1
|
Cory-Slechta DA, Downs CJ, Sobolewski M. Cumulative risk assessment as the pathway to public health protection for behavioral neurotoxicity. Neurotoxicology 2025; 108:400-411. [PMID: 40349850 DOI: 10.1016/j.neuro.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
The formulation of adverse outcome pathways (AOPs) based on high-throughput in vitro new approach methods linking biochemical/mechanistic data with an apical endpoint considered an adverse outcome (AO), is increasingly proposed to accelerate the process of risk assessment for environmental chemical exposures. While a laudable goal, this approach ignores the extensive evidence demonstrating context-dependence of neurotoxicological consequences, including behavioral toxicity of chemical exposures. Such contextual modifiers can include environmental conditions (poverty, psychosocial stress, behavioral experience/history), physiological conditions (sex, period of exposure, nutritional status, brain region, exposure parameters), and genetic background. Context dependence represents a serious omission for AOP formulation because an environmental context can alter a chemical's molecular targets, or potentially enhance toxicity through interactions with other contextual conditions, thus leading to potential underestimation of neurological risks due to such exposures. The integrative physiological basis of AOs requires cumulative risk assessments that model environmental contexts across scales of biology, i.e., integration and testing in whole-animal models. AOPs contribute to the derivation of cumulative risk considerations regarding factors to incorporate into cumulative risk assessments by defining risk factors with shared biological targets. Epidemiological and animal model studies can provide information to prioritize interactive effects of greatest magnitude. Additionally, a focus on how a single risk factor in different physiological contexts may attribute risk across multiple neurologic conditions, rather than to a single unique condition, would provide broader public health protection. Realistic acknowledgement of context-dependence is requisite to understanding both the etiological basis of neurological diseases and disorders and to human health protection.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
2
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
3
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 PMCID: PMC11721493 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Li Y, Yang Y, Ye B, Lin Y. Maternal high fat diet programs spatial learning and central leptin signaling in mouse offspring in a sex-specific manner. Physiol Behav 2024; 281:114580. [PMID: 38714271 DOI: 10.1016/j.physbeh.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.
Collapse
Affiliation(s)
- YiQuan Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ya Yang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - BoWei Ye
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Wang K, Sartor MA, Colacino JA, Dolinoy DC, Svoboda LK. Sex-Specific Deflection of Age-Related DNA Methylation and Gene Expression in Mouse Heart by Perinatal Toxicant Exposures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591125. [PMID: 38712146 PMCID: PMC11071472 DOI: 10.1101/2024.04.25.591125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.
Collapse
|
6
|
Kumar K, Anjali S, Sharma S. Effect of lead exposure on histone modifications: A review. J Biochem Mol Toxicol 2024; 38:e23547. [PMID: 37867311 DOI: 10.1002/jbt.23547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Lead at any levels can result in detrimental health effects affecting various organ systems. These systematic manifestations under Pb exposure and the underlying probable pathophysiological mechanisms have not been elucidated completely. With advancements in molecular research under Pb exposure, epigenetics is one of the emerging field that has opened many possibilities for appreciating the role of Pb exposure in modulating gene expression profiles. In terms of epigenetic alterations reported in Pb toxicity, DNA methylation, and microRNA alterations are extensively explored in both experimental and epidemiological studies, however, the understanding of histone modifications under Pb exposure is still in its infant stage limited to experimental models. In this review, we aim to present a synoptic view of histone modifications explored in relation to Pb exposure attempting to bring out this potential lacunae in research. The scarcity of studies associating histone modifications with Pb toxicity, and the paucity of their validation in human cohort further emphasizes the strong research potential of this field. We summarize the review by presenting our hypotheses regarding the involvement of these histone modification in various diseases modalities associated with Pb toxicity.
Collapse
Affiliation(s)
- Kanishka Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sudha Anjali
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Shailja Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
8
|
De Simone R, Ajmone-Cat MA, Tartaglione AM, Calamandrei G, Minghetti L. Maternal suboptimal selenium intake and low-level lead exposure affect offspring's microglial immune profile and its reactivity to a subsequent inflammatory hit. Sci Rep 2023; 13:21448. [PMID: 38052845 PMCID: PMC10698039 DOI: 10.1038/s41598-023-45613-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2023] Open
Abstract
Micronutrients such as selenium (Se) are essentials since prenatal life to support brain and cognitive development. Se deficiency, which affects up to 1 billion people worldwide, can interact with common adverse environmental challenges including (Pb), exacerbating their toxic effects. Exploiting our recently validated rat model of maternal Se restriction and developmental low Pb exposure, our aims were to investigate: (i) the early consequences of suboptimal Se intake and low-Pb exposure on neuroinflammation in neonates' whole brains; (ii) the potential priming effect of suboptimal Se and low-Pb exposure on offspring's glial reactivity to a further inflammatory hit. To these aims female rats were fed with suboptimal (0.04 mg/kg; Subopt) and optimal (0.15 mg/kg; Opt) Se dietary levels throughout pregnancy and lactation and exposed or not to environmentally relevant Pb dose in drinking water (12.5 µg/mL) since 4 weeks pre-mating. We found an overall higher basal expression of inflammatory markers in neonatal brains, as well as in purified microglia and organotypic hippocampal slice cultures, from the Subopt Se offspring. Subopt/Pb cultures were highly activated than Subopt cultures and showed a higher susceptibility to the inflammatory challenge lipopolysaccharide than cultures from the Opt groups. We demonstrate that even a mild Se deficiency and low-Pb exposure during brain development can influence the neuroinflammatory tone of microglia, exacerbate the toxic effects of Pb and prime microglial reactivity to subsequent inflammatory stimuli. These neuroinflammatory changes may be responsible, at least in part, for adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- R De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - M A Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - A M Tartaglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - G Calamandrei
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - L Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
9
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
10
|
Mei Z, Liu G, Zhao B, He Z, Gu S. Emerging roles of epigenetics in lead-induced neurotoxicity. ENVIRONMENT INTERNATIONAL 2023; 181:108253. [PMID: 37864902 DOI: 10.1016/j.envint.2023.108253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Lead is a common environmental heavy metal contaminant. Humans are highly susceptible to lead accumulation in the body, which causes nervous system damage and leads to a variety of nervous system diseases, such as Alzheimer's disease, Parkinson's disease, and autism spectrum disorder. Recent research has focused on the mechanisms of lead-induced neurotoxicity at multiple levels, including DNA methylation, histone modifications, and non-coding RNAs, which are involved in various lead-induced nervous system diseases. We reviewed the latest articles and summarised the emerging roles of DNA methylation, histone modification, and non-coding RNAs in lead-induced neurotoxicity. Our summary provides a theoretical basis and directions for future research on the prevention, diagnosis, and treatment of lead-induced neurological diseases.
Collapse
Affiliation(s)
- Zongqin Mei
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Bo Zhao
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, People's Republic of China.
| |
Collapse
|
11
|
Cubello J, Peterson DR, Wang L, Mayer-Proschel M. Maternal Iron Deficiency and Environmental Lead (Pb) Exposure Alter the Predictive Value of Blood Pb Levels on Brain Pb Burden in the Offspring in a Dietary Mouse Model: An Important Consideration for Cumulative Risk in Development. Nutrients 2023; 15:4101. [PMID: 37836385 PMCID: PMC10574741 DOI: 10.3390/nu15194101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Maternal iron deficiency (ID) and environmental lead (Pb) exposure are co-occurring insults that both affect the neurodevelopment of offspring. Few studies have investigated how ID affects brain-region-specific Pb accumulations using human-relevant Pb concentrations. Furthermore, how these Pb exposures impact blood and brain Fe levels remains unclear. Importantly, we also wanted to determine whether the use of blood Pb levels as a surrogate for the brain Pb burden is affected by underlying iron status. We exposed virgin Swiss Webster female mice to one of six conditions differing by iron diet and Pb water concentration (0 ppm, 19 ppm, or 50 ppm lead acetate) and used Inductively Coupled Plasma Mass Spectrometry to measure the maternal and offspring circulating, stored, and brain Pb levels. We found that maternal ID rendered the offspring iron-deficient anemic and led to a region-specific depletion of brain Fe that was exacerbated by Pb in a dose-specific manner. The postnatal iron deficiency anemia also exacerbated cortical and hippocampal Pb accumulation. Interestingly, BPb levels only correlated with the brain Pb burden in ID pups but not in IN offspring. We conclude that ID significantly increases the brain Pb burden and that BPb levels alone are insufficient as a clinical surrogate to make extrapolations on the brain Pb burden.
