity and astrogliosis after spinal cord injury by targeting STAT3 phosphorylation. J Neuroimmunol 2025; 400:578535. [PMID: 39954615 DOI: 10.1016/j.jneuroim.2025.578535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Astrocytes are the most populous glial cells in the central nervous system (CNS), which can exert detrimental effects through a process of reactive astrogliosis. Our previous study has indicated the potential effect of Calycosin in preventing spinal cord injury (SCI). This study aims to investigate the mechanism by which calycosin regulates the polarization of A1 astrocytes, a neurotoxic subtype of reactive astrocytes, in SCI models. MATERIALS AND METHODS The SCI model was induced by applying mechanical compression to the spinal cord using vascular clamps. A1 astrocyte differentiation was induced by treating astrocytes with microglia supernatant obtained after Lipopolysaccharide (LPS) stimulation. Key protein expression levels were analyzed by Western blotting, and astrocyte markers such as CS56, GFAP, C3, S100A10 were assessed through immunofluorescence staining. RESULTS Calycosin treatment significantly reduced glial scar formation and C3 expression in SCI rats. However, S100A10 expression remained unchanged. Further analysis showed that Calycosin inhibited A1 astrocyte activation, migration, and invasion, which was associated with STAT3 phosphorylation. Calycosin downregulated p-STAT3 levels in both A1 astrocytes and SCI rats. These effects were reversed by Colivelin (a STAT3 activator) in A1 astrocytes. CONCLUSION Calycosin treatment can modulate p-STAT3 expression, thereby altering the functionality of astrocytes during the recovery phase and positively impacting the treatment and rehabilitation of SCI.
Collapse
Affiliation(s)
- Wenhai Tang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Aitao Wang
- Department of Anesthesiology, Hohhot First Hospital, Hohhot 010030, China
| | - Shengxing Liu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Guangyu Wen
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Hao Qi
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Yuntao Gu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Chunzhao Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Shanwu Ren
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Shunli Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China.
| | - Yongxiong He
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
11
|
Zhou M, Jiang Z, Zhang M, Feng S, Ma B, Kan S, Fu X, Zhu R. Exploring the molecular mechanism of icariin improving spinal cord injury through network pharmacology combined with experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03904-7. [PMID: 40014127 DOI: 10.1007/s00210-025-03904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/08/2025] [Indexed: 02/28/2025]
Abstract
This study aimed to investigate the potential pharmacological effects of icariin (ICA) in the treatment of spinal cord injury (SCI). Network pharmacology was used to focus on the potential targets and biological processes of ICA in SCI. Molecular docking was used to verify the ability of ICA to bind to its core targets. Finally, valuate the efficacy and potential mechanisms of ICA in treating spinal cord injury through in vitro and in vivo experiments. A total of 37 targets were screened out, and core genes were screened out from the protein‒protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these targets are enriched mainly in response to hypoxia, regulation of the cellular response to stress, and the TGF-beta signaling pathway. Molecular docking analysis showed that ICA has good docking ability with core targets. In animal experiments, Basso, Beattie and Bresnahan scores, catwalk gait analysis, hematoxylin and eosin staining, and RT-qPCR showed that ICA can inhibit spinal cord inflammation and effectively improve the behavioral and histological recovery after SCI rats. Western blot and immunofluorescence showed that ICA can reduce astrocyte activation and downregulate the TGF-beta signaling pathway after SCI. In addition, ICA can promote axonal nerve elongation and promotes angiogenesis after spinal cord injury in rats. In vitro experiments revealed that ICA can inhibit TGFβ1-induced activation of the TGF-beta signaling pathway and astrocyte activation. ICA treats SCI through multiple targets and pathways. ICA plays a major role in protecting nerves, promoting angiogenesis, and inhibiting reactive astrocyte activation in the treatment of SCI.
Collapse
Grants
- 2022JZXK05, 2022JZXK02, 2023YJZD002, 2022JZXK06 Tianjin Union Medical Center
- 2022JZXK05, 2022JZXK02, 2023YJZD002, 2022JZXK06 Tianjin Union Medical Center
- 2022JZXK05, 2022JZXK02, 2023YJZD002, 2022JZXK06 Tianjin Union Medical Center
- 2022JZXK05, 2022JZXK02, 2023YJZD002, 2022JZXK06 Tianjin Union Medical Center
- TJYXZDXK-064B Tianjin Key Medical Discipline (Specialty) Construction Project
- 2021125 Tianjin Municipal Health Commission's Integrated Traditional Chinese Medicine and Western Medicine Project
- 202305 Tianjin Health Commission Science and Technology Project
- TJWJ2024QN045 Tianjin Health Science and Technology Project
- 2023RC006 Yunnan Province talented Xing border plan
Collapse
Affiliation(s)
- Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
- Tianjin Key Specialty of Integrated Traditional Chinese and Western Medicine, Department of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine), Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
| | - Zehua Jiang
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
- Tianjin Key Specialty of Integrated Traditional Chinese and Western Medicine, Department of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine), Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
| | - Maosen Zhang
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Sa Feng
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Boyuan Ma
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
- Tianjin Key Specialty of Integrated Traditional Chinese and Western Medicine, Department of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine), Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
- Tianjin Key Specialty of Integrated Traditional Chinese and Western Medicine, Department of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine), Tianjin, China
- Tianjin Institute of Rehabilitation, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China.
- Tianjin Key Specialty of Integrated Traditional Chinese and Western Medicine, Department of Spinal Rehabilitation with Integrated Traditional Chinese and Western Medicine), Tianjin, China.
- Tianjin Institute of Rehabilitation, Tianjin, China.
| |
Collapse
|
12
|
Quan L, Uyeda A, Manabe I, Muramatsu R. Astrocytic heterogeneous nuclear ribonucleoprotein U is involved in scar formation after spinal cord injury. J Neuroinflammation 2025; 22:28. [PMID: 39891176 PMCID: PMC11786496 DOI: 10.1186/s12974-025-03351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Astrocytes have a beneficial role in tissue repair after central nervous system (CNS) injury. Although astrocyte proliferation is activated in response to injury, the intracellular mechanisms of astrocyte proliferation during acute phase of injury are not fully clarified. In this study, by functionally screening the highly expressed genes in the pathological state of spinal astrocytes, heterogeneous nuclear ribonucleoprotein U (Hnrnpu) is identified as a potential endogenous molecule that regulates astrocyte proliferation and the following scar formation. Inhibition of Hnrnpu in astrocytes impairs the formation of astrocytic glial scar, motor function recovery, and neuronal regeneration after spinal cord injury (SCI) in mice. In human astrocytes, HNRNPU knockdown downregulates the genes related to the astrocyte functions in scar formation and neuronal regeneration. These findings uncover that modulation of endogenous astrocytic function would be a promising therapeutic avenue to restore neurological function after CNS injury.
Collapse
Affiliation(s)
- Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
13
|
Lu E, Zhou K, Miao J, Zhu Y, Tang J, Du S, Feng Y, Jiang L, Jiang T, Huang T, Li P, Miao X, Han Q, Xiao J. A cryo-shocked M2 macrophages based treatment strategy promoting repair of spinal cord injury via immunomodulation and axonal regeneration effects. J Nanobiotechnology 2025; 23:8. [PMID: 39757205 DOI: 10.1186/s12951-024-03018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 01/07/2025] Open
Abstract
Recovery from spinal cord injury (SCI) is often impeded by neuroinflammation, scar formation, and limited axonal regeneration. To tackle these issues, we developed an innovative biomimetic drug delivery system using liquid nitrogen-treated M2 macrophages (LNT M2) which internalized paclitaxel (PTX) nanoparticles beforehand. These were incorporated into a gelatin methacryloyl (GelMA) scaffold, creating a multifunctional, injectable treatment for single-dose administration. The LNT M2 inherited the inflammatory factor/chemokine receptors from the living M2 macrophages and thus possessing significant inflammatory neutralizing effect. In addition, the scaffold provides slow, sustained release of PTX, promoting axonal regeneration and suppressing scar formation in SCI rats. The LNT M2-based dual-functional scaffold significantly enhances motor function, reduces neuroinflammation, and accelerates axonal regeneration by modulating the inflammatory microenvironment and preventing the formation of glial and fibrotic scars. This approach combines the regenerative effects of low-dose PTX with the immunoregulatory properties of LNT M2, leading to remarkable neurological recovery in SCI rats. Moreover, the scaffold's straightforward preparation, ease of standardization, and "ready-to-use" nature make it a promising candidate for acute SCI intervention and future clinical applications.
