1
|
Li Y, Qi W, Chen L, Chu F, Jiang W, Xu Z, Luo Y, Hu X, Götz J, Li C. Fyn-dependent Tau microcluster formation seeds and boosts extensive Tau pathology. Acta Neuropathol 2025; 149:48. [PMID: 40366450 DOI: 10.1007/s00401-025-02887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Tau seeding and propagation are defining features of all tauopathies, including Alzheimer's disease, but the underlying molecular drivers remain incompletely understood. Here, we reveal that Fyn expression boosts massive Tau pathology in the mouse brain and enhances Tau seeding induced by pathological Tau seeds in biosensor cells. However, even in the absence of seeds, Fyn itself, via its palmitoylation, triggers the de novo formation of small, plasma membrane-anchored Tau microclusters, which initiate pronounced and diverse intra- and transcellular Tau seeding in vitro and in vivo. Mechanistically, membrane-associated Fyn phosphorylates Tau at its Tyr310 epitope and then recruits and activates GSK3β locally, which further phosphorylates Tau at Ser/Thr sites in the microclusters, eliciting their full seeding capacity. Our data suggest that Fyn not only serves as a master switch that initiates Tau pathogenesis on its own, but also augments a pre-existing Tau pathology, leading to a vicious cycle of Tau aggregation.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Qi
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Chen
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Chu
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfeng Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zifeng Xu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuexin Luo
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xubo Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| | - Chuanzhou Li
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Bajwa IK, Sharma P, Goyal R. Modulation of tyrosine receptor imposed by estrogen in memory and cognition in female rats. Behav Brain Res 2025; 479:115340. [PMID: 39549875 DOI: 10.1016/j.bbr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/28/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The present study aimed to investigate the potential role of estrogen in modulating the pathogenesis of dementia-type-AD phenotype, possibly by tyrosine kinase. Female Wistar rats were ovariectomized (OVX) and were treated with Diethylstilbesterol (DES), an estrogen analogue (20 μg/kg/day, i.m.), and Imatinib, a tyrosine kinase inhibitor (30 mg/kg/day, orally), for two months. Animals underwent surgical ovariectomy exhibited significant memory deficits in spatial memory assessment as mean dwell time, short-term memory as spontaneous alteration, and novel object recognition after a chronic period of 4 weeks. OVX animals administered with DES produced significant restoration of memory dysfunction in comparison to OVX, as exhibited by Morris water maze (p=0.0003), Y maze (p<0.0001), and NORT. Imatinib prior to DES treatment in OVX animals showed significant decline in memory functions, which confirms the potential involvement of tyrosine receptor kinase activity in improved memory functions offered by estrogen. Levels of estradiol were significantly (p<0.0001) lower in the OVX group compared to normal which was significantly (p<0.0001) restored in the OVX+E group. Biochemical estimations of TBARS, glutathione, and acetylcholinesterase levels in the brain showed a significant increase in oxidative stress among the OVX group. However, a significant restoration of oxidative changes with TBARS (p=0.0496), glutathione (p<0.0001), and acetylcholinesterase activity (p=0.0201) of OVX animals receiving DES was observed in comparison to animals receiving imatinib followed by DES. These implications in the brain signify that estrogen and tyrosine kinase play an important role in the pathogenesis of dementia. In conclusion, estrogen offers neurochemical mediation for cognition and memory possibly via modulation of tyrosine kinase signaling in female subjects.