Collapse
Affiliation(s)
- Janine Cubello
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA;
| | - Derick R. Peterson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA; (D.R.P.); (L.W.)
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA; (D.R.P.); (L.W.)
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Jeong DS, Lee JY, Kim MH, Oh JH. Regulation of sexually dimorphic placental adaptation in LPS exposure-induced intrauterine growth restriction. Mol Med 2023; 29:114. [PMID: 37718409 PMCID: PMC10506314 DOI: 10.1186/s10020-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/15/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Sexual dimorphism in placental physiology affects the functionality of placental adaptation during adverse pregnancy. Defects of placental function compromise fetal programming, affecting the offspring's adult life. However, studies focusing on the relationship between sex-specific placental adaptation and consequent fetal maldevelopment under sub-optimal uterus milieu are still elusive. METHODS Here, we investigated the effects of maternal lipopolysaccharide (LPS) exposure between placental sex. Pregnant ICR mice received intraperitoneal injection of phosphate-buffered saline or 100, 200, and 400 µg/kg LPS on the gestational day (GD) 15.5. To determine whether prenatal maternal LPS exposure resulted in complicated pregnancy outcomes, survival rate of embryos was calculated and the growth of embryos and placentas was examined. To elucidate global transcriptomic changes occurring in the placenta, total RNA-sequencing (RNA-seq) was performed in female and male placentas. RESULTS LPS administration induced placental inflammation in both sexes at GD 17.5. Prenatal infection resulted in growth retardation in both sexes of embryos, and especially more prevalently in male. Impaired placental development was observed in a sex-specific manner. LPS 400 µg/kg reduced the percentage area of the labyrinth in females and junctional zone in males, respectively. RNA-sequencing revealed widespread sexually dimorphic transcriptional changes in placenta. In particular, representative changes were involved in biological processes such as trophoblast differentiation, nutrient/ion transporter, pregnancy, and immune system. CONCLUSIONS Our results present the sexually dimorphic responses of placental physiology in intrauterine growth restriction model and provide tentative relationship further to be elucidated between sex-biased placental functional change and long-term effects on the offspring's later life.
Collapse
Affiliation(s)
- Da Som Jeong
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ji-Yeon Lee
- Vivozon, Inc, Kolon Digital Tower3, 49, Achasan-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ji Hoon Oh
- Department of Biological Sciences, Keimyung University College of Natural Sciences, Daegu, 42601, Republic of Korea.
| |
Collapse
|
13
|
Dong Y, Weng J, Zhu Y, Sun D, He W, Chen Q, Cheng J, Zhu Y, Jiang Y. Transcriptomic profiling of the developing brain revealed cell-type and brain-region specificity in a mouse model of prenatal stress. BMC Genomics 2023; 24:86. [PMID: 36829105 PMCID: PMC9951484 DOI: 10.1186/s12864-023-09186-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Prenatal stress (PS) is considered as a risk factor for many mental disorders. PS-induced transcriptomic alterations may contribute to the functional dysregulation during brain development. Here, we used RNA-seq to explore changes of gene expression in the mouse fetal brain after prenatal exposure to chronic unpredictable mild stress (CUMS). RESULTS We compared the stressed brains to the controls and identified groups of significantly differentially expressed genes (DEGs). GO analysis on up-regulated DEGs revealed enrichment for the cell cycle pathways, while down-regulated DEGs were mostly enriched in the neuronal pathways related to synaptic transmission. We further performed cell-type enrichment analysis using published scRNA-seq data from the fetal mouse brain and revealed cell-type-specificity for up- and down-regulated DEGs, respectively. The up-regulated DEGs were highly enriched in the radial glia, while down-regulated DEGs were enriched in different types of neurons. Cell deconvolution analysis further showed altered cell fractions in the stressed brain, indicating accumulation of neuroblast and impaired neurogenesis. Moreover, we also observed distinct brain-region expression pattern when mapping DEGs onto the developing Allen brain atlas. The up-regulated DEGs were primarily enriched in the dorsal forebrain regions including the cortical plate and hippocampal formation. Surprisingly, down-regulated DEGs were found excluded from the cortical region, but highly expressed on various regions in the ventral forebrain, midbrain and hindbrain. CONCLUSION Taken together, we provided an unbiased data source for transcriptomic alterations of the whole fetal brain after chronic PS, and reported differential cell-type and brain-region vulnerability of the developing brain in response to environmental insults during the pregnancy.
Collapse
Affiliation(s)
- Yuhao Dong
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jie Weng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yueyan Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Daijing Sun
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Wei He
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Qi Chen
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Jin Cheng
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Ying Zhu
- grid.8547.e0000 0001 0125 2443Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
14
|
Zhu J, Zhou F, Zhou Q, Xu Y, Li Y, Huang D, Chen L, Liu A, Zou F, Meng X. NLRP3 activation in microglia contributes to learning and memory impairment induced by chronic lead exposure in mice. Toxicol Sci 2023; 191:179-191. [PMID: 36308466 DOI: 10.1093/toxsci/kfac115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lead (Pb)-induced microglial activation and neuroinflammation has been considered as one of the main pathological events of Pb neurotoxicity. The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. However, the relationship between chronic Pb exposure and neurogenic NLRP3 inflammasome is unclear. Therefore, the aim of this study was to characterize the role of NLRP3 inflammasome activation during the chronic Pb exposure using in vitro and in vivo models. Our results showed that chronic Pb exposure induce learning and memory impairment in mice, mainly related to the activation of microglia and NLRP3 inflammasome. This phenomenon was reversed in mice by treating with the NLRP3 inhibitor MCC950 and using NLRP3-/- mice. In addition, Pb caused the activation of NLRP3 inflammasome, the production of mitochondrial ROS (mtROS), and mitochondrial Ca2+ overload in BV2 cells. Amelioration of mtROS abolished Pb-induced NLRP3 inflammasome activation. Moreover, after regulation of Ca2+ redistribution, mtROS and NLRP3 inflammasome activation was restored. In conclusion, NLRP3 inflammasome activation in microglia plays a vital role in Pb neurotoxicity, by a novel mechanism of enhancing mtROS production and Ca2+ redistribution.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dingbang Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
15
|
Liu M, Liu R, Wang R, Ba Y, Yu F, Deng Q, Huang H. Lead-induced neurodevelopmental lesion and epigenetic landscape: Implication in neurological disorders. J Appl Toxicol 2022. [PMID: 36433892 DOI: 10.1002/jat.4419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Lead (Pb) was implicated in multiple genotoxic, neuroepigenotoxic, and chromosomal-toxic mechanisms and interacted with varying synaptic plasticity pathways, likely underpinning previous reports of links between Pb and cognitive impairment. Epigenetic changes have emerged as a promising biomarker for neurological disorders, including cognitive disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). In the present review, special attention is paid to neural epigenetic features and mechanisms that can alter gene expression patterns upon environmental Pb exposure in rodents, primates, and zebrafish. Epigenetic modifications have also been discussed in population studies and cell experiment. Further, we explore growing evidence of potential linkage between Pb-induced disruption of regulatory pathway and neurodevelopmental and neurological disorders both in vivo and in vitro. These findings uncover how epigenome in neurons facilitates the development and function of the brain in response to Pb insult.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| |
Collapse
|
16
|
Cuomo D, Foster MJ, Threadgill D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35583-35598. [PMID: 35244845 PMCID: PMC9893814 DOI: 10.1007/s11356-022-19333-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
Lead (Pb) poisoning is a major public health concern in environmental justice communities of the USA and in many developing countries. There is no identified safety threshold for lead in blood, as low-level Pb exposures can lead to severe toxicity in highly susceptible individuals and late onset of diseases from early-life exposure. However, identifying "susceptibility genes" or "early exposure biomarkers" remains challenging in human populations. There is a considerable variation in susceptibility to harmful effects from Pb exposure in the general population, likely due to the complex interplay of genetic and/or epigenetic factors. This systematic review summarizes current state of knowledge on the role of genetic and epigenetic factors in determining individual susceptibility in response to environmental Pb exposure in humans and rodents. Although a number of common genetic and epigenetic factors have been identified, the reviewed studies, which link these factors to various adverse health outcomes following Pb exposure, have provided somewhat inconsistent evidence of main health effects. Acknowledging the compelling need for new approaches could guide us to better characterize individual responses, predict potential adverse outcomes, and identify accurate and usable biomarkers for Pb exposure to improve mitigation therapies to reduce future adverse health outcomes of Pb exposure.
