1
|
Kumar R, Kumari P, Kumar R. Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives. Mol Neurobiol 2025; 62:7268-7295. [PMID: 39875779 DOI: 10.1007/s12035-025-04712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death. Planned (i.e., radiotherapy of brain tumor patients) or unplanned radiation exposure (i.e., accidental radiation exposure) can induce nonspecific damage to neuronal tissues, resulting in chronic or acute radiation syndrome. Although anatomical alterations in the neuronal tissues have been reported at higher doses of gamma radiation, biochemical and molecular perturbations may be evident even at much lower radiation doses. They may manifest in the form of neuronal deficits and cognitive impairment. In the present review, several molecular events and signaling pathways, such as oxidative stress, neuroinflammation, apoptosis, cognition, neuroplasticity, and neurotoxicity induced in neuronal cells upon ionizing radiation exposure, are reviewed. Furthermore, brain-specific radioprotectors and mitigators that protect normal neuronal cells and tissues against ionizing radiation during radiotherapy of cancer patients or nuclear emergencies are also discussed.
Collapse
Affiliation(s)
- Ravi Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Pratibha Kumari
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
2
|
Bhatia A, Thakur S, Kohal R, Brar S, Gupta GD, Verma SK. A comprehensive update on phytochemistry and medicinal developments of apocynin. Fitoterapia 2025; 183:106558. [PMID: 40280248 DOI: 10.1016/j.fitote.2025.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The natural phenolic compound apocynin, referred to as acetovanillone, generated significant attention due to its diverse pharmacological properties, especially as an NADPH oxidase inhibitor, and it was applicable orally and effectively even at small doses. During chronic inflammation, various pro-inflammatory-related factors such as nuclear factor kappa β (NF-kβ), nitrotyrosine, poly adenosine diphosphate ribose polymerase (PARP), inducible nitric oxide synthase (iNOS), cluster of differentiation 31 (CD31), intercellular adhesion molecule-1 (ICAM-1), glycoproteins granule membrane protein 140 (GMP140), tumor necrosis factor-alpha (TNFα), p38 mitogen-activated protein kinases (p38 MAPK), membrane cofactor protein (MCP), interleukin-6 (IL-6), all of which could be targeted by apocynin. Research suggests that apocynin significantly benefits conditions like diabetes, cardiovascular diseases, and neurological disorders due to its ability to mitigate inflammation and enhance endothelial function. Further investigations are essential to examine apocynin and its derivatives, mainly its long-term potency. Future research must focus on clinical trials to evaluate its safety, effectiveness, and optimal dosing in various applications. This review provides a recent update on apocynin, covering aspects such as its extraction and isolation, chemical framework, biosynthesis, synthetic derivatives, pharmacological activities, patent landscape, stability and specifications.
Collapse
Affiliation(s)
- Anchal Bhatia
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Shimple Thakur
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Rupali Kohal
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Seema Brar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India.
| |
Collapse
|
3
|
Charli A, Luo J, Palanisamy B, Malovic E, Riaz Z, Miller C, Chang YT, Samidurai M, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial Stress Disassembles Nuclear Architecture through Proteolytic Activation of PKCδ and Lamin B1 Phosphorylation in Neuronal Cells: Implications for Pathogenesis of Age-related Neurodegenerative Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621517. [PMID: 39554109 PMCID: PMC11565982 DOI: 10.1101/2024.11.01.621517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitochondrial dysfunction and oxidative stress are hallmarks of pathophysiological processes in age-related neurodegenerative diseases including Parkinson's, Alzheimer's and Huntington's diseases. Neuronal cells are highly vulnerable to mitochondrial stress, however, the cellular and molecular mechanisms underlying the enhanced vulnerability are not well understood. Previously, we demonstrated that the novel PKC isoform PKCδ is highly expressed in dopamin(DA)ergic neurons and plays a key role in inducing apoptotic cell death during neurotoxic stress via caspase-3-mediated proteolytic activation. Herein, we further uncovered a key downstream molecular event of PKCδ signaling following mitochondrial dysfunction that governs neuronal cell death by dissembling nuclear architecture. Exposing N27 DAergic cell line to the mitochondrial complex-1 inhibitor tebufenpyrad induced PKCδ phosphorylation at the T505 activation loop accompanied by caspase-3-dependent proteolytic activation of the kinase. Subcellular analysis using high-resolution 3D confocal microscopy revealed that proteolytically activated cleaved PKCδ translocates to the nuclear compartment, colocalizing with Lamin B1. Electron microscopy also enabled the visualization of nuclear membrane damage triggered by subjecting the DAergic neuronal cells by Tebufenpyrad (Tebu) toxicity. In silico analyses identified that the threonine site on Lamin B1 (T575) is likely phosphorylated by PKCδ, suggesting that Lamin B1 serves as a key downstream target of the kinase. Interestingly, N27 DAergic cells stably expressing the PKCδ proteolytic cleavage site-resistant mutant failed to induce nuclear damage, PKCδ activation, and Lamin B1 phosphorylation. Furthermore, CRISPR/Cas9-based stable knockdown of PKCδ greatly attenuated Tebu-induced Lamin B1 phosphorylation. Also, studies using Lamin B1 T575G mutated at phosphorylation and PKCδ-ΔNLS-overexpressing N27 cells showed that PKCδ activation and translocation to the nuclear membrane are critically required for phosphorylating Lamin B1 at T575 to induce nuclear membrane damage during Tebu insult. Additionally, Tebu failed to induce Lamin B1 damage and Lamin B1 phosphorylation in organotypic midbrain slices cultured from PKCδ -/- mouse pups. More importantly, we observed higher PKCδ activation, Lamin B1 phosphorylation and Lamin B1 loss in nigral DAergic neurons from the postmortem brains of PD patients as compared to age-matched healthy control brains, thus providing translational relevance of our finding. Collectively, our data reveal that PKCδ functions as a Lamin B1 kinase to disassemble the nuclear membrane during the neuronal cell death process triggered by mitochondrial stress. This mechanistic insight may have important implications for the etiology of age-related neurodegenerative diseases resulting from mitochondrial dysfunction as well as for the development of novel treatment strategies.
Collapse
|
4
|
AlAhmad M, Isbea H, Shitaw E, Li F, Sivaprasadarao A. NOX2-TRPM2 coupling promotes Zn 2+ inhibition of complex III to exacerbate ROS production in a cellular model of Parkinson's disease. Sci Rep 2024; 14:18431. [PMID: 39117781 PMCID: PMC11310326 DOI: 10.1038/s41598-024-66630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Reactive oxygen species (ROS) serve vital physiological functions, but aberrant ROS production contributes to numerous diseases. Unfortunately, therapeutic progress targeting pathogenic ROS has been hindered by the limited understanding of whether the mechanisms driving pathogenic ROS differ from those governing physiological ROS generation. To address this knowledge gap, we utilised a cellular model of Parkinson's disease (PD), as an exemplar of ROS-associated diseases. We exposed SH-SY5Y neuroblastoma cells to the PD-toxin, MPP+ (1-methyl-4-phenylpyridinium) and studied ROS upregulation leading to cell death, the primary cause of PD. We demonstrate: (1) MPP+ stimulates ROS production by raising cytoplasmic Ca2+ levels, rather than acting directly on mitochondria. (2) To raise the Ca2+, MPP+ co-stimulates NADPH oxidase-2 (NOX2) and the Transient Receptor Potential Melastatin2 (TRPM2) channel that form a positive feedback loop to support each other's function. (3) Ca2+ exacerbates mitochondrial ROS (mtROS) production not directly, but via Zn2+. (4) Zn2+ promotes electron escape from respiratory complexes, predominantly from complex III, to generate mtROS. These conclusions are drawn from data, wherein inhibition of TRPM2 and NOX2, chelation of Ca2+ and Zn2+, and prevention of electron escape from complexes -all abolished the ability of MPP+ to induce mtROS production and the associated cell death. Furthermore, calcium ionophore mimicked the effects of MPP+, while Zn2+ ionophore replicated the effects of both MPP+ and Ca2+. Thus, we unveil a previously unrecognized signalling circuit involving NOX2, TRPM2, Ca2+, Zn2+, and complex III that drives cytotoxic ROS production. This circuit lies dormant in healthy cells but is triggered by pathogenic insults and could therefore represent a safe therapeutic target for PD and other ROS-linked diseases.
Collapse
Affiliation(s)
- Maali AlAhmad
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, G6.44d, Garstang Building, Leeds, LS29JT, UK
- Department of Biological Sciences, College of Science, Kuwait University, Alshadadiya, PO Box 5969, 130602, Safat, Kuwait
| | - Hala Isbea
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, G6.44d, Garstang Building, Leeds, LS29JT, UK
| | - Esra Shitaw
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, G6.44d, Garstang Building, Leeds, LS29JT, UK
| | - Fangfang Li
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, G6.44d, Garstang Building, Leeds, LS29JT, UK
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Asipu Sivaprasadarao
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, G6.44d, Garstang Building, Leeds, LS29JT, UK.
| |
Collapse
|
5
|
Krishnaswamy K, Manasa V, Khan MT, Serva Peddha M. Apocynin exerts neuroprotective effects in fumonisin b1-induced neurotoxicity via attenuation of oxidative stress and apoptosis in an animal model. J Food Sci 2024; 89:1280-1293. [PMID: 38193205 DOI: 10.1111/1750-3841.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
The Fusarium verticillioides produces a mycotoxin, that is, fumonisin b1 (Fb1), which commonly infects corn and agricultural commodities. The Fb1 showed hepatotoxicity, neurotoxicity, and carcinogenicity in animals. Hence, the present investigation aimed to evaluate the effect of apocynin (AP) on Fb1-induced neurotoxic effects and its mechanism in the mice model and cell line. The male Balb/c mice, with the 6.75 mg/kg bwt of Fb1 were injected subcutaneously for 5 days to induce neurotoxicity. A significant elevation of serotonin (5-HT) was observed in mice treated with Fb1 in the whole brain showing biogenic amines may reflect Fb1 neurotoxicity, but the negatively regulated mechanisms were attenuated by the pretreatment of AP. In addition, AP pretreatment normalized apoptotic changes in histology and immunohistochemistry studies. In Western blotting studies, apoptotic genes were upregulated and oxidative stress genes were downregulated due to Fb1 treatment; while treating with AP, these gene expressions were rectified. Further cell cytotoxicity was investigated by MTT and lactate dehydrogenase (LDH) assays in SH-SY5Y cell line. MTT and LDH assays indicated the IC50 value to be 150 µM of Fb1, which was protected by 100 µg of AP. The electron microscopy evaluated the Fb1-induced apoptotic conditions and its cell morphology recovery by AP. These results suggest that nicotinamide adenine dinucleotide phosphate hydrogen oxidase-mediated reactive oxygen species is the primary upstream signal leading to increased Fb1-mediated neurotoxicity in mice. The use of the antioxidant AP reversed the toxin-induced oxidative stress and apoptosis by its antioxidant potency.
