1
|
Namsrai T, Northey JM, Ambikairajah A, Ahmed O, Alateeq K, Espinoza Oyarce DA, Burns R, Rattray B, Cherbuin N. Sleep characteristics and brain structure: A systematic review with meta-analysis. Sleep Med 2025; 129:316-329. [PMID: 40086297 DOI: 10.1016/j.sleep.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND As the global population ages, the prevalence of associated conditions, including neurodegeneration and dementia, will increase. Thus, reducing risk factors is crucial to prevention. Sleep contributes to brain homeostasis and repair, which, if impaired, could lead to neurodegeneration. However, the relationship between sleep characteristics, disorders, and brain morphology is poorly understood in healthy adults. Therefore, we aimed to systematically analyse the literature and clarify how sleep characteristics are associated with brain structures. METHODS We systematically searched PUBMED, MEDLINE, ProQuest, Web of Science, and Scopus for empirical studies of healthy adults examining the associations between sleep characteristics or disorders and brain structure, adjusting for age, gender, and head size. We conducted a meta-analysis with random effects models for volumetric studies and a seed-based spatial analysis for voxel-based morphometry (VBM) studies. RESULTS One hundred and five articles (60 volumetric, 45 VBM) with 106 studies reporting 108,364 participants were included. Most studies (73.1%) found sleep characteristics and disorders to be associated with predominantly lower brain volumes (cross-sectional: 51.9% of all cross-sectional; longitudinal: 45.5% of longitudinal). In VBM studies, REM sleep behaviour disorder was linked to lower grey matter volume in the right frontal gyrus (z-score = -3.617, 68 voxels, p-value = <0 0.001). CONCLUSION Sleep characteristics - poor quality, short or long sleep - and sleep disorders are predominantly associated with lower brain volumes, suggesting that inadequate sleep (short, long or poor quality) might contribute to neurodegeneration. This insight highlights the importance of monitoring, managing, and enforcing sleep health to prevent or mitigate potential neurodegenerative processes.
Collapse
Affiliation(s)
- Tergel Namsrai
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia.
| | - Joseph M Northey
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia; Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, Australia
| | - Ananthan Ambikairajah
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia; Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia; Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra, Australia; The University of Sydney, School of Psychology, Sydney, Australia; The University of Sydney, Brain and Mind Centre, Sydney, Australia
| | - Oli Ahmed
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Khawlah Alateeq
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia; Radiological Science, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Richard Burns
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Ben Rattray
- Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra, Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Zhang M, Ma Z, Cui H, Miao Y, Yin Y, Wen Q, Liu Z, Huang X, Xing C, Liu K, Peng H, Song L. Involvement of circadian clock protein PER2 in controlling sleep deprivation induced HMGB1 up-regulation by targeting p300 in the cortex. Sci Rep 2025; 15:12253. [PMID: 40210902 PMCID: PMC11985928 DOI: 10.1038/s41598-025-96931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
Lack of sleep is a common problem in current society, which can induce various brain dysfunctions. Neuroinflammation is a typical reaction caused by sleep deficit and is considered as a common basis for various neurological disorders and cognitive impairments, but the related mechanisms have not been fully clarified. The circadian clock protein plays a critical role in maintaining physiological homeostasis, including sleep/wake cycles. Circadian disorders induced by sleep deficit might contribute to the development of neuroinflammation. In the current study, we observed that sleep deprivation (SD) induced elevated expression of High-mobility group box 1 (HMGB1), one of the most important mediators of neuroinflammation, in the cortical microglia and cerebrospinal fluids. Moreover, acetylation-dependent nuclear export of HMGB1 was involved in up-regulation and secretion of HMGB1 after sleep deprivation. Further studies indicated that sleep deprivation induced an increase in the expression of acetyltransferase p300 and a decrease in the expression of deacetylase SIRT1, which synergistically enhanced the acetylation level of HMGB1 in the cortical microglial cells, thereby triggered the nuclear export and secretion of HMGB1. Most importantly, circadian clock protein PER2 constitutively interacted with p300 and inhibited its expression in the microglial cells, which can be interrupted by PER2 downregulation upon sleep deprivation, leading to the increased expression of p300 and acetylation and secretion of HMGB1. The truncated PER2 mutant without p300 binding ability lost its ability to regulate p300 expression, indicating that PER2 functioned as a co-suppressor of p300 in regulating acetylation and expression of HMGB1. Taken together, data in this study reveal a new mechanism by which PER2 is involved in controlling HMGB1 dependent neuroinflammation induced by sleep deprivation. Maintaining PER2 levels or blocking HMGB1 acetylation in the cortex might be prospective for preventing sleep deprivation-induced neuroinflammation and the related adverse reactions in the brain.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhuoyao Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haoran Cui
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yumeng Miao
- Beijing Institute of Basic Medical Sciences, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Yu Yin
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Wen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhihui Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Peng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, China.