Collapse
Affiliation(s)
- Danila Cuomo
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| | - Margaret J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
17
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Tasin FR, Ahmed A, Halder D, Mandal C. On-going consequences of in utero exposure of Pb: An epigenetic perspective. J Appl Toxicol 2022; 42:1553-1569. [PMID: 35023172 DOI: 10.1002/jat.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications by toxic heavy metals are one of the intensively investigated fields of modern genomic research. Among a diverse group of heavy metals, lead (Pb) is an extensively distributed toxicant causing an immense number of abnormalities in the developing fetus via a wide variety of epigenetic changes. As a divalent cation, Pb can readily cross the placental membrane and the fetal blood brain barrier leading to far-reaching alterations in DNA methylation patterns, histone protein modifications and micro-RNA expression. Over recent years, several human cohorts and animal model studies have documented hyper- and hypo-methylation of developmental genes along with altered DNA methyl-transferase expression by in utero Pb exposure in a dose-, duration- and sex-dependent manner. Modifications in the expression of specific histone acetyltransferase enzymes along with histone acetylation and methylation levels have been reported in rodent and murine models. Apart from these, down-regulation and up-regulation of certain microRNAs crucial for fetal development have been shown to be associated with in utero Pb exposure in human placenta samples. All these modifications in the developing fetus during the prenatal and perinatal stages reportedly caused severe abnormalities in early or adult age, such as - impaired growth, obesity, autism, diabetes, cardiovascular diseases, risks of cancer development and Alzheimer's disease. In this review, currently available information on Pb-mediated alterations in the fetal epigenome is summarized. Further research on Pb-induced epigenome modification will help to understand the mechanisms in detail and will enable us to formulate safety guidelines for pregnant women and developing children.
Collapse
Affiliation(s)
- Fahim Rejanur Tasin
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Debasish Halder
- Rare Disease research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
19
|
Sánchez OF, Lin LF, Xie J, Freeman JL, Yuan C. Lead exposure induces dysregulation of constitutive heterochromatin hallmarks in live cells. Curr Res Toxicol 2021; 3:100061. [PMID: 35005634 PMCID: PMC8717252 DOI: 10.1016/j.crtox.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lead (Pb) is a heavy metal contaminant commonly found in air, soil, and drinking water due to legacy uses. Excretion of ingested Pb can result in extensive kidney damages due to elevated oxidative stress. Epigenetic alterations induced by exposure to Pb have also been implied but remain poorly understood. In this work, we assessed changes in repressive epigenetic marks, namely DNA methylation (meCpG) and histone 3 lysine 9 tri-methylation (H3K9me3) after exposure to Pb. Live cell epigenetic probes coupled to bimolecular fluorescence complementation (BiFC) were used to monitor changes in the selected epigenetic marks. Exposure to Pb significantly lowered meCpG and H3K9me3 levels in HEK293T cells suggesting global changes in constitutive heterochromatin. A heterodimeric pair of probes that tags chromatin regions enriched in both meCpG and H3K9me3 further confirmed our findings. The observed epigenetic changes can be partially attributed to aberrant transcriptional changes induced by Pb, such as overexpression of TET1 after Pb exposure. Lastly, we monitored changes in selected heterochromatin marks after removal of Pb and found that changes in these markers do not immediately recover to their original level suggesting potential long-term damages to chromatin structure.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Li F. Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Bai H, Capitanio JP, Miller LA, Clougherty JE. Social status and susceptibility to wildfire smoke among outdoor-housed female rhesus monkeys: A natural experiment. Heliyon 2021; 7:e08333. [PMID: 34816037 PMCID: PMC8591456 DOI: 10.1016/j.heliyon.2021.e08333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Wildfire smoke (WFS) exposure is a growing threat to human health, and lower socioeconomic position (SEP) has been shown to increase pollution susceptibility. Studies of SEP-related susceptibility, however, are often compromised due to spatial confounding between lower-SEP and pollution. Here we examine outdoor-housed nonhuman primates, living in natural social hierarchy in a common location, born during years of high vs. low WFS, to examine the separate and combined effects of WFS and social rank, an analog to SEP, on lung and immune function. Methods Twenty-one females were born during extreme WFS events in summer 2008; 22 were born in summer 2009, during low WFS. Pulmonary function and circulating cytokines were measured three years later, in adolescence. We estimated fine particulate (PM2.5) and ozone exposures during each animal's first 90 days and three years of age using regulatory data. Early-life social status was estimated using maternal rank at birth, as rank in females is relatively stable throughout life, and closely approximates mother's rank. We tested associations among WFS exposure, rank, and endpoints using linear regression and ANOVA. Results Higher WFS exposure in infancy was, on average, associated with lower functional residual capacity (FRC), residual volume (RV), tissue compliance (Ct), and IL-8 secretion in adolescence. Higher social rank conferred significantly higher expiratory reserve volume (ERV) and functional residual capacity (FRC) solely among those born in the high-WFS year (2008). Differences in effects of rank between years were not significant after adjustment for multiple comparisons. Conclusions Exposure to WFS in infancy generally conferred lower adolescent respiratory volumes and inflammatory cytokines. Higher rank conferred higher respiratory volumes only among females born during WFS, suggesting the possibility that the health benefits of rank may be more apparent under environmental challenge.
Collapse
Affiliation(s)
- Heng Bai
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John P Capitanio
- California National Primate Research Center, Davis, CA, USA.,Department of Psychology, University of California Davis, Davis, CA, USA
| | - Lisa A Miller
- California National Primate Research Center, Davis, CA, USA.,Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Rygiel CA, Goodrich JM, Solano-González M, Mercado-García A, Hu H, Téllez-Rojo MM, Peterson KE, Dolinoy DC. Prenatal Lead (Pb) Exposure and Peripheral Blood DNA Methylation (5mC) and Hydroxymethylation (5hmC) in Mexican Adolescents from the ELEMENT Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67002. [PMID: 34152198 PMCID: PMC8216410 DOI: 10.1289/ehp8507] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gestational lead (Pb) exposure can adversely affect offspring health through multiple mechanisms, including epigenomic alterations via DNA methylation (5mC) and hydroxymethylation (5hmC), an intermediate in oxidative demethylation. Most current methods do not distinguish between 5mC and 5hmC, limiting insights into their individual roles. OBJECTIVE Our study sought to identify the association of trimester-specific (T1, T2, T3) prenatal Pb exposure with 5mC and 5hmC levels at multiple cytosine-phosphate-guanine sites within gene regions previously associated with prenatal Pb (HCN2, NINJ2, RAB5A, TPPP) in whole blood leukocytes of children ages 11-18 years of age. METHODS Participants from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohorts were selected (n=144) for pyrosequencing analysis following oxidative or standard sodium bisulfite treatment. This workflow directly quantifies total methylation (5mC+5hmC) and 5mC only; 5hmC is estimated by subtraction. RESULTS Participants were 51% male, and mean maternal blood lead levels (BLL) were 6.43±5.16μg/dL in Trimester 1 (T1), 5.66±5.21μg/dL in Trimester 2 (T2), and 5.86±4.34μg/dL in Trimester 3 (T3). In addition, 5hmC levels were calculated for HCN2 (mean±standard deviation(SD), 2.08±4.18%), NINJ2 (G/C: 2.01±5.95; GG: 0.90±3.97), RAB5A (0.66±0.80%), and TPPP (1.11±6.67%). Furthermore, 5mC levels were measured in HCN2 (81.3±9.63%), NINJ2 (heterozygotes: 38.6±7.39%; GG homozygotes: 67.3±9.83%), RAB5A (1.41±1.21%), and TPPP (92.5±8.03%). Several significant associations between BLLs and 5mC/5hmC were identified: T1 BLLs with 5mC in HCN2 (β=-0.37, p=0.03) and 5hmC in NINJ2 (β=0.49, p=0.003); T2 BLLs with 5mC in HCN2 (β=0.37, p=0.03) and 5hmC in NINJ2 (β=0.27, p=0.008); and T3 BLLs with 5mC in HCN2 (β=0.50, p=0.01) and NINJ2 (β=-0.35, p=0.004) and 5hmC in NINJ2 (β=0.45, p<0.001). NINJ2 5mC was negatively correlated with gene expression (Pearson r=-0.5, p-value=0.005), whereas 5hmC was positively correlated (r=0.4, p-value=0.04). DISCUSSION These findings suggest there is variable 5hmC in human whole blood and that prenatal Pb exposure is associated with gene-specific 5mC and 5hmC levels at adolescence, providing evidence to consider 5hmC as a regulatory mechanism that is responsive to environmental exposures. https://doi.org/10.1289/EHP8507.
