1
|
Karakoltzidis A, Karakitsios SP, Gabriel C, Sarigiannis DΑ. Integrated PBPK Modelling for PFOA Exposure and Risk Assessment. ENVIRONMENTAL RESEARCH 2025:121947. [PMID: 40449580 DOI: 10.1016/j.envres.2025.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) pose significant public health concerns due to their environmental persistence, bioaccumulation, and ubiquitous presence in human biomonitoring (HBM) data, despite regulatory restrictions. This study establishes a deterministic pharmacokinetic model for perfluorooctanoic acid (PFOA), enabling the estimation of PFOA concentrations in major human organs, even at low doses. The model integrates accumulation and recirculation mechanisms of PFOA in hepatic and renal tissues, leveraging publicly available HBM datasets (e.g., HBM4EU, NHANES, literature) to reconstruct bodyweight-normalized intake levels. Importantly, due to the extremely low urinary excretion concentrations of PFOA, most datasets were derived from blood-based measurements, particularly serum while confirming urine as unreliable biomarker of exposure. The analysis underscores the effectiveness of regulatory efforts in reducing PFOA exposures, as evidenced by declining time-trends in estimated exposure levels in recent studies. Risk characterization ratios were calculated based on recommended limits set by the European Food Safety Authority (EFSA), the United States, and Australia. While EFSA's tolerable weekly intake (TWI) indicated a high risk, other regulatory limits suggested less concern about risk at these intake levels. These findings highlight the need for continuous re-evaluation of exposures and targeted studies to identify key determinants of PFOA exposure, informing future regulatory measures. The study emphasizes the critical role of physiologically based pharmacokinetic (PBPK) modeling, HBM data, and exposure reconstruction in advancing chemical risk assessment. These tools form a science-based framework integral to the Chemical Strategy for Sustainability (CSS), enabling accurate predictions of internal exposure levels, empirical validation of models, and robust assessments of real-world exposure scenarios. The integration of these approaches supports the CSS goals of minimizing chemical risks while promoting innovation, ultimately contributing to a sustainable and protective regulatory landscape for human health and the environment.
Collapse
Affiliation(s)
- Achilleas Karakoltzidis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece; EnvE.X, K. Palama 11, Thessaloniki, Greece; National Hellenic Research Foundation, Athens, Greece
| | - Catherine Gabriel
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece
| | - Dimosthenis Α Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki - Thermi Road, 57001, Greece; EnvE.X, K. Palama 11, Thessaloniki, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza della Vittoria 15, Pavia 27100, Italy; National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
2
|
Nazmy MM, Noor NA, Mohammed FF, Khadrawy YA, Radwan NM. Taurine protection attenuates bisphenol-A-induced behavioral, neurochemical, and histopathological alterations in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03767-4. [PMID: 39820545 DOI: 10.1007/s00210-024-03767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025]
Abstract
Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test. An open-field test was used to measure motor activity. The changes in monoamines, monoamine oxidase (MAO), acetylcholinesterase (AChE), Na+,K+,ATPase, oxidative stress, caspase-3, and histopathology were evaluated in the cortical and hippocampal tissues of all groups. Data analysis by ANOVA revealed that BPA treatment induced motor hyperactivity and short- and long-term memory impairment. In the cortex, BPA decreased serotonin (5-HT), norepinephrine (NE), MAO, Na+,K+,ATPase, and nitric oxide (NO) and increased dopamine (DA), AChE, lipid peroxidation (MDA), glutathione (GSH), and caspase-3. In the hippocampus, BPA increased 5-HT, DA, NE, MAO, AChE, MDA, NO, GSH, and caspase-3 and decreased Na+,K+,ATPase. These neurochemical changes were accompanied by significant histopathological alterations. Taurine treatment prevented memory impairment and motor hyperactivity induced by BPA. Taurine attenuated the neurochemical changes, oxidative stress, and caspase-3 level. Taurine improved the histopathological change induced by BPA. In conclusion, taurine significantly prevented BPA-induced cognitive deficits, motor coordination impairments, neurotransmitter imbalances, histopathological alterations, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Mohamed M Nazmy
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University, Badr City, Cairo, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Faten F Mohammed
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Pathology, College of Veterinary Medicine, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Yasser A Khadrawy
- Medical Physiology Department, Clinical Studies and Medical Research Institute, National Research Centre, Giza, Egypt.
| | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Huang Y, Chen W, Gan Y, Liu X, Tian Y, Zhang J, Li F. Prenatal exposure to per- and polyfluoroalkyl substances, genetic factors, and autistic traits: Evidence from the Shanghai birth cohort. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135857. [PMID: 39383700 DOI: 10.1016/j.jhazmat.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 10/11/2024]
Abstract
The epidemiological evidence regarding prenatal PFAS exposure and its interaction with genetic factors on the autistic traits risk is unclear. This study included 1610 mother-child pairs from the Shanghai Birth Cohort (SBC). Ten PFAS were quantified in blood serum collected in the first trimester. Child autistic traits were evaluated at age 4 using a Chinese version of the social responsiveness scale-short form (SRS-SF). We calculated the polygenic risk score (PRS) to evaluate the cumulative genetic effects of autism. Additive interaction models were established to explore whether genetic susceptibility modified the effects of prenatal PFAS exposure. After adjusting for confounders, we found prenatal PFOA exposure was associated with an increased risk of autistic traits in children (OR, 3.05; 95 % CI, 1.14-7.58), and the increased risk associated with PFOA was mitigated among women who reported pre-pregnancy folic acid supplementation. Additionally, an increased risk of autistic traits was observed in children with higher levels of prenatal PFHxS exposure and a high PRS (p for interaction = 0.021). Our findings suggest prenatal PFAS exposure may increase the risk of autistic traits in children, especially in those with a high genetic risk. Further research is warranted to confirm this association and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yun Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiran Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexin Gan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Liu
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research and Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Elgarahy AM, Eloffy MG, Saber AN, Abouzid M, Rashad E, Ghorab MA, El-Sherif DM, Elwakeel KZ. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and polyfluoroalkyl substances: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1209. [PMID: 39556161 DOI: 10.1007/s10661-024-13334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals, possess unique properties that have rendered them indispensable in various industries and consumer goods. However, their extensive use and persistence in the environment have raised concerns about their potential repercussions on human health and the ecosystem. This review provides insights into the sources, occurrence, transformation, impacts, fate, monitoring, and remediation strategies for PFAS. Once released into the environment, these chemicals undergo intricate transformation processes, such as degradation, bioaccumulation, and biomagnification, which result in their far-reaching distribution and persistence. Their chemical stability results in persistent pollution, with far-reaching ecological and human health implications. Remediation strategies for PFAS are still in their infancy, and researchers are exploring innovative and sustainable methods for treating contaminated environments. Promising technologies such as adsorption, biodegradation, and electrochemical oxidation have shown the potential to remove PFAS from contaminated sites, yet the search for more efficient and sustainable solutions continues. In conclusion, this review emphasizes the urgent need for continued research and innovation to address the global environmental challenge posed by PFAS. As we move forward, it is imperative to prioritize sustainable solutions that minimize the detrimental consequences of these substances on human health and the environment.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, 14071, Cordoba, Spain
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Emanne Rashad
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Environmental Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Ferdous SR, Rojas A, Frank C, Sabatini HM, Luo X, Sharma S, Thummel R, Chouinard C, Dasgupta S. Examining perfluorohexane sulfonate (PFHxS) impacts on sensorimotor and circadian rhythm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617320. [PMID: 39464027 PMCID: PMC11507664 DOI: 10.1101/2024.10.08.617320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Perfluorohexane sulfonate (PFHxS) is a ubiquitous perfluoroalkyl substance known for its environmental persistence and potential toxicity. This study investigated PFHxS's impact on zebrafish embryos, focusing on sensorimotor behavior, circadian rhythm disruption, and underlying molecular mechanisms. Under 24 hr dark incubations, PFHxS exposure induced concentration-dependent hyperactivity within larval photomotor response, characterized by the distinctive "O-bend" response, strong light-phase hyperactive movement and seizure-like movements. It appears that PFHxS-treated embryos cannot sense light cues in a normal manner. Similar hyperactivity was seen for acoustic startle response assay, suggesting that the response is not merely visual, but sensorimotor. LC-MS studies confirmed detectable uptake of PFHxS into embryos. We then conducted mRNA-sequencing across multiple time points (48 and 120 hpf) and concentrations (0.00025, 0.0025 and 25 µM). Data at the 25 µM (2-120 hpf) exposure showed disrupted pathways associated with DNA and cell cycle. Interestingly, data at 0.00025 µM - an environmentally relevant concentration- at 48 hpf showed disruption of MAPK and other signaling pathways. Immunohistochemistry of eyes showed reduced retinal stem cell proliferation, consistent with observed DNA replication pathway disruptions. To assess if these impacts were driven by circadian rhythm development, we manipulated light/dark cycles during PFHxS incubation; this manipulation altered behavioral patterns, implicating circadian rhythm modulation as a target of PFHxS. Since circadian rhythm is modulated by the pineal gland, we ablated the gland using metronidazole; this ablation partially rescued hyperactivity, indicating the gland's role in driving the phenotype. Collectively, these findings underscore proclivity of PFHxS to cause neurodevelopmental toxicity, necessitating further mechanistic exploration and environmental health assessments.
Collapse
|
7
|
Wu S, Xie J, Zhao H, Zhao X, Sánchez OF, Rochet JC, Freeman JL, Yuan C. Developmental neurotoxicity of PFOA exposure on hiPSC-derived cortical neurons. ENVIRONMENT INTERNATIONAL 2024; 190:108914. [PMID: 39079332 PMCID: PMC11406754 DOI: 10.1016/j.envint.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
PFOA is a legacy Per- and Polyfluorinated Substances (PFAS), a group of chemicals widely used in various industrial applications and consumer products. Although there has been a voluntary phase out of PFOA since 2005, it is still widely detected in various water supplies. A growing body of evidence suggests an association between PFOA exposure, particularly during developmental stages, with increased risks of neurodegenerative diseases (NDs). The neurotoxic mechanism of developmental PFOA exposure, however, remains poorly understood. Utilizing human induced-pluripotent stem cell (hiPSC)-derived cortical neurons, we investigated the effect of PFOA exposure prior to differentiation and assessed changes in neuronal characteristics, transcriptome, and neurodegeneration markers mimicking a Developmental Origin of Health and Disease (DoHAD) paradigm. Exposure to PFOA before neuron differentiation resulted in persistent alterations in nuclear morphology, neuronal network, and calcium activity. RNA sequencing analysis further revealed transcriptomic changes aligning with Alzheimer's Disease (AD) after PFOA exposure. These observations were further corroborated by alterations in tau phosphorylation markers, the presence of fibrillar tau, an increase in liquid droplets, and a decrease in RNA translational efficiency characterized using a battery of biochemical assays. Taken together, our results revealed persistent deficits of key neuronal characteristics induced by pre-differentiation PFOA exposure, suggesting impairments in several AD-related pathways that can together contribute to the elevation of AD risk after pre-differentiation PFOA exposure.