- Anhui Medical University, Hefei, China.
- College of Life Science, Henan Normal University, Xinxiang, China.
- School of Pharmacy, Jiamusi University, Jiamusi, China.
| |
Collapse
|
3
|
Briggs AQ, Boza-Calvo C, Bernard MA, Rusinek H, Betensky RA, Masurkar AV. The association between measures of sleepiness and subjective cognitive decline symptoms in a diverse population of cognitively normal older adults. J Alzheimers Dis 2025:13872877251331237. [PMID: 40170406 DOI: 10.1177/13872877251331237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Subjective cognitive decline (SCD) is associated with preclinical Alzheimer's disease (AD). Suboptimal sleep is also a risk factor for cognitive decline, but with unclear relationship to SCD. We conducted a retrospective cross-sectional study in a biracial research cohort of 148 cognitively normal older adults who underwent quantification of SCD (Cognitive Change Index; CCI), sleepiness (Epworth Sleepiness Scale; ESS), depression (Geriatric Depression Scale; GDS), and amyloid/tau PET. ESS score was associated with total, amnestic, and non-amnestic CCI scores, after adjustment for GDS, amyloid/tau burden, and race. This supports future longitudinal work on how sleepiness impacts SCD outcomes.
Collapse
Affiliation(s)
- Anthony Q Briggs
- NYU Alzheimer's Disease Research Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Carolina Boza-Calvo
- NYU Alzheimer's Disease Research Center, NYU Grossman School of Medicine, New York, NY, USA
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Mark A Bernard
- NYU Alzheimer's Disease Research Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- NYU Alzheimer's Disease Research Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Rebecca A Betensky
- NYU Alzheimer's Disease Research Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biostatistics, NYU School of Global Public Health, New York, NY, USA
| | - Arjun V Masurkar
- NYU Alzheimer's Disease Research Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Wang T, Han W, Wang C, Kang Y, Wang Y, Lei S, Hui Z, Li N, Wang X. Interaction effects of sleep duration and activities of daily living on depressive symptoms among Chinese middle-aged and older adult individuals: evidence from the CHARLS. Front Public Health 2025; 13:1547329. [PMID: 40151594 PMCID: PMC11949275 DOI: 10.3389/fpubh.2025.1547329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives Evidence on the combined effect of sleep duration and activities of daily living (ADL) on depressive symptoms is scarce. This study aimed to explore the interaction effects between sleep duration and ADL limitations on depressive symptoms among Chinese individuals aged ≥45 years. Methods Data were extracted from the China Health and Retirement Longitudinal Study (CHARLS) wave 2020. Sleep duration was self-reported. The Center for Epidemiological Studies Depression Scale and a 12-item scale were employed to estimate depressive symptoms and ADL limitations, respectively. Logistic regression analysis was conducted to examine the interaction effects between sleep duration and ADL limitations on depressive symptoms. Results Logistic regression found that short sleep (OR = 1.69, 95% CI: 1.57-1.83), long sleep (OR = 0.87, 95% CI: 0.79-0.95), and ADL limitations [basic activities of daily living (BADL), OR = 1.82, 95% CI: 1.66-2.01; instrumental activities of daily living (IADL), OR = 1.88, 95% CI: 1.71-2.07] were associated with depressive symptoms. Furthermore, synergistic interaction effects on the depressive symptoms risk were identified between short sleep and IADL limitations (RERI = 1.08, 95% CI: 0.57-1.59) or BADL limitations (RERI = 1.13, 95% CI: 0.60-1.65). Conversely, antagonistic interaction effects were observed between long sleep and IADL limitations (RERI = 0.88, 95% CI: 0.39-1.38) or BADL limitations (RERI = 0.76, 95% CI: 0.25-1.27) on depressive symptoms. Conclusion The study revealed significant interactions between sleep duration and ADL limitations on depressive symptoms, suggesting that enhancing ADL's function and ensuring adequate sleep duration could effectively prevent depressive symptoms.