Collapse
Affiliation(s)
- Ishumeet Kaur Bajwa
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh 173212, India
| | - Parul Sharma
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh 173212, India
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh 173212, India.
| |
Collapse
|
3
|
Meur S, Karati D. Fyn Kinase in Alzheimer's Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Mol Neurobiol 2025; 62:643-660. [PMID: 38890236 DOI: 10.1007/s12035-024-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease, characterized by the accumulation of abnormal protein aggregates and neuronal damage in the brain, leads to a gradual decline in cognitive function and memory. As a complex neurodegenerative disorder, it involves disruptions in various biochemical pathways and neurotransmitter systems, contributing to the progressive loss of neurons and synaptic connections. The complexity of Alzheimer's signaling pathways complicates treatment, presenting a formidable challenge in the quest for effective therapeutic interventions. A member of the Src family of kinases (SFKs), Fyn, is a type of non-receptor tyrosine kinase that has been linked to multiple essential CNS processes, such as myelination and synaptic transmission. Fyn is an appealing target for AD treatments because it is uniquely linked to the two major pathologies in AD by its interaction with tau, in addition to being activated by amyloid-beta (Aβ) through PrPC. Fyn mediates neurotoxicity and synaptic impairments caused by Aβ and is involved in regulating the process of Aβ synthesis.Additionally, the tau protein's tyrosine phosphorylation is induced by Fyn. Fyn is also a challenging target because of its widespread body expression and strong homology with other kinases of the Src family, which could cause unintentional off-target effects. This review emphasizes signaling pathways mediated by Fyn that govern neuronal development and plasticity while also summarizing the most noteworthy recent research relevant to Fyn kinase's function in the brain. Additionally, the therapeutic inhibition of Fyn kinase has been discussed, with a focus on the Fyn kinase inhibitors that are in clinical trials, which presents a fascinating opportunity for targeting Fyn kinase in the creation of possible therapeutic approaches for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
4
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
5
|
Roth JR, Rush T, Thompson SJ, Aldaher AR, Dunn TB, Mesina JS, Cochran JN, Boyle NR, Dean HB, Yang Z, Pathak V, Ruiz P, Wu M, Day JJ, Bostwick JR, Suto MJ, Augelli-Szafran CE, Roberson ED. Development of small-molecule Tau-SH3 interaction inhibitors that prevent amyloid-β toxicity and network hyperexcitability. Neurotherapeutics 2024; 21:e00291. [PMID: 38241154 PMCID: PMC10903085 DOI: 10.1016/j.neurot.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-β-induced dysfunction in preclinical models of AD and also prevents amyloid-β-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-β-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-β-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.
Collapse
Affiliation(s)
- Jonathan R Roth
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha J Thompson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Aldaher
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trae B Dunn
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob S Mesina
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas R Boyle
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hunter B Dean
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhengrong Yang
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibha Pathak
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Pedro Ruiz
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Mousheng Wu
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mark J Suto
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | | | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Schiavi A, Cirotti C, Gerber LS, Di Lauro G, Maglioni S, Shibao PYT, Montresor S, Kirstein J, Petzsch P, Köhrer K, Schins RPF, Wahle T, Barilà D, Ventura N. Abl depletion via autophagy mediates the beneficial effects of quercetin against Alzheimer pathology across species. Cell Death Discov 2023; 9:376. [PMID: 37838776 PMCID: PMC10576830 DOI: 10.1038/s41420-023-01592-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 10/16/2023] Open
Abstract
Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (Aβ)-induced detrimental effects in different C. elegans AD models and it reduces Aβ-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against Aβ toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Claudia Cirotti
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Lora-Sophie Gerber
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Giulia Di Lauro
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Silvia Maglioni
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany
| | - Priscila Yumi Tanaka Shibao
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Janine Kirstein
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Patrick Petzsch
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Tina Wahle
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Daniela Barilà
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany.