Collapse
Affiliation(s)
- Krupashree Krishnaswamy
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
| | - Vallamkondu Manasa
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
| | - Mohammed Touseef Khan
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Al-Zaid FS, Hurley MJ, Dexter DT, Gillies GE. Neuroprotective role for RORA in Parkinson's disease revealed by analysis of post-mortem brain and a dopaminergic cell line. NPJ Parkinsons Dis 2023; 9:119. [PMID: 37500636 PMCID: PMC10374904 DOI: 10.1038/s41531-023-00563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Parkinson's disease (PD) is almost twice as prevalent in men, which has largely been attributed to neuroprotective effect of oestradiol in women. RORA (retinoic acid receptor-related orphan receptor alpha) regulates the transcription of central aromatase, the enzyme responsible for local oestradiol synthesis, simultaneously, RORA expression is regulated by sex hormones. Moreover, RORA protects neurones against oxidative stress, a key mechanism contributing to the loss of dopaminergic neurones in PD. Therefore, we hypothesized that there would be sex differences in RORA expression in the substantia nigra pars compacta (SNpc), which could contribute to sex differences observed in PD prevalence and pathogenesis. In a case control study, qPCR and western blot analyses were used to quantify gene and protein expression in the SNpc of post-mortem brains (n = 14 late-stage PD and 11 age and sex matched controls). The neuroprotective properties of a RORA agonist were then investigated directly using a cell culture toxin-based model of PD coupled with measures of viability, mitochondrial function and apoptosis. RORA was expressed at significantly higher levels in the SNpc from control females' brains compared to males. In PD, we found a significant increase in SNpc RORA expression in male PD compared to female PD. Treatment with a RORA agonist showed a significant neuroprotection in our cell culture model of PD and revealed significant effects on intracellular factors involved in neuronal survival and demise. This study is the first to demonstrate a sex specific pattern of RORA protein and gene expression in the SNpc of controls post-mortem human brains, and to show that this is differentially altered in male and female PD subjects, thus supporting a role for RORA in sex-specific aspects of PD. Furthermore, our in vitro PD model indicates mechanisms whereby a RORA agonist exerts its neuroprotective effect, thereby highlighting the translational potential for RORA ligands in PD.
Collapse
Affiliation(s)
- Felwah S Al-Zaid
- Department of Physiology, College of Medicine, King Saud University, Riyadh, KSA, Saudi Arabia.
- Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| | - Michael J Hurley
- Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Rowland Hill Street, London, NW3 2PF, UK
| | - David T Dexter
- Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Parkinson's UK, 215 Vauxhall Bridge Road, London, SW1V 1EJ, UK
| | - Glenda E Gillies
- Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
7
|
The Degradation of TMEM166 by Autophagy Promotes AMPK Activation to Protect SH-SY5Y Cells Exposed to MPP+. Cells 2022; 11:cells11172706. [PMID: 36078115 PMCID: PMC9454683 DOI: 10.3390/cells11172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal oxidative stress caused by mitochondrial dysfunction plays a crucial role in the development of Parkinson’s disease (PD). Growing evidence shows that autophagy confers neuroprotection in oxidative-stress-associated PD. This work aims to investigate the involvement of TMEM166, an endoplasmic-reticulum-localized autophagy-regulating protein, in the process of PD-associated oxidative stress through the classic cellular PD model of neuroblastoma SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+). Reactive oxygen species (ROS) production and mitochondrial membrane potential were checked to assess the oxidative stress induced by MPP+ and the cellular ATP generated was determined to evaluate mitochondrial function. The effect on autophagy induction was evaluated by analyzing p62 and LC3-II/I expression and by observing the LC3 puncta and the colocalization of LC3 with LAMP1/ LAMP2. The colocalization of mitochondria with LC3, the colocalization of Tom20 with LAMP1 and Tom20 expression were analyzed to evaluate mitophagy. We found that TMEM166 is up-regulated in transcript levels, but up-regulated first and then down-regulated by autophagic degradation in protein levels upon MPP+-treatment. Overexpression of TMEM166 induces mitochondria fragmentation and dysfunction and exacerbates MPP+-induced oxidative stress and cell viability reduction. Overexpression of TMEM166 is sufficient to induce autophagy and mitophagy and promotes autophagy and mitophagy under MPP+ treatment, while knockdown of TMEM166 inhibits basal autophagic degradation. In addition, overexpressed TMEM166 suppresses AMPK activation, while TMEM166 knockdown enhances AMPK activation. Pharmacological activation of AMPK alleviates the exacerbation of oxidative stress induced by TMEM166 overexpression and increases cell viability, while pharmacological inhibition mitophagy aggravates the oxidative stress induced by MPP+ treatment combined with TMEM166 overexpression. Finally, we find that overexpressed TMEM166 partially localizes to mitochondria and, simultaneously, the active AMPK in mitochondria is decreased. Collectively, these findings suggest that TMEM166 can translocate from ER to mitochondria and inhibit AMPK activation and, in response to mitochondrial oxidative stress, neuronal cells choose to up-regulate TMEM166 to promote autophagy/mitophagy; then, the enhancing autophagy/mitophagy degrades the TMEM166 to activate AMPK, by the two means to maintain cell survival. The continuous synthesis and degradation of TMEM166 in autophagy/mitochondria flux suggest that TMEM166 may act as an autophagy/mitochondria adaptor.
Collapse
|
8
|
Ghosh AA, Verma DK, Cabrera G, Ofori K, Hernandez-Quijada K, Kim JK, Chung JH, Moore M, Moon SH, Seo JB, Kim YH. A Novel NOX Inhibitor Treatment Attenuates Parkinson's Disease-Related Pathology in Mouse Models. Int J Mol Sci 2022; 23:4262. [PMID: 35457082 PMCID: PMC9030373 DOI: 10.3390/ijms23084262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative motor disorder without an available therapeutic to halt the formation of Lewy bodies for preventing dopaminergic neuronal loss in the nigrostriatal pathway. Since oxidative-stress-mediated damage has been commonly reported as one of the main pathological mechanisms in PD, we assessed the efficacy of a novel NOX inhibitor from AptaBio Therapeutics (C-6) in dopaminergic cells and PD mouse models. The compound reduced the cytotoxicity and enhanced the cell viability at various concentrations against MPP+ and α-synuclein preformed fibrils (PFFs). Further, the levels of ROS and protein aggregation were significantly reduced at the optimal concentration (1 µM). Using two different mouse models, we gavaged C-6 at two different doses to the PD sign-displaying transgenic mice for 2 weeks and stereotaxically PFF-injected mice for 5 weeks. Our results demonstrated that both C-6-treated mouse models showed alleviated motor deficits in pole test, hindlimb clasping, crossbeam, rotarod, grooming, and nesting analyses. We also confirmed that the compound treatment reduced the levels of protein aggregation, along with phosphorylated-α-synuclein, in the striatum and ventral midbrain and further dopaminergic neuronal loss. Taken together, our results strongly suggest that NOX inhibition can be a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Anurupa A. Ghosh
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Dinesh Kumar Verma
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Gabriela Cabrera
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Kwadwo Ofori
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Karina Hernandez-Quijada
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| | - Jae-Kwan Kim
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Korea; (J.-K.K.); (J.H.C.); (J.B.S.)
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Korea; (J.-K.K.); (J.H.C.); (J.B.S.)
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE 19901, USA;
| | - Sung Hwan Moon
- AptaBio Therapeutics Inc., 504 Tower, Heungdeok IT Valley, Heungdeok 1-ro 13, Gyeonggi-do, Yongin-si 16954, Korea;
| | - Jong Bok Seo
- Seoul Center, Korea Basic Science Institute, Seongbuk-gu, Seoul 02841, Korea; (J.-K.K.); (J.H.C.); (J.B.S.)
| | - Yong-Hwan Kim
- Department of Biological Sciences/Neuroscience Program, Delaware State University, Dover, DE 19901, USA; (D.K.V.); (G.C.); (K.O.); (K.H.-Q.)
| |
Collapse
|
9
|
Banerjee P, Saha I, Sarkar D, Maiti AK. Contributions and Limitations of Mitochondria-Targeted and Non-Targeted Antioxidants in the Treatment of Parkinsonism: an Updated Review. Neurotox Res 2022; 40:847-873. [PMID: 35386026 DOI: 10.1007/s12640-022-00501-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
As conventional therapeutics can only treat the symptoms of Parkinson's disease (PD), major focus of research in recent times is to slow down or prevent the progression of neuronal degeneration in PD. Non-targeted antioxidants have been an integral part of the conventional therapeutics regimen; however, their importance have lessened over time because of their controversial outcomes in clinical PD trials. Inability to permeate and localize within the mitochondria remains the main drawback on the part of non-targeted antioxidants inspite of possessing free radical scavenging properties. In contrast, mitochondrial-targeted antioxidants (MTAs), a special class of compounds have emerged having high advantages over non-targeted antioxidants by virtue of efficient pharmacokinetics and better absorption rate with capability to localize many fold inside the mitochondrial matrix. Preclinical experimentations indicate that MTAs have the potential to act as better alternatives compared to conventional non-targeted antioxidants in treating PD; however, sufficient clinical trials have not been conducted to investigate the efficacies of MTAs in treating PD. Controversial clinical outcomes on the part of non-targeted antioxidants and lack of clinical trials involving MTAs have made it difficult to go ahead with a direct comparison and in turn have slowed down the progress of development of safer and better alternate strategies in treating PD. This review provides an insight on the roles MTAs and non-targeted antioxidants have played in the treatment of PD till date in preclinical and clinical settings and discusses about the limitations of mitochondria-targeted and non-targeted antioxidants that can be resolved for developing effective strategies in treating Parkinsonism.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Department of Zoology, University of Burdwan, Burdwan, West Bengal, Pin-713104, India
| | - Ishita Saha
- Department of Physiology, Medical College Kolkata, Kolkata, West Bengal, Pin-700073, India
| | - Diptendu Sarkar
- Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, West Bengal, 711202, India
| | - Arpan Kumar Maiti
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, District - Darjeeling, P.O. N.B.U, Raja Rammohunpur, West Bengal, Pin-734013, India.