Collapse
Affiliation(s)
- Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xihui Zhao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, IN, 47907; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN, 47907
| | | | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN, 47907.
| |
Collapse
|
8
|
Adedara IA, Abioye OO, Oyedele GT, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Perfluorooctanoic acid induces behavioral impairment and oxidative injury in Nauphoeta cinerea nymphs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110340-110351. [PMID: 37783994 DOI: 10.1007/s11356-023-30156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic contaminant with potential health threats to both animals and humans. However, the impact of PFOA on insects, which play significant roles in ecosystems, is understudied. We evaluated the toxicological impact of ecologically relevant concentrations of PFOA (0, 25, 50, 100, and 200 µg L-1) on Nauphoeta cinerea nymphs following exposure for 42 consecutive days. We analyzed the behavior of the insects with automated video-tracking software and processed the head, midgut, and fat body for biochemical assays. PFOA-exposed insects exhibited significant reductions in locomotory abilities and an increase in freezing time. Furthermore, PFOA exposure reduced acetylcholinesterase activity in the insect head. PFOA exposure increased the activities of superoxide dismutase, glutathione peroxidase, and catalase in the head and midgut, but decreased them in the fat body. PFOA also significantly increased glutathione-S transferase activity, while decreasing glutathione levels in the head, midgut, and fat body. Additionally, PFOA exposure increased reactive oxygen and nitrogen species, nitric oxide, lipid peroxidation, and protein carbonyl contents in the head, midgut, and fat body of the insects. In conclusion, our findings indicate that PFOA exposure poses an ecological risk to Nauphoeta cinerea.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwatoyin O Abioye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Yao H, Fu Y, Weng X, Zeng Z, Tan Y, Wu X, Zeng H, Yang Z, Li Y, Liang H, Wu Y, Wen L, Jing C. The Association between Prenatal Per- and Polyfluoroalkyl Substances Exposure and Neurobehavioral Problems in Offspring: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031668. [PMID: 36767045 PMCID: PMC9914055 DOI: 10.3390/ijerph20031668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 05/30/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy has been suggested to be associated with neurobehavioral problems in offspring. However, current epidemiological studies on the association between prenatal PFAS exposure and neurobehavioral problems among offspring, especially attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), are inconsistent. Therefore, we aimed to study the relationship between PFAS exposure during pregnancy and ADHD and ASD in offspring based on meta-analyses. Online databases, including PubMed, EMBASE, and Web of Science, were searched comprehensively for eligible studies conducted before July 2021. Eleven studies (up to 8493 participants) were included in this analysis. The pooled results demonstrated that exposure to perfluorooctanoate (PFOA) was positively associated with ADHD in the highest quartile group. Negative associations were observed between perfluorooctane sulfonate (PFOS) and ADHD/ASD, including between perfluorononanoate (PFNA) and ASD. There were no associations found between total PFAS concentration groups and neurobehavioral problems. The trial sequential analyses showed unstable results. Our findings indicated that PFOA and PFOS exposure during pregnancy might be associated with ADHD in offspring and that prenatal PFOS and PFNA exposure might be associated with ASD in offspring. According to the limited evidence obtained for most associations, additional studies are required to validate these findings.
Collapse
Affiliation(s)
- Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingyin Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xueqiong Weng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zurui Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huixian Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhiyu Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Zhang T, Zhao S, Dong F, Jia Y, Chen X, Sun Y, Zhu L. Novel Insight into the Mechanisms of Neurotoxicity Induced by 6:6 PFPiA through Disturbing the Gut-Brain Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1028-1038. [PMID: 36594808 DOI: 10.1021/acs.est.2c04765] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are frequently detected in aquatic environments, but the neurotoxic effects and underlying mechanisms remain unclear. In this study, male zebrafish were exposed to 6:6 PFPiA (1 and 10 nM) for 28 days, which exhibited anxiety-like symptoms. Gut microbiome results indicated that 6:6 PFPiA significantly increased the abundance of Gram-negative bacteria, leading to enhanced levels of lipopolysaccharide (LPS) and inflammation in the gut. The LPS was delivered to the brain through the gut-brain axis (GBA), damaged the blood-brain barrier (BBB), stimulated neuroinflammation, and caused apoptosis as well as neural injury in the brain. This mechanism was verified by the fact that antibiotics reduced the LPS levels in the gut and brain, accompanied by reduced inflammatory responses and anxiety-like behavior. The BBB damage also resulted in the enhanced accumulation of 6:6 PFPiA in the brain, where it might bind strongly with and activate aryl hydrocarbon receptor (AhR) to induce brain inflammation directly. Additionally, as the fish received treatment with an inhibitor of AhR, the inflammation response and anxiety-like behavior decreased distinctly. This study sheds light on the new mechanisms of neurotoxicity-induced 6:6 PFPiA due to the interruption on GBA.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Sujuan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- School of Public Health, Anhui Medical University, Hefei 230032, P.R. China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
11
|