Collapse
Affiliation(s)
- Ermei Lu
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Emergency, Wenzhou Central Hospital, Wenzhou, 325099, Zhejiang, China
| | - Kecheng Zhou
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jiansen Miao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanlin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Jiyao Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Siting Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanzhen Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Linyuan Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tianyao Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ting Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xinjun Miao
- Department of Emergency, Wenzhou Central Hospital, Wenzhou, 325099, Zhejiang, China.
| | - Qi Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Emergency and Critical Disease, Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
14
|
Pagan-Rivera LH, Ocasio-Rivera SE, Godoy-Vitorino F, Miranda JD. Spinal cord injury: pathophysiology, possible treatments and the role of the gut microbiota. Front Microbiol 2024; 15:1490855. [PMID: 39744391 PMCID: PMC11688470 DOI: 10.3389/fmicb.2024.1490855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Spinal cord injury (SCI) is a devastating pathological state causing motor, sensory, and autonomic dysfunction. To date, SCI remains without viable treatment for its patients. After the injury, molecular events centered at the lesion epicenter create a non-permissive environment for cell survival and regeneration. This newly hostile setting is characterized by necrosis, inflammation, demyelination, axotomy, apoptosis, and gliosis, among other events that limit locomotor recovery. This review provides an overview of the pathophysiology of SCI, highlighting the potential role of the gut microbiota in modulating the inflammatory response and influencing neurological recovery following trauma to the spinal cord. Emphasis on the bidirectional communication between the gut and central nervous system, known as the gut-brain axis is given. After trauma, the gut-brain/spinal cord axis promotes the production of pro-inflammatory metabolites that provide a non-permissive environment for cell survival and locomotor recovery. Therefore, any possible pharmacological treatment, including antibiotics and painkillers, must consider their effects on microbiome dysbiosis to promote cell survival, regeneration, and behavioral improvement. Overall, this review provides valuable insights into the pathophysiology of SCI and the evolving understanding of the role of the gut microbiota in SCI, with implications for future research and clinical practice.
Collapse
Affiliation(s)
- Luis H. Pagan-Rivera
- Physiology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Samuel E. Ocasio-Rivera
- Physiology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Filipa Godoy-Vitorino
- Microbiology and Medical Zoology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Jorge D. Miranda
- Physiology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
15
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
16
|
Kolpek DJ, Kim J, Mohammed H, Gensel JC, Park J. Physicochemical Property Effects on Immune Modulating Polymeric Nanoparticles: Potential Applications in Spinal Cord Injury. Int J Nanomedicine 2024; 19:13357-13374. [PMID: 39691455 PMCID: PMC11649979 DOI: 10.2147/ijn.s497859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Nanoparticles (NPs) offer promising potential as therapeutic agents for inflammation-related diseases, owing to their capabilities in drug delivery and immune modulation. In preclinical studies focusing on spinal cord injury (SCI), polymeric NPs have demonstrated the ability to reprogram innate immune cells. This reprogramming results in redirecting immune cells away from the injury site, downregulating pro-inflammatory signaling, and promoting a regenerative environment post-injury. However, to fully understand the mechanisms driving these effects and maximize therapeutic efficacy, it is crucial to assess NP interactions with innate immune cells. This review examines how the physicochemical properties of polymeric NPs influence their modulation of the immune system. To achieve this, the review delves into the roles played by innate immune cells in SCI and investigates how various NP properties influence cellular interactions and subsequent immune modulation. Key NP properties such as size, surface charge, molecular weight, shape/morphology, surface functionalization, and polymer composition are thoroughly examined. Furthermore, the review establishes connections between these properties and their effects on the immunomodulatory functions of NPs. Ultimately, this review suggests that leveraging NPs and their physicochemical properties could serve as a promising therapeutic strategy for treating SCI and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Daniel J Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hisham Mohammed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Yuan Y, Xu M, Feng L, Zhong W, Zhang L, Du R, Sun J, Wang C, Du J. Nanozyme Hydrogels Promote Nerve Regeneration in Spinal Cord Injury by Reducing Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59949-59961. [PMID: 39454206 DOI: 10.1021/acsami.4c13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Inhibiting secondary cell death and promoting neuronal regeneration are critical for nerve repair after spinal cord injury (SCI). The excessive accumulation of reactive oxygen species (ROS) after SCI causes cell death and induces apoptosis. These reactions further increase the level of ROS production, leading to a vicious cycle of spinal cord tissue damage. Therefore, intervention targeting ROS is a potential therapeutic approach to improve the recovery of locomotor function after SCI. In this study, we designed and synthesized a nanozyme hydrogel delivery system loaded with multiple drugs, LA/Me/Se NPs-h. LA/Me/Se NPs-h exhibited a satisfactory size distribution and excellent stability, enhancing the bioavailability of therapeutic drugs. Moreover, we explored the antioxidant and protective effects of LA/Me/Se NPs-h against oxidative stress-induced cell damage caused by ROS production after SCI in vitro. In the mice SCI model, the Basso mouse scale and gait analysis showed that LA/Me/Se NPs-h significantly promoted the recovery of locomotor function after SCI. The histological and immunofluorescence results of the injury site revealed that LA/Me/Se NPs-h upregulated the expression of GFAP, NF-200, and superoxide dismutase in spinal cord lesion, reduced caspase-3 expression, improved spinal cord continuity, reduced lesion cavity, and inhibited the axonal demyelination. Consequently, LA/Me/Se NPs-h increased the activity of antioxidant enzymes and reduced neuronal apoptosis by reducing oxidative stress and ultimately promoted nerve regeneration. Taken together, this study demonstrated promising nanozyme hydrogels and provided an effective therapeutic strategy for SCI and other ROS-related diseases.
Collapse
Affiliation(s)
- Yitong Yuan
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, P. R. China
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan 030001, P. R. China
- Department of Histology and Embryology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Miaomiao Xu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Limin Feng
- School of Stomatology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Wanting Zhong
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Longzhu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Ruochen Du
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Jingjing Sun
- Zhenjiang Mental Health Center, Zhenjiang 212000, P. R. China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan 030001, P. R. China
- School of Stomatology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Jiangfeng Du
- Department of Medical Imaging, Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, P. R. China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, P. R. China
| |
Collapse
|
18
|
Liao JX, Huang QM, Pan ZC, Wu J, Zhang WJ. The anti-inflammatory and immunomodulatory effects of olfactory ensheathing cells transplantation in spinal cord injury and concomitant pathological pain. Eur J Pharmacol 2024; 982:176950. [PMID: 39214270 DOI: 10.1016/j.ejphar.2024.176950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling injury that is often accompanied by neuropathic pain (NeP), which severely affects patients' motor and sensory functions and reduces their quality of life. Currently, there is no specific treatment for treating SCI and relieving the accompanying pain, and we can only rely on medication and physical rehabilitation, both of which are ineffective. Researchers have recently identified a novel class of glial cells, olfactory ensheathing cells (OECs), which originate from the olfactory system. Transplantation of OECs into damaged spinal cords has demonstrated their capacity to repair damaged nerves, improve the microenvironment at the point of injury, and They can also restore neural connectivity and alleviate the patient's NeP to a certain extent. Although the effectiveness of OECs transplantation has been confirmed in experiments, the specific mechanisms by which it repairs the spinal cord and relieves pain have not been articulated. Through a review of the literature, it has been established that the ability of OECs to repair and relieve pain is inextricably linked to its anti-inflammatory and immunomodulatory effects. In this regard, it is imperative to gain a deeper understanding of how OECs exert their anti-inflammatory and immunomodulatory effects. The objective of this paper is to provide a comprehensive overview of the mechanisms by which OECs exert anti-inflammatory and immunomodulatory effects. We aim to manipulate the immune microenvironment at the transplantation site through the intervention of cytokines and immune cells, with the goal of enhancing OECs' function or creating a conducive microenvironment for OECs' survival. This approach is expected to improve the therapeutic efficacy of OECs in clinical settings. However, numerous fundamental and clinical challenges remain to be addressed if OEC transplantation therapy is to become a standardized treatment in clinical practice.
