1
|
Park H, Kim SY, Jang H, Ha YW, Yun YM, Kim KJ, Rhee Y, Kim HC, Kim CO, Cho J. Impact of physical activity levels on the association between air pollution exposures and glycemic indicators in older individuals. Environ Health 2024; 23:87. [PMID: 39425159 PMCID: PMC11488365 DOI: 10.1186/s12940-024-01125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Air pollution may exacerbate diabetes-related indicators; however, the longitudinal associations between air pollutant concentrations and glycemic markers remain unclear. In this prospective cohort study, we examined the longitudinal associations between air pollution and glycemic indicators among older individuals with normoglycemia at baseline and determined whether these associations differed according to changes in physical activity levels. METHODS Overall, 1,856 participants (mean age, 70.9 years) underwent baseline and 4-year follow-up surveys. We used linear mixed-effect models to examine the associations between previous 1-year exposures to air pollutants and glycemic indicators. We further investigated associations between previous 5-year exposures to air pollutants and glycemic indicators after the inverse probability of treatment weighting (IPTW). We explored effect modifications by the level of physical activity maintenance and changes in metabolic equivalent of task (METs) for physical activity. RESULTS Levels of particulate matter with aerodynamic diameters ≤ 10 μm (PM10) and ≤ 2.5 μm, and nitrogen dioxide (NO2) were significantly associated with increased fasting blood glucose, Hemoglobin A1c, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) values. After IPTW, the associations remained significant for PM10 and NO2. The positive associations of NO2 with insulin and HOMA-IR remained significant in the maintained inactive group, but not in the maintained moderate-to-vigorous active group. The positive associations of PM10 or NO2 with insulin and HOMA-IR remained significant in the group with increased METs, but not in those with decreased METs. In the post-hoc analysis of non-linear relationships between an increase in METs and glycemic indicators, insulin and HOMA-IR remarkably increased in the higher PM10 and NO2 exposure group from the point of 12,000 and 13,500 METs-min/week increase, respectively. CONCLUSIONS We demonstrated longitudinal associations between air pollution exposures and increased insulin resistance in older individuals. Maintaining moderate-to-vigorous physical activity may mitigate the adverse effects of air pollution on insulin resistance. In older individuals dwelling in highly polluted areas, an increase of less than 12,000 METs-min/week may be beneficial for insulin resistance.
Collapse
Affiliation(s)
- Hyunji Park
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Sun Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Heeseon Jang
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Yae Won Ha
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Young Mi Yun
- Division of Geriatrics, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang Joon Kim
- Division of Geriatrics, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yumie Rhee
- Endocrine Research Institute, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Chang Oh Kim
- Division of Geriatrics, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
2
|
Yan R, Ji S, Ku T, Sang N. Cross-Omics Analyses Reveal the Effects of Ambient PM 2.5 Exposure on Hepatic Metabolism in Female Mice. TOXICS 2024; 12:587. [PMID: 39195689 PMCID: PMC11360593 DOI: 10.3390/toxics12080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Ambient particulate matter (PM2.5) is a potential risk factor for metabolic damage to the liver. Epidemiological studies suggest that elevated PM2.5 concentrations cause changes in hepatic metabolism, but there is a lack of laboratory evidence. Here, we aimed to evaluate the effects of PM2.5 exposure on liver metabolism in C57BL/6j female mice (10 months old) and to explore the mechanisms underlying metabolic alterations and differential gene expressions by combining metabolomics and transcriptomics analyses. The metabolomics results showed that PM2.5 exposure notably affected the metabolism of amino acids and organic acids and caused hepatic lipid and bile acid accumulation. The transcriptomic analyses revealed that PM2.5 exposure led to a series of metabolic pathway abnormalities, including steroid biosynthesis, steroid hormone biosynthesis, primary bile acid biosynthesis, etc. Among them, the changes in the bile acid pathway might be one of the causes of liver damage in mice. In conclusion, this study clarified the changes in liver metabolism in mice caused by PM2.5 exposure through combined transcriptomic and metabolomic analyses, revealed that abnormal bile acid metabolism is the key regulatory mechanism leading to metabolic-associated fatty liver disease (MAFLD) in mice, and provided laboratory evidence for further clarifying the effects of PM2.5 on body metabolism.
Collapse
Affiliation(s)
| | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (S.J.); (N.S.)
| | | |
Collapse
|
3
|
Zhang Y, Zheng P, Shi J, Ma Y, Chen Z, Wang T, Jia G. The modification effect of fasting blood glucose level on the associations between short-term ambient air pollution and blood lipids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2998-3010. [PMID: 37975287 DOI: 10.1080/09603123.2023.2283048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The association between short-term ambient air pollution (AAP) exposure and blood lipids is inconsistent across populations. This study aimed to investigate the modifying effects of fasting blood glucose (FBG) levels on the associations between short-term AAP exposure and blood lipids in 110,637 male participants from Beijing, China. The results showed that FBG modified the association between short-term AAP exposure and blood lipids, especially low-density lipoprotein cholesterol (LDL-C). In the hyperglycemia group, a 10-μg/m3 increase in particles with diameters ≤ 2.5 μm (PM2.5), particles with diameters ≤ 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or a 1-mg/m3 increase in carbon monoxide (CO) was associated with a 0.454%, 0.305%, 1.507%, 0.872%, or 3.961% increase in LDL-C, respectively. In the nonhyperglycemic group, short-term increases in air pollutants were even associated with small decreases in LDL-C. The findings demonstrate that lipids in hyperglycemic individuals are more vulnerable to short-term AAP exposure than those in normal populations.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
4
|
Liu C, Yang J, Guan L, Jing L, Xiao S, Sun L, Xu B, Zhao H. Intersection of Aging and Particulate Matter 2.5 Exposure in Real World: Effects on Inflammation and Endocrine Axis Activities in Rats. Int J Endocrinol 2024; 2024:8501696. [PMID: 38966821 PMCID: PMC11223905 DOI: 10.1155/2024/8501696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Exposure to particulate matter 2.5 (PM2.5) is detrimental to multiple organ systems. Given the factor that aging also alters the cellularity and response of immune system and dysfunction of hypothalamic-pituitary-adrenal, -gonad and -thyroid axes, it is imperative to investigate whether chronic exposure to PM2.5 interacts with aging in these aspects. In this study, two-months-old Sprague-Dawley rats were exposed to real world PM2.5 for 16 months. PM2.5 exposure diminished the relative numbers of CD4+ T cells and CD8+ T cells and increased the relative number of B cells in the peripheral blood of male rats. Conversely, only reduced relative number of CD4+ T cells was seen in the blood of female rats. These shifts resulted in elevated levels of proinflammatory factors interleukin-6 and tumor necrosis factor-α in the circulatory systems of both sex, with females also evidencing a rise in interleukin-1β levels. Moreover, heightened interleukin-6 was solely discernible in the hippocampus of female subjects, while increased tumor necrosis factor-α concentrations were widespread in female brain regions but confined to the male hypothalamus. Notable hormonal decreases were observed following PM2.5 exposure in both sex. These comprised declines in biomolecules such as corticotrophin-releasing hormone and cortisol, generated by the hypothalamic-pituitary-adrenal axis, and thyroid-releasing hormone and triiodothyronine, produced by the hypothalamic-pituitary-thyroid axis. Hormonal elements such as gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone, derived from the hypothalamic-pituitary-gonad axis, were also diminished. Exclusive to male rats was a reduction in adrenocorticotropic hormone levels, whereas a fall in thyroid-stimulating hormone was unique to female rats. Decreases in sex-specific hormones, including testosterone, estradiol, and progesterone, were also noted. These findings significantly enrich our comprehension of the potential long-term health repercussions associated with PM2.5 interaction particularly among the aging populace.
Collapse
Affiliation(s)
- Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liwei Jing
- School of Nursing, Capital Medical University, Beijing, China
| | - Shuqin Xiao
- School of Nursing, Capital Medical University, Beijing, China
| | - Liu Sun
- School of Nursing, Capital Medical University, Beijing, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wang W, Zhang W, Li L, Hu D, Liu S, Cui L, Liu J, Xu J, Guo X, Deng F. Obesity-related cardiometabolic indicators modify the associations of personal noise exposure with heart rate variability: A further investigation on the Study among Obese and Normal-weight Adults (SONA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122446. [PMID: 37625771 DOI: 10.1016/j.envpol.2023.122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Elucidating the associations between environmental noise and heart rate variability (HRV) would be beneficial for the prevention and control of detrimental cardiovascular changes. Obese people have been found to manifest heightened susceptibility to the adverse effects of noise on HRV. However, the underlying mechanisms remain unclear. Based on 53 normal-weight and 44 obese young adults aged 18-26 years in Beijing, China, this study aimed to investigate the role of obesity-related cardiometabolic indicators for associations between short-term environmental noise exposure and HRV in the real-world context. The participants underwent personal noise exposure and ambulatory electrocardiogram monitoring using portable devices at 5-min intervals for 24 continuous hours. Obesity-related blood pressure, glucose and lipid metabolism, and inflammatory indicators were subsequently examined. Generalized mixed-effect models were used to estimate the associations between noise exposure and HRV parameters. The C-peptide, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin levels were higher in obese participants compared to normal-weight participants. We observed amplified associations between short-term noise exposure and decreases in HRV among participants with higher C-peptide, HOMA-IR, and leptin levels. For instance, a 1 dB(A) increment in 3 h-average noise exposure level preceding each measurement was associated with changes of -0.20% (95%CI: -0.45%, 0.04%) and -1.35% (95%CI: -1.85%, -0.86%) in standard deviation of all normal to normal intervals (SDNN) among participants with lower and higher C-peptide levels, respectively (P for interaction <0.05). Meanwhile, co-existing fine particulate matter (PM2.5) could amplify the associations between noise and HRV among obese participants and participants with higher C-peptide, HOMA-IR, and leptin levels. The more apparent associations of short-term exposure to environmental noise with HRV and the effect modification by PM2.5 may be partially explained by the higher C-peptide, HOMA-IR, and leptin levels of obese people.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Liu Y, Shao J, Liu Q, Zhou W, Huang R, Zhou J, Ning N, Tang X, Ma Y. Association between household fuel combustion and diabetes among middle-aged and older adults in China: A cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114974. [PMID: 37150109 DOI: 10.1016/j.ecoenv.2023.114974] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Few studies examined the associations of household fuel combustion with incident diabetes. The current study emphasizes the association of domestic fuel combustion with diabetes among middle- and older- Chinese. METHODS The data was extracted from a national and prospective cohort, the China Health and Retirement Longitudinal Study (CHARLS), which enrolled adults ≥ 45 years. A total of 4610 and 5570 participants were involved in heating and cooking-related analyses. Multivariable logistic models were conducted to assess the association of domestic fuel combustion for heating and cooking with diabetes. Furthermore, we also examined whether it differed from switching fuel types. Subgroup and interaction analyses were performed based on covariates to examine the robustness and find potential effect modifiers. RESULTS After about 5-year follow-up, 592 and 716 diabetes were diagnosed in heating and cooking-related analyses. Compared to cleaner fuel users, those who used solid fuel for heating [OR (95 % CI):1.32 (1.05-1.66)] maintained higher risks of incident diabetes. In addition, participants who were exposed to solid fuel for both heating and cooking [OR (95 % CI):1.55 (1.17-2.06)] might have further elevated diabetic risk. Those risks are likely to be attenuated if people switched cooking fuel from solid to cleaner [OR (95 % CI): 0.68 (0.53-0.89)]. CONCLUSIONS Home solid fuel use for heating is associated with an increased risk of incident diabetes. If solid fuel was concurrently used for both cooking and heating, those risks might be further elevated. Interestingly, as compared to solid fuel users, the participants switching cooking fuel types from solid to cleaner presented reduced diabetic risk.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Jinang Shao
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Qitong Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Wenhui Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Rong Huang
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Jin Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Ning Ning
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Xiao Tang
- Department of Health Statistics, School of Public Health, Dalian Medical University, Dalian, Liaoning, China.