Collapse
Affiliation(s)
- Tianmeng Wang
- Department of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenjin Han
- Department of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Caihua Wang
- Medical School, Xi’an Peihua University, Xi’an, China
| | - Yanqing Kang
- Department of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yaping Wang
- Department of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shuangyan Lei
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Zhaozhao Hui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ning Li
- Department of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaoqin Wang
- Department of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Zhong H, Jiang M, Yuan K, Sheng F, Xu X, Cui Y, Sun X, Tan W. Alterations in gut microbiota and metabolites contribute to postoperative sleep disturbances. Animal Model Exp Med 2025. [PMID: 39924929 DOI: 10.1002/ame2.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/05/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND The composition of the intestinal flora and the resulting metabolites affect patients' sleep after surgery. METHODS We intended to elucidate the mechanisms by which disordered intestinal flora modulate the pathophysiology of postoperative sleep disturbances in hosts. In this study, we explored the impacts of anesthesia, surgery, and postoperative sleep duration on the fecal microbiota and metabolites of individuals classified postprocedurally as poor sleepers (PS) and good sleepers (GS), as diagnosed by the bispectral index. We also performed fecal microbiota transplantation in pseudo-germ-free (PGF) rats and applied Western blotting, immunohistochemistry, and gut permeability analyses to identify the potential mechanism of its effect. RESULTS Research finding shows the PS group had significantly higher postoperative stool levels of the metabolites tryptophan and kynurenine than the GS group. PGF rats that received gut microbiota from PSs exhibited less rapid eye movement (REM) sleep than those that received GS microbiota (GS-PGF: 11.4% ± 1.6%, PS-PGF: 4.8% ± 2.0%, p < 0.001). Measurement of 5-hydroxytryptophan (5-HTP) levels in the stool, serum, and prefrontal cortex (PFC) indicated that altered 5-HTP levels, including reduced levels in the PFC, caused sleep loss in PGF rats transplanted with PS gut flora. Through the brain-gut axis, the inactivity of tryptophan hydroxylase 1 (TPH1) and TPH2 in the colon and PFC, respectively, caused a loss of REM sleep in PGF rats and decreased the 5-HTP level in the PFC. CONCLUSIONS These findings indicate that postoperative gut dysbiosis and defective 5-HTP metabolism may cause postoperative sleep disturbances. Clinicians and sleep researchers may gain new insights from this study.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Anesthesiology, Chengdu Third People's Hospital, Chengdu, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Meiru Jiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Kun Yuan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fang Sheng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuyun Xu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Xijia Sun
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Wenfei Tan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Sun Y, Xu J, Zheng X, Li C, Kong D, Wu Q, Zhu Z, Feng S, Zhang Y. The impact of prolonged high-concentration cortisol exposure on cognitive function and risk factors: Evidence from Cushing's disease patients. J Alzheimers Dis Rep 2025; 9:25424823251338161. [PMID: 40297056 PMCID: PMC12035109 DOI: 10.1177/25424823251338161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Prolonged high-concentration cortisol exposure may impair cognitive function, but its mechanisms and risk factors remain unclear in humans. Objective Using Cushing's disease patients as a model, this study explores these effects and develops a predictive model to aid in managing high-risk patients. Methods This single-center retrospective study included 107 Cushing's disease patients (January 2020-January 2024) at the First Medical Center of the PLA General Hospital. Cognitive function, assessed using the Montreal Cognitive Assessment, revealed 58 patients with cognitive impairment and 49 with normal cognitive function. Patients were divided into training (n = 53) and validation cohorts (n = 54) for constructing and validating the predictive model. Risk factors were identified via univariate analysis and least absolute shrinkage and selection operator regression, and a nomogram prediction model was developed. Performance was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results Cortisol AM/PM ratio, 8 a.m. cortisol concentration, body mass index, and fasting plasma glucose were significant risk factors for cognitive impairment. The nomogram demonstrated strong predictive ability, with ROC values of 0.80 (training) and 0.91 (validation). DCA indicated superior clinical utility compared to treating all or no patients. Conclusions This study confirms the significant impact of prolonged high cortisol exposure on cognitive function and identifies key risk factors. The nomogram model offers robust performance, providing a valuable tool for managing Cushing's disease patients' cognitive health and informing strategies for other cortisol-related disorders.
Collapse
Affiliation(s)
- Yuxiang Sun
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junpeng Xu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoque Zheng
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Dongsheng Kong
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qijia Wu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zihao Zhu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Shiyu Feng
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Lim CR, Ogawa S, Kumari Y. Exploring β-caryophyllene: a non-psychotropic cannabinoid's potential in mitigating cognitive impairment induced by sleep deprivation. Arch Pharm Res 2025; 48:1-42. [PMID: 39653971 DOI: 10.1007/s12272-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders. This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene's ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB. As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.