Collapse
Affiliation(s)
- Christine A. Rygiel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Karen E. Peterson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Haq SU, Bhat UA, Kumar A. Prenatal stress effects on offspring brain and behavior: Mediators, alterations and dysregulated epigenetic mechanisms. J Biosci 2021. [DOI: 10.1007/s12038-021-00153-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Hernández-Coro A, Sánchez-Hernández BE, Montes S, Martínez-Lazcano JC, González-Guevara E, Pérez-Severiano F. Alterations in gene expression due to chronic lead exposure induce behavioral changes. Neurosci Biobehav Rev 2021; 126:361-367. [PMID: 33819547 DOI: 10.1016/j.neubiorev.2021.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/15/2020] [Accepted: 03/27/2021] [Indexed: 02/01/2023]
Abstract
Lead (Pb) is a pollutant commonly found in the environment, despite the implementation of public health policies intended to remove it. Due to its chemical characteristics as a divalent ion, Pb interacts with cells, enzymes, and tissues, causing pathological, physical, and behavioral alterations. Recent biotechnological advances have helped us to understand the mechanisms underlying the damage caused by Pb in human populations and in experimental models, and new evidence on the epigenetic alterations caused by exposition to environmental Pb is available. It is known that Pb exposure impacts on behavior (causing aggressiveness, anxiety, and depression), leading to learning deficit and locomotor activity alterations, and its presence has been linked with the abnormal release of neurotransmitters and other biochemical changes involved in these disorders. Still, further reductionist studies are required to determine the effects of Pb exposure on DNA and protein expression and understand the processes underlying the diseases caused by Pb. This will also indicate possible therapeutic targets to offset the negative effects of the heavy metal. By elucidating the epigenetic changes involved, it would be possible to manipulate them and propose novel therapeutic approaches in this area. This review is aimed to provide an overview of studies that link Pb exposure to behavioral changes, as well as biochemical and epigenetic alterations at a neurotransmitter level, considering the importance of this metal in behavior abnormalities.
Collapse
Affiliation(s)
- Abraham Hernández-Coro
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico
| | - Beatriz Eugenia Sánchez-Hernández
- Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga #15, Col. Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur # 3877, La Fama, 14269. Mexico City, Mexico
| | - Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico.
| |
Collapse
|
24
|
Lin LF, Xie J, Sánchez OF, Bryan C, Freeman JL, Yuan C. Low dose lead exposure induces alterations on heterochromatin hallmarks persisting through SH-SY5Y cell differentiation. CHEMOSPHERE 2021; 264:128486. [PMID: 33032221 DOI: 10.1016/j.chemosphere.2020.128486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) is a commonly found heavy metal due to its historical applications. Recent studies have associated early-life Pb exposure with the onset of various neurodegenerative disease. The molecular mechanisms of Pb conferring long-term neurotoxicity, however, is yet to be elucidated. In this study, we explored the persistency of alteration in epigenetic marks that arise from exposure to low dose of Pb using a combination of image-based and gene expression analysis. Using SH-SY5Y as a model cell line, we observed significant alterations in global 5-methycytosine (5 mC) and histone 3 lysine 27 tri-methylation (H3K27me3) and histone 3 lysine 9 tri-methylation (H3K9me3) levels in a dose-dependent manner immediately after Pb exposure. The changes are partially associated with alterations in epigenetic enzyme expression levels. Long term culturing (14 days) after cease of exposure revealed persistent changes in 5 mC, partial recovery in H3K9me3 and overcompensation in H3K27me3 levels. The observed alterations in H3K9me3 and H3K27me3 are reversed after neuronal differentiation, while reduction in 5 mC levels are amplified with significant changes in patterns as identified via texture clustering analysis. Moreover, correlation analysis demonstrates a strong positive correlation between trends of 5 mC alteration after differentiation and neuronal morphology. Collectively, our results suggest that exposure to low dose of Pb prior to differentiation can result in persistent epigenome alterations that can potentially be responsible for the observed phenotypic changes. Our work reveals that Pb induced changes in epigenetic repressive marks can persist through neuron differentiation, which provides a plausible mechanism underlying long-term neurotoxicity associated with developmental Pb-exposure.
Collapse
Affiliation(s)
- Li F Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Chris Bryan
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Sex-specific effects of the histone variant H2A.Z on fear memory, stress-enhanced fear learning and hypersensitivity to pain. Sci Rep 2020; 10:14331. [PMID: 32868857 PMCID: PMC7458907 DOI: 10.1038/s41598-020-71229-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence suggests that histone variants are novel epigenetic regulators of memory, whereby histone H2A.Z suppresses fear memory. However, it is not clear if altered fear memory can also modify risk for PTSD, and whether these effects differ in males and females. Using conditional-inducible H2A.Z knockout (cKO) mice, we showed that H2A.Z binding is higher in females and that H2A.Z cKO enhanced fear memory only in males. However, H2A.Z cKO improved memory on the non-aversive object-in-place task in both sexes, suggesting that H2A.Z suppresses non-stressful memory irrespective of sex. Given that risk for fear-related disorders, such as PTSD, is biased toward females, we examined whether H2A.Z cKO also has sex-specific effects on fear sensitization in the stress-enhanced fear learning (SEFL) model of PTSD, as well as associated changes in pain sensitivity. We found that H2A.Z cKO reduced stress-induced sensitization of fear learning and pain responses preferentially in female mice, indicating that the effects of H2A.Z depend on sex and the type of task, and are influenced by history of stress. These data suggest that H2A.Z may be a sex-specific epigenetic risk factor for PTSD susceptibility, with implications for developing sex-specific therapeutic interventions.
Collapse
|
26
|
A Cumulative Risk Perspective for Occupational Health and Safety (OHS) Professionals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176342. [PMID: 32878292 PMCID: PMC7503320 DOI: 10.3390/ijerph17176342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Cumulative risk assessment (CRA) addresses the combined risk associated with chemical and non-chemical exposures. Although CRA approaches are utilized in environmental and ecological contexts, they are rarely applied in workplaces. In this perspectives article, we strive to raise awareness among occupational health and safety (OHS) professionals and foster the greater adoption of a CRA perspective in practice. Specifically, we provide an overview of CRA literature as well as preliminary guidance on when to consider a CRA approach in occupational settings and how to establish reasonable boundaries. Examples of possible workplace co-exposures and voluntary risk management actions are discussed. We also highlight important implications for workplace CRA research and practice. In particular, future needs include simple tools for identifying combinations of chemical and non-chemical exposures, uniform risk management guidelines, and risk communication materials. Further development of practical CRA methods and tools are essential to meet the needs of complex and changing work environments.
Collapse
|
27
|
Gestational exposures to organophosphorus insecticides: From acute poisoning to developmental neurotoxicity. Neuropharmacology 2020; 180:108271. [PMID: 32814088 DOI: 10.1016/j.neuropharm.2020.108271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.