Collapse
Affiliation(s)
- Jun-Xiang Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zhi-Cheng Pan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jie Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
19
|
Zhu Y, Zou W, Sun B, Shen K, Xia F, Wang H, Jiang F, Lu Z. Ginsenoside Rg1 Regulates the Activation of Astrocytes Through lncRNA-Malat1/miR-124-3p/Lamc1 Axis Driving PI3K/AKT Signaling Pathway, Promoting the Repair of Spinal Cord Injury. CNS Neurosci Ther 2024; 30:e70103. [PMID: 39491316 PMCID: PMC11532020 DOI: 10.1111/cns.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
AIM To investigate the regulation of ginsenoside Rg1 on the PI3K/AKT pathway through the lncRNA-Malat1/miR-124-3p/ Laminin gamma1 (Lamc1) axis, activating astrocytes (As) to promote the repair of spinal cord injury (SCI). METHODS Bioinformatics analysis was used to predict miRNA targeting Lamc1 and lncRNA targeting miR-124-3p, which were then validated through a dual-luciferase assay. Following transfection, the relationships between Malat1, miR-124-3p, and Lamc1 expression levels were assessed by qRT-PCR and Western blot (WB). Immunofluorescence staining and immunohistochemistry were utilized to measure Lamc1 expression, while changes in cavity area were observed through hematoxylin-eosin (HE) staining. Basso-Beattie-Bresnahan (BBB) scale and footprint analysis were used to evaluate functional recovery. WB was performed to assess the expression of PI3K/AKT pathway-related protein. RESULTS Rg1 was found to upregulate Malat1 expression, which in turn modulated the Malat1/miR-124-3p/Lamc1 axis. Furthermore, Rg1 activated the PI3K/Akt signaling pathway, significantly reducing the SCI cavity area and improving hind limb motor function. However, knockout of Malat1 hindered these effects, and inhibition of miR-124-3p reversed the silencing effects of Malat1. CONCLUSIONS Rg1 can induce Malat1 expression to activate the Lamc1/PI3K/AKT signaling pathway by sponging with miR-124-3p, thereby regulating As activity to repair SCI.
Collapse
Affiliation(s)
- Yin Zhu
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of OrthopedicsThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangChina
| | - Wenjun Zou
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Baihan Sun
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of OrthopedicsXuzhou City Hospital of TCMXuzhouChina
| | - Kelv Shen
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Feiyun Xia
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Wang
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Fengxian Jiang
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengfeng Lu
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
20
|
Li Q, Gao S, Qi Y, Shi N, Wang Z, Saiding Q, Chen L, Du Y, Wang B, Yao W, Sarmento B, Yu J, Lu Y, Wang J, Cui W. Regulating Astrocytes via Short Fibers for Spinal Cord Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406742. [PMID: 39120009 PMCID: PMC11538653 DOI: 10.1002/advs.202406742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.
Collapse
Affiliation(s)
- Qianyi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Shuaiyun Gao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Yang Qi
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Nuo Shi
- Peterson's LabShanghai200030P. R. China
| | | | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Bo Wang
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Wenfei Yao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Bruno Sarmento
- I3‐Instituto de Investigação e Inovação Em Saúde and INEB‐Instituto de Engenharia BiomédicaUniversidade Do PortoRua Alfredo Allen 208Porto4200‐135Portugal
- IUCS‐Instituto Universitário de Ciências da SaúdeCESPURua Central de Gandra 1317Gandra4585‐116Portugal
| | - Jie Yu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Yiming Lu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
- Division of Critical CareNanxiang Hospital of Jiading DistrictShanghai201802P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
21
|
Wang Q, Wang L, Botchway BOA, Zhang Y, Huang M, Liu X. OTULIN Can Improve Spinal Cord Injury by the NF-κB and Wnt/β-Catenin Signaling Pathways. Mol Neurobiol 2024; 61:8820-8830. [PMID: 38561559 DOI: 10.1007/s12035-024-04134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Spinal cord injury (SCI) is a significant health concern, as it presently has no effective treatment in the clinical setting. Inflammation is a key player in the pathophysiological process of SCI, with a number of studies evidencing that the inhibition of the NF-κB signaling pathway may impede the inflammatory response and improve SCI. OTULIN, as a de-ubiquitination enzyme, the most notable is its anti-inflammatory effect. OTULIN can inhibit the NF-κB signaling pathway to suppress the inflammatory reaction via de-ubiquitination. In addition, OTULIN may promote vascular regeneration through the Wnt/β-catenin pathway in the wake of SCI. In this review, we analyze the structure and physiological function of OTULIN, along with both NF-κB and Wnt/β-catenin signaling pathways. Furthermore, we examine the significant role of OTULIN in SCI through its impairment of the NF-κB signaling pathway, which could open the possibility of it being a novel interventional target for the condition.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Lvxia Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Benson O A Botchway
- Bupa Cromwell Hospital, London, SW5 0TU, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
22
|
Wang C, Wang C, Wang M, Wang M, Ni Q, Sun J, Sun B, Wang Y. Minimally Invasive Real-Time Monitoring for Rapid and Sensitive Diagnosis of Spinal Cord Injury. ACS Sens 2024; 9:5058-5068. [PMID: 39401952 DOI: 10.1021/acssensors.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological injury that is currently extremely difficult to cure clinically. SCI involves numerous pathophysiological processes, and microRNAs (miRNAs) play an important role in these processes. Meanwhile, miRNAs have received a lot of attention for their role in other diseases as well. Therefore, the detection of disease-related miRNAs is important for the study of disease development, treatment, and prognosis. With the rapid development of molecular biology, the traditional detection methods of miRNA can no longer meet the needs of experiments. Electrochemical detection methods are widely used because of their excellent detection performance. Here, we designed an electrochemical sensor prepared using borosilicate glass microneedle electrodes for real-time monitoring of miR-21-5p expression in vivo after SCI. The sensor showed a good linear relationship between the oxidation peak current value and the concentration of miR-21-5p in the concentration range 0-2 fM (Y = 12.025X + 90.396, R2 = 0.98). The limit of detection (LOD) of the sensor was 0.3667 fM. The experimental results showed that the borosilicate glass microneedle electrochemical sensor achieved fast, accurate, highly sensitive, highly specific, highly stable, and reproducible monitoring of miR-21-5p. More importantly, the electrochemical sensor has a better clinical translation prospect, which is important for the research of clinical diseases.
Collapse
Affiliation(s)
- Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Cai Wang
- Binhai County People's Hospital, Yancheng, Jiangsu 224500, China
| | - Minyue Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Mengyue Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
23
|
Wang Z, Li Z, Luan T, Cui G, Shu S, Liang Y, Zhang K, Xiao J, Yu W, Cui J, Li A, Peng G, Fang Y. A spatiotemporal molecular atlas of mouse spinal cord injury identifies a distinct astrocyte subpopulation and therapeutic potential of IGFBP2. Dev Cell 2024; 59:2787-2803.e8. [PMID: 39029468 DOI: 10.1016/j.devcel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
Spinal cord injury (SCI) triggers a cascade of intricate molecular and cellular changes that determine the outcome. In this study, we resolve the spatiotemporal organization of the injured mouse spinal cord and quantitatively assess in situ cell-cell communication following SCI. By analyzing existing single-cell RNA sequencing datasets alongside our spatial data, we delineate a subpopulation of Igfbp2-expressing astrocytes that migrate from the white matter (WM) to gray matter (GM) and become reactive upon SCI, termed Astro-GMii. Further, Igfbp2 upregulation promotes astrocyte migration, proliferation, and reactivity, and the secreted IGFBP2 protein fosters neurite outgrowth. Finally, we show that IGFBP2 significantly reduces neuronal loss and remarkably improves the functional recovery in a mouse model of SCI in vivo. Together, this study not only provides a comprehensive molecular atlas of SCI but also exemplifies how this rich resource can be applied to endow cells and genes with functional insight and therapeutic potential.