| |
Collapse
|
10
|
Jaiswal G, Kumar P. Neuroprotective role of apocynin against pentylenetetrazole kindling epilepsy and associated comorbidities in mice by suppression of ROS/RNS. Behav Brain Res 2022; 419:113699. [PMID: 34856299 DOI: 10.1016/j.bbr.2021.113699] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023]
Abstract
Epilepsy is a neurological disease that transpires due to the unusual synchronized neuronal discharge within the central nervous system, which drives repetitious unprovoked seizures. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a complex enzyme accountable for reactive oxygen species (ROS) production, neurodegeneration, neurotoxicity, memory impairment, vitiates normal cellular processes, long term potentiation, and thus, implicated in the pathogenesis of epilepsy. Therefore, the present study was sketched to examine the neuroprotective effect of apocynin, NADPH oxidase inhibitor in pentylenetetrazole kindling epilepsy, and induced comorbidities in mice. Mice (either sex) were given pentylenetetrazole (35 mg/kg, i.p.) every other day up to 29 days, and a challenge test was executed on the 33rd day. Pretreatment with apocynin (25, 50, and 100 mg/kg, i.p.) was carried out from 1st to 33rd day. Rotarod and open field test were performed on the 1st, 10th, 20th, and 30th days of the study. Animals were tutored on the morris water maze from 30th to 33rd day, and the retention was registered on the 34th day. Tail suspension test and elevated plus maze were sequentially performed on the 32nd and 33rd day of the study. On the 34th day, animals were sacrificed, and their brains were isolated to conduct biochemical estimation. NADPH oxidase activation due to chronic pentylenetetrazole treatment resulted in generalized tonic-clonic seizures, enhanced oxidative stress, remodeled neurotransmitters' level, and resulted in comorbidities (anxiety, depression, and memory impairment). Pretreatment with apocynin significantly restricted the pentylenetetrazole induced seizure severity, ROS production, neurotransmitter alteration, and comorbid conditions by inhibiting the NADPH oxidase enzyme.
Collapse
Affiliation(s)
- Gagandeep Jaiswal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India.
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India; Department of Pharmacology, Central University of Punjab, Bathinda (Punjab), India.
| |
Collapse
|
11
|
Lingappa S, Shivakumar MS, Manivasagam T, Somasundaram ST, Seedevi P. Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model. J Microbiol Biotechnol 2021; 31:867-874. [PMID: 33820886 PMCID: PMC9705952 DOI: 10.4014/jmb.2101.01002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Epalrestat (EPS) is a brain penetrant aldose reductase inhibitor, an approved drug currently used for the treatment of diabetic neuropathy. At near-plasma concentration, EPS induces glutathione biosynthesis, which in turn reduces oxidative stress in the neuronal cells. In this study, we found that EPS reduces neurodegeneration by inhibiting reactive oxygen species (ROS)-induced oxidative injury, mitochondrial membrane damage, apoptosis and tauopathy. EPS treatment up to 50 μM did not show any toxic effect on SH-SY5Y cell line (neuroblastoma cells). However, we observed toxic effect at a concentration of 100 μM and above. At 50 μM concentration, EPS showed better antioxidant activity against H2O2 (100 μM)-induced cytotoxicity, ROS formation and mitochondrial membrane damage in retinoic acid-differentiated SH-SY5Y cell line. Furthermore, our study revealed that 50 μM of EPS concentration reduced the glycogen synthase kinase-3 β (GSK3-β) expression and total tau protein level in H2O2 (100 μM)-treated cells. Findings from this study confirms the therapeutic efficacy of EPS on regulating Alzheimer's disease (AD) by regulating GSK3-β and total tau proteins phosphorylation, which helped to restore the cellular viability. This process could also reduce toxic fibrillary tangle formation and disease progression of AD. Therefore, it is our view that an optimal concentration of EPS therapy could decrease AD pathology by reducing tau phosphorylation through regulating the expression level of GSK3-β.
Collapse
Affiliation(s)
- Sivakumar Lingappa
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamilnadu, India
| | | | - Thamilarasan Manivasagam
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| | - Somasundaram Thirugnanasambandan Somasundaram
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamilnadu, India,Corresponding author Phone: +91-9894798605 E-mail:
| | - Palaniappan Seedevi
- Department of Environmental Science, Periyar University, Salem 636011, Tamilnadu, India
| |
Collapse
|
12
|
Mahadev Bhat S, Shrestha D, Massey N, Karriker LA, Kanthasamy AG, Charavaryamath C. Organic dust exposure induces stress response and mitochondrial dysfunction in monocytic cells. Histochem Cell Biol 2021; 155:699-718. [PMID: 33755775 PMCID: PMC8195852 DOI: 10.1007/s00418-021-01978-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Exposure to airborne organic dust (OD), rich in microbial pathogen-associated molecular patterns (PAMPs), is shown to induce lung inflammation. A common manifestation in lung inflammation is altered mitochondrial structure and bioenergetics that regulate mitochondrial ROS (mROS) and feed a vicious cycle of mitochondrial dysfunction. The role of mitochondrial dysfunction in other airway diseases is well known. However, whether OD exposure induces mitochondrial dysfunction remains elusive. Therefore, we tested a hypothesis that organic dust extract (ODE) exposure induces mitochondrial stress using a human monocytic cell line (THP1). We examined whether co-exposure to ethyl pyruvate (EP) or mitoapocynin (MA) could rescue ODE exposure induced mitochondrial changes. Transmission electron micrographs showed significant differences in cellular and organelle morphology upon ODE exposure. ODE exposure with and without EP co-treatment increased the mtDNA leakage into the cytosol. Next, ODE exposure increased PINK1, Parkin, cytoplasmic cytochrome c levels, and reduced mitochondrial mass and cell viability, indicating mitophagy. MA treatment was partially protective by decreasing Parkin expression, mtDNA and cytochrome c release and increasing cell viability.
Collapse
Affiliation(s)
- Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | - Denusha Shrestha
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, 2203, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2008 Vet Med Building, Ames, IA, 50011, USA
| | | |
Collapse
|
13
|
Akimov MG, Fomina-Ageeva EV, Dudina PV, Andreeva LA, Myasoyedov NF, Bezuglov VV. ACTH(6-9)PGP Peptide Protects SH-SY5Y Cells from H 2O 2, tert-Butyl Hydroperoxide, and Cyanide Cytotoxicity via Stimulation of Proliferation and Induction of Prosurvival-Related Genes. Molecules 2021; 26:1878. [PMID: 33810344 PMCID: PMC8036943 DOI: 10.3390/molecules26071878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Stabilized melanocortin analog peptide ACTH(6-9)PGP (HFRWPGP) possesses a wide range of neuroprotective activities. However, its mechanism of action remains poorly understood. In this paper, we present a study of the proproliferative and cytoprotective activity of the adrenocorticotropic hormone fragment 6-9 (HFRW) linked with the peptide prolyine-glycyl-proline on the SH-SY5Y cells in the model of oxidative stress-related toxicity. The peptide dose-dependently protected cells from H2O2, tert-butyl hydroperoxide, and KCN and demonstrated proproliferative activity. The mechanism of its action was the modulation of proliferation-related NF-κB genes and stimulation of prosurvival NRF2-gene-related pathway, as well as a decrease in apoptosis.
Collapse
Affiliation(s)
- Mikhail G. Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Elena V. Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Polina V. Dudina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| | - Ludmila A. Andreeva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, Ploshchad’ Akademika Kurchatova 2, 123182 Moscow, Russia; (L.A.A.); (N.F.M.)
| | - Nikolay F. Myasoyedov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, Ploshchad’ Akademika Kurchatova 2, 123182 Moscow, Russia; (L.A.A.); (N.F.M.)
| | - Vladimir V. Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.V.F.-A.); (P.V.D.); (V.V.B.)
| |
Collapse
|
14
|
Massey N, Shrestha D, Bhat SM, Kondru N, Charli A, Karriker LA, Kanthasamy AG, Charavaryamath C. Organic dust-induced mitochondrial dysfunction could be targeted via cGAS-STING or cytoplasmic NOX-2 inhibition using microglial cells and brain slice culture models. Cell Tissue Res 2021; 384:465-486. [PMID: 33687557 DOI: 10.1007/s00441-021-03422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Organic dust (OD) exposure in animal production industries poses serious respiratory and other health risks. OD consisting of microbial products and particulate matter and OD exposure-induced respiratory inflammation are under investigation. However, the effect of OD exposure on brain remains elusive. We show that OD exposure of microglial cells induces an inflammatory phenotype with the release of mitochondrial DNA (mt-DNA). Therefore, we tested a hypothesis that OD exposure-induced secreted mt-DNA signaling drives the inflammation. A mouse microglial cell line was treated with medium or organic dust extract (ODE, 1% v/v) along with either phosphate-buffered saline (PBS) or mitoapocynin (MA, 10 µmol). Microglia treated with control or anti-STING siRNA were exposed to medium or ODE. Mouse organotypic brain slice cultures (BSCs) were exposed to medium or ODE with or without MA. Various samples were processed to quantify mitochondrial reactive oxygen species (mt-ROS), mt-DNA, cytochrome c, TFAM, mitochondrial stress markers and mt-DNA-induced signaling via cGAS-STING and TLR9. Data were analyzed and a p value of ≤ 0.05 was considered significant. MA treatment decreased the ODE-induced mt-DNA release into the cytosol. ODE increased MFN1/2 and PINK1 but not DRP1 and MA treatment decreased the MFN2 expression. MA treatment decreased the ODE exposure-induced mt-DNA signaling via cGAS-STING and TLR9. Anti-STING siRNA decreased the ODE-induced increase in IRF3, IFN-β and IBA-1 expression. In BSCs, MA treatment decreased the ODE-induced TNF-α, IL-6 and MFN1. Therefore, OD exposure-induced mt-DNA signaling was curtailed through cytoplasmic NOX-2 inhibition or STING suppression to reduce brain microglial inflammatory response.