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Sun T, Wang Z, Lei F, Lin L, Zhang X, Song X, Ji YX, Zhang XJ, Zhang P, She ZG, Cai J, Jia P, Li H. Long-term exposure to air pollution and increased risk of atrial fibrillation prevalence in China. Int J Cardiol 2023; 378:130-137. [PMID: 36841290 DOI: 10.1016/j.ijcard.2023.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of treated heart arrhythmia contributing to adverse cardiovascular events. The association between short-term air pollution exposure and AF episodes has been recognized. But the evidence of the association between long-term air pollution exposure and AF was limited, especially in developing countries. METHODS We performed a nationwide cross-sectional study among 1,374,423 individuals aged ≥35 years from 13 health check-up centers. Using logistic regression models, we assessed the association between long-term exposure to single air pollution and AF prevalence, including particulate matter (PM2.5 and PM10), ozone (O3) and PM2.5 compositions, which were estimated by high-resolution and high-quality spatiotemporal datasets of ground-level air pollutants for China. The quantile g-computation model was used to explore the joint effect of all exposures to air pollution and the contribution of an individual component to the mixture. RESULTS In single-pollutant models, an increase of 10 μg/m3 in PM2.5 (OR 1.031[95%CI 1.010,1.053]) and PM10 (OR = 1.021 [95%CI 1.009,1.033]) was positively associated with AF prevalence. The stratified analyses revealed that these associations were significantly stronger in females, people <65 years old, and those with hypertension and diabetes. In the further exploration of the joint effect of PM2.5 compositions (OR 1.060 [95%CI 1.022,1.101]) per quintile increase in all five PM2.5 components), we found that PM2.5 sulfate contributed the most. CONCLUSIONS These findings provide important evidence for the positive relationship between long-term exposure to air pollution and AF prevalence in China and identify sulfate particles of PM2.5 as having the highest contribution to the overall mixture effects among all PM2.5 chemical constituents.
Collapse
Affiliation(s)
- Tao Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhanpeng Wang
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiaohui Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China; Hubei Luojia Laboratory, Wuhan, China; School of Public Health, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Huanggang Institute of Translational Medicine, Huanggang, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Cowell W, Kloog I, Just AC, Coull BA, Carroll K, Wright RJ. Ambient PM 2.5 exposure and salivary cortisol output during pregnancy in a multi-ethnic urban sample. Inhal Toxicol 2023; 35:101-108. [PMID: 35312378 PMCID: PMC10264094 DOI: 10.1080/08958378.2022.2051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/05/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Evidence from murine research supports that fine particulate matter (PM2.5) may stimulate the hypothalamic-pituitary-adrenal axis, leading to elevated circulating glucocorticoid levels. Epidemiologic research examining parallel associations document similar associations. We examined these associations among a diverse sample of pregnant individuals exposed to lower levels of ambient PM2.5. MATERIALS AND METHODS Participants included pregnant individuals enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pre-birth cohort. Daily residential PM2.5 exposure was estimated using a satellite-based spatial-temporal hybrid model. Maternal 3rd trimester salivary cortisol levels were used to calculate several features of the diurnal cortisol rhythm. We used multivariable linear regression to examine PM2.5 during the pre-conception period and during each trimester in relation to cortisol awakening rise (CAR), slope, and area under the curve relative to ground (AUCG). RESULTS AND DISCUSSION The average PM2.5 exposure level across pregnancy was 8.13 µg/m3. PM2.5 in each exposure period was positively associated with AUCG, a measure of total cortisol output across the day. We also observed an inverse association between PM2.5 in the 3rd trimester and diurnal slope, indicating a steeper decline in cortisol throughout the day with increasing exposure. We did not detect strong associations between PM2.5 and slope for the other exposure periods or between PM2.5 and CAR for any exposure period. CONCLUSIONS In this sample, PM2.5 exposure across the preconception and pregnancy periods was associated with increased cortisol output, even at levels below the U.S. National Ambient Air Quality Annual Standard for PM2.5 of 12.0 µg/m3.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Brent A. Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Harvard University, Boston, MA
| | - Kecia Carroll
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
9
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
10
|
Luo H, Liu C, Chen X, Lei J, Zhu Y, Zhou L, Gao Y, Meng X, Kan H, Xuan J, Chen R. Ambient air pollution and hospitalization for type 2 diabetes in China: A nationwide, individual-level case-crossover study. ENVIRONMENTAL RESEARCH 2023; 216:114596. [PMID: 36272593 DOI: 10.1016/j.envres.2022.114596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Scarce evidence is available on the short-term association between air pollution and type 2 diabetes (T2D). We aimed to evaluate the associations between short-term exposure to six criteria air pollutants and hospitalization for T2D based on a national registry. We conducted an individual-level, time-stratified case-crossover study among inpatients with a primary diagnosis of T2D from 153 hospitals across 20 provincial regions in China (2013-2021). Daily concentrations of fine particulate matter (PM2.5), inhalable particle (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO), and ozone were collected from the nearest monitoring stations. T2D patients were separated into those admission for T2D with and without complications. Distributed lag non-linear models combined with conditional logistic regressions were used to estimate the associations. A total of 88,904 patients were hospitalized for T2D. Short-term exposures to all six air pollutants above except for ozone were significantly associated with the risk of hospitalization for T2D and both subclasses. An interquartile range increase in the concentrations of PM2.5, PM10, NO2, SO2, and CO at lag 0-2 d was associated with higher hospitalization risk of T2D by 1.71% (95%CI: 0.56%, 2.87%), 2.08% (0.88%, 3.29%), 4.85% (3.29%, 6.44%), 2.44% (1.22%, 3.67%) and 2.55% (1.24%, 3.88%), respectively. The associations of T2D hospitalizations were stronger in cold season than in warm season. Air pollutants had more acute and stronger associations with T2D with complications. The exposure-response relationship curves showed no thresholds, and the slopes were larger for T2D with complications. This nationwide individual-level, case-crossover study provides the first comprehensive evidence that short-term exposure to multiple criteria air pollutants may increase the risk of hospitalizations for T2D, especially for T2D with complications.
Collapse
Affiliation(s)
- Huihuan Luo
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jian Lei
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yixiang Zhu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xia Meng
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jianwei Xuan
- Health Economic Research Institute, School of Pharmacy, Sun Yat-Shen University, GuangZhou, 510275, China.
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Liu C, Yang J, Du X, Geng X. Filtered air intervention modulates hypothalamic-pituitary-thyroid/gonadal axes by attenuating inflammatory responses in adult rats after fine particulate matter (PM2.5) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74851-74860. [PMID: 35641749 DOI: 10.1007/s11356-022-21102-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
We have previously reported that filtered air (FA) intervention reduces inflammation and hypothalamus-pituitary-adrenal axis activation after fine particulate matter (PM2.5 exposure). Whether FA also modulates the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes in rats after PM2.5 exposure is still unknown. Adult Sprague-Dawley rats were exposed to PM2.5 by using a "real-world" PM2.5 exposure system, and the FA intervention was conducted by renewing for 15 days. PM2.5 inhalation decreased thyrotropin-releasing hormone (TRH) and thyroxine (T4) levels in both male and female rats, and thyroid-stimulating hormone (TSH) level in male rats. FA intervention attenuated the reduction in TRH and TSH levels in male rats and reduction in T4 level in female rats. PM2.5 inhalation also reduced testosterone (T) level in male rats, and estradiol (E2) and progesterone (PROG) levels in female rats, and these changes were attenuated after FA intervention. The FA intervention attenuated the decreases in CD8 T cells and T cells induced by PM2.5 inhalation in female rats only by flow cytometry analysis. In blood, FA interventions ameliorated IL-6 and IL-1β mRNA levels in both male and female rats after PM2.5 exposure. FA intervention restored the IL-4 and IL-10 levels in female rats after PM2.5 exposure. Moreover, FA intervention ameliorated the inflammatory responses induced by PM2.5 inhalation in the thyroid and gonads in both male and female rats. These data indicate that FA intervention exerted an effect on modulating the hormonal balance of the HPT and HPG axes, and this may be related to a reduction in the inflammatory responses in the thyroid and gonads of PM2.5-treated rats, respectively.