Brown-Leung JM, Cannon JR. Neurotransmission Targets of Per- and Polyfluoroalkyl Substance Neurotoxicity: Mechanisms and Potential Implications for Adverse Neurological Outcomes. Chem Res Toxicol 2022; 35:1312-1333. [PMID: 35921496 PMCID: PMC10446502 DOI: 10.1021/acs.chemrestox.2c00072] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of persistent environmental pollutants that are ubiquitously found in the environment and virtually in all living organisms, including humans. PFAS cross the blood-brain barrier and accumulate in the brain. Thus, PFAS are a likely risk for neurotoxicity. Studies that measured PFAS levels in the brains of humans, polar bears, and rats have demonstrated that some areas of the brain accumulate greater amounts of PFAS. Moreover, in humans, there is evidence that PFAS exposure is associated with attention-deficit/hyperactivity disorder (ADHD) in children and an increased cause of death from Parkinson's disease and Alzheimer's disease in elderly populations. Given possible links to neurological disease, critical analyses of possible mechanisms of neurotoxic action are necessary to advance the field. This paper critically reviews studies that investigated potential mechanistic causes for neurotoxicity including (1) a change in neurotransmitter levels, (2) dysfunction of synaptic calcium homeostasis, and (3) alteration of synaptic and neuronal protein expression and function. We found growing evidence that PFAS exposure causes neurotoxicity through the disruption of neurotransmission, particularly the dopamine and glutamate systems, which are implicated in age-related psychiatric illnesses and neurodegenerative diseases. Evaluated research has shown there are highly reproduced increased glutamate levels in the hippocampus and catecholamine levels in the hypothalamus and decreased dopamine in the whole brain after PFAS exposure. There are significant gaps in the literature relative to the assessment of the nigrostriatal system (striatum and ventral midbrain) among other regions associated with PFAS-associated neurologic dysfunction observed in humans. In conclusion, evidence suggests that PFAS may be neurotoxic and associated with chronic and age-related psychiatric illnesses and neurodegenerative diseases. Thus, it is imperative that future mechanistic studies assess the impact of PFAS and PFAS mixtures on the mechanism of neurotransmission and the consequential functional effects.
Collapse
Affiliation(s)
- Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
13
|
Crépet A, Vasseur P, Jean J, Badot PM, Nesslany F, Vernoux JP, Feidt C, Mhaouty-Kodja S. Integrating Selection and Risk Assessment of Chemical Mixtures: A Novel Approach Applied to a Breast Milk Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:35001. [PMID: 35238606 PMCID: PMC8893236 DOI: 10.1289/ehp8262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND One of the main challenges of modern risk assessment is to account for combined exposure to the multitude of various substances present in food and the environment. OBJECTIVE The present work proposes a methodological approach to perform chemical risk assessment of contaminant mixtures across regulatory silos regarding an extensive range of substances and to do so when comprehensive relevant data concerning the specific effects and modes of action of the mixture components are not available. METHODS We developed a complete step-by-step approach using statistical methods to prioritize substances involved in combined exposure, and we used a component-based approach to cumulate the risk using dose additivity. The most relevant toxicological end point and the associated reference point were selected from the literature to construct a toxicological threshold for each substance. DISCUSSION By applying the proposed method to contaminants in breast milk, we observed that among the 19 substances comprising the selected mixture, ∑DDT, ∑PCBi, and arsenic were main joint contributors to the risk of neurodevelopmental and thyroid effects for infants. In addition, ∑PCCD/F contributed to the thyroid effect and ∑aldrin-dieldrin to the neurodevelopmental effect. Our case study on contaminants in breast milk demonstrated the importance of crossing regulatory silos when studying mixtures and the importance of identifying risk drivers to regulate the risk related to environmental contamination. Applying this method to another set of data, such as human biomonitoring or in ecotoxicology, will reinforce its relevance for risk assessment. https://doi.org/10.1289/EHP8262.
Collapse
Affiliation(s)
- Amélie Crépet
- Methodology and Studies Unit, Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | - Paule Vasseur
- Université de Lorraine, Centre national de la recherche scientifique (CNRS), Laboratoire Interdisciplinaire des Environnements Continentaux, Metz, France
| | - Julien Jean
- Methodology and Studies Unit, Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | - Pierre-Marie Badot
- Chrono-Environment Department, Franche-Comté University, CNRS, Besançon, France
| | - Fabrice Nesslany
- Université de Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, EA4483-IMPacts de l’Environnement Chimique sur la Santé Humaine, Lille, France
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, Lille, France
| | - Jean-Paul Vernoux
- Université de Caen Normandie, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, EA4651, Caen, France
| | - Cyril Feidt
- Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux, Nancy, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, Institut national de la santé et de la recherche médicale, Neuroscience Paris Seine—Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
14
|
Aghaei Z, Steeves KL, Jobst KJ, Cahill LS. The impact of perfluoroalkyl substances on pregnancy, birth outcomes and offspring development: A review of data from mouse models1. Biol Reprod 2021; 106:397-407. [PMID: 34875017 DOI: 10.1093/biolre/ioab223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are persistent in the environment and bioaccumulate in wildlife and humans, potentially causing adverse health effects at all stages of life. Studies from human pregnancy have shown that exposure to these contaminants are associated with placental dysfunction and fetal growth restriction; however, studies in humans are confounded by genetic and environmental factors. Here, we synthesize the available results from mouse models of pregnancy to show the causal effects of prenatal exposure to PFOA and PFOS on placental and fetal development and on neurocognitive function and metabolic disorders in offspring. We also propose gaps in the present knowledge and provide suggestions for future research studies.