Collapse
Affiliation(s)
- Nyzil Massey
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | - Denusha Shrestha
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | - Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
15
|
Lee SH, Han YT, Cha DS. Neuroprotective effect of damaurone D in a C. elegans model of Parkinson's disease. Neurosci Lett 2021; 747:135623. [PMID: 33482307 DOI: 10.1016/j.neulet.2021.135623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 01/03/2023]
Abstract
In this study, we evaluated the protective effects of damaurone D (DaD), a dihydropyranoaurone compound, on dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. The results showed that DaD treatment could successfully increase the survival rate of the worms under MPP+ exposure. Additionally, DaD protected against the MPP+-induced neurodegeneration in all eight DA neurons of the worms. Similarly, diminished DA neuronal damage was observed in the DaD-fed transgenic mutant overexpressing tyrosine hydroxylase. In addition, the corresponding behavioral impairment induced by MPP+ was strongly improved in the DaD treated worms, implying DaD has protective properties for DA neuronal function. Then, we further investigated the effect of DaD on α-synuclein aggregation, a key pathogenesis of Parkinson's disease (PD). In this study, DaD reduced the fluorescence signals of transgenic mutants that carried YFP-fused α-synuclein. A similar reduction in expressions of α-synuclein was observed by Western blot. Interestingly, our result from the dot-blot assay demonstrated that the formation of oligomers was significantly attenuated by the DaD treatment. Furthermore, DaD improved the abnormal fat storage and shortened lifespan of the animals with the same genetic background which supports the beneficial action of DaD on the α-synuclein-induced DA neurodegeneration. These results demonstrate that DaD could protect against both chemical- and genetic-induced DA neurodegeneration possibly through the modulation of oxidative stress, DA metabolism, and α-synuclein toxicity. Based on our present findings, we suggest that DaD might have a potential therapeutic role in Parkinson's disease.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Food Engineering, Woosuk University, Jeonbuk, 55338, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, 55338, Republic of Korea.
| |
Collapse
|
16
|
Curcumin-Activated Mesenchymal Stem Cells Derived from Human Umbilical Cord and Their Effects on MPTP-Mouse Model of Parkinson's Disease: A New Biological Therapy for Parkinson's Disease. Stem Cells Int 2020; 2020:4636397. [PMID: 32148518 PMCID: PMC7048946 DOI: 10.1155/2020/4636397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The aim of this study was to investigate the effects of human umbilical cord mesenchymal stem cell activated by curcumin (hUC-MSCs-CUR) on Parkinson's disease (PD). hUC-MSCs can differentiate into many types of adult tissue cells including dopaminergic (DA) neurons. CUR could protect DA neurons from apoptosis induced by 6-hydroxydopamine (6-OHDA). Therefore, we used the hUC-MSCs activated by CUR for the treatment of PD in an animal model. Methods The hUC-MSCs-CUR was transplanted into the MPTP-induced PD mouse models via the tail vein. We found that hUC-MSCs-CUR significantly improved the motor ability, increased the tyrosine hydroxylase (TH), dopamine (DA), and Bcl-2 levels, and reduced nitric oxide synthase, Bax, and cleaved caspase 3 expression in PD mice. The supernatant of hUC-MSCs-CUR (CM-CUR) was used to stimulate the SH-SY5Y cellular model of PD; cell proliferation, differentiation, TH, and neuronal-specific marker microtubular-associated protein 2 (MAP2) expressions were examined. Results Our data showed that CM-CUR significantly promoted cell proliferation and gradually increased TH and MAP2 expression in SH-SY5Y PD cells. The beneficial effects could be associated with significant increase of rough endoplasmic reticulum in the hUC-MSCs-CUR, which secretes many cytokines and growth factors beneficial for PD treatment. Conclusions Transplantation of hUC-MSCs-CUR could show promise for improving the motor recovery of PD.
Collapse
|
17
|
AMP-activated protein kinase inhibits MPP+-induced oxidative stress and apoptotic death of SH-SY5Y cells through sequential stimulation of Akt and autophagy. Eur J Pharmacol 2019; 863:172677. [DOI: 10.1016/j.ejphar.2019.172677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023]
|
18
|
Shi L, Huang C, Luo Q, Rogers E, Xia Y, Liu W, Ma W, Zeng W, Gong L, Fang J, Tang L, Cheng A, Shi R, Chen Z. The Association of Iron and the Pathologies of Parkinson's Diseases in MPTP/MPP +-Induced Neuronal Degeneration in Non-human Primates and in Cell Culture. Front Aging Neurosci 2019; 11:215. [PMID: 31543809 PMCID: PMC6729105 DOI: 10.3389/fnagi.2019.00215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/30/2019] [Indexed: 01/17/2023] Open
Abstract
Despite much efforts in the last few decades, the mechanism of degeneration of dopamine (DA) neurons in the substantia nigra (SN) in Parkinson’s disease (PD) remains unclear. This represents a major knowledge gap in idiopathic and genetic forms of PD. Among various possible key factors postulated, iron metabolism has been widely suggested to be involved with fueling oxidative stress, a known factor in the pathogenesis of PD. However, the correlation between iron and DA neuron loss, specifically in the SN, has not been described in experimental animal models with great detail, with most studies utilizing rodents and, rarely, non-human primates. In the present study, aiming to gain further evidence of a pathological role of iron in PD, we have examined the correlation of iron with DA neuron loss in a non-human primate model of PD induced by MPTP. We report a significant iron accumulation accompanied by both DA degeneration in the SN and motor deficits in the monkey that displayed the most severe PD pathology and behavioral deficits. The other two monkeys subjected to MPTP displayed less severe PD pathologies and motor deficits, however, their SN iron levels were significantly lower than controls. These findings suggest that high iron may indicate and contribute to heightened MPP+-induced PD pathology in late or severe stages of PD, while depressed levels of iron may signal an early stage of disease. Similarly, using a cell culture preparation, we have found that high doses of ferric ammonium citrate (FAC), a factor known to enhance iron accumulation, increased MPP+-induced cell death in U251 and SH-SY5Y cells, and even in control cells. However, at low dose FAC restored or increased the viability of U251 and SH-SY5Y cells in the absence or presence of MPP+. These observations imply that high levels of iron likely contribute to or heighten MPP+ toxicity in the later stages of PD. While we report reduced iron levels in the earlier stages of MPTP induced PD, the significance of these changes remains to be determined.
Collapse
Affiliation(s)
- Liangqin Shi
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Primed Shines Bio-Tech Co., Ltd./National Experimental Macaque Reproduce Laboratory, Chengdu, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Primed Shines Bio-Tech Co., Ltd./National Experimental Macaque Reproduce Laboratory, Chengdu, China
| | - Edmond Rogers
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Yu Xia
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Primed Shines Bio-Tech Co., Ltd./National Experimental Macaque Reproduce Laboratory, Chengdu, China
| | - Wenjing Ma
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wen Zeng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Gong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Sichuan Primed Shines Bio-Tech Co., Ltd./National Experimental Macaque Reproduce Laboratory, Chengdu, China
| | - Li Tang
- Sichuan Primed Shines Bio-Tech Co., Ltd./National Experimental Macaque Reproduce Laboratory, Chengdu, China
| | - Anchun Cheng
- Sichuan Primed Shines Bio-Tech Co., Ltd./National Experimental Macaque Reproduce Laboratory, Chengdu, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Primed Shines Bio-Tech Co., Ltd./National Experimental Macaque Reproduce Laboratory, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Activation of microglia synergistically enhances neurodegeneration caused by MPP + in human SH-SY5Y cells. Eur J Pharmacol 2019; 850:64-74. [PMID: 30684467 DOI: 10.1016/j.ejphar.2019.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/21/2023]
Abstract
While MPP+ may not directly activate microglia, the initial neuronal damage inflicted by the toxin may trigger microglia, possibly leading to synergistic pro-apoptotic interaction between neuro-inflammation and toxin-induced neurotoxicity, which may further aggravate neurodegeneration. However, what molecular targets are synergistically up or downregulated during this interaction is not well understood. Here, we addressed this by co-culturing fully differentiated human SH-SY5Y cells treated with parkinsonian toxin 1-Methyl-4-phenylpyridinium (MPP+), with endotoxin-activated microglial cell line EOC 20 to determine how this interaction affects pro-apoptotic (p38, JNK, and bax:bcl2 ratios) and pro-survival (NF-κB, MEK1) signaling at both mRNA and protein levels. Concurrent MPP+ and endotoxin-treatment aggravated a decrease in SH-SY5Y cell viability and caused strong synergistic increases in the bax:bcl2 ratio, but also NF-κB and JNK signaling. These effects were attenuated by microglia inhibitor minocycline. Altogether, these data provide further molecular insights into the important role or even conditional requirement of microglia activation in the progressive neurodegenerative nature of PD.
Collapse
|
20
|
Pan L, Qian S. Apocynin promotes neural function recovery and suppresses neuronal apoptosis by inhibiting Tlr4/NF-κB signaling pathway in a rat model of cerebral infarction. Int J Immunopathol Pharmacol 2018. [PMCID: PMC6291862 DOI: 10.1177/2058738418817700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Occlusion of arteries in the brain is a common cause of cerebral infarction which
induces inflammatory response and oxidative stress resulting in neuronal
apoptosis and disruption of neurological function. The present study
investigated the protective roles of an nicotinamide adenine dinucleotide
phosphate oxidase inhibitor, apocynin, against cerebral infarction. Rat went
through a surgery of middle cerebral artery occlusion and a subset of rats was
treated with apocynin by intraperitoneal injection. The volume of cerebral
infarction and water content were measured. Neuronal apoptosis, inflammatory
response, and oxidative stress were assessed following middle cerebral artery
occlusion and apocynin treatment. We found that apocynin significantly improved
neurological function, increased forelimb placement test scores, and suppressed
balance beam walk latency in rats with cerebral infarction. Histological and
biochemistry analysis revealed that apocynin lead to a significant reduction in
the volume of cerebral infarction as well as cerebral water content, suppressed
neuronal apoptosis, oxidative stress, and inflammatory response induced by
middle cerebral artery occlusion. Finally, we found that apocynin suppressed
Tlr4/nuclear factor-k-gene binding signaling pathway that was upregulated in
rats with cerebral infarction. Our results indicate that apocynin may represent
a potent therapeutic strategy in alleviating neurological dysfunctions in
patients with cerebral infarction.