Collapse
Affiliation(s)
- Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiangnan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Chen Y, Feng S, Chang Z, Zhao Y, Fu J, Liu Y, Tang S, Han Y, Liu Y, Zhang Y, Zhang S, Fan Z. Household solid fuel use with diabetes and fasting blood glucose levels among middle-aged and older adults in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68247-68256. [PMID: 35538340 DOI: 10.1007/s11356-022-20591-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
To explore the impacts of household solid fuel use for cooking and heating on diabetes and fasting blood glucose (FBG) levels, we used data from the China Health and Retirement Longitudinal Study, a national survey including middle-aged and older adults. Multivariable logistic and linear regression models were used to explore the relationship between household solid fuel use (coal, crop residue, and wood) for cooking and heating with diabetes and FBG levels. Subgroup analyses were also performed based on age, sex, region of residence, smoking status, and body mass index to examine potential interactions between the variables and household solid fuel use. Among the 6195 participants, 75.4% and 61.4%, respectively, used solid fuels for heating and cooking. Relative to clean fuel users, solid fuel users had higher odds of diabetes (heating: OR, 1.21; 95% CI, 1.01-1.44; cooking: OR, 1.31; 95% CI, 1.12-1.53) and higher FBG levels (heating: β = 3.23; 95% CI, 1.10-5.36; cooking: β = 2.86; 95% CI, 0.95-4.77). Simultaneous use of solid fuels for cooking/heating was also positively associated with diabetes (OR, 1.31; 95% CI, 1.07-1.61) and FBG (β = 4.30; 95% CI, 1.82-6.78). No significant interactions were detected between subgroup variables and the impacts of solid fuel use on diabetes and FBG. Household solid fuel use is positively associated with diabetes and FBG levels. These findings imply that inhibiting household solid fuel use may contribute to decreasing diabetes development in China.
Collapse
Affiliation(s)
- Yuxiong Chen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Siqin Feng
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhen'ge Chang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yakun Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Jia Fu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yijie Liu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Siqi Tang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yitao Han
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yanbo Liu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
13
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
14
|
Mata C, Lappharat S, Chusiri Y, Khumjorhor M, Taneepanichskul N. Effect of residential proximity to the lignite-fired power plant on depression, sleep quality, and morning salivary cortisol in the elderly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151346. [PMID: 34728209 DOI: 10.1016/j.scitotenv.2021.151346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exposures to air pollution of by-products emission from the lignite-fired power plant elevated risks of carcinogenic effects, endocrine disruptors, central nervous system structural and functional changes. Residence in the proximity of the lignite-fired power plant appeared to have more chance to have higher risks of health problems. This study aimed to assess associations of residential proximity to the lignite-fired power plant on depression, sleep quality, and morning salivary cortisol among the elderly. The distance of residential proximity to the power plant was categorized into three groups (units in kilometer): <10 km, 10-15 km, and >15 km. The coefficients of log (morning salivary cortisol) was -0.320 (95%CI: -0.460, -0.179; p-value < 0.001) for those living <10 km compared to those living >15 km. Coefficients of sleep quality score were 1.350 (95%CI: 0.265, 2.436; p-value = 0.015) for those living <10 km compared to those living >15 km. Residential proximity to the lignite-fired power plant was not associated with depression. Our study concluded that living within 10 km to the lignite-fired power plant was related to negative health outcomes among the elderly. Policymakers need to reconsider the distance of the buffer zone to the power plant.
Collapse
Affiliation(s)
- Chatsuda Mata
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Community Public Health, Lampang Rajabhat University, Lampang, Thailand.
| | - Sattamat Lappharat
- Department of Research and International Relations, Sirindhorn College of Public Health, Yala, Thailand.
| | - Yaowares Chusiri
- Chemistry Program, Faculty of Science, Lampang Rajabhat University, Lampang, Thailand.
| | | | - Nutta Taneepanichskul
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; HAUS IAQ Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| |
Collapse
|
15
|
Ugarte E, Johnson LE, Robins RW, Guyer AE, Hastings PD. The impact of social disadvantage on autonomic physiology of latinx adolescents: The role of environmental risks. New Dir Child Adolesc Dev 2022; 2022:91-124. [PMID: 35634899 PMCID: PMC9492630 DOI: 10.1002/cad.20462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The experience of poverty embodies complex, multidimensional stressors that may adversely affect physiological and psychological domains of functioning. Compounded by racial/ethnic discrimination, the financial aspect of family poverty typically coincides with additional social and physical environmental risks such as pollution exposure, housing burden, elevated neighborhood unemployment, and lower neighborhood education levels. In this study, we investigated the associations of multidimensional social disadvantage throughout adolescence with autonomic nervous system (ANS) functioning at 17 years. Two hundred and twenty nine low-income Mexican-American adolescents (48.6% female) and their parents were assessed annually between the ages of 10 and 16. Participants' census tracts were matched with corresponding annual administrative data of neighborhood housing burden, education, unemployment, drinking water quality, and fine particulate matter. We combined measures of adolescents' electrodermal response and respiratory sinuses arrhythmia at rest and during a social exclusion challenge (Cyberball) to use as ANS indices of sympathetic and parasympathetic activity, respectively. Controlling for family income-to-needs, youth exposed to greater cumulative water and air pollution from ages 10-16 displayed altered patterns of autonomic functioning at rest and during the social challenge. Conversely, youth living in areas with higher housing burden displayed healthy patterns of autonomic functioning. Altogether, results suggest that toxin exposure in youths' physical environments disrupts the ANS, representing a plausible mechanism by which pollutants and social disadvantage influence later physical and mental health.
Collapse
Affiliation(s)
- Elisa Ugarte
- Department of Human Ecology, University of California, Davis
- Center for Mind & Brain, University of California Davis
| | - Lisa E. Johnson
- Center for Mind & Brain, University of California Davis
- Department of Psychology, University of California, Davis
| | | | - Amanda E. Guyer
- Department of Human Ecology, University of California, Davis
- Center for Mind & Brain, University of California Davis
| | - Paul D. Hastings
- Center for Mind & Brain, University of California Davis
- Department of Psychology, University of California, Davis
| |
Collapse
|
16
|
Li T, Fang J, Tang S, Du H, Zhao L, Wang Y, Deng F, Liu Y, Du Y, Cui L, Shi W, Wang Y, Wang J, Zhang Y, Dong X, Gao Y, Shen Y, Dong L, Zhou H, Sun Q, Dong H, Peng X, Zhang Y, Cao M, Zhi H, Zhou J, Shi X. PM2.5 Exposure associated with Microbiota Gut-Brain Axis: Multi-omics Mechanistic Implications from the China BAPE study. Innovation (N Y) 2022; 3:100213. [PMID: 35243467 PMCID: PMC8866089 DOI: 10.1016/j.xinn.2022.100213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have shown that PM2.5 may activate the hypothalamus-pituitary-adrenal (HPA) axis by inducing hormonal changes, potentially explaining the increase in neurological and cardiovascular risks. In addition, an association between PM2.5 and gut microbiota and metabolites was established. The above evidence represents crucial parts of the gut-brain axis (GBA). In view of this evidence, we proposed a hypothesis that PM2.5 exposure may affect the HPA axis through the gastrointestinal tract microbiota pathway (GBA mechanism), leading to an increased risk of neurological and cardiovascular diseases. We conducted a real-world prospective repeated panel study in Jinan, China. At each visit, we measured real-time personal PM2.5 and collected fecal and blood samples. A linear mixed-effects model was used to analyze the association between PM2.5 and serum biomarkers, gut microbiota, and metabolites. We found that PM2.5 was associated with increased serum levels of hormones, especially the adrenocorticotropic hormone (ACTH) and cortisol, which are reliable hormones of the HPA axis. Gut microbiota and tryptophan metabolites and inflammation, which are important components of the GBA, were significantly associated with PM2.5. We also found links between PM2.5 and changes in the nervous and cardiovascular outcomes, e.g., increases of 19.77% (95% CI: −36.44, 125.69) in anxiety, 1.19% (95% CI: 0.65, 1.74) in fasting blood glucose (FBG), 2.09% (95% CI: 1.48, 2.70) in total cholesterol (TCHOL), and 0.93% (95% CI: 0.14, 1.72) in triglycerides (TG), were associated with 10 μg/m3 increase in PM2.5 at the lag 0–72 h, which represent the main effects of GBA. This study indicated the link between PM2.5 and the microbiota GBA for the first time, providing evidence of the potential mechanism for PM2.5 with neurological and cardiovascular system dysfunction. This is a real-world population based panel study using multi-omics technology Link between PM2.5 and microbiota gut-brain axis is reported for the first time PM2.5 affected gut microbiota, tryptophan metabolism, and inflammatory factors Important hormones of the HPA axis increased with PM2.5 exposure PM2.5 was associated with nervous and cardiovascular outcomes
Collapse
Affiliation(s)
- Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Liang Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yan Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yingjian Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yu Shen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huichan Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiumiao Peng
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Meng Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Hong Zhi
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Jingyang Zhou
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Corresponding author
| |
Collapse
|
17
|
Xia Y, Niu Y, Cai J, Liu C, Meng X, Chen R, Kan H. Personal ozone exposure and stress hormones in the hypothalamus-pituitary-adrenal and sympathetic-adrenal-medullary axes. ENVIRONMENT INTERNATIONAL 2022; 159:107050. [PMID: 34923369 DOI: 10.1016/j.envint.2021.107050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The effect of ozone exposure on neuroendocrine responses in humans has not been fully studied. METHODS We conducted a longitudinal panel study with four rounds of visits among 43 college students in Shanghai, China, from May to October 2016. For each visit, we monitored personal real-time ozone exposure for consecutive 3 days (from 8:00 a.m. to 6:00p.m. each day), followed by blood sample collection. We measured serum levels of three hormones in the hypothalamus-pituitaryadrenal (HPA) axis, including corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol, and three catacholamines indicating sympathetic-adrenal-medullary (SAM) axis activation, including adrenaline, noradrenaline, and dopamine. We applied linear mixed-effect models to evaluate the associations between ozone exposure and these neurohormones and further compared models using personal and fixed-site ozone measurements. MAIN RESULTS At lag 0-8 h, personal ozone exposure ranged from 4.5 ppb to 104.3 ppb with an average of 21.0 ± 14.7 ppb, which was approximately half of the ambient ozone concentration. Per 10-ppb increase in personal ozone exposure (lag 0-8 h) was associated with increases of 5.60% [95% confidence interval (CI): 2.30%, 9.01%] in CRH, 5.91% (95% CI: 0.55%, 11.56%) in cortisol, and 10.13% (95% CI: 2.75%, 18.05%) in noradrenaline, whereas associated with a 12.15% (95% CI: 1.23%, 21.87%) decrease in dopamine. Overall, models using personal ozone measurements yielded larger effect estimates and better model fits than models using fixed-site measurements. CONCLUSIONS Short-term exposure to low levels of ozone may lead to activation of the HPA and SAM axes.
