1
|
Holliman AG, Mackay L, Biancardi VC, Tao YX, Foradori CD. Atrazine's effects on mammalian physiology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-40. [PMID: 40016167 DOI: 10.1080/10937404.2025.2468212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Atrazine is a chlorotriazine herbicide that is one of the most widely used herbicides in the USA and the world. For over 60 years atrazine has been used on major crops including corn, sorghum, and sugarcane to control broadleaf and grassy weed emergence and growth. Atrazine has exerted a major economic and environmental impact over that time, resulting in reduced production costs and increased conservation tillage practices. However, widespread use and a long half-life led to a high prevalence of atrazine in the environment. Indeed, atrazine is the most frequent herbicide contaminant detected in water sources in the USA. Due to its almost ubiquitous presence and questions regarding its safety, atrazine has been well-studied. First reported to affect reproduction with potential disruptive effects which were later linked to the immune system, cancer, stress response, neurological disorders, and cardiovascular ailments in experimental models. Atrazine impact on multiple interwoven systems broadens the significance of atrazine exposure. The endeavor to uncover the mechanisms underlying atrazine-induced dysfunction in mammals is ongoing, with new genetic and pharmacological targets being reported. This review aims to summarize the prominent effects of atrazine on mammalian physiology, primarily focusing on empirical studies conducted in lab animal models and establish correlations with epidemiological human studies when relevant. In addition, current common patterns of toxicity and potential underlying mechanisms of atrazine action will be examined.
Collapse
Affiliation(s)
- Anna G Holliman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Acevedo-Huergo T, Sánchez-Yépez J, Mendoza-Trejo MS, Hernández-Plata I, Giordano M, Rodríguez VM. Hypoactivity and neurochemical alterations in the basal ganglia of female Sprague-Dawley rats after repeated exposure to atrazine. FRONTIERS IN TOXICOLOGY 2024; 6:1416708. [PMID: 39161789 PMCID: PMC11330890 DOI: 10.3389/ftox.2024.1416708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
The herbicide atrazine (ATR) has been one of the most widely used herbicides worldwide. However, due to its indiscriminate use, it has been considered an environmental contaminant. Several studies have classified ATR as an endocrine disruptor, and it has been found to have neurotoxic effects on behavior, along with alterations in the dopaminergic, GABAergic, and glutamatergic systems in the basal ganglia of male rodents. These findings suggest that these neurotransmitter systems are targets of this herbicide. However, there are no studies evaluating the neurotoxicity of ATR in female rodents. Our study aimed to assess the effects of repeated IP injections of 100 mg ATR/kg or a vehicle every other day for 2 weeks (six injections) on the locomotor activity, content of monoamines, GABA, glutamate, and glutamine in the striatum, nucleus accumbens, ventral midbrain, and prefrontal cortex, and tyrosine hydroxylase (TH) protein levels in striatum and nucleus accumbens of female rats. Repeated 100 mg ATR/kg injections immediately decreased all the locomotor activity parameters evaluated, and such hypoactivity persisted for at least 48 h after the last ATR administration. The ATR administration increased dopamine and DOPAC content in the nucleus accumbens and the dopamine and DOPAC and serotonin and 5-HIAA content in the ventral midbrain. In contrast, the TH protein levels in the striatum and nucleus accumbens were similar between groups. Meanwhile, GABA, glutamine, and glutamate levels remained unaltered in all brain regions evaluated. The observed behavioral alterations could be associated with the monoamine changes presented by the rats. These data reveal that the nucleus accumbens and ventral midbrain are susceptible to repeated ATR exposure in female rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Verónica Mireya Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
3
|