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany.
| |
Collapse
|
7
|
Sesti F, Bortolami A, Kathera-Ibarra EF. Non-conducting functions of potassium channels in cancer and neurological disease. CURRENT TOPICS IN MEMBRANES 2023; 92:199-231. [PMID: 38007268 DOI: 10.1016/bs.ctm.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Cancer and neurodegenerative disease, albeit fundamental differences, share some common pathogenic mechanisms. Accordingly, both conditions are associated with aberrant cell proliferation and migration. Here, we review the causative role played by potassium (K+) channels, a fundamental class of proteins, in cancer and neurodegenerative disease. The concept that emerges from the review of the literature is that K+ channels can promote the development and progression of cancerous and neurodegenerative pathologies by dysregulating cell proliferation and migration. K+ channels appear to control these cellular functions in ways that not necessarily depend on their conducting properties and that involve the ability to directly or indirectly engage growth and survival signaling pathways. As cancer and neurodegenerative disease represent global health concerns, identifying commonalities may help understand the molecular basis for those devastating conditions and may facilitate the design of new drugs or the repurposing of existing drugs.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States.
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| | - Elena Forzisi Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| |
Collapse
|
8
|
Im E, Jiang Y, Stavrides PH, Darji S, Erdjument-Bromage H, Neubert TA, Choi JY, Wegiel J, Lee JH, Nixon RA. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr 682-phosphorylated APP βCTF. SCIENCE ADVANCES 2023; 9:eadg1925. [PMID: 37494443 PMCID: PMC10371027 DOI: 10.1126/sciadv.adg1925] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-βCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-βCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. Elevated APP-βCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.
Collapse
Affiliation(s)
- Eunju Im
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Philip H. Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A. Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
9
|
Fan X, Xia L, Zhou Z, Qiu Y, Zhao C, Yin X, Qian W. Tau Acts in Concert With Kinase/Phosphatase Underlying Synaptic Dysfunction. Front Aging Neurosci 2022; 14:908881. [PMID: 35711910 PMCID: PMC9196307 DOI: 10.3389/fnagi.2022.908881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by two pathological features: neurofibrillary tangles (NFTs), formed by microtubule-associated protein tau, and abnormal accumulation of amyloid-β (Aβ). Multiple evidence placed synaptic tau as the vital fact of AD pathology, especially at the very early stage of AD. In the present review, we discuss tau phosphorylation, which is critical for the dendritic localization of tau and synaptic plasticity. We review the related kinases and phosphatases implicated in the synaptic function of tau. We also review the synergistic effects of these kinases and phosphatases on tau-associated synaptic deficits. We aim to open a new perspective on the treatment of AD.
Collapse
Affiliation(s)
- Xing Fan
- Department of Biochemistry and Molecular Biology, Medical School, Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Liye Xia
- Department of Biochemistry and Molecular Biology, Medical School, Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- *Correspondence: Wei Qian
| |
Collapse
|
10
|
Briner A, Götz J, Polanco JC. Fyn Kinase Controls Tau Aggregation In Vivo. Cell Rep 2021; 32:108045. [PMID: 32814048 DOI: 10.1016/j.celrep.2020.108045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/14/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a proteinopathy exhibiting aggregation of β-amyloid (Aβ) as amyloid plaques and tau as neurofibrillary tangles (NFTs), whereas primary tauopathies display only a tau pathology. Aβ toxicity is mediated by Fyn kinase in a tau-dependent process; however, whether Fyn controls tau pathology in diseases that lack Aβ pathology remains unexplored. To address this, we generate the Tg/Fyn-/- mouse, which couples mutant tau overexpression with Fyn knockout. Surprisingly, Tg/Fyn-/- mice exhibit a near-complete ablation of NFTs, alongside reduced tau hyperphosphorylation, altered tau solubility, and diminished synaptic tau accumulation. Furthermore, Tg/Fyn-/- brain lysates elicit less tau seeding in tau biosensor cells. Lastly, the fibrillization of tau is boosted by its pseudophosphorylation at the Fyn epitope Y18. Together, this identifies Fyn as a key regulator of tau pathology independently of Aβ-induced toxicity and thereby represents a potentially valuable therapeutic target for not only AD but also tauopathies more generally.