Collapse
Affiliation(s)
- Zahra Aghaei
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
15
|
Zhang Y, Zhang L, Bao J, Liu L, Wang X. Perfluorooctanoic acid exposure in early pregnancy induces oxidative stress in mice uterus and liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66355-66365. [PMID: 34331232 DOI: 10.1007/s11356-021-15453-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to explore the mechanism of perfluorooctanoic acid (PFOA) toxicity on the uterus and liver of mice during early pregnancy. Pregnant mice were given 0, 1, 5, 10, 20, and 40 mg/kg PFOA daily by gavage from gestational day (GD) 1-7 and sacrificed on GD 9. Subsequently, several toxicity parameters were evaluated, including the uterus and liver weights, liver and uterine indexes, histopathological changes of the liver and uterus, and levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in the liver. We also determined the expressions of FAS, FASL, Bax, Bcl-2, and Caspase-3 in decidual cells by immunohistochemistry and the TUNEL assay to detect apoptosis uterine cells. The results showed that PFOA increased the liver weights and reduced the uterus index in a dose-dependent manner. With increasing doses of PFOA, the levels of SOD and GSH-Px were significantly decreased, and MDA increased substantially in liver tissue. 20 mg/kg and 40 mg/kg of PFOA caused more substantial harm to the uterus, thus a higher probability for congestion and resorption. The expression of FAS, FASL, Bax, and Caspase-3 in decidual cells of the uterus in the PFOA treatment groups significantly increased in a dose-dependent manner. The expression of Bcl-2 was downregulated, decreasing the Bcl-2/Bax ratio. At gestation day 9, the control group had significantly fewer apoptotic cells in the uterus and shallower staining than the 40 mg/kg PFOA group. The findings of this study suggest that oxidative damage may be one of the mechanisms by which PFOA induces liver toxicity, and a subsequent increase in uterine cell apoptosis may cause embryo loss or damage.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Liantao Liu
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
16
|
Yu T, Zhou G, Cai Z, Liang W, Du Y, Wang W. Behavioral effects of early-life exposure to perfluorooctanoic acid might synthetically link to multiple aspects of dopaminergic neuron development and dopamine functions in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105926. [PMID: 34340000 DOI: 10.1016/j.aquatox.2021.105926] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 05/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is known as an environmental endocrine disruptor and has developmental neurotoxicity that could be associated with behavior changes in human and animal studies. Previous studies have shown that PFOA might affect the dopaminergic nervous system. However, the mode of action underlying the effects of PFOA remains poorly understood. Our study used zebrafish as an animal model to investigate the effects of early-life PFOA exposure on dopaminergic neuron development and dopamine functions in zebrafish larvae. Zebrafish fertilized eggs were exposed to different concentrations of PFOA (0, 10, 100, 1000 μg/L). After exposure to PFOA for 7 days, the locomotor activity of zebrafish was decreased; the mRNA levels of nuclear receptor subfamily 4 group a member 2b (nr4a2b), paired box 2 and 5 (pax2, pax5), tyrosine hydroxylase 1/2 (th1/th2) and dopamine transporter (dat) were increased; mRNA and protein level of mesencephalic astrocyte-derived neurotrophic factor (manf) were decreased. Neural cell proliferation in the preoptic area of hypothalamus was increased. In conclusion, dopaminergic neuron development might be one of the targets of early-life PFOA exposure. The neurobehavior changes induced by PFOA exposure might link to multiple aspects of dopaminergic neuron development and dopamine functions in zebrafish larvae.
Collapse
Affiliation(s)
- Tingting Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
17
|
Souders CL, Sanchez CL, Malphurs W, Aristizabal-Henao JJ, Bowden JA, Martyniuk CJ. Metabolic profiling in human SH-SY5Y neuronal cells exposed to perfluorooctanoic acid (PFOA). Neurotoxicology 2021; 85:160-172. [PMID: 34029635 DOI: 10.1016/j.neuro.2021.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an abundant per- and polyfluoroalkyl substance (PFAS) detected in both indoor and outdoor environments. While studies suggest exposure concerns for humans, studies investigating PFOA-induced neurotoxicity are lacking. To address this gap, we exposed differentiated human SH-SY5Y cells to PFOA (0.1 μM up to 500 μM) at different time points (4, 24, 48, and 72 h) and measured cell viability, Casp3/7 activity, ATP levels, ATP synthase enzyme activity, mitochondrial membrane potential, reactive oxygen species (ROS), oxygen consumption rates for mitochondrial stress test (XFe24 Flux analyzer), glucose utilization, and global metabolome profiles to assess the potential for PFOA-induced neurotoxicity. Treatment with 10 or 100 μM PFOA did not compromise cell viability nor induce cytotoxicity to SH-SY5Y cells over a 48-hour exposure period. However, >250 μM PFOA compromised cell viability, induced cytotoxicity, and induced caspase 3/7 activity at 48 h. ATP levels were reduced in cells treated with 400 μM PFOA for 24 and 48 h, and with 100 μM PFOA and higher at 72 h. ATP synthase activity was inhibited by 250 μM PFOA but was unchanged by PFOA treatment at 200 μM or less. Conversely, mitochondrial membrane potential was reduced by >10 μM PFOA after 24 h. Total ROS was increased with 100 μM PFOA and higher after 4 h of exposure. Several mitochondria-related endpoints (basal respiration, ATP production, maximum respiration) were negatively