Collapse
Affiliation(s)
- Lemen Pan
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuxia Qian
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
21
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radic Biol Med 2018; 129:394-406. [PMID: 30315936 DOI: 10.1016/j.freeradbiomed.2018.10.409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/30/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor that activates the antioxidant cellular defense in response to oxidative stress, leading to neuroprotective effects in Parkinson's disease (PD) models. We have previously shown that Angiotensin II (AngII) induces an increase in reactive oxygen species (ROS) via AngII receptor type 1 and NADPH oxidase (NOX), which may activate the NRF2 pathway. However, controversial data suggest that AngII induces a decrease in NRF2 signaling leading to an increase in oxidative stress. We analyzed the effect of AngII and the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in culture and in vivo, and examined the effects on the expression of NRF2-related genes. Treatment of neuronal cell lines Mes23.5, N27 and SH-SY5Y with AngII, 6-OHDA or a combination of both increased ROS production and reduced cell viability. Simultaneously, these treatments induced an increase in expression in the NRF2-regulated genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo1) and Kruppel like factor 9 (Klf9). Moreover, overexpression of KLF9 transcription factor caused a reduction in the production of ROS induced by treatment with AngII or 6-OHDA and improved the survival of these neuronal cells. Rats treated with AngII, 6-OHDA or a combination of both also showed an increased expression of NRF2 related genes and KLF9. In conclusion, our data indicate that AngII induces a damaging effect in neuronal cells, but also acts as a signaling molecule to activate NRF2 and KLF9 neuroprotective pathways in cellular and animal models of PD.
Collapse
Affiliation(s)
- Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
22
|
Role of NADPH oxidase in cooperative reactive oxygen species generation in dopaminergic neurons induced by combined treatment with dieldrin and lindane. Toxicol Lett 2018; 299:47-55. [DOI: 10.1016/j.toxlet.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/31/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022]
|
23
|
Majrashi M, Almaghrabi M, Fadan M, Fujihashi A, Lee W, Deruiter J, Randall Clark C, Dhanasekaran M. Dopaminergic neurotoxic effects of 3-TFMPP derivatives. Life Sci 2018; 209:357-369. [PMID: 30067941 DOI: 10.1016/j.lfs.2018.07.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Designer drugs are synthetically formulated to mimic the psychostimulatory effects of an original controlled/illegal drug of abuse. Designer drugs have similar chemical structure or functional analog as compared to existing controlled psychostimulatory drugs. There is a substantial rise in the production and use of designer drugs globally. Piperazine designer drugs were synthesized as an alternative to MDMA and have shown to induce numerous toxic effects leading to huge health, safety, law enforcement & monetary problems, and lethality. Currently, there are very few studies on the dopaminergic neurotoxicity of 1-(3-trifluoromethylphenyl) piperazine (3-TFMPP) and its derivatives (structural congeners). N27 rat dopaminergic neurons are valid cells to investigate the neurotoxic effects and establish the neurotoxic mechanisms of various substances. In the current study, we studied the time and dose-dependent neurotoxicity mechanisms of dopaminergic neurotoxicity of 3-TFMPP (parent compound) and its derivatives (2-TFMPP, 4-TFMPP). TFMPP derivatives-induced significant neurotoxicity (induced dopaminergic neuronal death. TFMPP derivatives-induced oxidative stress, mitochondrial dysfunction, apoptosis and decreased tyrosine hydroxylase expression. If the use of designer drugs are not strictly regulated and restricted around the world, this can lead to numerous central and peripheral disorders leading to a liability to the current and future society.
Collapse
Affiliation(s)
- Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, 23881, Saudi Arabia
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Taibah University, AL Medina, KSA
| | - Maali Fadan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Wooseok Lee
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - C Randall Clark
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.
| |
Collapse
|
24
|
Liu Y, Lu Z. Long non-coding RNA NEAT1 mediates the toxic of Parkinson's disease induced by MPTP/MPP+ via regulation of gene expression. Clin Exp Pharmacol Physiol 2018; 45:841-848. [PMID: 29575151 DOI: 10.1111/1440-1681.12932] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Liu
- Department of Neurology; Renmin Hospital of Wuhan University; Wuhan China
- Department of Neurology; Inner Mongolia People's Hospital; Hohhot China
| | - Zuneng Lu
- Department of Neurology; Renmin Hospital of Wuhan University; Wuhan China
| |
Collapse
|
25
|
Chen SH, Sung YF, Oyarzabal EA, Tan YM, Leonard J, Guo M, Li S, Wang Q, Chu CH, Chen SL, Lu RB, Hong JS. Physiological Concentration of Prostaglandin E 2 Exerts Anti-inflammatory Effects by Inhibiting Microglial Production of Superoxide Through a Novel Pathway. Mol Neurobiol 2018; 55:8001-8013. [PMID: 29492849 DOI: 10.1007/s12035-018-0965-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/16/2018] [Indexed: 01/21/2023]
Abstract
This study investigated the physiological regulation of brain immune homeostasis in rat primary neuron-glial cultures by sub-nanomolar concentrations of prostaglandin E2 (PGE2). We demonstrated that 0.01 to 10 nM PGE2 protected dopaminergic neurons against LPS-induced neurotoxicity through a reduction of microglial release of pro-inflammatory factors in a dose-dependent manner. Mechanistically, neuroprotective effects elicited by PGE2 were mediated by the inhibition of microglial NOX2, a major superoxide-producing enzyme. This conclusion was supported by (1) the close relationship between inhibition of superoxide and PGE2-induced neuroprotective effects; (2) the mediation of PGE2-induced reduction of superoxide and neuroprotection via direct inhibition of the catalytic subunit of NOX2, gp91phox, rather than through the inhibition of conventional prostaglandin E2 receptors; and (3) abolishment of the neuroprotective effect of PGE2 in NOX2-deficient cultures. In summary, this study revealed a potential physiological role of PGE2 in maintaining brain immune homeostasis and protecting neurons via an EP receptor-independent mechanism.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.
| | - Yueh-Feng Sung
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.,Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Esteban A Oyarzabal
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, National Exposure Research Lab, Research Triangle Park, NC, USA
| | - Jeremy Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Mingri Guo
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.,Department of Laboratory Medicine, Tianjin Haihe Hospital/Haihe Clinical Institute of Tianjin Medical University, Tianjin, China
| | - Shuo Li
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.,Department of Respiratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingshan Wang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Chun-Hsien Chu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Shiou-Lan Chen
- Department of Neurology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ru-Band Lu
- Institute of Behavioral Medicine, College of Medicine & Hospital, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University, Tainan, Taiwan
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, NIEHS/NIH, 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
26
|
Langley M, Ghosh A, Charli A, Sarkar S, Ay M, Luo J, Zielonka J, Brenza T, Bennett B, Jin H, Ghaisas S, Schlichtmann B, Kim D, Anantharam V, Kanthasamy A, Narasimhan B, Kalyanaraman B, Kanthasamy AG. Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice. Antioxid Redox Signal 2017; 27:1048-1066. [PMID: 28375739 PMCID: PMC5651937 DOI: 10.1089/ars.2016.6905] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive motor deficits and degeneration of dopaminergic neurons. Caused by a number of genetic and environmental factors, mitochondrial dysfunction and oxidative stress play a role in neurodegeneration in PD. By selectively knocking out mitochondrial transcription factor A (TFAM) in dopaminergic neurons, the transgenic MitoPark mice recapitulate many signature features of the disease, including progressive motor deficits, neuronal loss, and protein inclusions. In the present study, we evaluated the neuroprotective efficacy of a novel mitochondrially targeted antioxidant, Mito-apocynin, in MitoPark mice and cell culture models of neuroinflammation and mitochondrial dysfunction. RESULTS Oral administration of Mito-apocynin (10 mg/kg, thrice a week) showed excellent central nervous system bioavailability and significantly improved locomotor activity and coordination in MitoPark mice. Importantly, Mito-apocynin also partially attenuated severe nigrostriatal degeneration in MitoPark mice. Mechanistic studies revealed that Mito-apo improves mitochondrial function and inhibits NOX2 activation, oxidative damage, and neuroinflammation. INNOVATION The properties of Mito-apocynin identified in the MitoPark transgenic mouse model strongly support potential clinical applications for Mito-apocynin as a viable neuroprotective and anti-neuroinflammatory drug for treating PD when compared to conventional therapeutic approaches. CONCLUSION Collectively, our data demonstrate, for the first time, that a novel orally active apocynin derivative improves behavioral, inflammatory, and neurodegenerative processes in a severe progressive dopaminergic neurodegenerative model of PD. Antioxid. Redox Signal. 27, 1048-1066.
Collapse
Affiliation(s)
- Monica Langley
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Anamitra Ghosh
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Adhithiya Charli
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Souvarish Sarkar
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Muhammet Ay
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Jie Luo
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Jacek Zielonka
- 2 Department of Biophysics, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Timothy Brenza
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | - Brian Bennett
- 4 Department of Physics, Marquette University , Milwaukee, Wisconsin
| | - Huajun Jin
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Shivani Ghaisas
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Benjamin Schlichtmann
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | - Dongsuk Kim
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Vellareddy Anantharam
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Arthi Kanthasamy
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| | - Balaji Narasimhan
- 3 Department of Chemical and Biological Engineering, Iowa State University , Ames, Iowa
| | | | - Anumantha G Kanthasamy
- 1 Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University , Ames, Iowa
| |
Collapse
|
27
|
Lin JG, Chen CJ, Yang HB, Chen YH, Hung SY. Electroacupuncture Promotes Recovery of Motor Function and Reduces Dopaminergic Neuron Degeneration in Rodent Models of Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18091846. [PMID: 28837077 PMCID: PMC5618495 DOI: 10.3390/ijms18091846] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease. The pathological hallmark of PD is a progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta in the brain, ultimately resulting in severe striatal dopamine deficiency and the development of primary motor symptoms (e.g., resting tremor, bradykinesia) in PD. Acupuncture has long been used in traditional Chinese medicine to treat PD for the control of tremor and pain. Accumulating evidence has shown that using electroacupuncture (EA) as a complementary therapy ameliorates motor symptoms of PD. However, the most appropriate timing for EA intervention and its effect on dopamine neuronal protection remain unclear. Thus, this study used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model (systemic-lesioned by intraperitoneal injection) and the 1-methyl-4-phenylpyridinium (MPP+)-lesioned rat model (unilateral-lesioned by intra-SN infusion) of PD, to explore the therapeutic effects and mechanisms of EA at the GB34 (Yanglingquan) and LR3 (Taichong) acupoints. We found that EA increased the latency to fall from the accelerating rotarod and improved striatal dopamine levels in the MPTP studies. In the MPP+ studies, EA inhibited apomorphine induced rotational behavior and locomotor activity, and demonstrated neuroprotective effects via the activation of survival pathways of Akt and brain-derived neurotrophic factor (BDNF) in the SN region. In conclusion, we observed that EA treatment reduces motor symptoms of PD and dopaminergic neurodegeneration in rodent models, whether EA is given as a pretreatment or after the initiation of disease symptoms. The results indicate that EA treatment may be an effective therapy for patients with PD.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Han-Bin Yang
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan.
- Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan.
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
- Division of Colorectal Surgery, China Medical University Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
28
|
Van der Gucht W, Leemans A, De Schryver M, Heykers A, Caljon G, Maes L, Cos P, Delputte PL. Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection. Virol J 2017; 14:157. [PMID: 28818113 PMCID: PMC5561636 DOI: 10.1186/s12985-017-0824-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Background Host proteases have been shown to play important roles in many viral activities such as entry, uncoating, viral protein production and disease induction. Therefore, these cellular proteases are putative targets for the development of antivirals that inhibit their activity. Host proteases have been described to play essential roles in Ebola, HCV, HIV and influenza, such that specific protease inhibitors are able to reduce infection. RSV utilizes a host protease in its replication cycle but its potential as antiviral target is unknown. Therefore, we evaluated the effect of protease inhibitors on RSV infection. Methods To measure the sensitivity of RSV infection to protease inhibitors, cells were infected with RSV and incubated for 18 h in the presence or absence of the inhibitors. Cells were fixed, stained and studied using fluorescence microscopy. Results Several protease inhibitors, representing different classes of proteases (AEBSF, Pepstatin A, E-64, TPCK, PMSF and aprotinin), were tested for inhibitory effects on an RSV A2 infection of HEp-2 cells. Different treatment durations, ranging from 1 h prior to inoculation and continuing for 18 h during the assay, were evaluated. Of all the inhibitors tested, AEBSF and TPCK significantly decreased RSV infection. To ascertain that the observed effect of AEBSF was not a specific feature related to HEp-2 cells, A549 and BEAS-2B cells were also used. Similar to HEp-2, an almost complete block in the number of RSV infected cells after 18 h of incubation was observed and the effect was dose-dependent. To gain insight into the mechanism of this inhibition, AEBSF treatment was applied during different phases of an infection cycle (pre-, peri- and post-inoculation treatment). The results from these experiments indicate that AEBSF is mainly active during the early entry phase of RSV. The inhibitory effect was also observed with other RSV isolates A1998/3–2 and A2000/3–4, suggesting that this is a general feature of RSV. Conclusion RSV infection can be inhibited by broad serine protease inhibitors, AEBSF and TPCK. We confirmed that AEBSF inhibition is independent of the cell line used or RSV strain. The time point at which treatment with the inhibitor was most potent, was found to coincide with the expected moment of entry of the virion with the host cell.
Collapse
Affiliation(s)
- Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Marjorie De Schryver
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Annick Heykers
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Peter L Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
29
|
Kim JY, Park J, Lee JE, Yenari MA. NOX Inhibitors - A Promising Avenue for Ischemic Stroke. Exp Neurobiol 2017; 26:195-205. [PMID: 28912642 PMCID: PMC5597550 DOI: 10.5607/en.2017.26.4.195] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
NADPH-oxidase (NOX) mediated superoxide originally found on leukocytes, but now recognized in several types of cells in the brain. It has been shown to play an important role in the progression of stroke and related cerebrovascular disease. NOX is a multisubunit complex consisting of 2 membrane-associated and 4 cytosolic subunits. NOX activation occurs when cytosolic subunits translocate to the membrane, leading to transport electrons to oxygen, thus producing superoxide. Superoxide produced by NOX is thought to function in long-term potentiation and intercellular signaling, but excessive production is damaging and has been implicated to play an important role in the progression of ischemic brain. Thus, inhibition of NOX activity may prove to be a promising treatment for ischemic brain as well as an adjunctive agent to prevent its secondary complications. There is mounting evidence that NOX inhibition in the ischemic brain is neuroprotective, and targeting NOX in circulating immune cells will also improve outcome. This review will focus on therapeutic effects of NOX assembly inhibitors in brain ischemia and stroke. However, the lack of specificity and toxicities of existing inhibitors are clear hurdles that will need to be overcome before this class of compounds could be translated clinically.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yensei University College of Medicine, Seoul 03722, Korea
| | - Joohyun Park
- Department of Anatomy, Yensei University College of Medicine, Seoul 03722, Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yensei University College of Medicine, Seoul 03722, Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
30
|
Viana SD, Pita IR, Lemos C, Rial D, Couceiro P, Rodrigues-Santos P, Caramelo F, Carvalho F, Ali SF, Prediger RD, Fontes Ribeiro CA, Pereira FC. The effects of physical exercise on nonmotor symptoms and on neuroimmune RAGE network in experimental parkinsonism. J Appl Physiol (1985) 2017; 123:161-171. [PMID: 28385921 DOI: 10.1152/japplphysiol.01120.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) prodromal stages comprise neuropsychiatric perturbations that critically compromise a patient's quality of life. These nonmotor symptoms (NMS) are associated with exacerbated innate immunity, a hallmark of overt PD. Physical exercise (PE) has the potential to improve neuropsychiatric deficits and to modulate immune network including receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs) in distinct pathological settings. Accordingly, the present study aimed to test the hypothesis that PE 1) alleviates PD NMS and 2) modulates neuroimmune RAGE network in experimental PD. Adult Wistar rats subjected to long-term mild treadmill were administered intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probed for PD NMS before the onset of motor abnormalities. Twelve days after MPTP, neuroimmune RAGE network transcriptomics (real-time quantitative PCR) was analyzed in frontal cortex, hippocampus, and striatum. Untrained MPTP animals displayed habit-learning and motivational deficits without gross motor impairments (cued version of water-maze, splash, and open-field tests, respectively). A suppression of RAGE and neuroimmune-related genes was observed in frontal cortex on chemical and physical stressors (untrained MPTP: RAGE, TLR5 and -7, and p22 NADPH oxidase; saline-trained animals: RAGE, TLR1 and -5 to -11, TNF-α, IL-1β, and p22 NADPH oxidase), suggesting the recruitment of compensatory mechanisms to restrain innate inflammation. Notably, trained MPTP animals displayed normal cognitive/motivational performances. Additionally, these animals showed normal RAGE expression and neuroprotective PD-related DJ-1 gene upregulation in frontal cortex when compared with untrained MPTP animals. These findings corroborate PE efficacy in improving PD NMS and newly identify RAGE network as a neural substrate for exercise intervention. Additional research is warranted to unveil functional consequences of PE-induced modulation of RAGE/DJ-1 transcriptomics in PD premotor stages.NEW & NOTEWORTHY This study newly shows that physical exercise (PE) corrects nonmotor symptoms of the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of experimental parkinsonism. Additionally, we show that suppression of neuroimmune receptor for advanced glycation end products (RAGE) network occurs in frontal cortex on chemical (MPTP) and physical (PE) interventions. Finally, PE normalizes frontal cortical RAGE transcriptomics and upregulates the neuroprotective DJ-1 gene in the intranasal MPTP model of experimental parkinsonism.
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Inês R Pita
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Cristina Lemos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniel Rial
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- Research Unit on Applied Molecular Biosciences, Rede de Química e Tecnologia, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; and
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Rui D Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carlos A Fontes Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal;
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
31
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017. [PMID: 28426150 DOI: 10.1101/080937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. However, therapeutic methods of PD are still limited due to complex pathophysiology in PD. Here, optical measurements of individual neurons from in vitro PD model using optical diffraction tomography (ODT) are presented. By measuring 3D refractive index distribution of neurons, morphological and biophysical alterations in in-vitro PD model are quantitatively investigated. It was found that neurons show apoptotic features in early PD progression. The present approach will open up new opportunities for quantitative investigation of the pathophysiology of various neurodegenerative diseases. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
- Tomocube, Inc, Daejeon, 34051, South Korea
| |
Collapse
|
32
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017; 91:510-518. [DOI: 10.1002/cyto.a.23110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 South Korea
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
- Tomocube, Inc; Daejeon 34051 South Korea
| |
Collapse
|
33
|
Brenza TM, Ghaisas S, Ramirez JEV, Harischandra D, Anantharam V, Kalyanaraman B, Kanthasamy AG, Narasimhan B. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:809-820. [PMID: 27771430 DOI: 10.1016/j.nano.2016.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022]
Abstract
A progressive loss of neuronal structure and function is a signature of many neurodegenerative conditions including chronic traumatic encephalopathy, Parkinson's, Huntington's and Alzheimer's diseases. Mitochondrial dysfunction and oxidative and nitrative stress have been implicated as key pathological mechanisms underlying the neurodegenerative processes. However, current therapeutic approaches targeting oxidative damage are ineffective in preventing the progression of neurodegeneration. Mitochondria-targeted antioxidants were recently shown to alleviate oxidative damage. In this work, we investigated the delivery of biodegradable polyanhydride nanoparticles containing the mitochondria-targeted antioxidant apocynin to neuronal cells and the ability of the nano-formulation to protect cells against oxidative stress. The nano-formulated mitochondria-targeted apocynin provided excellent protection against oxidative stress-induced mitochondrial dysfunction and neuronal damage in a dopaminergic neuronal cell line, mouse primary cortical neurons, and a human mesencephalic cell line. Collectively, our results demonstrate that nano-formulated mitochondria-targeted apocynin may offer improved efficacy of mitochondria-targeted antioxidants to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Timothy M Brenza
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Julia E Vela Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | | | | | | | | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| |
Collapse
|
34
|
Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:114-129. [PMID: 27502688 DOI: 10.1016/j.bbalip.2016.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Autophagy is an evolutionarily conserved mechanism that maintains nutrient homeostasis by degrading protein aggregates and damaged organelles. Autophagy is reduced in aging, which is implicated in the pathogenesis of aging-related diseases, including cancers, obesity, type 2 diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria-derived phospholipids cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol are critical throughout the autophagic process, from initiation and phagophore formation to elongation and fusion with endolysosomal vesicles. Cardiolipin is also required for mitochondrial fusion and fission, an important step in isolating dysfunctional mitochondria for mitophagy. Furthermore, genetic screen in yeast has identified a surprising role for cardiolipin in regulating lysosomal function. Phosphatidylethanolamine plays a pivotal role in supporting the autophagic process, including autophagosome elongation as part of lipidated Atg8/LC3. An emerging role for phosphatidylglycerol in AMPK and mTORC1 signaling as well as mitochondrial fission may provide the first glimpse into the function of phosphatidylglycerol apart from being a precursor for cardiolipin. This review examines the effects of manipulating phospholipids on autophagy and mitophagy in health and diseases, as well as current limitations in the field. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
35
|
Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T, Narasimhan B, Kanthasamy A, Kalyanaraman B, Kanthasamy AG. Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson's Disease. J Neuroimmune Pharmacol 2016; 11:259-78. [PMID: 26838361 PMCID: PMC4995106 DOI: 10.1007/s11481-016-9650-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson's disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP(+)-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Monica R Langley
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Dilshan S Harischandra
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew L Neal
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Joy Joseph
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy Brenza
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | | | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
36
|
Protease inhibitor reduces airway response and underlying inflammation in cockroach allergen-induced murine model. Inflammation 2015; 38:672-82. [PMID: 25052477 DOI: 10.1007/s10753-014-9976-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protease(s) enhances airway inflammation and allergic cascade. In the present study, effect of a serine protease inhibitor was evaluated in mouse model of airway disease. Mice were sensitized with cockroach extract (CE) or Per a 10 and treated with 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) 1 h before or after challenge to measure airway response. Mice were euthanized to collect bronchoalveolar lavage fluid (BALF), blood, and lung to evaluate inflammation. AEBSF treatment significantly reduced the AHR in allergen-challenged mice in dose-dependent manner (p≤ 0.01). IgE (p≤0.05) and Th2 cytokines (p≤0.05) were significantly reduced in treated mice. AEBSF treatment lowered total cell (p≤0.05), eosinophil (p≤0.05), and neutrophil (p≤0.05) in BALF and lung tissue. Oxidative stress parameters were impaired on treatment in allergen-challenged mice (p≤0.05). AEBSF had therapeutic effect in allergen-induced airway resistance and underling inflammation and had potential for combination or as add-on therapy for respiratory diseases.