Sánchez-Yépez J, Acevedo-Huergo T, Mendoza-Trejo MS, Corona R, Hernández-Plata I, Viñuela-Berni V, Giordano M, Rodríguez VM. Early and transitory hypoactivity and olfactory alterations after chronic atrazine exposure in female Sprague-Dawley rats. Neurotoxicology 2024; 101:68-81. [PMID: 38340903 DOI: 10.1016/j.neuro.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Several studies have shown that chronic exposure to the herbicide atrazine (ATR) causes alterations in locomotor activity and markers of the dopaminergic systems of male rats. However, few studies have evaluated the sex-dependent effects of atrazine exposure. The aim of the present study was to evaluate whether chronic ATR exposure causes alterations in behavioral performance and dopaminergic systems of female rats. At weaning, two groups of rats were exposed to 1 or 10 mg ATR/kg body weight daily thorough the food, while the control group received food without ATR for 14 months. Spontaneous locomotor activity was evaluated monthly for 12 months, while anxiety, egocentric and spatial memory, motor coordination, and olfactory function tasks were evaluated between 13 and 14 months of ATR exposure. Tyrosine hydroxylase (TH) and monoamine content in brain tissue were assessed at the end of ATR treatment. Female rats treated with 1 or 10 mg ATR showed vertical hypoactivity compared to the control group only in the first month of ATR exposure. Impairments in olfactory functions were found due to ATR exposure. Nevertheless, no alterations in anxiety, spatial and egocentric memory, or motor coordination tasks were observed, while the levels of TH and dopamine and its metabolites in brain tissue were similar among groups. These results suggest that female rats could present greater sensitivity to the neurotoxic effects of ATR on spontaneous locomotor activity in the early stages of development. However, they are unaffected by chronic ATR exposure later in life compared to male rats. More studies are necessary to unravel the sex-related differences observed after chronic ATR exposure.
Collapse
Affiliation(s)
- Jonathan Sánchez-Yépez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Triana Acevedo-Huergo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maria Soledad Mendoza-Trejo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Rebeca Corona
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isela Hernández-Plata
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica Viñuela-Berni
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Verónica M Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
4
|
Qi L, Yang J, Li J. Exploring the potential mechanism of atrazine-induced dopaminergic neurotoxicity based on integration strategy. Environ Health Prev Med 2024; 29:46. [PMID: 39231689 PMCID: PMC11391274 DOI: 10.1265/ehpm.24-00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Atrazine (ATR), a commonly used herbicide, is linked to dopaminergic neurotoxicity, which may cause symptoms resembling Parkinson's disease (PD). This study aims to reveal the molecular regulatory networks responsible for ATR exposure and its effects on dopaminergic neurotoxicity based on an integration strategy. METHODS Our approach involved network toxicology, construction of protein-protein interaction (PPI) networks, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as molecular docking techniques. Subsequently, we validated the predicted results in PC12 cells in vitro. RESULTS An integrated analysis strategy indicating that 5 hub targets, including mitogen-activated protein kinase 3 (Mapk3), catalase (Cat), heme oxygenase 1 (Hmox1), tumor protein p53 (Tp53), and prostaglandin-endoperoxide synthase 2 (Ptgs2), may play a crucial role in ATR-induced dopaminergic injury. Molecular docking indicated that the 5 hub targets exhibited certain binding activity with ATR. Cell counting kit-8 (CCK8) results illustrated a dose-response relationship in PC12 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) displayed notable changes in the expression of hub targets mRNA levels, with the exception of Mapk3. Western blotting results suggested that ATR treatment in PC12 cells resulted in an upregulation of the Cat, Hmox1, and p-Mapk3 protein expression levels while causing a downregulation in Tp53, Ptgs2, and Mapk3. CONCLUSION Our findings indicated that 5 hub targets identified could play a vital role in ATR-induced dopaminergic neurotoxicity in PC12 cells. These results provide preliminary support for further investigation into the molecular mechanism of ATR-induced toxicity.