Collapse
Affiliation(s)
- Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Juan Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
11
|
Engin AB, Engin A. Alzheimer's Disease and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:285-321. [PMID: 33539020 DOI: 10.1007/978-3-030-49844-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and accounts for more than 60-80% of all cases of dementia. Loss of pyramidal neurons, extracellular amyloid beta (Abeta) accumulated senile plaques, and neurofibrillary tangles that contain hyperphosphorylated tau constitute the main pathological alterations in AD.Synaptic dysfunction and extrasynaptic N-methyl-D-aspartate receptor (NMDAR) hyperactivation contributes to excitotoxicity in patients with AD. Amyloid precursor protein (APP) and Abeta promoted neurodegeneration develop through the activation of protein kinase signaling cascade in AD. Furthermore, ultimate neuronal death in AD is under control of protein kinases-related signaling pathways. In this chapter, critical check-points within the cross-talk between neuron and protein kinases have been defined regarding the initiation and progression of AD. In this context, amyloid cascade hypothesis, neuroinflammation, oxidative stress, granulovacuolar degeneration, loss of Wnt signaling, Abeta-related synaptic alterations, prolonged calcium ions overload and NMDAR-related synaptotoxicity, damage signals hypothesis and type-3 diabetes are discussed briefly.In addition to clinical perspective of AD pathology, recommendations that might be effective in the treatment of AD patients have been reviewed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
12
|
Putra M, Puttachary S, Liu G, Lee G, Thippeswamy T. Fyn-tau Ablation Modifies PTZ-Induced Seizures and Post-seizure Hallmarks of Early Epileptogenesis. Front Cell Neurosci 2020; 14:592374. [PMID: 33363455 PMCID: PMC7752812 DOI: 10.3389/fncel.2020.592374] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Both Fyn and tau have been associated with neuronal hyperexcitability and neurotoxicity in many tauopathies, including Alzheimer's disease (AD). Individual genetic ablation of fyn or tau appears to be protective against aberrant excitatory neuronal activities in AD and epilepsy models. It is, however, still unknown whether ablation of both Fyn and tau can likely elicit more profound anti-seizure and neuroprotective effects. Here, we show the effects of genetic deletion of Fyn and/or tau on seizure severity in response to pentylenetetrazole (PTZ)-induced seizure in mouse models and neurobiological changes 24 h post-seizures. We used Fyn KO (fyn -/-), tau KO (tau -/-), double knockout (DKO) (fyn -/- / tau -/-), and wild-type (WT) mice of the same genetic background. Both tau KO and DKO showed a significant increase in latency to convulsive seizures and significantly decreased the severity of seizures post-PTZ. Although Fyn KO did not differ significantly from WT, in response to PTZ, Fyn KO still had 36 ± 8% seizure reduction and a 30% increase in seizure latency compared to WT. Surprisingly, in contrast to WT, Fyn KO mice showed higher mortality in <20 min of seizure induction; these mice had severe hydrocephalous. None of the tau -/- and DKO died during the study. In response to PTZ, all KO groups showed a significant reduction in neurodegeneration and gliosis, in contrast to WT, which showed increased neurodegeneration [especially, parvalbumin (PV)-GABAergic interneurons] and gliosis. DKO mice had the most reduced gliosis. Immunohistochemically, phospho-tau (AT8, pS199/S202), Fyn expression, as well as Fyn-tau interaction as measured by PLA increased in WT post-PTZ. Moreover, hippocampal Western blots revealed increased levels of AT8, tyrosine phospho-tau (pY18), and phosphorylated Src tyrosine family kinases (pSFK) in PTZ-treated WT, but not in KO, compared to respective controls. Furthermore, PV interneurons were protected from PTZ-induced seizure effects in all KO mice. The levels of inwardly rectifying potassium (Kir 4.1) channels were also downregulated in astrocytes in the WT post-PTZ, while its levels did not change in KO groups. Overall, our results demonstrated the role of Fyn and tau in seizures and their impact on the mediators of early epileptogenesis in PTZ model.