Collapse
Affiliation(s)
- Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| |
Collapse
|
18
|
Wu XJ, Shu QQ, Wang B, Dong L, Hao B. Acetoacetate Improves Memory in Alzheimer's Mice via Promoting Brain-Derived Neurotrophic Factor and Inhibiting Inflammation. Am J Alzheimers Dis Other Demen 2022; 37:15333175221124949. [PMID: 36113018 PMCID: PMC10581103 DOI: 10.1177/15333175221124949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ketone bodies, especially the β-hydroxybutyrate, had been shown to modulate the function of the central nervous system and prevent the pathological progression of Alzheimer's disease (AD). However, little is known about the role of acetoacetate in the AD brain. Thus, we intraventricularly injected acetoacetate into familial AD mice (APPSWE) for 14 days and monitored their memory and biochemical changes. During the behavior test, acetoacetate at 100 mg/kg led to significant improvement in both Y-maze and novel object recognition tests (NORTs) (both P < .05), indicating ameliorating spatial and recognition memory, respectively. Biomedical tests revealed two mechanisms were involved. Firstly, acetoacetate inhibited the GPR43-pERK pathway, which led to apparent inhibition in tumor necrosis factor-α and Interleukin-6 expression in the hippocampus in a concentration-dependent manner. Secondarily, acetoacetate stimulated the expression of hippocampal brain-derived neurotrophic factor (BDNF). We concluded that acetoacetate could ameliorate AD symptoms and exhibited promising features as a therapeutic for AD.
Collapse
Affiliation(s)
- Xiao-Jun Wu
- Department of Neurosurgery, Shanghai Cancer Center, Shanghai Fu-Dan University School of Medicine, Shanghai, PR China
| | - Qin-Qin Shu
- Department of Emergency Medicine, Shanghai No. 4 People’s Hospital Affiliated to Shanghai Tongji University School of Medicine, Shanghai, PR China
| | - Bin Wang
- Department of Neurosurgery, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Dong
- Department of Emergency Medicine, Shanghai Chang Zheng Hospital, Shanghai, PR China
| | - Bin Hao
- Department of Neurosurgery, Shanghai Cancer Center, Shanghai Fu-Dan University School of Medicine, Shanghai, PR China
| |
Collapse
|
19
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Lai CH, Ho SC, Pan CH, Chen WL, Wang CC, Liang CW, Chien CY, Riediker M, Chuang KJ, Chuang HC. Chronic exposure to metal fume PM 2.5 on inflammation and stress hormone cortisol in shipyard workers: A repeat measurement study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112144. [PMID: 33743405 DOI: 10.1016/j.ecoenv.2021.112144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) has been linked to adverse health outcomes in welding workers. The objective of this study was to investigate associations of chronic exposure to metal fume PM2.5 in shipyard workers with health outcomes. A longitudinal study was conducted to determine the effects of metal fume PM2.5 on FeNO, urinary metals, urinary oxidative stress, inflammation, and stress hormones in workers. There were 20 office workers and 49 welding workers enrolled in this study who were followed-up for a second year. We observed that Fe, Zn, and Mn were abundant in PM2.5 to which welding workers were personally exposed, whereas PM2.5 to which office workers were personally exposed was dominated by Pb, Cu, and Zn. We observed in the first and/or second visits that urinary 8-iso-prostaglandin F2-α (PGF2α) and 8-hydroxy-2'-deoxy guanosine (8-OHdG) were significantly increased by exposure. An increase in urinary interleukin (IL)-6 and decreases in urinary serotonin and cortisol were observed in the first and/or second visits after exposure. PM2.5 was associated with decreases in urinary 8-OHdG and cortisol among workers. Next, we observed that urinary Ni, Co, and Fe had significantly increased among workers after a year of exposure. Urinary metals were associated with decreases in urinary 8-iso-PGF2α and cortisol among workers. Urinary Ni, Cu, and Fe levels were associated with an increase in urinary IL-6 and a decrease in urinary cortisol among workers. In conclusion, chronic exposure to metal fume PM2.5 was associated with inflammation and a cortisol deficiency in shipyard workers, which could associate with adrenal glands dysfunction.
Collapse
Affiliation(s)
- Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hong Pan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan; Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan.
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Chung-Ching Wang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Che-Wi Liang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Yu Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Michael Riediker
- Swiss Centre for Occupational and Environmental Health, Winterthur, Switzerland.
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
21
|
Kobos L, Shannahan J. Particulate matter inhalation and the exacerbation of cardiopulmonary toxicity due to metabolic disease. Exp Biol Med (Maywood) 2021; 246:822-834. [PMID: 33467887 DOI: 10.1177/1535370220983275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Particulate matter is a significant public health issue in the United States and globally. Inhalation of particulate matter is associated with a number of systemic and organ-specific adverse health outcomes, with the pulmonary and cardiovascular systems being particularly vulnerable. Certain subpopulations are well-recognized as being more susceptible to inhalation exposures, such as the elderly and those with pre-existing respiratory disease. Metabolic syndrome is becoming increasingly prevalent in our society and has known adverse effects on the heart, lungs, and vascular systems. The limited evaluations of individuals with metabolic syndromehave demonstrated that theymay compose a sensitive subpopulation to particulate exposures. However, the toxicological mechanisms responsible for this increased vulnerability are not fully understood. This review evaluates the currently available literature regarding how the response of an individual's pulmonary and cardiovascular systems is influenced by metabolic syndrome and metabolic syndrome-associated conditions such as hypertension, dyslipidemia, and diabetes. Further, we will discuss potential therapeutic agents and targets for the alleviation and treatment of particulate-matter induced metabolic illness. The information reviewed here may contribute to the understanding of metabolic illness as a risk factor for particulate matter exposure and further the development of therapeutic approaches to treat vulnerable subpopulations, such as those with metabolic diseases.
Collapse
Affiliation(s)
- Lisa Kobos
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Dong X, Wu W, Yao S, Li H, Li Z, Zhang L, Jiang J, Xu J, Zhang F. PM 2.5 disrupts thyroid hormone homeostasis through activation of the hypothalamic-pituitary-thyroid (HPT) axis and induction of hepatic transthyretin in female rats 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111720. [PMID: 33396051 DOI: 10.1016/j.ecoenv.2020.111720] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5), a ubiquitous environmental pollutant, has been indicated to affect thyroid hormone (TH) homeostasis in women, but the detailed mechanism behind this effect remains unclear. The objective of this study was to evaluate the roles of the hypothalamic-pituitary-thyroid (HPT) axis and hepatic transthyretin in the thyroid-disrupting effects of PM2.5. Sprague Dawley rats were treated with PM2.5 (0, 15 and 30 mg/kg) by passive pulmonary inhalation for 49 days; and recovery experimental group rats were dosed with PM2.5 (30 mg/kg) for 35 days, and no treatment was done during the subsequent 14 days. PM2.5 was handled twice a day by passive pulmonary inhalation throughout the study. After treatment, pathological changes were analyzed by performing haemotoxylin and eosin staining, measuring levels of THs and urine iodine (UI) in serum, plasma, and urine samples using enzyme-linked immunoabsorbent assay, and expression of proteins in the hypothalamus, pituitary, thyroid, and liver tissues of rats were analyzed by immunohistochemistry and Western blotting. The levels of oxidative stress factors, such as reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and nuclear factor-kappa B (NF-κB) in female rats' plasma were also evaluated by ELISA. The results of these analyses revealed that PM2.5 treatment induced pathologic changes in rat thyroid and liver characterized by increased follicular cavity size and decreased amounts of follicular epithelial cells and fat vacuoles, respectively. Serum levels of triiodothyronine, thyroxine, and thyroid stimulating hormone were significantly decreased, plasma NF-κB level was increased and plasma redox state was unbalanced (enhanced ROS, MDA and Gpx levels; reduced SOD activities) in female rats treated with PM2.5 (P < 0.05). PM2.5 treatment suppressed the biosynthesis and biotransformation of THs by increasing sodium iodide symporter, thyroid transcription factor 1, thyroid transcription factor 2, and paired box 8 protein expression levels (P < 0.05). Additionally, thyroid stimulating hormone receptor and thyroid peroxidase levels were significantly decreased (P < 0.05). Both thyrotropin releasing hormone receptor and thyroid stimulating hormone beta levels were enhanced (P < 0.05). Moreover, transport of THs was inhibited due to reduced protein expression of hepatic transthyretin upon treatment with PM2.5. In summary, PM2.5 treatment could perturb TH homeostasis by affecting TH biosynthesis, biotransformation, and transport, affecting TH receptor levels, and inducing oxidative stress and inflammatory responses. Activation of the HPT axis and altered hepatic transthyretin levels therefore appear to play a crucial role in PM2.5-induced thyroid dysfunction.