Collapse
Affiliation(s)
- Ling Qi
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| | - Jingran Yang
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| | - Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University
| |
Collapse
|
5
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
6
|
Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. Atrazine Toxicity: The Possible Role of Natural Products for Effective Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2278. [PMID: 37375903 DOI: 10.3390/plants12122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
There are various herbicides which were used in the agriculture industry. Atrazine (ATZ) is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic effects of ATZ on different systems of the body but, unfortunately, majority of these scientific reports were documented in animals. The herbicide was reported to enter the body through various routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproductive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body. Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We embarked on the present review to discuss the mechanism of action of ATZ toxicity for which there is no specific antidote or drug. Evidence-based published literature on the effective use of natural products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium, Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the absence of any particular allopathic drug, the present review may open the doors for future drug design involving the natural products and their active compounds.
Collapse
Affiliation(s)
- Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Sara Al-Qasmi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Raju Sugavasi
- Department of Anatomy, Fathima Institute of Medical Sciences, Kadapa 516003, India
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
7
|
Reyes-Bravo DY, Villalobos-Aguilera P, Almonte-Zepeda JT, Mendoza-Trejo MS, Giordano M, Orozco A, Rodríguez VM. Chronic atrazine exposure increases the expression of genes associated with GABAergic and glutamatergic systems in the brain of male albino rat. FRONTIERS IN TOXICOLOGY 2022; 4:933300. [PMID: 36071823 PMCID: PMC9441881 DOI: 10.3389/ftox.2022.933300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
The herbicide atrazine (ATR; 2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is widely used to destroy grasses and broadleaf weeds in crops and some fruits. Studies in rodents have shown that acute, repeated or chronic exposure to ATR is associated with alterations in the nigrostriatal dopaminergic pathway, whereas its effects on GABAergic and glutamatergic pathways have only recently been reported. Sprague-Dawley male rats were exposed daily to 1 or 10 mg ATR/kg of BW for 13 months to evaluate the ATR effects on GABAergic and glutamatergic systems. At the end of the ATR treatment, the levels of mRNA of several genes involved in the production, vesiculation, reuptake, and receptors of GABA and Glu in the striatum (STR), nucleus accumbens (NAcc), prefrontal cortex (PFC), ventral midbrain (vMID) and hippocampus (HIPP) were evaluated by absolute qPCR. For the GABAergic genes, increased expression of GAD67 and Slc32a1 in STR and/or vMID in rats exposed to 1 and/or 10 mg ATR were detected. With regard to the expression of genes involved in the glutamatergic system, Slc17a6 and Grin1 in HIPP of rats exposed to 1 and/or 10 mg ATR, increased as was Gria1 in STR and PFC in the group exposed to 1 mg ATR. In the same fashion, Slc1a3 expression and MGLUR1 increased in STR of rats exposed to 1 and 10 mg ATR groups. The expression of the glutaminases gls (variants 1 and 2) was greater in STR, NAcc, HIPP, and PFC of rats exposed to 1 and/or 10 mg ATR. These findings show that the GABAergic and, especially glutamatergic systems are targets of ATR exposure.