affected at 250 μM PFOA at both 24- and 48-hour exposure, but were unaltered at concentrations of 100 μM PFOA or less. One exception was mitochondrial spare capacity, which was reduced by 100 μM PFOA after 24-hour exposure. Similarly, glycolysis, glycolytic capacity, and glycolytic reserve of SH-SY5Y cells were not altered by 10 nor 100 μM PFOA. Nontargeted metabolomics was conducted in cells treated with either 10 or 100 μM PFOA for 48 h, as these two concentrations were not cytotoxic and 28 metabolites differed among treatments. Notable was that 10 μM PFOA had little effect on the SH-SY5Y metabolome, and the metabolic profile was not statistically different from media nor solvent controls. On the other hand, 100 μM PFOA shifted the metabolic signature of the neuronal cells, leading to reduced abundance of ATP-related metabolites (adenine, nicotinamide), neurotransmitter precursors (DL-tryptophan, l-tyrosine), and metabolites that protect mitochondria during oxidative stress (betaine, orotic acid, and l-acetyl carnitine). We hypothesize that this metabolic signature may be associated with the reduced mitochondrial membrane potential observed at lower PFOA concentrations. Metabolic shifts appear to precede compromised cell viability, cytotoxicity, and apoptosis. This study generates mechanistic knowledge regarding PFOA-induced neurotoxicity, focusing on mitochondrial oxidative respiration and the neuronal metabolome.
Collapse
Affiliation(s)
- Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christina L Sanchez
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Wendi Malphurs
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Juan J Aristizabal-Henao
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
18
|
Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:606-630. [PMID: 33017053 PMCID: PMC7906952 DOI: 10.1002/etc.4890] [Citation(s) in RCA: 964] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Reports of environmental and human health impacts of per- and polyfluoroalkyl substances (PFAS) have greatly increased in the peer-reviewed literature. The goals of the present review are to assess the state of the science regarding toxicological effects of PFAS and to develop strategies for advancing knowledge on the health effects of this large family of chemicals. Currently, much of the toxicity data available for PFAS are for a handful of chemicals, primarily legacy PFAS such as perfluorooctanoic acid and perfluorooctane sulfonate. Epidemiological studies have revealed associations between exposure to specific PFAS and a variety of health effects, including altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. Concordance with experimental animal data exists for many of these effects. However, information on modes of action and adverse outcome pathways must be expanded, and profound differences in PFAS toxicokinetic properties must be considered in understanding differences in responses between the sexes and among species and life stages. With many health effects noted for a relatively few example compounds and hundreds of other PFAS in commerce lacking toxicity data, more contemporary and high-throughput approaches such as read-across, molecular dynamics, and protein modeling are proposed to accelerate the development of toxicity information on emerging and legacy PFAS, individually and as mixtures. In addition, an appropriate degree of precaution, given what is already known from the PFAS examples noted, may be needed to protect human health. Environ Toxicol Chem 2021;40:606-630. © 2020 SETAC.
Collapse
Affiliation(s)
- Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Alan Boobis
- Imperial College London, London, United Kingdom
| | - Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Christopher Lau
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carla Ng
- Departments of Civil and Environmental Engineering and Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James S. Smith
- Navy and Marine Corps Public Health Center, Portsmouth, Virginia, USA
| | - Stephen M. Roberts
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Zhang J, Shao X, Zhao B, Zhai L, Liu N, Gong F, Ma X, Pan X, Zhao B, Yuan Z, Zhang X. Neurotoxicity of perfluorooctanoic acid and post-exposure recovery due to blueberry anthocyanins in the planarians Dugesia japonica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114471. [PMID: 32268227 DOI: 10.1016/j.envpol.2020.114471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widely used synthetic industrial chemical which accumulates in ecosystems and organisms. Our study have investigated the neurobehavioral effects of PFOA and the alleviation effects of PFOA-induced neurotoxicity by blueberry anthocyanins (ANT) in Dugesia japonica. The planarians were exposed to PFOA and ANT for ten days. Researchs showed that exposure to PFOA affected locomotor behavior and ANT significantly alleviated the reduction in locomotion induced by PFOA. The regeneration of eyespots and auricles was suppressed by PFOA and was promoted by ANT. Following exposure to PFOA, acetylcholinesterase activity continually decreased and was unaffected in the ANT group, but was elevated after combined administration of PFOA and ANT. Oxidative DNA damage was found in planarians exposed to PFOA and was attenuated after administration of ANT by the alkaline comet assay. Concentrations of three neurotransmitters increased following exposure to PFOA and decreased after administration of ANT. Furthermore, ANT promoted and PFOA inhibited neuronal regeneration. DjotxA, DjotxB, DjFoxG, DjFoxD and Djnlg associated with neural processes were up-regulated following exposure to PFOA. Our findings indicate that PFOA is a neurotoxicant while ANT can attenuate these detrimental effects.