Collapse
Affiliation(s)
- Zeqing Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuxia Li
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianle Luan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhong Cui
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Shunpan Shu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyao Liang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingshu Xiao
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Wei Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jihong Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ang Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Ala-Kokko N, Baek I, Song Y. Development of Tissue-Engineered Model of Fibrotic Scarring after Spinal Cord Injury to Study Astrocyte Activation and Neurite Outgrowth In Vitro. ACS Biomater Sci Eng 2024; 10:6545-6557. [PMID: 39259933 PMCID: PMC11480936 DOI: 10.1021/acsbiomaterials.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Traumatic spinal cord injuries (SCI) are debilitating injuries affecting twenty-seven million people worldwide and cause functional impairments. Despite decades of research and medical advancements, current treatment options for SCI remain limited, in part due to the complex pathophysiology of spinal cord lesions including cellular transformation and extracellular matrix (ECM) remodeling. Recent studies have increased focus on fibrotic scarring after SCI, and yet much remains unclear about the impact of fibrotic scarring on SCI lesion progression. Here, using collagen and decellularized spinal cord-based composite hydrogels, a three-dimensional (3D) cell culture model mimicking the fibrous core of spinal cord lesions was implemented to investigate its influence on the surrounding astrocytes. To mimic the fibrotic milieu, collagen fibril thickness was tuned using previously established temperature-controlled casting methods. In our platforms, astrocytes in fibro-mimetic hydrogels exhibited increased levels of activation markers such as glial fibrillary acidic protein and N-cadherin. Furthermore, astrocytes in fibro-mimetic hydrogels deposited more fibronectin and laminin, further hinting that astrocytes may also contribute to fibrotic scarring. These markers were decreased when Rho-ROCK and integrin β1 were inhibited via pharmacological inhibitors. Mechanistic analysis of Yes-associated protein reveals that blocking integrin β1 prevents mechanosensing of astrocytes, contributing to altered phenotypes in variable culture conditions. In the presence of these inhibitors, astrocytes increased the secretion of brain-derived neurotrophic factor, and a greater degree of dorsal root ganglia neurite infiltration into the underlying hydrogels was observed. Altogether, this study presents a novel tissue-engineered platform to study fibrotic scarring after SCI and may be a useful platform to advance our understanding of SCI lesion aggravation.
Collapse
Affiliation(s)
- Nikolas Ala-Kokko
- Department of Biomedical
Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Inha Baek
- Department of Biomedical
Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Younghye Song
- Department of Biomedical
Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
25
|
Ross BC, Kent RN, Saunders MN, Schwartz SR, Smiley BM, Hocevar SE, Chen SC, Xiao C, Williams LA, Anderson AJ, Cummings BJ, Baker BM, Shea LD. Building-Block Size Mediates Microporous Annealed Particle Hydrogel Tube Microenvironment Following Spinal Cord Injury. Adv Healthc Mater 2024; 13:e2302498. [PMID: 37768019 PMCID: PMC10972780 DOI: 10.1002/adhm.202302498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Spinal cord injury (SCI) is a life-altering event, which often results in loss of sensory and motor function below the level of trauma. Biomaterial therapies have been widely investigated in SCI to promote directional regeneration but are often limited by their pre-constructed size and shape. Herein, the design parameters of microporous annealed particles (MAPs) are investigated with tubular geometries that conform to the injury and direct axons across the defect to support functional recovery. MAP tubes prepared from 20-, 40-, and 60-micron polyethylene glycol (PEG) beads are generated and implanted in a T9-10 murine hemisection model of SCI. Tubes attenuate glial and fibrotic scarring, increase innate immune cell density, and reduce inflammatory phenotypes in a bead size-dependent manner. Tubes composed of 60-micron beads increase the cell density of the chronic macrophage response, while neutrophil infiltration and phenotypes do not deviate from those seen in controls. At 8 weeks postinjury, implantation of tubes composed of 60-micron beads results in enhanced locomotor function, robust axonal ingrowth, and remyelination through both lumens and the inter-tube space. Collectively, these studies demonstrate the importance of bead size in MAP construction and highlight PEG tubes as a biomaterial therapy to promote regeneration and functional recovery in SCI.
Collapse
Affiliation(s)
- Brian C Ross
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Samantha R Schwartz
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Brooke M Smiley
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Sarah E Hocevar
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA
| | - Shao-Chi Chen
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Chengchuan Xiao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - Laura A Williams
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California, Biological Sciences III, 2642, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, 845 Health Sciences Rd, Irvine, CA, 92697, USA
- Physical Medicine and Rehabilitation, University of California, 18124 Culver Dr # F, Irvine, CA, 92612, USA
| | - Brian J Cummings
- Institute for Memory Impairments and Neurological Disorders, University of California, Biological Sciences III, 2642, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, 845 Health Sciences Rd, Irvine, CA, 92697, USA
- Physical Medicine and Rehabilitation, University of California, 18124 Culver Dr # F, Irvine, CA, 92612, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, 204 Washtenaw Ave, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI, 48109, USA
| |
Collapse
|
26
|
Ganesan S, Dharmarajan A, Sudhir G, Perumalsamy LR. Unravelling the Road to Recovery: Mechanisms of Wnt Signalling in Spinal Cord Injury. Mol Neurobiol 2024; 61:7661-7679. [PMID: 38421469 DOI: 10.1007/s12035-024-04055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Spinal cord injury (SCI) is a complex neurodegenerative pathology that consistently harbours a poor prognostic outcome. At present, there are few therapeutic strategies that can halt neuronal cell death and facilitate functional motor recovery. However, recent studies have highlighted the Wnt pathway as a key promoter of axon regeneration following central nervous system (CNS) injuries. Emerging evidence also suggests that the temporal dysregulation of Wnt may drive cell death post-SCI. A major challenge in SCI treatment resides in developing therapeutics that can effectively target inflammation and facilitate glial scar repair. Before Wnt signalling is exploited for SCI therapy, further research is needed to clarify the implications of Wnt on neuroinflammation during chronic stages of injury. In this review, an attempt is made to dissect the impact of canonical and non-canonical Wnt pathways in relation to individual aspects of glial and fibrotic scar formation. Furthermore, it is also highlighted how modulating Wnt activity at chronic time points may aid in limiting lesion expansion and promoting axonal repair.