Collapse
Affiliation(s)
- D. Y. Reyes-Bravo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - P. Villalobos-Aguilera
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - J. T. Almonte-Zepeda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - M. S. Mendoza-Trejo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - M. Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - A. Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - V. M. Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
- *Correspondence: V. M. Rodríguez,
| |
Collapse
|
8
|
Ahmed YH, AbuBakr HO, Ahmad IM, Ahmed ZSO. Histopathological, Immunohistochemical, And Molecular Alterations In Brain Tissue And Submandibular Salivary Gland Of Atrazine-Induced Toxicity In Male Rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30697-30711. [PMID: 34994930 DOI: 10.1007/s11356-021-18399-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is herbicide that has been widely used for different crops. This extensive use has resulted in severe deleterious effects in different species. In this work, we investigated the potentially harmful effect of atrazine herbicide on the brain and submandibular salivary gland. Our investigation was carried out on 20 adult male albino rats that were equally divided into two groups. The first group received distilled water as control, while the second group received ATZ at 200 mg/kg body weight/ day via stomach gavage for 30 successive days of the experiment; the oral LD50 for ATZ is 3090 mg/kg. Our findings revealed the ability of ATZ to cause damage to the cerebrum, hippocampus, and submandibular salivary gland. This damage resulted from the induced oxidative stress, which was indicated by a significant elevation in malondialdehyde (MDA) concentration, DNA fragmentation, tumor necrotic factor-alpha (TNF-α) expression, with a significant decrease in reduced glutathione (GSH) level and reduction of B cell lymphoma 2 (BCL2), dopamine receptor D1 (Drd1), cAMP-responsive element-binding protein 1 (Creb1) genes expression after ATZ exposure. Moreover, degeneration of cells, cytoplasmic vacuolation, congestion of blood vessels, a strong immune reaction to caspase 3, and negligible immune expression of a glial fibrillary acidic protein (GFAP) were also noticed in the ATZ-treated group. We concluded that ATZ induces oxidative stress and has a toxic and apoptotic effects on the cerebrum, hippocampus, and salivary gland of adult male albino rats.
Collapse
Affiliation(s)
- Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ismail M Ahmad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Zainab Sabry Othman Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
- King Salman International University, Ras Sudr, South Sinai, Egypt.
| |
Collapse
|
9
|
Ma K, Wu HY, Wang SY, Li BX. The Keap1/Nrf2-ARE signaling pathway is involved in atrazine induced dopaminergic neurons degeneration via microglia activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112862. [PMID: 34624533 DOI: 10.1016/j.ecoenv.2021.112862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the mechanisms of ATR-induced dopaminergic toxicity by microglia activation and the response of the Keap1/ Nrf2- ARE signaling pathway. METHODS Wistar rats were treated with 50, 100 and 200 mg/kg ATR and BV-2 microglia cells were treated with 50, 100 μM ATR or 100 ng/mL LPS, respectively. Rats behavioral responses and histopathological changes were monitored. Immunohistochemical and immunofluorescence analysis detected Iba-1 and TH+ cells in rats. Keap1/Nrf2-ARE signaling-related proteins and inflammatory factors from BV-2 cells and rats were detected using ELISA, Western blot and Real-time PCR. RESULTS After ATR treatment, the grip strength of Wistar rats was significantly decreased, and anxiety were clearly observed. TH+ neurons were reduced, however, the number of microglia cells and Iba-1 levels were increased clearly in SN. The release of ROS, TNF-α and IL-Iβ were increased, and levels of SOD and GSH-Px were significantly decreased. Keap1 mRNA expression and protein levels were decreased, while nuclear Nrf2 mRNA expression and protein levels were both increased in vivo and in vitro. CONCLUSION ATR could significantly activate microglia and exacerbate neurotoxicity and neuroinflammation, leading to accelerate dopaminergic neuron cell death by inhibiting Keap1/Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Kun Ma
- Department of Hygienic Toxicology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| | - Hao-Yu Wu
- Department of Environmental Health, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| | - Bai-Xiang Li
- Department of Hygienic Toxicology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| |
Collapse
|
10
|
Reyes-Ortega P, Soria-Ortiz MB, Rodríguez VM, Vázquez-Martínez EO, Díaz-Muñoz M, Reyes-Haro D. Anorexia disrupts glutamate-glutamine homeostasis associated with astroglia in the prefrontal cortex of young female rats. Behav Brain Res 2021; 420:113715. [PMID: 34906609 DOI: 10.1016/j.bbr.2021.113715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by self-starvation and excessive weight loss with a notorious prevalence in young women. The neurobiology of AN is unknown but murine models, like dehydration induced anorexia (DIA), reproduce weight loss and avoidance of food despite its availability. Astrocytes are known to provide homeostatic support to neurons, but it is little explored if anorexia affects this function. In this study, we tested if DIA disrupts glutamate-glutamine homeostasis associated with astrocytes in the prefrontal cortex (PFC) of young female rats. Our results showed that anorexia reduced the redox state, as well as endogenous glutamate and glutamine. These effects correlated with a reduced expression of the glutamate transporters (GLT-1 and GLAST) and glutamine synthetase, all of them are preferentially expressed by astrocytes. Accordingly, the expression of GFAP was reduced. Anorexia reduced the astrocyte density, promoted a de-ramified morphology, and augmented the de-ramified/ramified astrocyte ratio in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC), but not in the motor cortex (M2). The increase of a de-ramified phenotype correlated with increased expression of vimentin and nestin. Based on these results, we conclude that anorexia disrupts glutamate-glutamine homeostasis and the redox state associated with astrocyte dysfunction.