Collapse
Affiliation(s)
- Xinwen Dong
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Weidong Wu
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Sanqiao Yao
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Haibin Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Zhichun Li
- Department of Environmental and Occupational Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Li Zhang
- Center for Bioinformatics and Statistical Health Research, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Jing Jiang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Jie Xu
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| | - Fengquan Zhang
- Experimental Teaching Center of Public Health and Preventive Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China 453003.
| |
Collapse
|
23
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
24
|
Liu C, Yang J, Guan L, Zhu Y, Geng X. Filtered air intervention reduces inflammation and hypothalamus-pituitary-adrenal axis activation in adult male and female rats after PM 2.5 exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35341-35348. [PMID: 32592061 DOI: 10.1007/s11356-020-09564-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
Previous studies have indicated that particulate matter 2.5 (PM2.5) exposure stimulates systemic inflammation and activates the hypothalamus-pituitary-adrenal (HPA) axis, both of which are associated with stroke incidence and mortality. However, whether filtered air (FA) intervention modulates inflammation and HPA axis activation is still largely unknown. For FA group and PM2.5 group, adult Sprague-Dawley male and female rats were exposed to FA or PM2.5 for 6 months, respectively. For PM2.5 + 15 days FA group, the rats were achieved by receiving 15 days FA after PM2.5 exposure for 6 months. The immune cells and inflammatory biomarker levels in the blood and brain were analyzed by flow cytometry, ELISA, and qRT-PCR. To assess HPA axis activation, the levels of hormones in the blood were also analyzed by ELISA. FA intervention increased the percentage of CD4 T cells and T cells in the blood, which had decreased after PM2.5 exposure in both male and female rats. The ELISA and qRT-PCR results showed that FA intervention significantly reduced the levels of inflammatory biomarkers in the peripheral blood, and alleviated neuroinflammation in the cortex, hippocampus, and striatum. In addition, FA intervention also inhibited the inflammation in the hypothalamus and pituitary and adrenal glands, and decreased the levels of HPA axis hormones. Our results indicate that FA intervention exerts a protective effect on the brain by decreasing inflammation and HPA axis activation after PM2.5 exposure in both male and female rats.
Collapse
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuequan Zhu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Yang H, Wang J, Chen M, Nie D, Shen F, Lei Y, Ge P, Gu T, Gai X, Huang X, Ma Q. Chemical characteristics, sources and evolution processes of fine particles in Lin'an, Yangtze River Delta, China. CHEMOSPHERE 2020; 254:126851. [PMID: 32957275 DOI: 10.1016/j.chemosphere.2020.126851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
In this study, daily PM2.5 mass and chemical composition were measure in Lin'an Reginal Background Station, Yangzte River Delta, from March 1, 2018, to February 28, 2019. Organic matter (OM) was found to be the most dominant component in four seasons. The proportions of nitrate in PM2.5 presented dramatically lowest in warm seasons but highest in winter, indicating that NO3- was maily driven by thermodynamics. Regional transportation in winter plays a strong impact on PM2.5 concentration, which showed the highest average mass of 60.1 μg m-3. Sulfate occupied a significant portion of PM2.5 in summer (19%), followed by spring (17%), fall (15%), and winter (12%), respectively, suggesting photochemical processes may play a dominant role in the sulfate formation. Secondary inorganic aerosol (SIA) was the dominant component (70%) in the highest polluted periods (PM2.5 > 75 μg m-3), whereas OM decreased into the lowest fraction (22%) of PM2.5. Nitrate was the most important component in SIA in the highest polluted periods with regarding winter. Source apportionment results shown that winter haze was likely strongly dominated by SIA, which was mainly affected by air masses from the North China Plain and Shang-Hangzhou direction. PM2.5 is known to play an important role in sunlight absorption and reversing to human health, continuous observation on PM2.5 species in a background site can help us to evaluate the control policy, and promote our insights to lifetime, formation pathways, health effects of PM2.5.
Collapse
Affiliation(s)
- Haoming Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Dongyang Nie
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China; School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Fuzhen Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yali Lei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Tao Gu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xinyu Gai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiangpeng Huang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qianli Ma
- Lin'an Regional Background Station, Lin'an, 311307, China
| |
Collapse
|
26
|
Li R, Sun Q, Lam SM, Chen R, Zhu J, Gu W, Zhang L, Tian H, Zhang K, Chen LC, Sun Q, Shui G, Liu C. Sex-dependent effects of ambient PM 2.5 pollution on insulin sensitivity and hepatic lipid metabolism in mice. Part Fibre Toxicol 2020; 17:14. [PMID: 32321544 PMCID: PMC7178763 DOI: 10.1186/s12989-020-00343-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background & aims Emerging evidence supports ambient fine particulate matter (PM2.5) exposure is associated with insulin resistance (IR) and hepatic lipid accumulation. In this study, we aimed to evaluate the sex-dependent vulnerability in response to PM2.5 exposure and investigate the underlying mechanism by which PM2.5 modulates hepatic lipid metabolism. Methods Both male and female C57BL/6 mice were randomly assigned to ambient PM2.5 or filtered air for 24 weeks via a whole body exposure system. High-coverage quantitative lipidomics approaches and liquid chromatography-mass spectrometry techniques were performed to measure hepatic metabolites and hormones in plasma. Metabolic studies, histological analyses, as well as gene expression levels and molecular signal transduction analysis were applied to examine the effects and mechanisms by which PM2.5 exposure-induced metabolic disorder. Results Female mice were more susceptible than their male counterparts to ambient PM2.5 exposure-induced IR and hepatic lipid accumulation. The hepatic lipid profile was changed in response to ambient PM2.5 exposure. Levels of hepatic triacylglycerols (TAGs), free fatty acids (FFAs) and cholesterol were only increased in female mice from PM group compared to control group. Plasmalogens were dysregulated in the liver from PM2.5-exposed mice as well. In addition, exposure to PM2.5 led to enhanced hepatic ApoB and microsomal triglyceride transport protein expression in female mice. Finally, PM2.5 exposure inhibited hypothalamus-pituitary-adrenal (HPA) axis and decreased glucocorticoids levels, which may contribute to the vulnerability in PM2.5-induced metabolic dysfunction. Conclusions Ambient PM2.5 exposure inhibited HPA axis and demonstrated sex-associated differences in its effects on IR and disorder of hepatic lipid metabolism. These findings provide new mechanistic evidence of hormone regulation in air pollution-mediated metabolic abnormalities of lipids and more personalized care should be considered in terms of sex-specific risk factors.
Collapse
Affiliation(s)
- Ran Li
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Sun
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyao Zhu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University of School of Medicine, New York, USA
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China.
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China. .,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
27
|
Khamirchi R, Moslem A, Agah J, Pozo ÓJ, Miri M, Dadvand P. Maternal exposure to air pollution during pregnancy and cortisol level in cord blood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136622. [PMID: 31955102 DOI: 10.1016/j.scitotenv.2020.136622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 05/25/2023]
Abstract
Exposure to air pollution has been associated with disorders of the endocrine system and hypothalamic-pituitary-adrenal (HPA) axis; however, the available evidence on these associations is still scarce. This study aimed to investigate, for the first time, the association of exposure to PM1, PM2.5, and PM10, as well as traffic indicators (distance to major roads and total street length in different buffers around maternal residential address) during pregnancy with cortisol level in cord blood samples. This cross-sectional study was carried out based on 150 mother-newborn pairs in Sabzevar, Iran (2018). Land use regression models were applied to estimate air pollution exposure during the entire pregnancy at maternal residential addresses. Multiple linear regression models were applied to estimate the association of exposure to air pollution during pregnancy and cord blood cortisol levels, controlled for relevant covariates. There was a significant positive association between exposure to PM2.5 and PM10 and cortisol levels in cord blood (β = 2.55, 95% confidence intervals (CI) = 0.57, 4.52, P-value = 0.01, and β = 3.09, 95% CI: 1.28, 4.90, P-value < 0.01, respectively). Moreover, there was a significant positive association between total street length in a 100 m buffer around maternal residence and cortisol level. Each one interquartile range (IQR) increase in distance from home to major roads was associated with a -2.58 (95% CI: -4.85, -0.30, P-value = 0.03) decrease in cord blood cortisol level. The median (IQR) of the cord blood cortisol levels for the first and fourth quartiles of distance to major roads were 50.7 (19.5) and 38.2 (20.4) ng/mL, respectively. The associations for total street length in 300 m and 500 m buffers and PM1 exposure were not statistically significant. Our findings suggest a direct association of exposure to air pollution during pregnancy and cortisol levels at cord blood.
Collapse
Affiliation(s)
- Ramezanali Khamirchi
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Alireza Moslem
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Jila Agah
- Department of Obstetrics & Gynecology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Óscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Group, IMIM, Hospital del Mar, Barcelona, Spain
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
28
|
Ma R, Zhang Y, Sun Z, Xu D, Li T. Effects of ambient particulate matter on fasting blood glucose: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113589. [PMID: 31841764 DOI: 10.1016/j.envpol.2019.113589] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Studies have found that ambient particulate matter (PM) affects fasting blood glucose. However, the results are not consistent. We conducted a systematic review and meta-analysis to determine the relationship between PM with an aerodynamic diameter of 10 μm or less (PM10) and PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) and fasting blood glucose. We searched PubMed, Web of Science, the Wanfang Database and the China National Knowledge Infrastructure up to April 1, 2019. A total of 24 papers were included in the review, and 17 studies with complete or convertible quantitative information were included in the meta-analysis. The studies were divided into groups by PM size fractions (PM10 and PM2.5) and length of exposure. Long-term exposures were based on annual average concentrations, and short-term exposures were those lasting less than 28 days. In the long-term exposure group, fasting blood glucose increased 0.10 mmol/L (95% CI: 0.02, 0.17) per 10 μg/m3 of increased PM10 and 0.23 mmol/L (95% CI: 0.01, 0.45) per 10 μg/m3 of increased PM2.5. In the short-term exposure group, fasting blood glucose increased 0.02 mmol/L (95% CI: -0.01, 0.04) per 10 μg/m3 of increased PM10 and 0.08 mmol/L (95% CI: 0.04, 0.11) per 10 μg/m3 of increased PM2.5. Further prospective studies are needed to explore the relationship between ambient PM exposure and fasting blood glucose.