Collapse
|
28
|
Wang T, Zhang J, Xu Y. Epigenetic Basis of Lead-Induced Neurological Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134878. [PMID: 32645824 PMCID: PMC7370007 DOI: 10.3390/ijerph17134878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Environmental lead (Pb) exposure is closely associated with pathogenesis of a range of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), attention deficit/hyperactivity disorder (ADHD), etc. Epigenetic machinery modulates neural development and activities, while faulty epigenetic regulation contributes to the diverse forms of CNS (central nervous system) abnormalities and diseases. As a potent epigenetic modifier, lead is thought to cause neurological disorders through modulating epigenetic mechanisms. Specifically, increasing evidence linked aberrant DNA methylations, histone modifications as well as ncRNAs (non-coding RNAs) with AD cases, among which circRNA (circular RNA) stands out as a new and promising field for association studies. In 23-year-old primates with developmental lead treatment, Zawia group discovered a variety of epigenetic changes relating to AD pathogenesis. This is a direct evidence implicating epigenetic basis in lead-induced AD animals with an entire lifespan. Additionally, some epigenetic molecules associated with AD etiology were also known to respond to chronic lead exposure in comparable disease models, indicating potentially interlaced mechanisms with respect to the studied neurotoxic and pathological events. Of note, epigenetic molecules acted via globally or selectively influencing the expression of disease-related genes. Compared to AD, the association of lead exposure with other neurological disorders were primarily supported by epidemiological survey, with fewer reports connecting epigenetic regulators with lead-induced pathogenesis. Some pharmaceuticals, such as HDAC (histone deacetylase) inhibitors and DNA methylation inhibitors, were developed to deal with CNS disease by targeting epigenetic components. Still, understandings are insufficient regarding the cause–consequence relations of epigenetic factors and neurological illness. Therefore, clear evidence should be provided in future investigations to address detailed roles of novel epigenetic factors in lead-induced neurological disorders, and efforts of developing specific epigenetic therapeutics should be appraised.
Collapse
Affiliation(s)
| | | | - Yi Xu
- Correspondence: ; Tel.: +86-183-2613-5046
| |
Collapse
|
29
|
Sex-Dependent Effects of Developmental Lead Exposure in Wistar Rats: Evidence from Behavioral and Molecular Correlates. Int J Mol Sci 2020; 21:ijms21082664. [PMID: 32290408 PMCID: PMC7216048 DOI: 10.3390/ijms21082664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Lead (Pb) exposure in early life affects brain development resulting in cognitive and behavioral deficits. Epidemiologic and experimental evidence of sex as an effect modifier of developmental Pb exposure is emerging. In the present study, we investigated Pb effects on behavior and mechanisms of neuroplasticity in the hippocampus and potential sex differences. To this aim, dams were exposed, from one month pre-mating to offspring weaning, to Pb via drinking water at 5 mg/kg body weight per day. In the offspring of both sexes, the longitudinal assessment of motor, emotional, and cognitive end points was performed. We also evaluated the expression and synaptic distribution of N-methyl-D-Aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits at post-natal day (pnd) 23 and 70 in the hippocampus. Neonatal motor patterns and explorative behavior in offspring were affected in both sexes. Pb effects in emotional response and memory retention were observed in adult females only, preceded by increased levels of GluN2A and GluA1 subunits at the post-synapse at pnd 23. These data suggest that Pb exposure during development affects glutamatergic receptors distribution at the post-synaptic spine in females. These effects may contribute to alterations in selected behavioral domains.
Collapse
|
30
|
Sobolewski M, Abston K, Conrad K, Marvin E, Harvey K, Susiarjo M, Cory-Slechta DA. Lineage- and Sex-Dependent Behavioral and Biochemical Transgenerational Consequences of Developmental Exposure to Lead, Prenatal Stress, and Combined Lead and Prenatal Stress in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27001. [PMID: 32073883 PMCID: PMC7064322 DOI: 10.1289/ehp4977] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lead (Pb) exposure and prenatal stress (PS) during development are co-occurring risk factors with shared biological substrates. PS has been associated with transgenerational passage of altered behavioral phenotypes, whereas the transgenerational behavioral or biochemical consequences of Pb exposure, and modification of any such effects by PS, is unknown. OBJECTIVES The present study sought to determine whether Pb, PS, or combined Pb and PS exposures produced adverse transgenerational consequences on brain and behavior. METHODS Maternal Pb and PS exposures were carried out in F0 mice. Outside breeders were used at each subsequent breeding, producing four F1-F2 lineages: [F1 female-F2 female (FF), FM (male), MF, and MM]. F3 offspring were generated from each of these lineages and examined for outcomes previously found to be altered by Pb, PS, or combined Pb and PS in F1 offspring: behavioral performance [fixed-interval (FI) schedule of food reward, locomotor activity, and anxiety-like behavior], dopamine function [striatal expression of tyrosine hydroxylase (Th)], glucocorticoid receptor (GR) and plasma corticosterone, as well as brain-derived neurotrophic factor (BDNF) and total percent DNA methylation of Th and Bdnf genes in the frontal cortex and hippocampus. RESULTS Maternal F0 Pb exposure produced runting in F3 offspring. Considered across lineages, F3 females exhibited Pb-related alterations in behavior, striatal BDNF levels, frontal cortical Th total percentage DNA methylation levels and serum corticosterone levels, whereas F3 males showed Pb- and PS-related alterations in behavior and total percent DNA methylation of hippocampal Bdnf. However, numerous lineage-specific effects were observed, most of greater magnitude than those observed across lineages, with outcomes differing by F3 sex. DISCUSSION These findings support the possibility that exposures of previous generations to Pb or PS may influence the brain and behavior of future generations. Observed changes were sex-dependent, with F3 females showing multiple changes through Pb-exposed lineages. Lineage effects may occur through maternal responses to pregnancy, altered maternal behavior, epigenetic modifications, or a combination of mechanisms, but they have significant public health ramifications regardless of mechanism. https://doi.org/10.1289/EHP4977.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kadijah Abston
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Harvey
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
31
|
Gu X, Xu Y, Xue WZ, Wu Y, Ye Z, Xiao G, Wang HL. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis 2019; 10:671. [PMID: 31511494 PMCID: PMC6739382 DOI: 10.1038/s41419-019-1912-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023]
Abstract
Compromised learning and memory is a common feature of multiple neurodegenerative disorders. A paradigm spatial memory impairment could be caused by developmental lead (Pb) exposure. Growing evidence implicates epigenetic modifications in the Pb-mediated memory deficits; however, how histone modifications exemplified by H3K27me3 (H3 Lys27 trimethylation) contribute to this pathogenesis remains poorly understood. Here we found that Pb exposure diminished H3K27me3 levels in vivo by suppressing EZH2 (enhancer of zeste homolog 2) expression at an early stage. EZH2 overexpression in Pb-treated rats rescued the H3K27me3 abundance and partially restored the normal spatial memory, as manifested by the rat performance in a Morris water maze test, and structural analysis of hippocampal spine densities. Furthermore, miR-137 and EZH2 constitute mutually inhibitory loop to regulate the H3K27me3 level, and this feedback regulation could be specifically activated by Pb treatment. Considering genes targeted by H3K27me3, ChIP-chip (chromatin immunoprecipitation on chip) studies revealed that Pb could remodel the genome-wide distribution of H3K27me3, represented by pathways like transcriptional regulation, developmental regulation, cell motion, and apoptosis, as well as a novel Wnt9b locus. As a Wnt isoform associated with canonical and noncanonical signaling, Wnt9b was regulated by the opposite modifications of H3K4me3 (H3 Lys4 trimethylation) and H3K27me3 in Pb-exposed neurons. Rescue trials further validated the contribution of Wnt9b to Pb-induced neuronal impairments, wherein canonical or noncanonical Wnt signaling potentially exhibited destructive or protective roles, respectively. In summary, the study reveals an epigenetic-based molecular change underlying Pb-triggered spatial memory deficits, and provides new potential avenues for our understanding of neurodegenerative diseases with environmental etiology.
Collapse
Affiliation(s)
- Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wei-Zhen Xue
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yulan Wu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Zi Ye
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100022, People's Republic of China
| | - Guiran Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
32
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Mizukami H, Kim JD, Tabara S, Lu W, Kwon C, Nakashima M, Fukamizu A. KDM5D-mediated H3K4 demethylation is required for sexually dimorphic gene expression in mouse embryonic fibroblasts. J Biochem 2019; 165:335-342. [PMID: 30541083 DOI: 10.1093/jb/mvy106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 11/14/2022] Open
Abstract
Males and females share the same genetic code, but gene expression profile often displays differences between two sexes. Mouse embryonic fibroblasts (MEFs) have been used to experiment as a useful tool to test gene function. They have also been characterized by gender-based differences in expressed genes such as Y-linked Sry or X-linked Hprt. However, there is no report on sex differences in global gene expression. Here, using the next-generation RNA sequencing, we compared the comprehensive transcriptome of MEFs derived from two sexes. In comparison with the female group, the male group up-regulated 27 differentially expressed genes (DEGs), in which a male-specific histone demethylase KDM5D gene is included, and 7 DEGs were down-regulated. Based on the results by searching the ENCODE analysis, it was shown that the expression of 15 genes identified is potentially regulated by the methylation of H3K4me1 or H3K4me3. Interestingly, we demonstrated that both of H3K4 methylation are induced by knocking down KDM5D, which causes changes in patterns of eight DEGs found in male MEFs. Collectively, these data not only suggest an importance of KDM5D-mediated demethylation of H3K4 involved in the sexually dimorphic gene expression in male MEFs, but also may provide information regarding sex-dependent changes in gene expression when MEFs are used for experiments.