Collapse
|
37
|
Sasajima H, Miyazono S, Noguchi T, Kashiwayanagi M. Intranasal administration of rotenone in mice attenuated olfactory functions through the lesion of dopaminergic neurons in the olfactory bulb. Neurotoxicology 2015; 51:106-15. [PMID: 26493152 DOI: 10.1016/j.neuro.2015.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/14/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
Many environmental chemicals are thought to affect brain function. It was reported that chemicals in the nasal cavity directly reach the brain through the connection between olfactory neurons and the olfactory bulb (OB). In this 'olfactory transport,' xenobiotics absorbed at the nasal mucosa reach the brain by bypassing some physical barriers and defenses, and thus olfactory transport is suspected to be a vulnerable mechanism of the brain against invasion threats of environmental chemicals. In this study, we focused on the neuronal toxicity of rotenone administered intranasally to mice. The results showed that the mice that were administered rotenone had attenuated olfactory functions. We also found that intranasally administered rotenone induced acute mitochondrial stress at the OB. The repeated administration of rotenone resulted in a decrease in the number of dopaminergic neurons, which are inhibitory interneurons in the OB. Taken together, our findings suggest that the inhalation of environmental toxins induces the neurodegeneration of cranial neurons through olfactory transport, and that olfactory dysfunction may be induced as an earliest symptom of neurodegeneration caused by inhaled neurotoxins.
Collapse
Affiliation(s)
- Hitoshi Sasajima
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - Sadaharu Miyazono
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - Tomohiro Noguchi
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - Makoto Kashiwayanagi
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
38
|
Ansari MA, Roberts KN, Scheff SW. A time course of NADPH-oxidase up-regulation and endothelial nitric oxide synthase activation in the hippocampus following neurotrauma. Free Radic Biol Med 2014; 77:21-9. [PMID: 25224032 PMCID: PMC4313124 DOI: 10.1016/j.freeradbiomed.2014.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 01/13/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase; NOX) is a complex enzyme responsible for increased levels of reactive oxygen species (ROS), superoxide (O2(•-)). NOX-derived O2(•-) is a key player in oxidative stress and inflammation-mediated multiple secondary injury cascades (SIC) following traumatic brain injury (TBI). The O2(•-) reacts with nitric oxide (NO), produces various reactive nitrogen species (RNS), and contributes to apoptotic cell death. Following a unilateral cortical contusion, young adult rats were killed at various times postinjury (1, 3, 6, 12, 24, 48, 72, and 96 h). Fresh tissue from the hippocampus was analyzed for NOX activity, and level of O2(•-). In addition we evaluated the translocation of cytosolic NOX proteins (p67(Phox), p47(Phox), and p40(Phox)) to the membrane, along with total NO and the activation (phosphorylation) of endothelial nitric oxide synthase (p-eNOS). Results show that both enzymes and levels of O2(•-) and NO have time-dependent injury effects in the hippocampus. Translocation of cytosolic NOX proteins into membrane, NOX activity, and O2(•-) were also increased in a time-dependent fashion. Both NOX activity and O2(•-) were increased at 6 h. Levels of p-eNOS increased within 1h, with significant elevation of NO at 12h post-TBI. Levels of NO failed to show a significant association with p-eNOS, but did associate with O2(•-). NOX up-regulation strongly associated with both the levels of O2(•-) and the total NO. The initial 12 h post-TBI are very important as a possible window of opportunity to interrupt SIC. It may be important to selectively target the translocation of cytosolic subunits for the modulation of NOX function.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA.
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA.
| | - Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA; Spinal Cord Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0230, USA.
| |
Collapse
|
39
|
Dranka BP, Gifford A, McAllister D, Zielonka J, Joseph J, O'Hara CL, Stucky CL, Kanthasamy AG, Kalyanaraman B. A novel mitochondrially-targeted apocynin derivative prevents hyposmia and loss of motor function in the leucine-rich repeat kinase 2 (LRRK2(R1441G)) transgenic mouse model of Parkinson's disease. Neurosci Lett 2014; 583:159-64. [PMID: 25263790 DOI: 10.1016/j.neulet.2014.09.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 01/17/2023]
Abstract
Recently, we demonstrated that dimeric apocynin prevented loss of motor function in the leucine-rich repeat kinase 2 (LRRK2(R1441G)) transgenic (tg) mouse (treated with 200mg/kg, three times per week) [B.P. Dranka et al., Neurosci. Lett. 549 (2013) 57-62]. Here we extend those studies by treating LRRK2(R1441G) mice with an orally-available, mitochondrially-targeted apocynin derivative. We hypothesized that the increased mitochondrial permeability of Mito-apocynin, due to the triphenylphosphonium moiety, would allow improvement of Parkinson's disease (PD) symptoms at lower doses than those required for diapocynin. Tests of motor coordination (pole test, Rotor-Rod) revealed a significant deficit in coordinated motor function in LRRK2(R1441G) mice by 15 months of age. Decreased performance on the pole test and Rotor-Rod in the LRRK2(R1441G) mice was prevented with Mito-apocynin treatment (3mg/kg, three times per week). Decreased olfactory function is an early indication of PD in human patients. LRRK2(R1441G) tg mice displayed deficits in sense of smell in both the hidden treat test, and a radial arm maze test. Interestingly, treatment with Mito-apocynin prevented this hyposmia, and animals retained normal ability to identify either a scented treat or a food pellet as well as wild type littermates. Together, these data demonstrate that the mitochondria-targeted apocynin analog is effective in preventing early PD-like symptoms in the LRRK2(R1441G) mouse model.
Collapse
Affiliation(s)
- Brian P Dranka
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alison Gifford
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Donna McAllister
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jacek Zielonka
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joy Joseph
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Crystal L O'Hara
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Balaraman Kalyanaraman
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
40
|
Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, Du G. Inflammatory response in Parkinson's disease (Review). Mol Med Rep 2014; 10:2223-33. [PMID: 25215472 DOI: 10.3892/mmr.2014.2563] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/01/2014] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common age‑related neurodegenerative diseases, which results from a number of environmental and inherited factors. PD is characterized by the slow progressive degeneration of dopaminergic (DA) neurons in the substantia nigra. The nigrostriatal DA neurons are particularly vulnerable to inflammatory attack. Neuroinflammation is an important contributor to the pathogenesis of age‑related neurodegenerative disorders, such as PD, and as such anti‑inflammatory agents are becoming a novel therapeutic focus. This review will discuss the current knowledge regarding inflammation and review the roles of intracellular inflammatory signaling pathways, which are specific inflammatory mediators in PD. Finally, possible therapeutic strategies are proposed, which may downregulate inflammatory processes and inhibit the progression of PD.