Collapse
Affiliation(s)
- Pamela Reyes-Ortega
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - María Berenice Soria-Ortiz
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Verónica M Rodríguez
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Eva Olivia Vázquez-Martínez
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Mauricio Díaz-Muñoz
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Daniel Reyes-Haro
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico.
| |
Collapse
|
11
|
Stradtman SC, Freeman JL. Mechanisms of Neurotoxicity Associated with Exposure to the Herbicide Atrazine. TOXICS 2021; 9:207. [PMID: 34564358 PMCID: PMC8473009 DOI: 10.3390/toxics9090207] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Atrazine is an herbicide commonly used on crops to prevent broadleaf weeds. Atrazine is an endocrine-disrupting chemical mainly targeting the neuroendocrine system and associated axes, especially as a reproductive toxicant through attenuation of the luteinizing hormone (LH). Current regulatory levels for chronic exposure are based on no observed adverse effect levels (NOAELs) of these LH alterations in rodent studies. Atrazine has also been studied for its effects on the central nervous system and neurotransmission. The European Union (EU) recognized the health risks of atrazine exposure as a public health concern with no way to contain contamination of drinking water. As such, the EU banned atrazine use in 2003. The United States recently reapproved atrazine's use in the fall of 2020. Research has shown that there is a wide array of adverse health effects that are seen across multiple models, exposure times, and exposure periods leading to dysfunction in many different systems in the body with most pointing to a neuroendocrine target of toxicity. There is evidence of crosstalk between systems that can be affected by atrazine exposure, causing widespread dysfunction and leading to changes in behavior even with no direct link to the hypothalamus. The hypothetical mechanism of toxicity of atrazine endocrine disruption and neurotoxicity can therefore be described as a web of pathways that are influenced through changes occurring in each and their multiple feedback loops with further research needed to refine NOAELs for neurotoxic outcomes.
Collapse
Affiliation(s)
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA;
| |
Collapse
|
12
|
Shan W, Hu W, Wen Y, Ding X, Ma X, Yan W, Xia Y. Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model. Reprod Toxicol 2021; 103:149-158. [PMID: 34146662 DOI: 10.1016/j.reprotox.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Atrazine is one of the widely used herbicides in the world and most of the current researches on atrazine neurodevelopment toxicity have focused on rodents or zebrafish models in vivo, resulting in relatively high cost, time consumption, and lower translational value to identify its hazard for the developing brain. Major international initiatives have pushed forward to convert the traditional animal-based developmental toxicity tests to in vitro assays using human cells to detect and predict chemical health hazards. In this study, we presented a human neural differentiation model based on human embryonic stem cells (hESC) that can be used to test toxicity at different stages of neural differentiation in vitro. hESC were differentiated into neural stem cells (NSC) and then terminally differentiated towards mixed neurons and glial cells for 21 days. Cell survival, proliferation, cell cycle, apoptosis, and gene expression levels were examined. Our results demonstrated that atrazine inhibited the proliferation of hESC and NSC, and showed different toxic sensitivity on these two kinds of cells. Also, atrazine blocked the NSC cell cycle G1 phase via down-regulating CCND1, CDK2, and CDK4, with no obvious effect on apoptosis. In addition, atrazine curbed EB spontaneous differentiation and NSC-induced neurons and glia cells differentiation. Atrazine altered genes expression levels of PAX6, TUBB3, NCAM1, GFAP, TH, NR4A1, and GRIA1. From the data we obtained, we recognized that the dopaminergic system was not the only target of atrazine neurotoxicity, glutamatergic neurons and astrocytes were also adversely affected.