Collapse
Affiliation(s)
- Hayase Mizukami
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA).,Graduate School of Life and Environmental Sciences
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)
| | | | - Weizhe Lu
- Ph.D. Program in Human Biology, School of Integrative Global Majors (SIGMA)
| | - Chulwon Kwon
- Graduate School of Life and Environmental Sciences
| | | | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA).,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. CURRENT OPINION IN TOXICOLOGY 2019; 18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to the study of mitotically heritable and potentially reversible changes in gene expression unrelated to the DNA sequence itself, influenced by epigenetic marks including chromatin modifications, non-coding RNA and alterations to DNA itself via methylation and hydroxymethylation. Epigenetics has taken center stage in the study of diseases such as cancer, diabetes, and neurodegeneration; however, its integration into the field of environmental health sciences and toxicology (e.g. Toxicoepigenetics) is in its infancy. This review highlights the need to evaluate surrogate and target tissues in the field of toxicoepigenetics as the National Institute of Environmental Health Sciences (NIEHS) multi-phased Toxicant Exposure and Response by Genomic and Epigenomic Regulators of Transcription (TaRGET) consortia make headway, and the emergence of non-coding RNA biomarkers. The review also discusses lead (Pb) as a potential toxicoepigenetic exposure, where pre- and post-natal Pb exposure is associated with reprogramming of DNA methylation, histone modifications, and microRNA expression, representing potential biomarkers or predictors for Pb-induced health outcomes. Finally, new advances in epigenome editing, highlighting the potential of small ncRNA, will be explored for environmental health sciences research.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Laurie Svoboda
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Dana C Dolinoy
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI
| |
Collapse
|
35
|
Wang Y, Hu Y, Wu Z, Su Y, Ba Y, Zhang H, Li X, Cheng X, Li W, Huang H. Latent role of in vitro Pb exposure in blocking Aβ clearance and triggering epigenetic modifications. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:14-23. [PMID: 30593950 DOI: 10.1016/j.etap.2018.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Both β-amyloid (Aβ) catabolism and epigenetic regulation play critical roles in the onset of neurodegeneration. The latter also contribute to Pb neurotoxicity. The present study explored the role of epigenetic modifiers and Aβ degradation enzymes in Pb-induced latent effects on Aβ overproduction in vitro. Our results indicated that in SH-SY5Y cells exposed to Pb, the expression of NEP and IDE remained declined during the recovery period, accompanied with abnormal increase of Aβ1-42 and amyloid oligomer. A disruption of selective global post-translational histone modifiers including the decrease of H3K9ac and H4K12ac and the induction of H3K9me2 and H3K27me2 dose dependently was also showed in recovery cells. Moreover, histone deacetylase inhibitor VPA could attenuate latent Aβ accumulation and HDAC activity induced by Pb, which might be by regulating the expression of NEP and IDE epigenetically. Overall, our results suggest sustained reduction of NEP and IDE expression in response to Pb sensitizes recovery SH-SY5Y cells to Aβ accumulation; however, administration of VPA is demonstrated to be beneficial in modulating Aβ clearance.
Collapse
Affiliation(s)
- Yawei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yazhen Hu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zuntao Wu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yanbin Su
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yue Ba
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xing Li
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Wenjie Li
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
36
|
Jaffee SR. Lead exposure and child maltreatment as models for how to conceptualize early-in-life risk factors for violence. Infant Ment Health J 2019; 40:23-38. [DOI: 10.1002/imhj.21756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Ghosh K, Chatterjee B, Kanade SR. Lead induces the up-regulation of the protein arginine methyltransferase 5 possibly by its promoter demethylation. Biochem J 2018; 475:2653-2666. [PMID: 30054435 DOI: 10.1042/bcj20180009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023]
Abstract
The studies on lead (Pb) exposure linking to epigenetic modulations are caused by its differential actions on global DNA methylation and histone modifications. These epigenetic changes may result in increased accessibility of the transcription factors to promoter DNA-binding elements leading to activation and expression of the gene. The protein arginine methyltransferase 5 (PRMT5) and its partner methylosome protein 50 (MEP50) together catalyze the mono- and symmetric dimethylation of arginine residues in many histone and non-histone protein substrates. Moreover, it is overexpressed in many forms of cancer. In the present study, the effects of Pb on the PRMT5 and MEP50 expression and formation of the symmetrically dimethylated arginine (SDMA), the catalytic product of the PRMT5-MEP50 complex were analyzed in vitro after exposing the A549 and MCF-7 cells. The results show that exposure to 0.1 and 1 µM of Pb strongly enhanced the expression of both PRMT5 and MEP50 transcript and protein leading to increased SDMA levels globally with H4R3 being increasingly symmetrically dimethylated in a dose-dependent manner after 48 h of Pb exposure in both cell types. The methylation-specific PCR also revealed that the CpG island present on the PRMT5 promoter proximal region was increasingly demethylated as the dose of Pb increased in a 48-h exposure window in both cells, with MCF-7 being more responsive to Pb-mediated PRMT5 promoter demethylation. The bisulfite sequencing confirmed this effect. The findings therefore indicate that Pb exposure increasing the PRMT5 expression might be one of the contributing epigenetic factors in the lead-mediated disease processes as PRMT5 has a versatile role in cellular functions and oncogenesis.
Collapse
Affiliation(s)
- Krishna Ghosh
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| | - Biji Chatterjee
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod, Kerala 671314, India
| |
Collapse
|
38
|
Rooney JPK, Woods NF, Martin MD, Woods JS. Genetic polymorphisms of GRIN2A and GRIN2B modify the neurobehavioral effects of low-level lead exposure in children. ENVIRONMENTAL RESEARCH 2018; 165:1-10. [PMID: 29655037 PMCID: PMC5999567 DOI: 10.1016/j.envres.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 05/10/2023]
Abstract
Lead (Pb) is neurotoxic and children are highly susceptible to this effect, particularly within the context of continuous low-level Pb exposure. A current major challenge is identification of children who may be uniquely susceptible to Pb toxicity because of genetic predisposition. Learning and memory are among the neurobehavioral processes that are most notably affected by Pb exposure, and modification of N-methyl-D-aspartate receptors (NMDAR) that regulate these processes during development are postulated to underlie these adverse effects of Pb. We examined the hypothesis that polymorphic variants of genes encoding glutamate receptor, ionotropic, NMDAR subunits 2A and 2B, GRIN2A and GRIN2B, exacerbate the adverse effects of Pb exposure on these processes in children. Participants were subjects who participated as children in the Casa Pia Dental Amalgam Clinical Trial and for whom baseline blood Pb concentrations and annual neurobehavioral test results over the 7 year course of the clinical trial were available. Genotyping assays were performed for variants of GRIN2A (rs727605 and rs1070503) and GRIN2B (rs7301328 and rs1806201) on biological samples acquired from 330 of the original 507 trial participants. Regression modeling strategies were employed to evaluate the association between genotype status, Pb exposure, and neurobehavioral test outcomes. Numerous significant adverse interaction effects between variants of both GRIN2A and GRIN2B, individually and in combination, and Pb exposure were observed particularly among boys, preferentially within the domains of Learning & Memory and Executive Function. In contrast, very few interaction effects were observed among similarly genotyped girls with comparable Pb exposure. These findings support observations of an essential role of GRIN2A and GRIN2B on developmental processes underlying learning and memory as well as other neurological functions in children and demonstrate, further, modification of Pb effects on these processes by specific variants of both GRIN2A and GRIN2B genes. These observations highlight the importance of genetic factors in defining susceptibility to Pb neurotoxicity and may have important public health implications for future strategies aimed at protecting children and adolescents from potential health risks associated with low-level Pb exposure.