Collapse
Affiliation(s)
- Cher Ryn Lim
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Satoshi Ogawa
- Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
8
|
Højgaard K, Kaadt E, Mumm BH, Pereira VS, Elfving B. Dysregulation of circadian clock gene expression patterns in a treatment-resistant animal model of depression. J Neurochem 2024; 168:1826-1841. [PMID: 38970299 DOI: 10.1111/jnc.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Circadian rhythm (CR) disturbances are among the most commonly observed symptoms during major depressive disorder, mostly in the form of disrupted sleeping patterns. However, several other measurable parameters, such as plasma hormone rhythms and differential expression of circadian clock genes (ccgs), are also present, often referred to as circadian phase markers. In the recent years, CR disturbances have been recognized as an essential aspect of depression; however, most of the known animal models of depression have yet to be evaluated for their eligibility to model CR disturbances. In this study, we investigate the potential of adrenocorticotropic hormone (ACTH)-treated animals as a disease model for research in CR disturbances in treatment-resistant depression. For this purpose, we evaluate the changes in several circadian phase markers, including plasma concentrations of corticosterone, ACTH, and melatonin, as well as gene expression patterns of 13 selected ccgs at 3 different time points, in both peripheral and central tissues. We observed no impact on plasma corticosterone and melatonin concentrations in the ACTH rats compared to vehicle. However, the expression pattern of several ccgs was affected in the ACTH rats compared to vehicle. In the hippocampus, 10 ccgs were affected by ACTH treatment, whereas in the adrenal glands, 5 ccgs were affected and in the prefrontal cortex, hypothalamus and liver 4 ccgs were regulated. In the blood, only 1 gene was affected. Individual tissues showed changes in different ccgs, but the expression of Bmal1, Per1, and Per2 were most generally affected. Collectively, the results presented here indicate that the ACTH animal model displays dysregulation of a number of phase markers suggesting the model may be appropriate for future studies into CR disturbances.
Collapse
Affiliation(s)
- Kristoffer Højgaard
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erik Kaadt
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Birgitte Hviid Mumm
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vitor Silva Pereira
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Experimental and Molecular Psychiatry, Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Wang W, Liu K, Xu H, Zhang C, Zhang Y, Ding M, Xing C, Huang X, Wen Q, Lu C, Song L. Sleep deprivation induced fat accumulation in the visceral white adipose tissue by suppressing SIRT1/FOXO1/ATGL pathway activation. J Physiol Biochem 2024; 80:561-572. [PMID: 38856814 DOI: 10.1007/s13105-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/07/2024] [Indexed: 06/11/2024]
Abstract
Sleep is critical for maintaining overall health. Insufficient sleep duration and poor sleep quality are associated with various physical and mental health risks and chronic diseases. To date, plenty of epidemiological research has shown that sleep disorders are associated with the risk of obesity, which is usually featured by the expansion of adipose tissue. However, the underlying mechanism of increased fat accumulation upon sleep disorders remains unclear. Here we demonstrated that sleep deprivation (SD) caused triglycerides (TG) accumulation in the visceral white adipose tissue (vWAT), accompanied by a remarkable decrease in the expression of adipose triglyceride lipase (ATGL) and other two rate-limiting lipolytic enzymes. Due to the key role of ATGL in initiating and controlling lipolysis, we focused on investigating the signaling pathway leading to attenuated ATGL expression in vWAT upon SD in the following study. We observed that ATGL downregulation resulted from the suppression of ATGL transcription, which was mediated by the reduction of the transcriptional factor FOXO1 and its upstream regulator SIRT1 expression in vWAT after SD. Furthermore, impairment of SIRT1/FOXO1/ATGL pathway activation and lipolysis induced by SIRT1 inhibitor EX527 in the 3 T3-L1 adipocytes were efficiently rescued by the SIRT1 activator resveratrol. Most notably, resveratrol administration in SD mice revitalized the SIRT1/FOXO1/ATGL pathway activation and lipid mobilization in vWAT. These findings suggest that targeting the SIRT1/FOXO1/ATGL pathway may offer a promising strategy to mitigate fat accumulation in vWAT and reduce obesity risk associated with sleep disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China
| | - Kun Liu
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Huan Xu
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chongchong Zhang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, 357 Ximen Road, Kaifeng, 475004, China
| | - Yifan Zhang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Mengnan Ding
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Chen Xing
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Xin Huang
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Qing Wen
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Chunfeng Lu
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China.