Collapse
Affiliation(s)
- Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xinxin Shao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Baoying Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Liming Zhai
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Na Liu
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Fangbin Gong
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xue Ma
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiaolu Pan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, 255000, China.
| |
Collapse
|
20
|
Per- and Polyfluoroalkyl Substances (PFAS) Neurotoxicity in Sentinel and Non-Traditional Laboratory Model Systems: Potential Utility in Predicting Adverse Outcomes in Human Health. TOXICS 2020; 8:toxics8020042. [PMID: 32549216 PMCID: PMC7355795 DOI: 10.3390/toxics8020042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals that were widely used in manufacturing and are now present in the environment throughout the world. It is known that various PFAS are quantifiable in human in blood, but potential adverse health outcomes remain unclear. Sentinel and non-traditional model species are useful to study potential toxicity of PFAS in order to understand the relationship between environmental and human health. Here, we present a critical review of studies on the neurotoxicity of PFAS in sentinel and non-traditional laboratory model systems, including Caenorhabditis elegans (nematode), Dugesia japonica (planarian), Rana pipiens (frogs), Danio rerio and Oryzias melastigma (fish), and Ursus maritimus (polar bears). PFAS have been implicated in developmental neurotoxicity in non-traditional and traditional model systems as well as sentinel species, including effects on neurotransmitter levels, especially acetylcholine and its metabolism. However, further research on the mechanisms of toxicity needs to be conducted to determine if these chemicals are affecting organisms in a similar manner. Overall, findings tend to be similar among the various species, but bioaccumulation may vary, which needs to be taken into account in future studies by quantifying target organ concentrations of PFAS to better compare different species. Furthermore, data on the majority of PFAS is lacking in neurotoxicity testing, and additional studies are needed to corroborate findings thus far.
Collapse
|
21
|
Gaballah S, Swank A, Sobus JR, Howey XM, Schmid J, Catron T, McCord J, Hines E, Strynar M, Tal T. Evaluation of Developmental Toxicity, Developmental Neurotoxicity, and Tissue Dose in Zebrafish Exposed to GenX and Other PFAS. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47005. [PMID: 32271623 PMCID: PMC7228129 DOI: 10.1289/ehp5843] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a diverse class of industrial chemicals with widespread environmental occurrence. Exposure to long-chain PFAS is associated with developmental toxicity, prompting their replacement with short-chain and fluoroether compounds. There is growing public concern over the safety of replacement PFAS. OBJECTIVE We aimed to group PFAS based on shared toxicity phenotypes. METHODS Zebrafish were developmentally exposed to 4,8-dioxa-3H-perfluorononanoate (ADONA), perfluoro-2-propoxypropanoic acid (GenX Free Acid), perfluoro-3,6-dioxa-4-methyl-7-octene-1-sulfonic acid (PFESA1), perfluorohexanesulfonic acid (PFHxS), perfluorohexanoic acid (PFHxA), perfluoro-n-octanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), or 0.4% dimethyl sulfoxide (DMSO) daily from 0-5 d post fertilization (dpf). At 6 dpf, developmental toxicity and developmental neurotoxicity assays were performed, and targeted analytical chemistry was used to measure media and tissue doses. To test whether aliphatic sulfonic acid PFAS cause the same toxicity phenotypes, perfluorobutanesulfonic acid (PFBS; 4-carbon), perfluoropentanesulfonic acid (PFPeS; 5-carbon), PFHxS (6-carbon), perfluoroheptanesulfonic acid (PFHpS; 7-carbon), and PFOS (8-carbon) were evaluated. RESULTS PFHxS or PFOS exposure caused failed swim bladder inflation, abnormal ventroflexion of the tail, and hyperactivity at nonteratogenic concentrations. Exposure to PFHxA resulted in a unique hyperactivity signature. ADONA, PFESA1, or PFOA exposure resulted in detectable levels of parent compound in larval tissue but yielded negative toxicity results. GenX was unstable in DMSO, but stable and negative for toxicity when diluted in deionized water. Exposure to PFPeS, PFHxS, PFHpS, or PFOS resulted in a shared toxicity phenotype characterized by body axis and swim bladder defects and hyperactivity. CONCLUSIONS All emerging fluoroether PFAS tested were negative for evaluated outcomes. Two unique toxicity signatures were identified arising from structurally dissimilar PFAS. Among sulfonic acid aliphatic PFAS, chemical potencies were correlated with increasing carbon chain length for developmental neurotoxicity, but not developmental toxicity. This study identified relationships between chemical structures and in vivo phenotypes that may arise from shared mechanisms of PFAS toxicity. These data suggest that developmental neurotoxicity is an important end point to consider for this class of widely occurring environmental chemicals. https://doi.org/10.1289/EHP5843.