Collapse
Affiliation(s)
- James P K Rooney
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| | - Nancy F Woods
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Michael D Martin
- Departments of Oral Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - James S Woods
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Sobolewski M, Singh G, Schneider JS, Cory-Slechta DA. Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels. Front Integr Neurosci 2018; 12:29. [PMID: 30072878 PMCID: PMC6060276 DOI: 10.3389/fnint.2018.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
While it is clear that behavioral experience modulates epigenetic profiles, it is less evident how the nature of that experience influences outcomes and whether epigenetic/genetic "biomarkers" could be extracted to classify different types of behavioral experience. To begin to address this question, male and female mice were subjected to either a Fixed Interval (FI) schedule of food reward, or a single episode of forced swim followed by restraint stress, or no explicit behavioral experience after which global expression levels of two activating (H3K9ac and H3K4me3) and two repressive (H3K9me2 and H3k27me3) post-translational histone modifications (PTHMs), were measured in hippocampus (HIPP) and frontal cortex (FC). The specific nature of the behavioral experience differentiated profiles of PTHMs in a sex- and brain region-dependent manner, with all 4 PTHMs changing in parallel in response to different behavioral experiences. These different behavioral experiences also modified the pattern of correlations of PTHMs both within and across FC and HIPP. Unexpectedly, highly robust correlations were found between global PTHM levels and behavioral performances, suggesting that global PTHMs may provide a higher-order pattern recognition function. Further efforts are needed to determine the generality of such findings and what characteristics of behavioral experience are critical for modulating PTHM responses.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
40
|
Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA. Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of Adult Stress Physiology and Epigenetic Profiles in Brain. Toxicol Sci 2018; 163:478-489. [PMID: 29481626 PMCID: PMC5974781 DOI: 10.1093/toxsci/kfy046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Developmental exposure to lead (Pb) and prenatal stress (PS) both impair cognition, which could derive from their joint targeting of the hypothalamic-pituitary-adrenal axis and the brain mesocorticolimbic (MESO) system, including frontal cortex (FC) and hippocampus (HIPP). Glucocorticoids modulate both FC and HIPP function and associated mediation of cognitive and other behavioral functions. This study sought to determine whether developmental Pb ± PS exposures altered glucocorticoid-related epigenetic profiles in brain MESO regions in offspring of female mice exposed to 0 or 100 ppm Pb acetate drinking water from 2 mos prior to breeding until weaning, with half further exposed to prenatal restraint stress from gestational day 11-18. Overall, changes in females occured in response to Pb exposure. In males, however, Pb-induced neurotoxicity was modulated by PS. Changes in serum corticosterone levels were seen in males, while glucocorticoid receptor changes were seen in both sexes. In contrast, both Pb and PS broadly impacted brain DNA methyltransferases and binding proteins, particularly DNMT1, DNMT3a and methyl-CpG-binding protein 2, with patterns that differed by sex and brain regions. Specifically, in males, effects on FC epigenetic modifiers were primarily influenced by Pb, whereas extensive changes in HIPP were produced by PS. In females, Pb exposure and not PS primarily altered epigenetic modifiers in both FC and HIPP. Collectively, these findings indicate that epigenetic mechanisms may underlie associated neurotoxicity of Pb and of PS, particularly associated cognitive deficits. However, mechanisms by which this may occur will be different in males versus females.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York,To whom correspondence should be addressed at Department of Environmental Medicine, University of Rochester School of Medicine, University of Rochester Medical Center, Box EHSC, Rochester, NY 14642. Fax: 585-256-2591; E-mail:
| | - Garima Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Beth Adams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
41
|
Sobolewski M, Conrad K, Marvin E, Allen JL, Cory-Slechta DA. Endocrine active metals, prenatal stress and enhanced neurobehavioral disruption. Horm Behav 2018; 101:36-49. [PMID: 29355495 PMCID: PMC5970043 DOI: 10.1016/j.yhbeh.2018.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 11/24/2022]
Abstract
Metals, including lead (Pb), methylmercury (MeHg) and arsenic (As), are long-known developmental neurotoxicants. More recently, environmental context has been recognized to modulate metals toxicity, including nutritional state and stress exposure. Modulation of metal toxicity by stress exposure can occur through shared targeting of endocrine systems, such as the hypothalamic-pituitary-adrenal axis (HPA). Our previous rodent research has identified that prenatal stress (PS) modulates neurotoxicity of two endocrine active metals (EAMs), Pb and MeHg, by altering HPA and CNS systems disrupting behavior. Here, we review this research and further test the hypothesis that prenatal stress modulates metals neurotoxicity by expanding to test the effect of developmental As ± PS exposure. Serum corticosterone and behavior was assessed in offspring of dams exposed to As ± PS. PS increased female offspring serum corticosterone at birth, while developmental As exposure decreased adult serum corticosterone in both sexes. As + PS induced reductions in locomotor activity in females and reduced response rates on a Fixed Interval schedule of reinforcement in males, with the latter suggesting unique learning deficits only in the combined exposure. As-exposed males showed increased time in the open arms of an elevated plus maze and decreased novel object recognition whereas females did not. These data further confirm the hypothesis that combined exposure to chemical (EAMs) and non-chemical (PS) stressors results in enhanced neurobehavioral toxicity. Given that humans are exposed to multiple environmental risk factors that alter endocrine function in development, such models are critical for risk assessment and public health protection, particularly for children.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States. marissa:
| | - Katherine Conrad
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Elena Marvin
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Joshua L Allen
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Deborah A Cory-Slechta
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| |
Collapse
|
42
|
Singh G, Singh V, Wang ZX, Voisin G, Lefebvre F, Navenot JM, Evans B, Verma M, Anderson DW, Schneider JS. Effects of developmental lead exposure on the hippocampal methylome: Influences of sex and timing and level of exposure. Toxicol Lett 2018; 290:63-72. [PMID: 29571894 DOI: 10.1016/j.toxlet.2018.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Developmental lead (Pb) exposure results in persistent cognitive/behavioral impairments as well as an elevated risk for developing a variety of diseases in later life. Environmental exposures during development can result in a variety of epigenetic changes, including alterations in DNA methylation, that can influence gene expression patterns and affect the function and development of the nervous system. The present promoter-based methylation microarray profiling study explored the extent to which developmental Pb exposure may modify the methylome of a brain region, hippocampus, known to be sensitive to the effects of Pb exposure. Male and female Long Evans rats were exposed to 0 ppm, 150 ppm, 375 ppm, or 750 ppm Pb through perinatal exposures (gestation through lactation), early postnatal exposures (birth through weaning), or long-term postnatal exposures (birth through postnatal day 55). Results showed a significant contribution of sex to the hippocampal methylome and effects of Pb exposure level, with non-linear dose response effects on methylation. Surprisingly, the developmental period of exposure contributed only a small amount of variance to the overall data and gene ontology (GO) analysis revealed the largest number of overrepresented GO terms in the groups with the lowest level of exposure. The highest number of significant differentially methylated regions was found in females exposed to Pb at the lowest exposure level. Our data reinforce the significant effect that low level Pb exposure may have on gene-specific DNA methylation patterns in brain and that this occurs in a sex-dependent manner.