- Department of Pharmacology, Huzhou University, 158 Xushi Road, Huzhou, 313002, China.
| | - Lun Song
- Department of Neuroinflammation, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China.
- School of Pharmacy, Jiamus University, 258 Xuefu Street, Jiamusi, 154007, China.
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 473007, China.
| |
Collapse
|
10
|
Aydogan Avşar P, Akkuş M. ZO-1 Serum Levels as a Potential Biomarker for Psychotic Disorder. Clin Neuropharmacol 2024; 47:67-71. [PMID: 38743599 DOI: 10.1097/wnf.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE There are limited studies in the literature on the relationship between intestinal and blood-brain barrier permeability and the etiology of schizophrenia. We hypothesized that the difference in serum ZO-1 levels in patients with schizophrenia may affect the severity of the disease. The aim of this study was to investigate the role of changes in serum ZO-1 concentrations in the etiopathogenesis of patients with schizophrenia. METHODS A total of 46 patients, 34 with schizophrenia, 12 with a first psychotic attack, and 37 healthy controls, were included in the study. Symptom severity was determined by applying the Positive and Negative Syndrome Scale and the Clinical Global Impression-Severity Scale. Serum ZO-1 levels were measured from venous blood samples. RESULTS Serum ZO-1 levels were higher in patients with psychotic disorder compared to healthy controls. There was no statistically significant difference between the groups in the first psychotic attack group and the schizophrenia patients. There was a statistically significant positive correlation between serum ZO-1 levels and Positive and Negative Syndrome Scale positive symptom score. CONCLUSIONS These findings regarding ZO-1 levels suggest that dysregulation of the blood-brain barrier in psychotic disorder may play a role in the etiology of the disorder.
Collapse
Affiliation(s)
- Pinar Aydogan Avşar
- Department of Child and Adolescent Psychiatry, Alanya Alaaddin Keykubat University Training and Research Hospital, Alanya, Turkey
| | - Merve Akkuş
- Department of Psychiatry, Kütahya Health Sciences University, Evliya Celebi Education and Research Hospital, Kütahya, Turkey
| |
Collapse
|
11
|
Jiang L, Wang J, Chen W, Wang Z, Xiong W. Effect of clock rhythm on emergence agitation and early postoperative delirium in older adults undergoing thoracoscopic lung cancer surgery: protocol for a prospective, observational, cohort study. BMC Geriatr 2024; 24:251. [PMID: 38475700 DOI: 10.1186/s12877-024-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Surgeries conducted at night can impact patients' prognosis, and the mechanism may be related to circadian rhythm, which influence normal physiological functions and pathophysiological changes. Melatonin is primarily a circadian hormone with hypnotic and chronobiotic effects, thereby affecting disease outcomes through influencing the expression of inflammatory factors and biochemical metabolism. This study aims to observe the effects of circadian rhythms on emergence agitation and early postoperative delirium of older individuals undergoing thoracoscopic lung cancer surgery and explore the possible regulatory role of melatonin. METHODS This prospective, observational, cohort study will involve 240 patients. Patients will be routinely divided into three groups based on the time of the surgery: T1 (8:00-14:00), T2 (14:00-20:00) and T3 group (20:00-08:00). The primary outcome will be the incidence of emergence agitation assessed via the Richmond Agitation and Sedation Scale (RASS) in the post-anesthesia care unit (PACU). Secondary outcomes will include the incidence of early postoperative delirium assessed via the Confusion Assessment Method (CAM) on postoperative day 1, pain status assessed via the numerical rating scale (NRS) in the PACU, sleep quality on postoperative day 1 and changes in perioperative plasma melatonin, clock genes and inflammatory factor levels. Postoperative surgical complications, intensive care unit admission and hospital length of stay will also be evaluated. DISCUSSION This paper describes a protocol for investigating the effects of circadian rhythms on emergence agitation and early postoperative delirium of older individuals undergoing thoracoscopic lung cancer surgery, as well as exploring the potential regulatory role of melatonin. By elucidating the mechanism by which circadian rhythms impact postoperative recovery, we aim to develop a new approach for achieving rapid recovery during perioperative period. TRIAL REGISTRATION The study was registered at the Chinese Clinical Trials Registry (ChiCTR2000040252) on November 26, 2020, and refreshed on September 4, 2022.