Collapse
Affiliation(s)
- Wenqi Shan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
13
|
Li B, Jiang Y, Wang T, He X, Ma L, Li B, Li Y. Effect of atrazine on accumulation of iron via the iron transport proteins in the midbrain of SD rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146666. [PMID: 34030342 DOI: 10.1016/j.scitotenv.2021.146666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Atrazine (ATR), a widely used herbicide that belongs to the triazine class, has detrimental effects on several organ systems. It has also been shown that ATR exposure results in dopaminergic neurotoxicity. However, the mechanism of herbicides causing ferroptosis in neurons is less concerned. So, the present study aimed to investigate the effects of long-term oral exposure to ATR on ferroptosis in adult male rats. In this study, we show that there was a dose-dependent increase in the concentration of iron in the midbrain. Simultaneously, the expression of tyrosine hydroxylase (TH) and Synuclein (α-syn) were altered by the ATR. We carried out miRNA profiling brain tissue in order to identify factors that mediate ferroptosis. We also found that the mRNA and protein expression of the transferrin receptor (TFR), divalent metal transporter 1 (DMT1), hephaestin (HEPH), and ferroportin 1 (Fpn1) in the midbrain were affected by ATR. Based on the current results and previously published data, it is clear that exposure of adult male rats to high doses of ATR leads to iron loading in the midbrain. The long-term adverse effects of ATR on the midbrain have a special relevance after exposure.
Collapse
Affiliation(s)
- Bingyun Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin 150081, Heilongjiang Province, China
| | - Yujia Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Ting Wang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xi He
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Lin Ma
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
14
|
Adedara IA, Godswill UAS, Mike MA, Afolabi BA, Amorha CC, Sule J, Rocha JBT, Farombi EO. Chronic ciprofloxacin and atrazine co-exposure aggravates locomotor and exploratory deficits in non-target detritivore speckled cockroach (Nauphoeta cinerea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25680-25691. [PMID: 33469791 DOI: 10.1007/s11356-021-12460-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
The global detection of ciprofloxacin and atrazine in soil is linked to intensive anthropogenic activities in agriculture and inadvertent discharge of industrial wastes to the environment. Nauphoeta cinerea is a terrestrial insect with cosmopolitan distribution and great environmental function. The current study probed the neurobehavioral and cellular responses of N. cinerea singly and jointly exposed to atrazine (1.0 and 0.5 μg g-1 feed) and ciprofloxacin (0.5 and 0.25 μg g-1 feed) for 63 days. Results demonstrated that the reductions in the body rotation, maximum speed, turn angle, path efficiency, distance traveled, episodes, and time of mobility induced by atrazine or ciprofloxacin per se was exacerbated in the co-exposure group. The altered exploratory and locomotor in insects singly and jointly exposed to ciprofloxacin and atrazine were verified by track plots and heat maps. Furthermore, we observed a decrease in acetylcholinesterase and anti-oxidative enzyme activities with concomitant elevation in the levels of lipid peroxidation, nitric oxide, and reactive oxygen and nitrogen species were significantly intensified in the midgut, hemolymph, and head of insects co-exposed to ciprofloxacin and atrazine. In conclusion, exposure to binary mixtures of ciprofloxacin and atrazine elicited greater locomotor and exploratory deficits than upon exposure to the individual compound by inhibiting acetylcholinesterase activity and induction of oxido-inflammatory stress responses in the insects. N. cinerea may be a usable model insect for checking contaminants of ecological risks.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Umin-Awaji S Godswill
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Miriam A Mike
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Chizoba C Amorha
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joseph Sule