Collapse
Affiliation(s)
- G Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - V Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - G Voisin
- Atelerics S.E.N.C, Montreal, QC, Canada
| | - F Lefebvre
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - J-M Navenot
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - B Evans
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Verma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
43
|
Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Front Genet 2018; 9:89. [PMID: 29662502 PMCID: PMC5890196 DOI: 10.3389/fgene.2018.00089] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Collapse
Affiliation(s)
- Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
44
|
St-Cyr S, McGowan PO. Adaptation or pathology? The role of prenatal stressor type and intensity in the developmental programing of adult phenotype. Neurotoxicol Teratol 2018; 66:113-124. [DOI: 10.1016/j.ntt.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/25/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
|
45
|
Ratnu VS, Emami MR, Bredy TW. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res 2017; 95:301-310. [PMID: 27870402 DOI: 10.1002/jnr.23886] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
There are inherent biological differences between males and females that contribute to sex differences in brain function and to many sex-specific illnesses and disorders. Traditionally, it has been thought that such differences are due largely to hormonal regulation; however, there are also genetic and epigenetic effects caused by the inheritance and unequal dosage of genes located on the X and Y chromosomes. Here we discuss the evidence in favor of a genetic and epigenetic basis for sexually dimorphic behavior, as a consequence of underlying differences in the regulation of genes that drive brain function. A better understanding of sex-specific molecular processes in the brain will provide further insight for the development of novel therapeutic approaches for the treatment of neuropsychiatric disorders characterized by sex differences. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vikram S Ratnu
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael R Emami
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Timothy W Bredy
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Department of Neurobiology and Behavior, University of California, Irvine, California
| |
Collapse
|
46
|
Montrose L, Faulk C, Francis J, Dolinoy D. Perinatal lead (Pb) exposure results in sex and tissue-dependent adult DNA methylation alterations in murine IAP transposons. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:540-550. [PMID: 28833526 PMCID: PMC5784428 DOI: 10.1002/em.22119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 05/17/2023]
Abstract
Epidemiological and animal data suggest that adult chronic disease is influenced by early-life exposure-induced changes to the epigenome. Previously, we observed that perinatal lead (Pb) exposure results in persistent murine metabolic- and activity-related effects. Using phylogenetic and DNA methylation analysis, we have also identified novel intracisternal A particle (IAP) retrotransposons exhibiting regions of variable methylation as candidate loci for environmental effects on the epigenome. Here, we now evaluate brain and kidney DNA methylation profiles of four representative IAPs in adult mice exposed to human physiologically relevant levels of Pb two weeks prior to mating through lactation. When IAPs across the genome were evaluated globally, average (sd) methylation levels were 92.84% (3.74) differing by tissue (P < 0.001), but not sex or dose. By contrast, the four individual IAPs displayed tissue-specific Pb and sex effects. Medium Pb-exposed mice had 3.86% less brain methylation at IAP 110 (P < 0.01), while high Pb-exposed mice had 2.83% less brain methylation at IAP 236 (P = 0.01) and 1.77% less at IAP 506 (P = 0.05). Individual IAP DNA methylation differed by sex for IAP 110 in the brain and kidney, IAP 236 in the kidney, and IAP 1259 in the kidney. Using Tomtom, we identified three binding motifs that matched to each of our novel IAPs impacted by Pb, one of which (HMGA2) has been linked to metabolic-related conditions in both mice and humans. Thus, these recently identified IAPs display tissue-specific environmental lability as well as sex-specific differences supporting an epigenetic link between early exposure to Pb and later-in-life health outcomes. Environ. Mol. Mutagen. 58:540-550, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- L. Montrose
- Environmental Health Sciences, University of Michigan
| | - C. Faulk
- Animal Science, University of Minnesota
| | - J. Francis
- Environmental Health Sciences, University of Michigan
| | - D.C. Dolinoy
- Environmental Health Sciences, University of Michigan
- Nutritional Sciences, University of Michigan
- Corresponding author: Dana C. Dolinoy, 1415 Washington Heights, Ann Arbor, Michigan 48109-2029, Tel: 734 647-3155,
| |
Collapse
|
47
|
Cory-Slechta DA, Sobolewski M, Varma G, Schneider JS. Developmental Lead and/or Prenatal Stress Exposures Followed by Different Types of Behavioral Experience Result in the Divergence of Brain Epigenetic Profiles in a Sex, Brain Region, and Time-Dependent Manner: Implications for Neurotoxicology. CURRENT OPINION IN TOXICOLOGY 2017; 6:60-70. [PMID: 29430559 DOI: 10.1016/j.cotox.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over a lifetime, early developmental exposures to neurocognitive risk factors, such as lead (Pb) exposures and prenatal stress (PS), will be followed by multiple varied behavioral experiences. Pb, PS and behavioral experience can each influence brain epigenetic profiles. Our recent studies show a greater level of complexity, however, as all three factors interact within each sex to generate differential adult variation in global post-translational histone modifications (PTHMs), which may result in fundamentally different consequences for life-long learning and behavioral function. We have reported that PTHM profiles differ by sex, brain region and time point of measurement following developmental exposures to Pb±PS, resulting in different profiles for each unique combination of these parameters. Imposing differing behavioral experience following developmental Pb±PS results in additional divergence of PTHM profiles, again in a sex, brain region and time-dependent manner, further increasing complexity. Such findings underscore the need to link highly localized and variable epigenetic changes along single genes to the highly-integrated brain functional connectome that is ultimately responsible for governing behavioral function. Here we advance the idea that increased understanding may be achieved through iterative reductionist and holistic approaches. Implications for experimental design of animal studies of developmental exposures to neurotoxicants include the necessity of a 'no behavioral experience' group, given that epigenetic changes in response to behavioral testing can confound effects of the neurotoxicant itself. They also suggest the potential utility of the inclusion of salient behavioral experiences as a potential effect modifier in epidemiological studies.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - G Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
48
|
Varma G, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex- and brain region- specific effects of prenatal stress and lead exposure on permissive and repressive post-translational histone modifications from embryonic development through adulthood. Neurotoxicology 2017; 62:207-217. [PMID: 28712943 PMCID: PMC5623619 DOI: 10.1016/j.neuro.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Developmental exposure to prenatal stress (PS) and lead (Pb) can affect brain development and adversely influence behavior and cognition. Epigenetic-based gene regulation is crucial for normal brain development and mis-regulation, in any form, can result in neurodevelopmental disorders. Post-translational histone modifications (PTHMs) are an integral and dynamic component of the epigenetic machinery involved in gene regulation. Exposures to Pb and/or PS may alter PTHM profiles, promoting lifelong alterations in brain function observed following Pb±PS exposure. Here we examined the effects of Pb±PS on global levels of activating marks H3K9Ac and H3K4Me3 and repressive marks H3K9Me2 and H3K27Me3 at different developmental stages: E18, PND0, PND6 and PND60. Dams were exposed to 0 or 100ppm Pb beginning 2 months prior to breeding followed by no PS (NS) or PS resulting in 4 offspring treatment groups per sex: 0-NS (control), 0-PS, 100-NS and 100-PS. Global levels of PTHMs varied from E18 through adulthood even in control mice, and were influenced by sex and brain-region. The developmental trajectory of these PTHM levels was further modified by Pb±PS in a sex-, brain region- and age-dependent manner. Females showed a preferential response to Pb alone in frontal cortex (FC) and differentially to PS alone and combined Pb+PS in hippocampus (HIPP). In males, PS-induced increases in PTHM levels in FC, whereas PS produced reductions in HIPP. Pb±PS-based changes in PTHM levels continued to be observed in adulthood (PND60), demonstrating the lasting effect of these early life environmental events on these histone marks. These results indicate that epigenetic consequences of Pb±PS and their contribution to mechanisms of toxicity are sex dependent. Additional studies will assist in understanding the functional significance of these changes in PTHM levels on expression of individual genes, functional pathways, and ultimately, their behavioral consequences.
Collapse
Affiliation(s)
- G Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY, United States
| | - D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY, United States
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
49
|
Li J, Wang H, Hao JH, Chen YH, Liu L, Yu Z, Fu L, Tao FB, Xu DX. Maternal serum lead level during pregnancy is positively correlated with risk of preterm birth in a Chinese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:484-489. [PMID: 28494400 DOI: 10.1016/j.envpol.2017.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Lead (Pb) is a well-known developmental toxicant. The aim of the present study was to analyze the association between maternal serum Pb level and risk of preterm birth in a population-based birth cohort study. The present study analyzed a sub-study of the China-Anhui Birth Cohort that recruited 3125 eligible mother-and-singleton-offspring pairs. Maternal serum Pb level was measured by graphite furnace atomic absorption spectrometry. All subjects were classified into three groups by tertile division according to serum Pb level: Low-Pb (L-Pb, <1.18 μg/dl), Medium-Pb (M-Pb, 1.18-1.70 μg/dl), and High-Pb (H-Pb, ≥1.71 μg/dl). The rate of preterm birth was 2.8% among subjects with L-Pb, 6.1% among subjects with M-Pb, and 8.1% among subjects with H-Pb, respectively. After controlling confounding factors, the adjusted OR for preterm birth was 2.33 (95%CI: 1.49, 3.65) among subjects with M-Pb and 3.09 (95%CI: 2.01, 4.76) among subjects with H-Pb. Of interest, maternal Pb exposure in early gestational stage than in middle gestational stage was more susceptible to preterm birth. Moreover, maternal serum Pb level was only associated with increased risk of late preterm birth. The present study provides evidence that maternal serum Pb level during pregnancy is positively associated with risk of preterm birth in a Chinese population.
Collapse
Affiliation(s)
- Jun Li
- Department of Toxicology, Anhui Medical University, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Jia-Hu Hao
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Lu Liu
- Department of Toxicology, Anhui Medical University, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Zhen Yu
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China
| | - Fang-Biao Tao
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, China.
| |
Collapse
|