Collapse
Affiliation(s)
- Linghui Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Jie Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Wannan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhiyao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Wanxia Xiong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
12
|
Lv S, Huang Y, Ma Y, Teng J. Antidepressant mechanism of traditional Chinese medicine: Involving regulation of circadian clock genes. Medicine (Baltimore) 2024; 103:e36266. [PMID: 38306565 PMCID: PMC10843535 DOI: 10.1097/md.0000000000036266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 02/04/2024] Open
Abstract
Numerous studies have demonstrated an intimate relationship between circadian rhythm disorders and the development and prevention of depression. The biological clock genes, which constitute the molecular basis of endogenous circadian rhythms, hold promising prospects for depression treatment. Based on an extensive review of recent domestic and international research, this article presents a comprehensive analysis of how traditional Chinese medicine (TCM) intervenes in depression by regulating circadian rhythms. The findings indicate that TCM exerts its antidepressant effects by targeting specific biological clock genes such as Bmal1, clock, Arntl, Per1, Per2, Per3, Nr1d1, Cry2, and Dbp, as well as regulating circadian rhythms of hormone secretion. However, most current research is still confined to basic experimental studies, lacking clinical double-blind control trials to further validate these viewpoints. Furthermore, there is insufficient research on the signal transduction pathway between biological clock genes and pathological changes in depression. Additionally, further clarification is needed regarding the specific targets of TCM on the biological clock genes.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Ferber SG, Weller A, Soreq H. Boltzmann's Theorem Revisited: Inaccurate Time-to-Action Clocks in Affective Disorders. Curr Neuropharmacol 2024; 22:1762-1777. [PMID: 38500272 PMCID: PMC11284727 DOI: 10.2174/1570159x22666240315100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 03/20/2024] Open
Abstract
Timely goal-oriented behavior is essential for survival and is shaped by experience. In this paper, a multileveled approach was employed, ranging from the polymorphic level through thermodynamic molecular, cellular, intracellular, extracellular, non-neuronal organelles and electrophysiological waves, attesting for signal variability. By adopting Boltzmann's theorem as a thermodynamic conceptualization of brain work, we found deviations from excitation-inhibition balance and wave decoupling, leading to wider signal variability in affective disorders compared to healthy individuals. Recent evidence shows that the overriding on-off design of clock genes paces the accuracy of the multilevel parallel sequencing clocks and that the accuracy of the time-to-action is more crucial for healthy behavioral reactions than their rapidity or delays. In affective disorders, the multilevel clocks run free and lack accuracy of responsivity to environmentally triggered time-to-action as the clock genes are not able to rescue mitochondria organelles from oxidative stress to produce environmentally-triggered energy that is required for the accurate time-to-action and maintenance of the thermodynamic equilibrium. This maintenance, in turn, is dependent on clock gene transcription of electron transporters, leading to higher signal variability and less signal accuracy in affective disorders. From a Boltzmannian thermodynamic and energy-production perspective, the option of reversibility to a healthier time-toaction, reducing entropy is implied. We employed logic gates to show deviations from healthy levelwise communication and the reversed conditions through compensations implying the role of nonneural cells and the extracellular matrix in return to excitation-inhibition balance and accuracy in the time-to-action signaling.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Aron Weller
- Psychology Department and The Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Yin Q, Zheng X, Song Y, Wu L, Li L, Tong R, Han L, Bian Y. Decoding signaling mechanisms: unraveling the targets of guanylate cyclase agonists in cardiovascular and digestive diseases. Front Pharmacol 2023; 14:1272073. [PMID: 38186653 PMCID: PMC10771398 DOI: 10.3389/fphar.2023.1272073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Soluble guanylate cyclase agonists and guanylate cyclase C agonists are two popular drugs for diseases of the cardiovascular system and digestive systems. The common denominator in these conditions is the potential therapeutic target of guanylate cyclase. Thanks to in-depth explorations of their underlying signaling mechanisms, the targets of these drugs are becoming clearer. This review explains the recent research progress regarding potential drugs in this class by introducing representative drugs and current findings on them.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujie Song
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
16
|