Collapse
Affiliation(s)
- Shaza Gaballah
- Oak Ridge Institute for Science and Education, Integrated Systems Toxicology Division (ISTD), National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Adam Swank
- Research Cores Unit, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Jon R. Sobus
- Exposure Methods and Measurement Division, National Exposure Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Xia Meng Howey
- Oak Ridge Institute for Science and Education, Integrated Systems Toxicology Division (ISTD), National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Judith Schmid
- Toxicology Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tara Catron
- Oak Ridge Institute for Science and Education, Integrated Systems Toxicology Division (ISTD), National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - James McCord
- Exposure Methods and Measurement Division, National Exposure Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Erin Hines
- National Center for Environmental Assessment, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mark Strynar
- Exposure Methods and Measurement Division, National Exposure Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tamara Tal
- ISTD, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| |
Collapse
|
22
|
Tukker AM, Bouwman LMS, van Kleef RGDM, Hendriks HS, Legler J, Westerink RHS. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α 1β 2γ 2L GABA A receptor and spontaneous neuronal network function in vitro. Sci Rep 2020; 10:5311. [PMID: 32210279 PMCID: PMC7093421 DOI: 10.1038/s41598-020-62152-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 11/28/2022] Open
Abstract
Concerns about the neurotoxic potential of polyfluoroalkyl substances (PFAS) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) increase, although their neurotoxic mechanisms of action remain debated. Considering the importance of the GABAA receptor in neuronal function, we investigated acute effects of PFAS on this receptor and on spontaneous neuronal network activity. PFOS (Lowest Observed Effect Concentration (LOEC) 0.1 µM) and PFOA (LOEC 1 µM) inhibited the GABA-evoked current and acted as non-competitive human GABAA receptor antagonists. Network activity of rat primary cortical cultures increased following exposure to PFOS (LOEC 100 µM). However, exposure of networks of human induced pluripotent stem cell (hiPSC)-derived neurons decreased neuronal activity. The higher sensitivity of the α1β2γ2L GABAA receptor for PFAS as compared to neuronal networks suggests that PFAS have additional mechanisms of action, or that compensatory mechanisms are at play. Differences between rodent and hiPSC-derived neuronal networks highlight the importance of proper model composition. LOECs for PFAS on GABAA receptor and neuronal activity reported here are within or below the range found in blood levels of occupationally exposed humans. For PFOS, LOECs are even within the range found in human serum and plasma of the general population, suggesting a clear neurotoxic risk.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Lianne M S Bouwman
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Hester S Hendriks
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Juliette Legler
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508, TD, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Morphological evidence of neurotoxic effects in chicken embryos after exposure to perfluorooctanoic acid (PFOA) and inorganic cadmium. Toxicology 2019; 427:152286. [DOI: 10.1016/j.tox.2019.152286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
24
|
Lv D, Gu Y, Guo M, Hou P, Li Y, Wu R. Perfluorooctanoic acid exposure induces apoptosis in SMMC-7721 hepatocellular cancer cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:509-514. [PMID: 30703684 DOI: 10.1016/j.envpol.2019.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
To better understand the toxicological activities of perfluorooctanoic acid (PFOA), we examined the effects of PFOA on apoptosis and its molecular mechanism in SMMC-7721 hepatoma cells. Cell viability was evaluated by MTT assay and apoptosis was determined by flow cytometry. Western blot and quantitative real-time PCR were used to examine the protein and gene expressions of Bax and Bcl-2. Our results showed that PFOA inhibited SMMC-7721 cell growth and induced apoptosis. PFOA treatment increased Bax expression and increased Bcl-2 expression at both gene and protein levels. Our study demonstrated that PFOA had toxic effects on SMMC-7721 cells, such as inhibiting cell proliferation and inducing apoptosis. Furthermore, we showed that PFOA-mediated induction of apoptosis involved inducing Bax and decreasing Bcl-2 expression as a molecular mechanism of its toxicological effects.
Collapse
Affiliation(s)
- Da Lv
- School of Forestry and Bio-technology, Zhejiang Agricultural & Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Yi Gu
- School of Forestry and Bio-technology, Zhejiang Agricultural & Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Ming Guo
- School of Forestry and Bio-technology, Zhejiang Agricultural & Forestry University, Hangzhou, Zhejiang, 311300, China; School of Science, Zhejiang Agricultural & Forestry University, Hangzhou, Zhejiang, 311300, China.
| | - Ping Hou
- School of Forestry and Bio-technology, Zhejiang Agricultural & Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Yan Li
- School of Forestry and Bio-technology, Zhejiang Agricultural & Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Ronghui Wu
- School of Science, Zhejiang Agricultural & Forestry University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
25
|
Xu B, Ahmed MB, Zhou JL, Altaee A, Xu G, Wu M. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:546-559. [PMID: 29579666 DOI: 10.1016/j.scitotenv.2018.03.206] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has drawn great attention recently because of its visible light response, suitable energy band gap, good redox ability, and metal-free nature. g-C3N4 can absorb visible light directly, therefore has better photocatalytic ability under solar irradiation and is more energy-efficient than TiO2. However, pure g-C3N4 still has the drawbacks of insufficient light absorption, small surface area and fast recombination of photogenerated electron and hole pairs. This review summarizes the recent progress in the development of g-C3N4 nanocomposites to photodegrade organic contaminants in water. Element doping especially by potassium has been reported to be an efficient method to promote the degradation efficacy. In addition, compound doping improves photodegradation performance of g-C3N4, especially Ag3PO4-g-C3N4 which can completely degrade 10mgL-1 of methyl orange under visible light irradiation in 5min, with the rate constant (k) as high as 0.236min-1. Moreover, co-doping enhances the photodegradation rate of multiple contaminants while immobilization significantly improves catalyst stability. Most of g-C3N4 composites possess high reusability enabling their practical applications in wastewater treatment. Furthermore, environmental conditions such as solution pH, reaction temperature, dissolved oxygen, and dissolved organic matter all have important effects on the photocatalytic ability of g-C3N4 photocatalyst. Future work should focus on the synthesis of innovative g-C3N4 nanocomposites for the efficient removal of organic contaminants in water and wastewater.
Collapse
Affiliation(s)
- Bentuo Xu
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Mohammad Boshir Ahmed
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|