Collapse
Affiliation(s)
- Runmei Ma
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiying Sun
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dandan Xu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, China
| | - Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
29
|
Hajat A, Hazlehurst MF, Golden SH, Merkin SS, Seeman T, Szpiro AA, Kaufman JD, Roux AD. The cross-sectional and longitudinal association between air pollution and salivary cortisol: Evidence from the Multi-Ethnic Study of Atherosclerosis. ENVIRONMENT INTERNATIONAL 2019; 131:105062. [PMID: 31491811 PMCID: PMC6994173 DOI: 10.1016/j.envint.2019.105062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Cortisol, a stress hormone released by the activation of the hypothalamic-pituitary-adrenal (HPA) axis, is critical to the body's adaptive response to physiological and psychological stress. Cortisol has also been implicated in the health effects of air pollution through the activation of the sympathetic nervous system. This study evaluates the cross-sectional and longitudinal association between several air pollutants and salivary cortisol. METHODS We used data from the Multi-Ethnic Study of Atherosclerosis (MESA), a cohort of 45-85 years old participants from six US cities. Salivary cortisol was evaluated at two time points between 2004 and 2006 and then again from 2010 to 2012. Cortisol samples were taken several times per day on two or three consecutive days. Particulate matter <2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2) and nitrogen oxides (NOx) in the year prior to cortisol sampling were examined. We used piecewise linear mixed models that were adjusted for demographics, socioeconomic status and cardiovascular risk factors to examine both cross-sectional and longitudinal associations. Longitudinal models evaluated change in cortisol over time. RESULTS The pooled cross-sectional results revealed largely null results with the exception of a 9.7% higher wake-up cortisol associated with a 10 ppb higher NO2 (95% CI, -0.2%, 20.5%). Among all participants, the features of the cortisol curve became flatter over 5 years. The wake-to-bed slope showed a more pronounced flattening over time (0.014, 95% CI, 0.0, 0.03) with a 10 ppb higher NO2 level. Other air pollutants were not associated with change in cortisol over time. CONCLUSIONS Our results suggest only a moderate association between traffic related air pollution and cortisol. Very few epidemiologic studies have examined the long-term impact of air pollution on the stress response systems, thus warranting further exploration of these findings.
Collapse
Affiliation(s)
- Anjum Hajat
- University of Washington, Department of Epidemiology, Box 357236, Seattle, WA 98195, USA.
| | - Marnie F Hazlehurst
- University of Washington, Department of Epidemiology, Box 357236, Seattle, WA 98195, USA.
| | - Sherita Hill Golden
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, 1830 E. Monument Street, Room 9052, Baltimore, MD 21287, USA.
| | - Sharon Stein Merkin
- University of California Los Angeles, Geffen School of Medicine, Division of Geriatrics, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA 90095, USA.
| | - Teresa Seeman
- University of California Los Angeles, Geffen School of Medicine, Division of Geriatrics, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA 90095, USA.
| | - Adam A Szpiro
- University of Washington, Department of Biostatistics, Box 357232, Seattle, WA 98195, USA.
| | - Joel D Kaufman
- University of Washington, Departments of Environmental and Occupational Health Sciences and Epidemiology, Box 354695, Seattle, WA 98195, USA.
| | - Ana Diez Roux
- Drexel University Dornsife School of Public Health, Urban Health Collaborative Nesbitt Hall 3215 Market Street Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Hajat A, Diez Roux AV, Castro-Diehl C, Cosselman K, Golden SH, Hazlehurst MF, Szpiro A, Vedal S, Kaufman JD. The Association between Long-Term Air Pollution and Urinary Catecholamines: Evidence from the Multi-Ethnic Study of Atherosclerosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57007. [PMID: 31095432 PMCID: PMC6791118 DOI: 10.1289/ehp3286] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Autonomic nervous system effects have been hypothesized as a mechanism of air pollutant health effects, though scant prior epidemiologic research has examined the association between air pollutants and catecholamines. OBJECTIVES To examine the association of long-term air pollutants with three urinary catecholamines: dopamine (DA), epinephrine (EPI), and norepinephrine (NE). As a secondary aim, we also examined the association between short-term (or acute) exposure to fine particulate matter [particulate matter with aerodynamic diameter [Formula: see text] ([Formula: see text])] and those catecholamines. METHODS We used data from the Multi-Ethnic Study of Atherosclerosis (MESA) and two of its ancillary studies, the MESA Air Pollution Study and the MESA Stress Study, to provide exposure and outcome data. DA, EPI, and NE from urine samples were collected from 2004 to 2006 from 1,002 participants in the New York, New York, and Los Angeles, California, study sites. Spatiotemporal models incorporated cohort-specific monitoring and estimated annual average pollutant concentrations ([Formula: see text], [Formula: see text], [Formula: see text] and black carbon) at participants' homes the year prior to urine collection. Secondarily, short-term [Formula: see text] was evaluated (day of, day prior, and 2- to 5-d lags prior to urine collection). Several covariates were considered confounders (age, race, sex, site, socioeconomic status, cardiovascular disease risk factors, psychosocial stressors, and medication use) in linear regression models. RESULTS A [Formula: see text] higher annual [Formula: see text] concentration was associated with 6.3% higher mean EPI level [95% confidence interval (CI): 0.3%, 12.6%]. A 2-[Formula: see text] higher annual ambient [Formula: see text] concentration was associated with 9.1% higher mean EPI (95% CI: 3.2%, 15.3%) and 4.4% higher DA level (95% CI: 1%, 7.9%). [Formula: see text], black carbon, and short-term [Formula: see text] exposures were not significantly associated with any of the catecholamines. CONCLUSIONS We found an association between EPI and long-term concentrations of [Formula: see text] and [Formula: see text] and an association between DA and long-term ambient [Formula: see text]. These novel findings provide modest support for the hypothesis that air pollutant exposures are related to sympathetic nervous system activation. https://doi.org/10.1289/EHP3286.
Collapse
Affiliation(s)
- Anjum Hajat
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ana V. Diez Roux
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cecilia Castro-Diehl
- Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kristen Cosselman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Sherita Hill Golden
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
Cui J, Fu Y, Lu R, Bi Y, Zhang L, Zhang C, Aschner M, Li X, Chen R. Metabolomics analysis explores the rescue to neurobehavioral disorder induced by maternal PM 2.5 exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:687-695. [PMID: 30500738 DOI: 10.1016/j.ecoenv.2018.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/17/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Reproductive epidemiological studies have suggested associations between perinatal exposure to fine particulate matter (PM2.5) and adverse birth outcomes. To explore the effects of early prenatal exposure to PM2.5 on subsequent generations, pregnant mice were exposed to PM2.5 or filtered clean air in whole body dynamic exposure chambers for 14 consecutive days from gestation day (GD) 1.5 to GD15.5. Neurobehavioral tests showed that spontaneous locomotion and exploratory behaviors in the offspring were significantly enhanced in the open field test. Meanwhile, metabolomics analysis suggested activation of dopamine pathway while inhibition of glycine pathway in murine brains. Administration of the DRD4 antagonist, clozapine; or supplementation of glycine receptor agonist, taurine, to mice offspring attenuated the locomotor hyperactivities to levels indistinguishable from controls. These data provide strong evidence that maternal exposure to air pollution might increase the risk for neural disorders in the offspring during critical periods of brain development.
Collapse
Affiliation(s)
- Jian Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - You Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China; School of Continuing Education, Nanjing Medical University, Nanjing 211166, China
| | - Runze Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuan Bi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Chengcheng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
32
|
Giles LV, Carlsten C, Koehle MS. The pulmonary and autonomic effects of high-intensity and low-intensity exercise in diesel exhaust. Environ Health 2018; 17:87. [PMID: 30541575 PMCID: PMC6292001 DOI: 10.1186/s12940-018-0434-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/29/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Exposure to air pollution impairs aspects of pulmonary and autonomic function and causes pulmonary inflammation. However, how exercising in air pollution affects these indices is poorly understood. Therefore, the purpose of this study was to determine the effects of low-intensity and high-intensity cycling with diesel exhaust (DE) exposure on pulmonary function, heart rate variability (HRV), fraction of exhaled nitric oxide (FeNO), norepinephrine and symptoms. METHODS Eighteen males performed 30-min trials of low-intensity or high-intensity cycling (30 and 60% of power at VO2peak) or a resting control condition. For each subject, each trial was performed once breathing filtered air (FA) and once breathing DE (300μg/m3 of PM2.5, six trials in total). Pulmonary function, FeNO, HRV, norepinephrine and symptoms were measured prior to, immediately post, 1 h and 2 h post-exposure. Data were analyzed using repeated-measures ANOVA. RESULTS Throat and chest symptoms were significantly greater immediately following DE exposure than following FA (p < 0.05). FeNO significantly increased 1 h following high-intensity exercise in DE (21.9 (2.4) vs. 19.3 (2.2) ppb) and FA (22.7 (1.7) vs. 19.9 (1.4)); however, there were no differences between the exposure conditions. All HRV indices significantly decreased following high-intensity exercise (p < 0.05) in DE and FA. The exception to this pattern was LF (nu) and LF/HF ratio, which significantly increased following high-intensity exercise (p < 0.05). Plasma norepinephrine (NE) significantly increased following high-intensity exercise in DE and FA, and this increase was greater than following rest and low-intensity exercise (p < 0.05). DE exposure did not modify any effects of exercise intensity on HRV or norepinephrine. CONCLUSIONS Healthy individuals may not experience greater acute pulmonary and autonomic effects from exercising in DE compared to FA; therefore, it is unclear if such individuals will benefit from reducing vigorous activity on days with high concentrations on particulate matter.