Collapse
Affiliation(s)
- Suchita Ganesan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA, 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - G Sudhir
- Department of Orthopedics and Spine Surgery, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
27
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
28
|
Abdelaziz MA, Chen WH, Chang YW, Mindaye SA, Chen CC. Exploring the role of spinal astrocytes in the onset of hyperalgesic priming signals in acid-induced chronic muscle pain. PNAS NEXUS 2024; 3:pgae362. [PMID: 39228816 PMCID: PMC11370897 DOI: 10.1093/pnasnexus/pgae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hyperalgesic priming, a form of pain plasticity initiated by initial injury, leads to heightened sensitivity to subsequent noxious stimuli, contributing to chronic pain development in animals. While astrocytes play active roles in modulating synaptic transmission in various pain models, their specific involvement in hyperalgesic priming remains elusive. Here, we show that spinal astrocytes are essential for hyperalgesic priming formation in a mouse model of acid-induced muscle pain. We observed spinal astrocyte activation 4 h after initial acid injection, and inhibition of this activation prevented chronic pain development upon subsequent acid injection. Chemogenetic activation of spinal astrocytes mimicked the first acid-induced hyperalgesic priming. We also demonstrated that spinal phosphorylated extracellular regulated kinase (pERK)-positive neurons were mainly vesicular glutamate transporter-2 positive (Vglut2+) neurons after the first acid injection, and inhibition of spinal pERK prevented astrocyte activation. Furthermore, pharmacological inhibition of astrocytic glutamate transporters glutamate transporter-1 and glutamate-aspartate transporter abolished the hyperalgesic priming. Collectively, our results suggest that pERK activation in Vglut2+ neurons activate astrocytes through astrocytic glutamate transporters. This process eventually establishes hyperalgesic priming through spinal D-serine. We conclude that spinal astrocytes play a crucial role in the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Mohamed Abbas Abdelaziz
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Zoology Department, Faculty of Science, Al-Azhar University Assiut Branch, Assiut 71524, Egypt
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Selomon Assefa Mindaye
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
29
|
Peng R, Zhang L, Xie Y, Guo S, Cao X, Yang M. Spatial multi-omics analysis of the microenvironment in traumatic spinal cord injury: a narrative review. Front Immunol 2024; 15:1432841. [PMID: 39267742 PMCID: PMC11390538 DOI: 10.3389/fimmu.2024.1432841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic spinal cord injury (tSCI) is a severe injury to the central nervous system that is categorized into primary and secondary injuries. Among them, the local microenvironmental imbalance in the spinal cord caused by secondary spinal cord injury includes accumulation of cytokines and chemokines, reduced angiogenesis, dysregulation of cellular energy metabolism, and dysfunction of immune cells at the site of injury, which severely impedes neurological recovery from spinal cord injury (SCI). In recent years, single-cell techniques have revealed the heterogeneity of multiple immune cells at the genomic, transcriptomic, proteomic, and metabolomic levels after tSCI, further deepening our understanding of the mechanisms underlying tSCI. However, spatial information about the tSCI microenvironment, such as cell location and cell-cell interactions, is lost in these approaches. The application of spatial multi-omics technology can solve this problem by combining the data obtained from immunohistochemistry and multiparametric analysis to reveal the changes in the microenvironment at different times of secondary injury after SCI. In this review, we systematically review the progress of spatial multi-omics techniques in the study of the microenvironment after SCI, including changes in the immune microenvironment and discuss potential future therapeutic strategies.
Collapse
Affiliation(s)
- Run Peng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Liang Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yongqi Xie
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Shuang Guo
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinqi Cao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation, Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
30
|
Yang H, Hu B, Wang X, Chen W, Zhou H. The effects of hyaluronan and proteoglycan link protein 1 (HAPLN1) in ameliorating spinal cord injury mediated by Nrf2. Biotechnol Appl Biochem 2024; 71:929-939. [PMID: 38607990 DOI: 10.1002/bab.2587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Excessive inflammatory response and oxidative stress (OS) play an important role in the pathogenesis of spinal cord injury (SCI). Balance of inflammation and prevention of OS have been considered an effective strategy for the treatment of SCI. Hyaluronan and proteoglycan link protein 1 (HAPLN1), also known as cartilage link protein, has displayed a wide range of biological and physiological functions in different types of tissues and cells. However, whether HAPLN1 regulates inflammation and OS during SCI is unknown. Therefore, we aimed to examine whether HAPLN1 can have a protective effect on SCI. In this study, both in vitro and in vivo SCI models were established. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were used. Western blotting and enzyme-linked immunosorbent assay were employed to assess the expression of proteins. Our results demonstrate that the administration of HAPLN1 promoted the recovery of motor neurons after SCI by increasing the Basso mouse scale score, increasing the numbers of motor neurons, and preventing apoptosis of spinal cord cells. Additionally, HAPLN1 mitigated OS in spinal cord tissue after SCI by increasing the content of superoxide dismutase SOD and the activity of glutathione peroxidase but reducing the levels of malondialdehyde. Importantly, we found that HAPLN1 stimulated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and stimulated the expression of heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, which mediated the attenuation of HAPLN1 in activation of the NOD-like receptor protein 3 (NLRP3) inflammasome by reducing the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1β. Correspondingly, in vitro experiments show that the presence of HAPLN1 suppressed the NLRP3 inflammasome and prevented cell injury against H2O2 in PC12 cells. These effects were mediated by the Nrf2/ARE pathway, and inhibition of Nrf2 with ML385 abolished the beneficial effects of HAPLN1. Based on these findings, we conclude that HAPLN1 inhibits the NLRP3 inflammasome through the stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, enhancing motor neuronal survival, and improving the recovery of nerve function after SCI.
Collapse
Affiliation(s)
- Hongzhi Yang
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Bin Hu
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Xichun Wang
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Wenjie Chen
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Huanbin Zhou
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Balihu General Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
31
|
Li ST, Wan Y, Chen L, Ding Y. Advances in neuronal reprogramming for neurodegenerative diseases: Strategies, controversies, and opportunities. Exp Neurol 2024; 378:114817. [PMID: 38763354 DOI: 10.1016/j.expneurol.2024.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Neuronal death is often observed in central nervous system injuries and neurodegenerative diseases. The mammalian central nervous system manifests limited neuronal regeneration capabilities, and traditional cell therapies are limited in their potential applications due to finite cell sources and immune rejection. Neuronal reprogramming has emerged as a novel technology, in which non-neuronal cells (e.g. glial cells) are transdifferentiated into mature neurons. This process results in relatively minimal immune rejection. The present review discuss the latest progress in this cutting-edge field, including starter cell selection, innovative technical strategies and methods of neuronal reprogramming for neurodegenerative diseases, as well as the potential problems and controversies. The further development of neuronal reprogramming technology may pave the way for novel therapeutic strategies in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Si-Tong Li
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
dos Santos ACR, Laurindo RP, Pestana FM, Heringer LDS, Canedo NHS, Martinez AMB, Marques SA. Exercise Volume Can Modulate the Regenerative Response to Spinal Cord Injury in Mice. Neurotrauma Rep 2024; 5:721-737. [PMID: 39144452 PMCID: PMC11319863 DOI: 10.1089/neur.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Traumatic spinal cord injury (SCI) causes debilitating motor and sensory deficits that impair functional performance, and physical rehabilitation is currently the only established therapeutic reality in the clinical setting. In this study, we aimed to assess the effect of exercise of different volume and timing of intervention on functional recovery and neuromuscular regeneration in a mouse model of compressive SCI. Mice were assigned to one of four groups: laminectomy only (SHAM); injured, without treadmill training (SCI); injured, treadmill trained for 10 min until day 56 postinjury (TMT1); and injured, treadmill trained for two 10-min cycles with a 10-min pause between them until day 28 postinjury followed by the TMT1 protocol until day 56 postinjury (TMT3). On day 7 postinjury, animals started an eight-week treadmill-training exercise protocol and were trained three times a week. TMT3 mice had the best results in terms of neuroregeneration, functional recovery, and muscle plasticity as measured by functional and morphometric parameters. In conclusion, the volume of exercise can modulate the quality of the regenerative response to injury, when started in the acute phase and adjusted according to the inflammatory window.