Collapse
Affiliation(s)
- Junqiang Yan
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qizhi Fu
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Liniu Cheng
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Mingming Zhai
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wenjuan Wu
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Lina Huang
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
41
|
Li Z, Tian F, Shao Z, Shen X, Qi X, Li H, Wang Z, Chen G. Expression and clinical significance of non-phagocytic cell oxidase 2 and 4 after human traumatic brain injury. Neurol Sci 2014; 36:61-71. [DOI: 10.1007/s10072-014-1909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
|
42
|
Tseng YT, Chang FR, Lo YC. The Chinese herbal formula Liuwei dihuang protects dopaminergic neurons against Parkinson's toxin through enhancing antioxidative defense and preventing apoptotic death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:724-733. [PMID: 24411708 DOI: 10.1016/j.phymed.2013.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/14/2013] [Indexed: 06/03/2023]
Abstract
Liuwei dihuang (LWDH), a widely used traditional Chinese medicine (TCM), has been employed as an anti-aging prescription to improve declined function. Parkinson's disease (PD) is a common adult-onset neurodegenerative disorder characterized by the degeneration of dopaminergic nigrostriatal neurons with complex pathological mechanisms, including oxidative stress. Increasing evidence indicate that TCM has the potential to be neuroprotective drugs because of their antioxidant characteristics. The aim of this study is to investigate the mechanisms of LWDH-mediated protection in Parkinson's toxin-induced dopaminergic neurodegeneration by evaluating water extract of LWDH (LWDH-WE) in 1-methyl-4-phenylpyridinium (MPP(+))-treated primary mesencephalic neurons and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. In the present study, chemical profiling and quantitative analysis of LWDH-WE were revealed using 3D-HPLC technique, and were confirmed by the data of three batches of LWDH-WE. In primary mesencephalic neuronal cultures, LWDH-WE decreased MPP(+)-induced loss of tyrosine hydroxylase (TH)-positive neurons and increase of Annexin V-positive neurons. LWDH-WE reduced MPP(+)-induced oxidative damage via increasing antioxidant defense (SOD, GSH), decreasing ROS production, and down-regulating NADPH oxidases (Nox2 and Nox4). Also, LWDH-WE inhibited neuronal apoptosis by improving mitochondrial membrane potential, increasing antiapoptotic protein Bcl-2 expression, and down-regulating apoptotic signaling (Bax, cytochrome c, cleaved-caspase-3) in MPP(+)-treated neurons. In MPTP-treated C57BL/6 mice, LWDH-WE attenuated TH-positive neuronal loss in substantia nigra pars compacta (SNpc), and improved locomotor activity of mice. In conclusion, the present results reveal that LWDH-WE possesses protection on dopaminergic neurons through enhancing antioxidant defense and decreasing apoptotic death, suggesting the potential benefits of LWDH-WE for PD treatment.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Graduate Institute of Natural Products, School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ching Lo
- Graduate Institute of Natural Products, School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
43
|
Miller DK, Oelrichs CE, Sun GY, Simonyi A. Subchronic apocynin treatment attenuates methamphetamine-induced dopamine release and hyperactivity in rats. Life Sci 2014; 98:6-11. [PMID: 24398042 DOI: 10.1016/j.lfs.2013.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 01/17/2023]
Abstract
AIMS The effects of methamphetamine are linked to stimulation of dopaminergic neurons, which can be accompanied by production of reactive oxygen species (ROS). Apocynin (4-hydroxy-3-methoxy-acetophenone) is a nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) inhibitor shown to mitigate oxidative stress in a number of models. The present study aimed at testing whether apocynin suppresses the dopamine-releasing and locomotor-activating properties of methamphetamine. MAIN METHODS (1) Apocynin (0.01-100μM) was applied to rat striatal slices preloaded with [(3)H]dopamine and its efficacy to evoke [(3)H]overflow and to alter methamphetamine (3μM)-evoked [(3)H]overflow was measured. (2) Groups of rats received apocynin (15 or 50mg/kg/day) or vehicle injection for seven consecutive days, and the efficacy and potency of methamphetamine to evoke [(3)H]overflow were determined. (3) Groups of apocynin-treated rats were administered methamphetamine (0.5 or 1mg/kg) or saline to determine the effect of apocynin on stimulant-induced hyperactivity. KEY FINDINGS (1) Apocynin applied to striatal slices did not evoke [(3)H]overflow or alter methamphetamine-evoked [(3)H]overflow. (2) However, subchronic apocynin treatment significantly and dose-dependently decreased methamphetamine's potency and efficacy to evoke [(3)H]overflow. (3) Subchronic apocynin treatment also decreased the locomotor activity evoked by methamphetamine. SIGNIFICANCE Subchronic apocynin treatment diminished methamphetamine induced dopamine-release and its locomotor-activating properties. The pattern of results indicates that apocynin is more effective after repeated, rather than after acute, treatment. The findings also suggest that NOX inhibitors or agents suppressing oxidative stress may constitute a new area for research to understand how methamphetamine produces its deleterious and neurotoxic outcomes in the brain.
Collapse
Affiliation(s)
- Dennis K Miller
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Clark E Oelrichs
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
44
|
Neuronal nitric oxide synthase and NADPH oxidase interact to affect cognitive, affective, and social behaviors in mice. Behav Brain Res 2013; 256:320-7. [PMID: 23948215 DOI: 10.1016/j.bbr.2013.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 11/22/2022]
Abstract
Both nitric oxide (NO) and reactive oxygen species (ROS) generated by nNOS and NADPH oxidase (NOX), respectively, in the brain have been implicated in an array of behaviors ranging from learning and memory to social interactions. Although recent work has elucidated how these separate redox pathways regulate neural function and behavior, the interaction of these two pathways in the regulation of neural function and behavior remains unspecified. Toward this end, the p47phox subunit of NOX, and nNOS were deleted to generate double knockout mice that were used to characterize the behavioral outcomes of concurrent impairment of the NO and ROS pathways in the brain. Mice were tested in a battery of behavioral tasks to evaluate learning and memory, as well as social, affective, and cognitive behaviors. p47phox deletion did not affect depressive-like behavior, whereas nNOS deletion abolished it. Both p47phox and nNOS deletion singly reduced anxiety-like behavior, increased general locomotor activity, impaired spatial learning and memory, and impaired preference for social novelty. Deletion of both genes concurrently had synergistic effects to elevate locomotor activity, impair spatial learning and memory, and disrupt prepulse inhibition of acoustic startle. Although preference for social novelty was impaired in single knockouts, double knockout mice displayed elevated levels of preference for social novelty above that of wild type littermates. These data demonstrate that, depending upon modality, deletion of p47phox and nNOS genes have dissimilar, similar, or additive effects. The current findings provide evidence that the NOX and nNOS redox signaling cascades interact in the brain to affect both cognitive function and social behavior.
Collapse
|
45
|
Satpute R, Lomash V, Kaushal M, Bhattacharya R. Neuroprotective effects of alpha-ketoglutarate and ethyl pyruvate against motor dysfunction and oxidative changes caused by repeated 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine exposure in mice. Hum Exp Toxicol 2013; 32:747-58. [DOI: 10.1177/0960327112468172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin associated with drug abuse and causes permanent symptoms of Parkinson's disease (PD) by destroying dopaminergic neurons in the substantia nigra of the brain. In the present study, the neuroprotective effects of two carboxylic acid compounds, viz. alpha-ketoglutarate (A-KG), a Kreb’s cycle intermediate and ethyl pyruvate (EP), a lipid-soluble analogue of pyruvate, were evaluated against MPTP intoxication in mice and compared with madopar (MD; combination of levodopa plus benserazide), a standard drug. Animals received oral treatment of A-KG (500 mg/kg), EP (100 mg/kg) or MD (5 mg/kg) daily for 5 days followed by intraperitoneal administration of MPTP (20 mg/kg) and posttreatment (+10 min) of A-KG, EP or MD daily for the remaining 5 days. MPTP caused the inhibition of complex I of electron transport chain accompanied by oxidative stress in the brain. It also caused cytotoxicity in the midbrain region as characterized by histology and immunohistochemistry. Treatments of A-KG and EP were found to resolve the loss of motor coordination, oxidative stress, diminished complex I activity and tyrosine hydroxylase–positive neurons in midbrain. A-KG and EP also regressed the histological damage in the brain and minimized the accumulation of alpha-synuclein in the midbrain region. The data suggest that A-KG and EP which are nontoxic carboxylic acid compounds could be of potential therapeutic value in the treatment of PD.
Collapse
Affiliation(s)
- R. Satpute
- Toxicology Laboratory, Defence Research and Development Establishment, Nagpur, India
| | - V. Lomash
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - M. Kaushal
- BIMR College of Life Sciences, Gwalior, India
| | - R. Bhattacharya
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
46
|
Kleniewska P, Michalska M, Gorąca A. Influence of NADPH oxidase inhibition on oxidative stress parameters in rat hearts. Pharmacol Rep 2013; 65:898-905. [DOI: 10.1016/s1734-1140(13)71071-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 02/16/2013] [Indexed: 11/24/2022]
|
47
|
Luong KVQ, Nguyễn LTH. The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther 2013; 19:461-8. [PMID: 23462281 PMCID: PMC6493530 DOI: 10.1111/cns.12078] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/29/2022] Open
Abstract
Parkinson disease (PD) is the second most common form of neurodegeneration among elderly individuals. PD is clinically characterized by tremors, rigidity, slowness of movement, and postural imbalance. In this paper, we review the evidence for an association between PD and thiamine. Interestingly, a significant association has been demonstrated between PD and low levels of serum thiamine, and thiamine supplements appear to have beneficial clinical effects against PD. Multiple studies have evaluated the connection between thiamine and PD pathology, and candidate pathways involve the transcription factor Sp1, p53, Bcl-2, caspase-3, tyrosine hydroxylase, glycogen synthase kinase-3β, vascular endothelial growth factor, advanced glycation end products, nuclear factor kappa B, mitogen-activated protein kinase, and the reduced form of nicotinamide adenine dinucleotide phosphate. Thus, a review of the literature suggests that thiamine plays a role in PD, although further investigation into the effects of thiamine in PD is needed.
Collapse
Affiliation(s)
- Khanh V Q Luong
- Vietnamese American Medical Research Foundation, Westminster, CA 92683, USA
| | | |
Collapse
|
48
|
Ghosh A, Saminathan H, Kanthasamy A, Anantharam V, Jin H, Sondarva G, Harischandra DS, Qian Z, Rana A, Kanthasamy AG. The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease. J Biol Chem 2013; 288:21955-71. [PMID: 23754278 DOI: 10.1074/jbc.m112.444224] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Luong KVQ, Nguyen LTH. The role of β-adrenergic blockers in Parkinson's disease: possible genetic and cell-signaling mechanisms. Am J Alzheimers Dis Other Demen 2013; 28:306-17. [PMID: 23695225 PMCID: PMC10852762 DOI: 10.1177/1533317513488919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic studies have identified numerous factors linking β-adrenergic blockade to Parkinson's disease (PD), including human leukocyte antigen genes, the renin-angiotensin system, poly(adenosine diphosphate-ribose) polymerase 1, nerve growth factor, vascular endothelial growth factor, and the reduced form of nicotinamide adenine dinucleotide phosphate. β-Adrenergic blockade has also been implicated in PD via its effects on matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, cyclooxygenase 2, and nitric oxide synthase. β-Adrenergic blockade may have a significant role in PD; therefore, the characterization of β-adrenergic blockade in patients with PD is needed.
Collapse
|
50
|
Luchtman DW, Meng Q, Wang X, Shao D, Song C. ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem 2013; 124:855-68. [PMID: 23106698 DOI: 10.1111/jnc.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/27/2022]
Abstract
Eicosapentaenoic acid (EPA), a neuroactive omega-3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH-SY5Y cells and primary mesencephalic neurons treated with MPP(+) . In both in-vitro models of PD, EPA attenuated an MPP(+) -induced reduction in cell viability. EPA also prevented the presence of electron-dense cytoplasmic inclusions in SH-SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP(+) -induced increase in Tyrosine-related kinase B (TrkB) receptors. In SH-SY5Y cells, EPA down-regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo-oxygenase-2 (COX-2), as MPP(+) increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX-2 in the potentially pro-inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl-2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.
Collapse
Affiliation(s)
- Dirk W Luchtman
- National Research Institute for Nutrisciences and Health and Department of Biomedical Science, University of Prince Edward Island, Charlottetown, Canada
| | | | | | | | | |
Collapse
|