Wang L, Zhou L, Liu S, Liu Y, Zhao J, Chen Y, Liu Y. Artepillin C Time−Dependently Alleviates Metabolic Syndrome in Obese Mice by Regulating CREB/CRTC2−BMAL1 Signaling. Nutrients 2023; 15:nu15071644. [PMID: 37049484 PMCID: PMC10096790 DOI: 10.3390/nu15071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Artepillin C (APC), a cAMP-response element−binding (CREB)/CREB regulated transcription coactivator 2 (CRTC2) inhibitor isolated from Brazilian green propolis, can ameliorate metabolic syndrome in obese mice. Because the sensitivity and responsiveness of the body to the drug depend on the time of day and the circadian clock alignment, the optimal administration time of APC for desired efficacy in treating metabolic syndrome remains unclear. In this study, APC (20 mg/kg) or the vehicle was intraperitoneally injected into obese mice once daily for one or three weeks. The results of the insulin tolerance test, pyruvate tolerance test, and histological and biochemical assays showed that APC could improve whole−body glucose homeostasis and decrease hepatic lipid synthesis following a circadian rhythm. Further exploration of the underlying mechanism revealed that APC may disturb the diurnal oscillations of the expression of brain and muscle ARNT−like protein (BMAL1) in primary hepatocytes and the livers of the study subjects. Moreover, APC could inhibit hepatic BMAL1 expression by blocking the CREB/CRTC2 transcription complex. BMAL1 overexpression in primary hepatocytes or the livers of db/db mice antagonized the inhibitory effect of APC on hepatic lipid metabolism. In conclusion, the chronotherapy of APC may relieve metabolic syndrome in obese mice, and the mechanism behind APC−mediated time−of−day effects on metabolic syndrome were unveiled, thereby providing a foundation for optimized APC treatment from a mechanistic perspective.
Collapse
|
17
|
Herrero Babiloni A, Baril AA, Charlebois-Plante C, Jodoin M, Sanchez E, De Baets L, Arbour C, Lavigne GJ, Gosselin N, De Beaumont L. The Putative Role of Neuroinflammation in the Interaction between Traumatic Brain Injuries, Sleep, Pain and Other Neuropsychiatric Outcomes: A State-of-the-Art Review. J Clin Med 2023; 12:jcm12051793. [PMID: 36902580 PMCID: PMC10002551 DOI: 10.3390/jcm12051793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Sleep disturbances are widely prevalent following a traumatic brain injury (TBI) and have the potential to contribute to numerous post-traumatic physiological, psychological, and cognitive difficulties developing chronically, including chronic pain. An important pathophysiological mechanism involved in the recovery of TBI is neuroinflammation, which leads to many downstream consequences. While neuroinflammation is a process that can be both beneficial and detrimental to individuals' recovery after sustaining a TBI, recent evidence suggests that neuroinflammation may worsen outcomes in traumatically injured patients, as well as exacerbate the deleterious consequences of sleep disturbances. Additionally, a bidirectional relationship between neuroinflammation and sleep has been described, where neuroinflammation plays a role in sleep regulation and, in turn, poor sleep promotes neuroinflammation. Given the complexity of this interplay, this review aims to clarify the role of neuroinflammation in the relationship between sleep and TBI, with an emphasis on long-term outcomes such as pain, mood disorders, cognitive dysfunctions, and elevated risk of Alzheimer's disease and dementia. In addition, some management strategies and novel treatment targeting sleep and neuroinflammation will be discussed in order to establish an effective approach to mitigate long-term outcomes after TBI.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0C7, Canada
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Correspondence:
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | - Marianne Jodoin
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Erlan Sanchez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Liesbet De Baets
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Faculty of Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
- Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Caroline Arbour
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Faculty of Nursing, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gilles J. Lavigne
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0C7, Canada
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Faculty of Dental Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Nadia Gosselin
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
| | - Louis De Beaumont
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Department of Surgery, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
18
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Chronobiology and Nanotechnology for Personalized Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Yassine M, Hassan SA, Sommer S, Yücel LA, Bellert H, Hallenberger J, Sohn D, Korf HW, von Gall C, Ali AAH. Radiotherapy of the Hepatocellular Carcinoma in Mice Has a Time-Of-Day-Dependent Impact on the Mouse Hippocampus. Cells 2022; 12:cells12010061. [PMID: 36611854 PMCID: PMC9818790 DOI: 10.3390/cells12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic liver diseases including hepatocellular carcinoma (HCC) create a state of chronic inflammation that affects the brain via the liver-brain axis leading to an alteration of neurotransmission and cognition. However, little is known about the effects of HCC on the hippocampus, the key brain region for learning and memory. Moreover, radiotherapy used to treat HCC has severe side effects that impair patients' life quality. Thus, designing optimal strategies, such as chronotherapy, to enhance the efficacy and reduce the side effects of HCC treatment is critically important. We addressed the effects of HCC and the timed administration of radiotherapy in mice on the expression of pro-inflammatory cytokines, clock genes, markers for glial activation, oxidative stress, neuronal activity and proliferation in the hippocampal neurogenic niche. Our data showed that HCC induced the upregulation of genes encoding for pro-inflammatory cytokines, altered clock gene expressions and reduced proliferation in the hippocampus. Radiotherapy, in particular when applied during the light/inactive phase enhanced all these effects in addition to glial activation, increased oxidative stress, decreased neuronal activity and increased levels of phospho(p)-ERK. Our results suggested an interaction of the circadian molecular clockwork and the brain's innate immune system as key players in liver-brain crosstalk in HCC and that radiotherapy when applied during the light/inactive phase induced the most profound alterations in the hippocampus.