Collapse
Affiliation(s)
| | - Renata Pereira Laurindo
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Marques Pestana
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza dos Santos Heringer
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Blanco Martinez
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Adriani Marques
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Neurobiology Department, Institute of Biology, Federal Fluminense University, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
34
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
35
|
Chen T, He X, Wang J, Du D, Xu Y. NT-3 Combined with TGF-β Signaling Pathway Enhance the Repair of Spinal Cord Injury by Inhibiting Glial Scar Formation and Promoting Axonal Regeneration. Mol Biotechnol 2024; 66:1484-1495. [PMID: 37318740 PMCID: PMC11101526 DOI: 10.1007/s12033-023-00781-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
This study investigated the mechanism of neurotrophin-3 (NT-3) in promoting spinal cord injury repair through the transforming growth factor-beta (TGF-β) signaling pathway. A mouse model of spinal cord injury was established. Forty C57BL/6J mice were randomized into model, NT-3, NT-3 + TGF-β1 and NT-3 + LY364947 groups. The Basso-Beattie-Bresnahan (BBB) scores of the NT-3 and NT-3 + LY364947 groups were significantly higher than the model group. The BBB score of the NT-3 + TGF-β1 group was significantly lower than NT-3 group. Hematoxylin-eosin staining and transmission electron microscopy showed reduction in myelin sheath injury, more myelinated nerve fibers in the middle section of the catheter, and relatively higher density and more neatly arranged regenerated axons in the NT-3 and NT-3 + LY364947 groups compared with the model and NT-3 + TGF-β1 groups. Immunofluorescence, TUNEL and Western blot analysis showed that compared with model group, the NEUN expression increased, and the apoptosis and Col IV, LN, CSPG, tenascin-C, Sema 3 A, EphB2 and Smad2/3 protein expression decreased significantly in the NT-3 and NT-3 + LY364947 groups; the condition was reversed in the NT-3 + TGF-β1 group compared with the NT-3 group. NT-3 combined with TGF-β signaling pathway promotes astrocyte differentiation, reduces axon regeneration inhibitory molecules, apoptosis and glial scar formation, promotes axon regeneration, and improves spinal cord injury.
Collapse
Affiliation(s)
- Taibang Chen
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China.
| | - Xiaoqing He
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Jing Wang
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Di Du
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Yongqing Xu
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China.
| |
Collapse
|
36
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
37
|
Kvistad CE, Kråkenes T, Gavasso S, Bø L. Neural regeneration in the human central nervous system-from understanding the underlying mechanisms to developing treatments. Where do we stand today? Front Neurol 2024; 15:1398089. [PMID: 38803647 PMCID: PMC11129638 DOI: 10.3389/fneur.2024.1398089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Mature neurons in the human central nervous system (CNS) fail to regenerate after injuries. This is a common denominator across different aetiologies, including multiple sclerosis, spinal cord injury and ischemic stroke. The lack of regeneration leads to permanent functional deficits with a substantial impact on patient quality of life, representing a significant socioeconomic burden worldwide. Great efforts have been made to decipher the responsible mechanisms and we now know that potent intra- and extracellular barriers prevent axonal repair. This knowledge has resulted in numerous clinical trials, aiming to promote neuroregeneration through different approaches. Here, we summarize the current understanding of the causes to the poor regeneration within the human CNS. We also review the results of the treatment attempts that have been translated into clinical trials so far.
Collapse
Affiliation(s)
| | - Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
38
|
Ju YH, Cho J, Park JY, Kim H, Hong EB, Park KD, Lee CJ, Chung E, Kim HI, Nam MH. Tonic excitation by astrocytic GABA causes neuropathic pain by augmenting neuronal activity and glucose metabolism. Exp Mol Med 2024; 56:1193-1205. [PMID: 38760512 PMCID: PMC11148027 DOI: 10.1038/s12276-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neuropathic pain is a debilitating condition caused by the hyperexcitability of spinal dorsal horn neurons and is often characterized by allodynia. Although neuron-independent mechanisms of hyperexcitability have been investigated, the contribution of astrocyte-neuron interactions remains unclear. Here, we show evidence of reactive astrocytes and their excessive GABA release in the spinal dorsal horn, which paradoxically leads to the tonic excitation of neighboring neurons in a neuropathic pain model. Using multiple electrophysiological methods, we demonstrated that neuronal hyperexcitability is attributed to both increased astrocytic GABA synthesis via monoamine oxidase B (MAOB) and the depolarized reversal potential of GABA-mediated currents (EGABA) via the downregulation of the neuronal K+/Cl- cotransporter KCC2. Furthermore, longitudinal 2-deoxy-2-[18F]-fluoro-D-glucose microPET imaging demonstrated increased regional glucose metabolism in the ipsilateral dorsal horn, reflecting neuronal hyperexcitability. Importantly, inhibiting MAOB restored the entire astrocytic GABA-mediated cascade and abrogated the increased glucose metabolism and mechanical allodynia. Overall, astrocytic GABA-mediated tonic excitation is critical for neuronal hyperexcitability, leading to mechanical allodynia and neuropathic pain.
Collapse
Affiliation(s)
- Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jongwook Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ji-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun-Bin Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyoung-Ihl Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Department of Neurosurgery, Presbyterian Medical Center, Jeonju, 54987, Republic of Korea.
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
39
|
Nishii T, Osuka K, Nishimura Y, Ohmichi Y, Ohmichi M, Suzuki C, Nagashima Y, Oyama T, Abe T, Kato H, Saito R. Protective Mechanism of Stem Cells from Human Exfoliated Deciduous Teeth in Treating Spinal Cord Injury. J Neurotrauma 2024; 41:1196-1210. [PMID: 38185837 DOI: 10.1089/neu.2023.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Spinal cord injury (SCI) induces devastating permanent deficits. Recently, cell transplantation therapy has become a notable treatment for SCI. Although stem cells from human exfoliated deciduous teeth (SHED) are an attractive therapy, their precise mechanism of action remains to be elucidated. In this study, we explored one of the neuroprotective mechanisms of SHED treatment at the subacute stage after SCI. We used a rat clip compression SCI model. The animals were randomly divided into three groups: SCI, SCI + phosphate-buffered saline (PBS), and SCI + SHED. The SHED or PBS intramedullary injection was administered immediately after SCI. After SCI, we explored the effects of SHED on motor function, as assessed by the Basso-Beattie-Bresnahan score and the inclined plane method, the signal transduction pathway, especially the Janus kinase (JAK) and the signal transducer and activator of transcription 3 (STAT3) pathway, the apoptotic pathway, and the expression of neurocan, one of the chondroitin sulfate proteoglycans. SHED treatment significantly improved functional recovery from Day 14 relative to the controls. Western blot analysis showed that SHED significantly reduced the expression of glial fibrillary acidic protein (GFAP) and phosphorylated STAT3 (p-STAT3) at Tyr705 on Day 10 but not on Day 5. However, SHED had no effect on the expression levels of Iba-1 on Days 5 or 10. Immunohistochemistry revealed that p-STAT3 at Tyr705 was mainly expressed in GFAP-positive astrocytes on Day 10 after SCI, and its expression was reduced by administration of SHED. Moreover, SHED treatment significantly induced expression of cleaved caspase 3 in GFAP-positive astrocytes only in the epicenter lesions on Day 10 after SCI but not on Day 5. The expression of neurocan was also significantly reduced by SHED injection on Day 10 after SCI. Our results show that SHED plays an important role in reducing astrogliosis and glial scar formation between Days 5 and 10 after SCI, possibly via apoptosis of astrocytes, ultimately resulting in improvement in neurological functions thereafter. Our data revealed one of the neuroprotective mechanisms of SHED at the subacute stage after SCI, which improved functional recovery after SCI, a serious condition.