Collapse
Affiliation(s)
- Luisa V Giles
- Sport Science Department, Douglas College, 700 Royal Ave, New Westminster, BC, V3M 5Z5, Canada.
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Christopher Carlsten
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Heart and Lung Health, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Koehle
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Sports Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
33
|
Niu Y, Chen R, Xia Y, Cai J, Ying Z, Lin Z, Liu C, Chen C, Peng L, Zhao Z, Zhou W, Chen J, Wang D, Huo J, Wang X, Fu Q, Kan H. Fine particulate matter constituents and stress hormones in the hypothalamus-pituitary-adrenal axis. ENVIRONMENT INTERNATIONAL 2018; 119:186-192. [PMID: 29960262 DOI: 10.1016/j.envint.2018.06.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 05/20/2023]
Abstract
Fine particulate matter (PM2.5) has recently been associated with the activation of the hypothalamus-pituitary-adrenal (HPA) axis, increasing cardiometabolic risks. However, it is unknown which constituents of PM2.5 were mainly responsible for these associations. In a longitudinal panel study with 4 repeated measurements among 43 college students in Shanghai, China, we measured serum levels of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol, as indicators of HPA axis activation. Then, we evaluated the associations of 22 constituents of PM2.5 with these stress hormones using linear mixed-effect models. During the study period, the average daily concentration of PM2.5 was 41.1 μg/m3. We found that short-term exposure to PM2.5 was associated with elevated levels of the 3 stress hormones. We observed that water-soluble inorganic ions, especially nitrate (NO3-) and ammonium, had stronger influences on 3 hormones. Six metallic elements, including Zn, Mn, Cu, Fe, Br, and Cr, had positive but generally instable associations with 3 hormones. The effects of organic carbon and elemental carbon on hormones were generally weak. When correcting for multiple comparisons using false discovery rate, NO3- was still significantly associated with CRH, but other important associations turned to be insignificant. An interquartile range increase in NO3- on the previous day were associated with 12.13% increase (95% confidence interval: 4.45%, 20.37%) in CRH. Our findings suggested that water-soluble inorganic constituents of PM2.5 (especially, NO3-) might have stronger influences on the activation of HPA axis than carbonaceous and elemental components.
Collapse
Affiliation(s)
- Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhao Zhou
- Department of Neonates, Children's Hospital, Fudan University, Shanghai 201102, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dongfang Wang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xinning Wang
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| |
Collapse
|
34
|
iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress. Redox Biol 2018; 19:147-157. [PMID: 30165303 PMCID: PMC6118040 DOI: 10.1016/j.redox.2018.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Particulate matter (PM2.5) is a risk factor for organ injury and disease progression, such as lung, brain and liver. However, its effects on renal injury and the underlying molecular mechanism have not been understood. The inactive rhomboid protein 2 (iRhom2), also known as rhomboid family member 2 (Rhbdf2), is a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells, and has been explored in the pathogenesis of chronic renal diseases. In the present study, we found that compared to the wild type (iRhom2+/+) mice, iRhom2 knockout (iRhom2-/-) protected PM2.5-exposed mice from developing severe renal injury, accompanied with improved renal pathological changes and functions. iRhom2-/- mice exhibited reduced inflammatory response, as evidenced by the reduction of interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and IL-18 in kidney samples, which might be, at least partly, through inactivating TNF-α converting enzyme/TNF-α receptors (TACE/TNFRs) and inhibitor of α/nuclear factor κ B (IκBα/NF-κB) signaling pathways. In addition, oxidative stress was also restrained by iRhom2-/- in kidney of PM2.5-exposed mice by enhancing heme oxygenase/nuclear factor erythroid 2-related factor 2 (HO-1/Nrf-2) expressions, and reducing phosphorylated c-Jun N-terminal kinase (JNK). In vitro, blockage of HO-1 or Nrf-2 rescued the inflammatory response and oxidative stress that were reduced by iRhom2 knockdown in PM2.5-incubated RAW264.7 cells. Similar results were observed in JNK activator-treated cells. Taken together, our findings indicated that iRhom2 played an essential role in regulating PM2.5-induced chronic renal damage, thus revealing a potential target for preventing chronic kidney diseases development. Suppression of iRhom2 negatively regulates inflammatory response in mouse macrophages RAW264.7 cells. iRhom2 deficiency alleviates PM2.5-induced renal injury by reducing inflammatory infiltration. iRhom2 inhibition reduces oxidative stress and JNK activation in PM2.5-induced renal injury in vitro and in vivo. PM2.5-induced renal injury via iRhom2-regulated oxidative stress and inflammation.
Collapse
|
35
|
Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, Chen J, Hao K, Kinney PL, Chen H, Kan H. Particulate Matter Exposure and Stress Hormone Levels. Circulation 2017; 136:618-627. [DOI: 10.1161/circulationaha.116.026796] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
Background:
Exposure to ambient particulate matter (PM) is associated with a number of adverse health outcomes, but potential mechanisms are largely unknown. Metabolomics represents a powerful approach to study global metabolic changes in response to environmental exposures. We therefore conducted this study to investigate changes in serum metabolites in response to the reduction of PM exposure among healthy college students.
Methods:
We conducted a randomized, double-blind crossover trial in 55 healthy college students in Shanghai, China. Real and sham air purifiers were placed in participants’ dormitories in random order for 9 days with a 12-day washout period. Serum metabolites were quantified by using gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-mass spectrometry. Between-treatment differences in metabolites were examined using orthogonal partial least square-discriminant analysis and mixed-effect models. Secondary outcomes include blood pressure, corticotropin-releasing hormone, adrenocorticotropic hormone, insulin resistance, and biomarkers of oxidative stress and inflammation.
Results:
The average personal exposure to PMs with aerodynamic diameters ≤2.5 μm was 24.3 μg/m
3
during the real purification and 53.1 μg/m
3
during the sham purification. Metabolomics analysis showed that higher exposure to PMs with aerodynamic diameters ≤2.5 μm led to significant increases in cortisol, cortisone, epinephrine, and norepinephrine. Between-treatment differences were also observed for glucose, amino acids, fatty acids, and lipids. We found significantly higher blood pressure, hormones, insulin resistance, and biomarkers of oxidative stress and inflammation among individuals exposed to higher PMs with aerodynamic diameters ≤2.5 μm.
Conclusions:
This study suggests that higher PM may induce metabolic alterations that are consistent with activations of the hypothalamus-pituitary-adrenal and sympathetic-adrenal-medullary axes, adding potential mechanistic insights into the adverse health outcomes associated with PM. Furthermore, our study demonstrated short-term reductions in stress hormone following indoor air purification.
Clinical Trial Registration:
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT02712333.
Collapse
Affiliation(s)
- Huichu Li
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Jing Cai
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Renjie Chen
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Zhuohui Zhao
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Zhekang Ying
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Lin Wang
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Jianmin Chen
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Ke Hao
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Patrick L. Kinney
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Honglei Chen
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Haidong Kan
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| |
Collapse
|
36
|
Study on Reproductive Toxicity of Fine Particulate Matter by Metabolomics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61011-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Han C, Lim YH, Jung K, Hong YC. Association between ambient particulate matter and disorders of vestibular function. ENVIRONMENTAL RESEARCH 2017; 155:242-248. [PMID: 28236785 DOI: 10.1016/j.envres.2017.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Exposure to environmental chemicals has been suggested to alter the physiologic state of the inner and middle ear. However, it is unknown if particulate matter exposure is associated with acute vestibular dysfunction. OBJECTIVES To estimate the effects of particulate matter exposure on the number of hospital visits related to three major diseases of vestibular dysfunction, Meniere's disease (MD), benign paroxysmal positional vertigo (BPPV), and vestibular neuronitis (VN). METHODS Our study subject is from Korean National Health Insurance Service-National Sample Cohort, which is dynamic cohort consist of 1 million participants representing the Korean population. Among total cohort participants, we used the hospital visit data of 210,000 individuals who resided in Seoul from 2007 to 2010. Time series analysis using the Poisson generalized additive model and case-crossover analysis using conditional logistic regression were used to investigate the association between daily particulate matter levels (PM2.5, particulate matter <2.5μg/m3; PM10, particulate matter <10μg/m3; PM10-2.5, PM10- PM2.5) and number of MD, BPPV, and VN hospital visits. RESULTS Time series analysis showed that an interquartile range (IQR) increase in PM10 and PM10-2.5 on lag day 1 was associated with an increased risk of MD hospital visits [relative risk (RR), 95% confidence interval (CI), PM10: 1.09 (1.02-1.15); PM10-2.5: 1.06 (1.02-1.10)]. In addition, elderly individuals (≥60 years old) showed an increased risk of MD hospital visits after particulate matter exposure when compared to younger individuals. An IQR increase in particulate matter on lag day 1 was associated with a marginally significant increase in VN hospital visits [RR (95%CI), PM2.5: 1.11 (0.98-1.25); PM10: 1.07 (0.99-1.15); PM10-2.5: 1.04 (0.99-1.09)]. However, no association between particulate matter exposure and BPPV hospital visits was noted. Case-crossover analyses showed similar results to the time-series analysis across all three diseases. CONCLUSION MD hospital visits were associated with ambient particulate matter exposure. Elderly individuals, in particular, were more susceptible to particulate matter exposure than younger individuals.
Collapse
Affiliation(s)
- Changwoo Han
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Kweon Jung
- Seoul Metropolitan Institute of Public Health and Environment, Seoul, South Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
38
|
Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:67-74. [PMID: 26896893 DOI: 10.1016/j.ecoenv.2016.01.030] [Citation(s) in RCA: 574] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
The impacts of ambient PM2.5 on public health have become great concerns worldwide, especially in the developing countries. Epidemiological and toxicological studies have shown that PM2.5 does not only induce cardiopulmonary disorders and/or impairments, but also contributes to a variety of other adverse health effects, such as driving the initiation and progression of diabetes mellitus and eliciting adverse birth outcomes. Of note, recent findings have demonstrated that PM2.5 may still pose a hazard to public health even at very low levels (far below national standards) of exposure. The proposed underlying mechanisms whereby PM2.5 causes adverse effects to public health include inducing intracellular oxidative stress, mutagenicity/genotoxicity and inflammatory responses. The present review aims to provide an brief overview of new insights into the molecular mechanisms linking ambient PM2.5 exposure and health effects, which were explored with new technologies in recent years.