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Chávez-Pichardo ME, Reyes-Bravo DY, Mendoza-Trejo MS, Marín-López AG, Giordano M, Hernández-Chan N, Domínguez-Marchan K, Ortega-Rosales LC, Rodríguez VM. Brain alterations in GABA, glutamate and glutamine markers after chronic atrazine exposure in the male albino rat. Arch Toxicol 2020; 94:3217-3230. [PMID: 32561961 DOI: 10.1007/s00204-020-02806-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
Atrazine (ATR; 2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is an herbicide widely used to kill annual grasses and broadleaf weeds in crops such as corn, sorghum, and sugarcane. Studies in rodents have shown that chronic ATR exposure is associated with alterations in the nigrostriatal dopaminergic pathway such as hyperactivity, decreased striatal dopamine levels, and diminished numbers of tyrosine hydroxylase positive cells in substantia nigra pars compacta. However, the effects of ATR on neurotransmitters such as GABA and glutamate have been scarcely studied. To evaluate the impact of ATR on motor and anxiety tasks, tissue levels of GABA, glutamate, glutamine, and extracellular and potassium-evoked release of glutamate in the striatum, we daily exposed Sprague-Dawley male rats to 1 or 10 mg ATR/kg of body weight for 12-14 months. As previously reported, chronic ATR exposure causes hyperactivity in the group exposed to 10 mg ATR/kg and increased anxiety in both groups exposed to ATR. GABA, glutamate, and glutamine levels were differentially altered in brain regions related to nigrostriatal and mesolimbic systems, the amygdala, and the prefrontal cortex. The groups exposed to 10 mg ATR/kg showed increased extracellular levels and release of glutamate in the striatum. These neurochemical alterations could underlie the behavioral changes observed in rats. These results indicate that chronic exposure to the herbicide ATR disrupts the neurochemistry of several brain structures and could be a risk factor for the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- M E Chávez-Pichardo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - D Y Reyes-Bravo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - M S Mendoza-Trejo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - A G Marín-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - M Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - N Hernández-Chan
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, México
| | - K Domínguez-Marchan
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - L C Ortega-Rosales
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - V M Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México.
| |
Collapse
|
16
|
The Hypoactivity Associated with the Repeated Exposure to Atrazine Is Related to Decreases in the Specific Binding to D1-DA Receptors in the Striatum of Rats. J Toxicol 2017; 2017:2169212. [PMID: 29362563 PMCID: PMC5736928 DOI: 10.1155/2017/2169212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023] Open
Abstract
The herbicide atrazine (ATR) has a potential toxic effect on the neuronal circuits of the brain, specifically on two major dopaminergic pathways: the nigrostriatal and mesolimbic circuits. In this work, we repeatedly exposed adult male Sprague-Dawley rats to 6 injections of 100 mg ATR/kg of body weight (for two weeks) and one saline injection two days after ATR administration. Locomotor activity was assessed for 15 minutes and/or 2 hours after ATR or saline injection and 2 months after the final ATR administration. The specific binding of [3H]-SCH23390 to D1-DA receptors and that of [3H]-Spiperone to D2-DA receptors in the dorsal and ventral striatum were assessed 2 days and 2 months after ATR treatment. ATR administration resulted in immediate, short- and long-term hypoactivity and reduced specific binding of [3H]-SCH23390 in the dorsal striatum of rats evaluated 2 months after the last ATR injection. The specific binding of [3H]-SCH23390 in the ventral striatum and the specific binding of [3H]-Spiperone in the dorsal and ventral striatum remained unchanged at 2 days or 2 months after ATR treatment. These results, together with previous findings of our group, indicate that the nigrostriatal system is a preferential target for ATR exposure.
Collapse
|