Collapse
Affiliation(s)
- Tomoya Nishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Yusuke Nishimura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Ohmichi
- Department of Anatomy II, Kanazawa Medical University, Ishikawa, Japan
| | - Mika Ohmichi
- Department of Anatomy II, Kanazawa Medical University, Ishikawa, Japan
| | - Chiharu Suzuki
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Yoshitaka Nagashima
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Oyama
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Abe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
41
|
Yu Z, Ding R, Yan Q, Cheng M, Li T, Zheng F, Zhu L, Wang Y, Tang T, Hu E. A Novel Network Pharmacology Strategy Based on the Universal Effectiveness-Common Mechanism of Medical Herbs Uncovers Therapeutic Targets in Traumatic Brain Injury. Drug Des Devel Ther 2024; 18:1175-1188. [PMID: 38645986 PMCID: PMC11032138 DOI: 10.2147/dddt.s450895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Many herbs can promote neurological recovery following traumatic brain injury (TBI). There must lie a shared mechanism behind the common effectiveness. We aimed to explore the key therapeutic targets for TBI based on the common effectiveness of the medicinal plants. Material and methods The TBI-effective herbs were retrieved from the literature as imputes of network pharmacology. Then, the active ingredients in at least two herbs were screened out as common components. The hub targets of all active compounds were identified through Cytohubba. Next, AutoDock vina was used to rank the common compound-hub target interactions by molecular docking. A highly scored compound-target pair was selected for in vivo validation. Results We enrolled sixteen TBI-effective medicinal herbs and screened out twenty-one common compounds, such as luteolin. Ten hub targets were recognized according to the topology of the protein-protein interaction network of targets, including epidermal growth factor receptor (EGFR). Molecular docking analysis suggested that luteolin could bind strongly to the active pocket of EGFR. Administration of luteolin or the selective EGFR inhibitor AZD3759 to TBI mice promoted the recovery of body weight and neurological function, reduced astrocyte activation and EGFR expression, decreased chondroitin sulfate proteoglycans deposition, and upregulated GAP43 levels in the cortex. The effects were similar to those when treated with the selective EGFR inhibitor. Conclusion The common effectiveness-based, common target screening strategy suggests that inhibition of EGFR can be an effective therapy for TBI. This strategy can be applied to discover core targets and therapeutic compounds in other diseases.
Collapse
Affiliation(s)
- Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ruoqi Ding
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410008, People’s Republic of China
| | - Lin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya Hospital, Central South University, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
42
|
Machnik G, Bułdak Ł, Zapletal-Pudełko K, Grabarek BO, Staszkiewicz R, Sobański D, Okopień B. The impact of wound-healing assay, phorbol myristate acetate (PMA) stimulation and siRNA-mediated FURIN gene silencing on endogenous retroviral ERVW-1 expression level in U87-MG astrocytoma cells. Adv Med Sci 2024; 69:113-124. [PMID: 38403160 DOI: 10.1016/j.advms.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Human endogenous retroviruses (HERVs) are ubiquitous genomic sequences. Normally dormant HERVs, undergo reactivation by environmental factors. This deregulation of HERVs' transcriptional equilibrium correlates with medical conditions such as multiple sclerosis (MS). Here we sought to explore whether exposing the U-87 MG astrocytoma cells to traumatic injury deregulates the expression of HERV-W family member ERVW-1 encoding syncytin-1. We also examined the expression of FURIN gene that is crucial in syncytin-1 synthesis. MATERIAL AND METHODS Scratch assay was used as a model of cells injury in U-87 MG cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and migration assay using Boyden chamber were used. Phorbol 12-myristate 13-acetate (PMA) and small interfering RNA (siRNA) were used for cell stimulation and gene expression inhibition, respectively. RESULTS Results revealed reduced ERVW-1 expression in cells exposed to injury (p < 0.05) while GFAP gene - a marker of active astrocytes, was upregulated (p < 0.01). These findings were confirmed by both WB and RT-qPCR. Expression of FURIN gene was not altered after injury, but cell stimulation by PMA strongly increased FURIN expression, simultaneously downregulating ERVW-1 (p < 0.01). SiRNA-mediated expression inhibition of ERVW-1 and FURIN influenced the mRNA level for SLC1A5 (ASCT2) - primary syncytin-1 receptor, that was significantly lower. FURIN inhibition by siRNA caused strong upregulation of ERVW-1 expression (p < 0.01). CONCLUSION Results showed that mechanical impact affects the expression of endogenous retroviruses in U-87 MG astrocytoma cells by scratch assay. Regulation of FURIN, a crucial enzyme in ERVW-1 turnover may support the therapy of some neurological conditions.
Collapse
Affiliation(s)
- Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Zapletal-Pudełko
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland; Department of Molecular Biology, Gyncentrum Fertility Clinic, Katowice, Poland
| | - Rafał Staszkiewicz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland; Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Krakow, Poland; Department of Neurosurgery, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland; Department of Neurosurgery, Szpital sw. Rafala in Cracow, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
43
|
Wang C, Wang C, Lu W, Wang Y, Yue Q, Xin D, Sun B, Wu J, Sun J, Wang Y. Novel SERS Signal Amplification Strategy for Ultrasensitive and Specific Detection of Spinal Cord Injury-Related miRNA. ACS Sens 2024; 9:736-744. [PMID: 38346401 DOI: 10.1021/acssensors.3c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The expression of microRNA (miRNA) changes in many diseases plays an important role in the diagnosis, treatment, and prognosis of diseases. Spinal cord injury (SCI) is a serious disease of the central nervous system, accompanied by inflammation, cell apoptosis, neuronal necrosis, axonal rupture, demyelination, and other pathological processes, resulting in impaired sensory and motor functions of patients. Studies have shown that miRNA expression has changed after SCI, and miRNAs participate in the pathophysiological process and treatment of SCI. Therefore, quantitative analysis and monitoring of the expression of miRNA were of great significance for the diagnosis and treatment of SCI. Through the SCI-related miRNA chord plot, we screened out miRNA-21-5p and miRNA-let-7a with a higher correlation. However, for traditional detection strategies, it is still a great challenge to achieve a fast, accurate, and sensitive detection of miRNA in complex biological environments. The most frequently used method for detecting miRNAs is polymerase chain reaction (PCR), but it has disadvantages such as being time-consuming and cumbersome. In this paper, a novel SERS sensor for the quantitative detection of miRNA-21-5p and miRNA-let-7a in serum and cerebrospinal fluid (CSF) was developed. The SERS probe eventually formed a sandwich-like structure of Fe3O4@hpDNA@miRNA@hpDNA@GNCs with target miRNAs, which had high specificity and stability. This SERS sensor achieved a wide range of detection from 1 fM to 1 nM and had a good linear relationship. The limits of detection (LOD) for miRNA-21-5p and miRNA-let-7a were 0.015 and 0.011 fM, respectively. This new strategy realized quantitative detection and long-term monitoring of miRNA-21-5p and miRNA-let-7a in vivo. It is expected to become a powerful biomolecule analysis tool and will provide ideas for the diagnosis and treatment of many diseases.
Collapse
Affiliation(s)
- Cai Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Chengcheng Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Weizhao Lu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Yanjiao Wang
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Qianwen Yue
- Taishan Vocational College of Nursing, Taian, Shandong 271000, China
| | - Dongyuan Xin
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Baoliang Sun
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Jingguo Wu
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ying Wang
- The Second Affiliated Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| |
Collapse
|
44
|
Peterson IL, Thompson AD, Scholpa NE, Largent-Milnes T, Schnellmann RG. Isolation and monoculture of functional primary astrocytes from the adult mouse spinal cord. Front Neurosci 2024; 18:1367473. [PMID: 38435055 PMCID: PMC10906264 DOI: 10.3389/fnins.2024.1367473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Astrocytes are a widely heterogenic cell population that play major roles in central nervous system (CNS) homeostasis and neurotransmission, as well as in various neuropathologies, including spinal cord injury (SCI), traumatic brain injury, and neurodegenerative diseases, such as amyotrophic lateral sclerosis. Spinal cord astrocytes have distinct differences from those in the brain and accurate modeling of disease states is necessary for understanding disease progression and developing therapeutic interventions. Several limitations to modeling spinal cord astrocytes in vitro exist, including lack of commercially available adult-derived cells, lack of purchasable astrocytes with different genotypes, as well as time-consuming and costly in-house primary cell isolations that often result in low yield due to small tissue volume. To address these issues, we developed an efficient adult mouse spinal cord astrocyte isolation method that utilizes enzymatic digestion, debris filtration, and multiple ACSA-2 magnetic microbead purification cycles to achieve an astrocyte monoculture purity of ≅93-98%, based on all markers assessed. Importantly, the isolated cells contain active mitochondria and express key astrocyte markers including ACSA-1, ACSA-2, EAAT2, and GFAP. Furthermore, this isolation method can be applied to the spinal cord of male and female mice, mice subjected to SCI, and genetically modified mice. We present a primary adult mouse spinal cord astrocyte isolation protocol focused on purity, viability, and length of isolation that can be applied to a multitude of models and aid in targeted research on spinal-cord related CNS processes and pathologies.