Collapse
Affiliation(s)
- Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | - Dan Gao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Fen Liao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Furong Zhou
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Xinming Wang
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
39
|
Chen Z, Salam MT, Toledo-Corral C, Watanabe RM, Xiang AH, Buchanan TA, Habre R, Bastain TM, Lurmann F, Wilson JP, Trigo E, Gilliland FD. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans. Diabetes Care 2016; 39:547-54. [PMID: 26868440 PMCID: PMC4806768 DOI: 10.2337/dc15-1795] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/04/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae.
Collapse
Affiliation(s)
- Zhanghua Chen
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Muhammad T Salam
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA Department of Psychiatry, Kern Medical Center, Bakersfield, CA
| | - Claudia Toledo-Corral
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA Department of Public Health, California State University, Los Angeles, CA
| | - Richard M Watanabe
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, CA Diabetes and Obesity Research Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA
| | - Thomas A Buchanan
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, CA Diabetes and Obesity Research Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA Division of Diabetes and Endocrinology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Rima Habre
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Theresa M Bastain
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | | | - John P Wilson
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA
| | - Enrique Trigo
- Division of Diabetes and Endocrinology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Frank D Gilliland
- Division of Environmental Health, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| |
Collapse
|
40
|
Zhang C, Meng Q, Zhang X, Wu S, Wang S, Chen R, Li X. Role of astrocyte activation in fine particulate matter-enhancement of existing ischemic stroke in Sprague-Dawley male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:393-401. [PMID: 27267821 DOI: 10.1080/15287394.2016.1176615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure to particulate matter (PM) with an aerodynamic diameter of less than 2.5 μm (PM2.5) is associated with increased risk of ischemic stroke, but potential neurotoxic mechanisms remain to be determined. In this study, adult male Sprague- Dawley (SD) rats were divided into four groups as follows: control (CON), PM2.5 exposure (PM alone), ischemic stroke (IS), and ischemic stroke and PM2.5 (IS-PM). Ischemic stroke groups were prepared by middle cerebral artery occlusion (MCAO), and neurobehavior was assessed daily for 7 consecutive days. The control group was administered intranasally 20 μl PBS, while PM2.5 alone was given as 20 μl of PM2.5 (10 mg/ml) intranasal daily for 7 consecutive days. The spontaneous locomotion and exploratory behavior of rats were assessed by the open field test. Cells positive for glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS) were determined for astrocyte activation and inflammatory reactions. Neuronal edema and pyknosis in the cerebral cortex, hippocampus, and midbrain were observed in IS groups with or without PM2.5 treatment. Astrocyte activity was enhanced, whereas spontaneous locomotion and exploratory movements decreased in the IS-PM group. Data demonstrated that astrocytes activation and inflammatory reactions may play a role in IS and that exposure to PM2.5 may aggravate the neurobehavioral alterations observed in rats suffering from IS.
Collapse
Affiliation(s)
- Chengcheng Zhang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Qingtao Meng
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Xin Zhang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Shenshen Wu
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Shizhi Wang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Rui Chen
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | - Xiaobo Li
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| |
Collapse
|
41
|
LI PENG, GONG JUEXIAO, SUN WEI, ZHOU BIN, KONG XIANGQING. Hexamethonium attenuates sympathetic activity and blood pressure in spontaneously hypertensive rats. Mol Med Rep 2015; 12:7116-22. [DOI: 10.3892/mmr.2015.4315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/29/2015] [Indexed: 11/05/2022] Open
|
42
|
Gordon CJ, Johnstone AF, Aydin C, Phillips PM, MacPhail RC, Kodavanti UP, Ledbetter AD, Jarema KA. Episodic ozone exposure in adult and senescent Brown Norway rats: acute and delayed effect on heart rate, core temperature and motor activity. Inhal Toxicol 2014; 26:380-90. [PMID: 24779854 DOI: 10.3109/08958378.2014.905659] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Setting exposure standards for environmental pollutants may consider the aged as a susceptible population but the few published studies assessing susceptibility of the aged to air pollutants are inconsistent. Episodic ozone (O₃) is more reflective of potential exposures occurring in human populations and could be more harmful to the aged. This study used radiotelemetry to monitor heart rate (HR), core temperature (T(c)) and motor activity (MA) in adult (9-12 months) and senescent (20-24 months) male, Brown Norway rats exposed to episodic O₃ (6 h/day of 1 ppm O₃ for 2 consecutive days/week for 13 weeks). Acute O₃ initially led to marked drops in HR and T(c). As exposures progressed each week, there was diminution in the hypothermic and bradycardic effects of O₃. Senescent rats were less affected than adults. Acute responses were exacerbated on the second day of O₃ exposure with adults exhibiting greater sensitivity. During recovery following 2 d of O₃, adult and senescent rats exhibited an elevated T(c) and HR during the day but not at night, an effect that persisted for at least 48 h after O₃ exposure. MA was elevated in adults but not senescent rats during recovery from O₃. Overall, acute effects of O₃, including reductions in HR and T(c), were attenuated in senescent rats. Autonomic responses during recovery, included an elevation in T(c) with a pattern akin to that of a fever and rise in HR that were independent of age. An attenuated inflammatory response to O₃ in senescent rats may explain the relatively heightened physiological response to O₃ in younger rats.
Collapse
Affiliation(s)
- C J Gordon
- Toxicity Assessment Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wagner JG, Allen K, Yang HY, Nan B, Morishita M, Mukherjee B, Dvonch JT, Spino C, Fink GD, Rajagopalan S, Sun Q, Brook RD, Harkema JR. Cardiovascular depression in rats exposed to inhaled particulate matter and ozone: effects of diet-induced metabolic syndrome. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:27-33. [PMID: 24169565 PMCID: PMC3888573 DOI: 10.1289/ehp.1307085] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/24/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND High ambient levels of ozone (O3) and fine particulate matter (PM2.5) are associated with cardiovascular morbidity and mortality, especially in people with preexisting cardiopulmonary diseases. Enhanced susceptibility to the toxicity of air pollutants may include individuals with metabolic syndrome (MetS). OBJECTIVE We tested the hypothesis that cardiovascular responses to O3 and PM2.5 will be enhanced in rats with diet-induced MetS. METHODS Male Sprague-Dawley rats were fed a high-fructose diet (HFrD) to induce MetS and then exposed to O3, concentrated ambient PM2.5, or the combination of O3 plus PM2.5 for 9 days. Data related to heart rate (HR), HR variability (HRV), and blood pressure (BP) were collected. RESULTS Consistent with MetS, HFrD rats were hypertensive and insulin resistant, and had elevated fasting levels of blood glucose and triglycerides. Decreases in HR and BP, which were found in all exposure groups, were greater and more persistent in HFrD rats compared with those fed a normal diet (ND). Coexposure to O3 plus PM2.5 induced acute drops in HR and BP in all rats, but only ND rats adapted after 2 days. HFrD rats had little exposure-related changes in HRV, whereas ND rats had increased HRV during O3 exposure, modest decreases with PM2.5, and dramatic decreases during O3 plus PM2.5 coexposures. CONCLUSIONS Cardiovascular depression in O3- and PM2.5-exposed rats was enhanced and prolonged in rats with HFrD-induced MetS. These results in rodents suggest that people with MetS may be prone to similar exaggerated BP and HR responses to inhaled air pollutants.
Collapse
Affiliation(s)
- James G Wagner
- Department of Pathobiology and Diagnostic Investigation, and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gatto NM, Henderson VW, Hodis HN, St John JA, Lurmann F, Chen JC, Mack WJ. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology 2013; 40:1-7. [PMID: 24148924 DOI: 10.1016/j.neuro.2013.09.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 12/17/2022]
Abstract
While experiments in animals demonstrate neurotoxic effects of particulate matter (PM) and ozone (O3), epidemiologic evidence is sparse regarding the relationship between different constituencies of air pollution mixtures and cognitive function in adults. We examined cross-sectional associations between various ambient air pollutants [O3, PM2.5 and nitrogen dioxide (NO2)] and six measures of cognitive function and global cognition among healthy, cognitively intact individuals (n=1496, mean age 60.5 years) residing in the Los Angeles Basin. Air pollution exposures were assigned to each residential address in 2000-06 using a geographic information system that included monitoring data. A neuropsychological battery was used to assess cognitive function; a principal components analysis defined six domain-specific functions and a measure of global cognitive function was created. Regression models estimated effects of air pollutants on cognitive function, adjusting for age, gender, race, education, income, study and mood. Increasing exposure to PM2.5 was associated with lower verbal learning (β=-0.32 per 10 μg/m(3) PM2.5, 95% CI=-0.63, 0.00; p=0.05). Ambient exposure to NO2 >20 ppb tended to be associated with lower logical memory. Compared to the lowest level of exposure to ambient O3, exposure above 49 ppb was associated with lower executive function. Including carotid artery intima-media thickness, a measure of subclinical atherosclerosis, in models as a possible mediator did not attenuate effect estimates. This study provides support for cross-sectional associations between increasing levels of ambient O3, PM2.5 and NO2 and measures of domain-specific cognitive abilities.
Collapse
Affiliation(s)
- Nicole M Gatto
- Department of Epidemiology, Biostatistics & Population Medicine, School of Public Health, Loma Linda University, Loma Linda, CA, USA.
| | - Victor W Henderson
- Department of Health Research & Policy (Epidemiology), Stanford University, Stanford, CA, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Howard N Hodis
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA; Atherosclerosis Research Unit, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Jan A St John
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA; Atherosclerosis Research Unit, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | | | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA; Atherosclerosis Research Unit, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA, USA
| |
Collapse
|