Collapse
Affiliation(s)
- Mona Yassine
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Zoology Department, Faculty of Science, Suez University, Cairo-Suez Road, Suez 43533, Egypt
| | - Simon Sommer
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lea Aylin Yücel
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Hanna Bellert
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Johanna Hallenberger
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Universität Strasse 1, 40225 Düsseldorf, Germany
| | - Horst-Werner Korf
- Institute of Anatomy I, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-21-1811-5046
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Department of Human Anatomy and Embryology, Medical Faculty, Mansoura University, El-Gomhoria St. 1, Mansoura 35516, Egypt
| |
Collapse
|
21
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
22
|
Su K, Din ZU, Cui B, Peng F, Zhou Y, Wang C, Zhang X, Lu J, Luo H, He B, Kelley KW, Liu Q. A broken circadian clock: The emerging neuro-immune link connecting depression to cancer. Brain Behav Immun Health 2022; 26:100533. [PMID: 36281466 PMCID: PMC9587523 DOI: 10.1016/j.bbih.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Circadian clocks orchestrate daily rhythms in many organisms and are essential for optimal health. Circadian rhythm disrupting events, such as jet-lag, shift-work, night-light exposure and clock gene alterations, give rise to pathologic conditions that include cancer and clinical depression. This review systemically describes the fundamental mechanisms of circadian clocks and the interacting relationships among a broken circadian clock, cancer and depression. We propose that this broken clock is an emerging link that connects depression and cancer development. Importantly, broken circadian clocks, cancer and depression form a vicious feedback loop that threatens systemic fitness. Arresting this harmful loop by restoring normal circadian rhythms is a potential therapeutic strategy for treating both cancer and depression.
Collapse
Affiliation(s)
- Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province, 510060, China,Corresponding author. Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Yuzhao Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China
| | - Keith W. Kelley
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, 212 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, Il, 61801, USA
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province, 510060, China,Corresponding author. Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
23
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
24
|
Sun Y, Zeng X, Liu Y, Zhan S, Wu Z, Zheng X, Zhang X. Dendrobium officinale polysaccharide attenuates cognitive impairment in circadian rhythm disruption mice model by modulating gut microbiota. Int J Biol Macromol 2022; 217:677-688. [PMID: 35853505 DOI: 10.1016/j.ijbiomac.2022.07.090] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Dendrobium officinale polysaccharide (DOP) has received an increasing amount of attention as it could alleviate AD-related cognitive impairment via the regulation of microglial activation. However, the modulatory mechanism of DOP on circadian rhythm disruption (CRD) and related cognitive impairment needs further investigation. In our study, the circadian rhythm disruption mice showed a deficit in recognition and spatial memory. DOP treatment reshaped the perturbation of gut microbiota caused by CRD, including up-regulated the abundance of Akkermansia and Alistipes, down-regulated the abundance of Clostridia. In addition, DOP restored histopathological changes, reduced inflammatory cells infiltration and strengthened mucosal integrity. Mechanistically, DOP ameliorated intestinal barrier dysfunction by up-regulating tight junction protein expression, which in turn improved the invasion of lipopolysaccharide to blood and brain. The change of these contributes to inhibiting the NF-κB activation and neuroinflammation, and thus attenuating hippocampus neuronal damage and the deposition of Aβ. Meanwhile, our results revealed that DOP could reverse the levels of metabolites derived related to cognitive function improvement, and these metabolites were closely associated with the key microbiota. Therefore, we speculated that DOP has the potential to provide neuroprotection against cognitive impairment by modulating the gut microbiota.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaoxiong Zeng
- Department of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, PR China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|