Collapse
Affiliation(s)
- Ingrid L. Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Austin D. Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
| | - Natalie E. Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Tally Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
45
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
46
|
Chen Y, Hu Y, He X, Zang H, Sun R, Zhu C, Yao W. Activation of mitochondrial DNA-mediated cGAS-STING pathway contributes to chronic postsurgical pain by inducing type I interferons and A1 reactive astrocytes in the spinal cord. Int Immunopharmacol 2024; 127:111348. [PMID: 38086268 DOI: 10.1016/j.intimp.2023.111348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Chronic postsurgical pain (CPSP) is increasingly recognized as a public health issue. Recent studies indicated the innate immune pathway of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) was involved in pain regulation. However, the detailed mechanisms remain unclear. Previous studies found A1 reactive astrocytes in the spinal cord contributed to CPSP. This study aimed to investigate the roles and mechanisms of the cGAS-STING pathway in regulating the generation of A1 reactive astrocytes during CPSP. First, CPSP model was established using skin/muscle incision and retraction (SMIR) in rats. We found that cGAS-STING pathway was activated accompanied with an increase in mitochondrial DNA in the cytosol in the spinal cord following SMIR. Second, a STING inhibitor C-176 was intrathecally administrated. We found that C-176 decreased the expression of type I interferons and A1 reactive astrocytes in the spinal cord, and alleviated mechanical allodynia in SMIR rats. Third, cyclosporin A as a mitochondrial permeability transition pore blocker was intrathecally administrated. We found that cyclosporin A decreased the leakage of mitochondrial DNA and inhibited the activation of cGAS-STING pathway. Compared with C-176, cyclosporin A exhibits similar analgesic effects. The expression of type I interferons and A1 reactive astrocytes in the spinal cord were also down-regulated after intervention with cyclosporin A. Moreover, simultaneous administration of cyclosporin A and C-176 did not show synergistic effects in SMIR rats. Therefore, our study demonstrated that the cGAS-STING pathway activated by the leakage of mitochondrial DNA contributed to chronic postsurgical pain by inducing type I interferons and A1 reactive astrocytes in the spinal cord.
Collapse
Affiliation(s)
- Yuye Chen
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingjie Hu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao He
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Zang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rao Sun
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Zhu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
48
|
Yang J, Dong J, Li H, Gong Z, Wang B, Du K, Zhang C, Bi H, Wang J, Tian X, Chen L. Circular RNA HIPK2 Promotes A1 Astrocyte Activation after Spinal Cord Injury through Autophagy and Endoplasmic Reticulum Stress by Modulating miR-124-3p-Mediated Smad2 Repression. ACS OMEGA 2024; 9:781-797. [PMID: 38222662 PMCID: PMC10785321 DOI: 10.1021/acsomega.3c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Glial scarring formed by reactive astrocytes after spinal cord injury (SCI) is the primary obstacle to neuronal regeneration within the central nervous system, making them a promising target for SCI treatment. Our previous studies have demonstrated the positive impact of miR-124-3p on neuronal repair, but it remains unclear how miR-124-3p is involved in autophagy or ER stress in astrocyte activation. To answer this question, the expression of A1 astrocyte-related markers at the transcriptional and protein levels after SCI was checked in RNA-sequencing data and verified using quantitative polymerase chain reaction (qPCR) and Western blotting in vitro and in vivo. The potential interactions among circHIPK2, miR-124-3p, and Smad2 were analyzed and confirmed by bioinformatics analyses and a luciferase reporter assay. In the end, the role of miR-124-3p in autophagy, ER stress, and SCI was investigated by using Western blotting to measure key biomarkers (C3, LC3, and Chop) in the absence or presence of corresponding selective inhibitors (siRNA, 4-PBA, TG). As a result, SCI caused the increase of A1 astrocyte markers, in which the upregulated circHIPK2 directly targeted miR-124-3p, and the direct downregulating effect of Smad2 by miR-124-3p was abolished, while Agomir-124 treatment reversed this effect. Injury caused a significant change of markers for ER stress and autophagy through the circHIPK2/miR-124-3p/Smad2 pathway, which might activate the A1 phenotype, and ER stress might promote autophagy in astrocytes. In conclusion, circHIPK2 may play a functional role in sequestering miR-124-3p and facilitating the activation of A1 astrocytes through regulating Smad2-mediated downstream autophagy and ER stress pathways, providing a new perspective on potential targets for functional recovery after SCI.
Collapse
Affiliation(s)
| | | | - Haotian Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Zhiqiang Gong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kaili Du
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chunqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hangchuan Bi
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Junfei Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xinpeng Tian
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lingqiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
49
|
Wang R, Bai J. Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury. Neural Regen Res 2024; 19:35-42. [PMID: 37488841 PMCID: PMC10479866 DOI: 10.4103/1673-5374.375304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic spinal cord injury is a devastating disorder characterized by sensory, motor, and autonomic dysfunction that severely compromises an individual's ability to perform activities of daily living. These adverse outcomes are closely related to the complex mechanism of spinal cord injury, the limited regenerative capacity of central neurons, and the inhibitory environment formed by traumatic injury. Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury. A number of therapeutic agents have been shown to improve the injury environment, mitigate secondary damage, and/or promote regeneration and repair. Among them, the spinal cord microcirculation has become an important target for the treatment of spinal cord injury. Drug interventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury. These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neurons, axons, and glial cells. This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury, including its structure and histopathological changes. Further, it summarizes the progress of drug therapies targeting the spinal cord microcirculation after spinal cord injury.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Jinzhu Bai
- Department of Spine and Spinal Cord Surgery, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Veneruso V, Petillo E, Pizzetti F, Orro A, Comolli D, De Paola M, Verrillo A, Baggiolini A, Votano S, Castiglione F, Sponchioni M, Forloni G, Rossi F, Veglianese P. Synergistic Pharmacological Therapy to Modulate Glial Cells in Spinal Cord Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307747. [PMID: 37990971 DOI: 10.1002/adma.202307747] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Current treatments for modulating the glial-mediated inflammatory response after spinal cord injury (SCI) have limited ability to improve recovery. This is quite likely due to the lack of a selective therapeutic approach acting on microgliosis and astrocytosis, the glia components most involved after trauma, while maximizing efficacy and minimizing side effects. A new nanogel that can selectively release active compounds in microglial cells and astrocytes is developed and characterized. The degree of selectivity and subcellular distribution of the nanogel is evaluated by applying an innovative super-resolution microscopy technique, expansion microscopy. Two different administration schemes are then tested in a SCI mouse model: in an early phase, the nanogel loaded with Rolipram, an anti-inflammatory drug, achieves significant improvement in the animal's motor performance due to the increased recruitment of microglia and macrophages that are able to localize the lesion. Treatment in the late phase, however, gives opposite results, with worse motor recovery because of the widespread degeneration. These findings demonstrate that the nanovector can be selective and functional in the treatment of the glial component in different phases of SCI. They also open a new therapeutic scenario for tackling glia-mediated inflammation after neurodegenerative events in the central nervous system.
Collapse
Affiliation(s)
- Valeria Veneruso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
| | - Emilia Petillo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Alessandro Orro
- Department of Biomedical Sciences National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi 93, Segrate, 20054, Italy
| | - Davide Comolli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Massimiliano De Paola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Antonietta Verrillo
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
- Institute of Oncology Research (IOR), BIOS+, Via Francesco Chiesa 5, Bellinzona, 6500, Switzerland
| | - Arianna Baggiolini
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
- Institute of Oncology Research (IOR), BIOS+, Via Francesco Chiesa 5, Bellinzona, 6500, Switzerland
| | - Simona Votano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Franca Castiglione
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Pietro Veglianese
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
| |
Collapse
|