Collapse
Affiliation(s)
- Marson Putra
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Guanghao Liu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Thimmasettappa Thippeswamy
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Liu G, Fiock KL, Levites Y, Golde TE, Hefti MM, Lee G. Fyn depletion ameliorates tau P301L-induced neuropathology. Acta Neuropathol Commun 2020; 8:108. [PMID: 32665013 PMCID: PMC7362472 DOI: 10.1186/s40478-020-00979-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Src family non-receptor tyrosine kinase Fyn has been implicated in neurodegeneration of Alzheimer's disease through interaction with amyloid β (Aβ). However, the role of Fyn in the pathogenesis of primary tauopathies such as FTDP-17, where Aβ plaques are absent, is poorly understood. In the current study, we used AAV2/8 vectors to deliver tauP301L to the brains of WT and Fyn KO mice, generating somatic transgenic tauopathy models with the presence or absence of Fyn. Although both genotypes developed tau pathology, Fyn KO developed fewer neurofibrillary tangles on Bielschowsky and Thioflavin S stained sections and showed lower levels of phosphorylated tau. In addition, tauP301L-induced behavior abnormalities and depletion of synaptic proteins were not observed in the Fyn KO model. Our work provides evidence for Fyn being a critical protein in the disease pathogenesis of FTDP-17.
Collapse
Affiliation(s)
- Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Kimberly L. Fiock
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Yona Levites
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL USA
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL USA
| | - Marco M. Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA USA
| | - Gloria Lee
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 500 Newton Road, ML B191, Iowa City, IA 52242 USA
| |
Collapse
|
14
|
Ait-Bouziad N, Chiki A, Limorenko G, Xiao S, Eliezer D, Lashuel HA. Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule- and lipid-binding properties of Tau. J Biol Chem 2020; 295:7905-7922. [PMID: 32341125 PMCID: PMC7278352 DOI: 10.1074/jbc.ra119.012517] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
The microtubule-associated protein Tau is implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. Increasing evidence suggests that post-translational modifications play critical roles in regulating Tau's normal functions and its pathogenic properties in tauopathies. Very little is known about how phosphorylation of tyrosine residues influences the structure, aggregation, and microtubule- and lipid-binding properties of Tau. Here, we sought to determine the relative contributions of phosphorylation of one or several of the five tyrosine residues in Tau (Tyr-18, -29, -197, -310, and -394) to the regulation of its biophysical, aggregation, and functional properties. We used a combination of site-specific mutagenesis and in vitro phosphorylation by c-Abl kinase to generate Tau species phosphorylated at all five tyrosine residues, all tyrosine residues except Tyr-310 or Tyr-394 (pTau-Y310F and pTau-Y394F, respectively) and Tau phosphorylated only at Tyr-310 or Tyr-394 (4F/pTyr-310 or 4F/pTyr-394). We observed that phosphorylation of all five tyrosine residues, multiple N-terminal tyrosine residues (Tyr-18, -29, and -197), or specific phosphorylation only at residue Tyr-310 abolishes Tau aggregation and inhibits its microtubule- and lipid-binding properties. NMR experiments indicated that these effects are mediated by a local decrease in β-sheet propensity of Tau's PHF6 domain. Our findings underscore Tyr-310 phosphorylation has a unique role in the regulation of Tau aggregation, microtubule, and lipid interactions. These results also highlight the importance of conducting further studies to elucidate the role of Tyr-310 in the regulation of Tau's normal functions and pathogenic properties.
Collapse
Affiliation(s)
- Nadine Ait-Bouziad
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Canet G, Pineau F, Zussy C, Hernandez C, Hunt H, Chevallier N, Perrier V, Torrent J, Belanoff JK, Meijer OC, Desrumaux C, Givalois L. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers-induced pathology in an acute model of Alzheimer's disease. FASEB J 2019; 34:1150-1168. [PMID: 31914623 DOI: 10.1096/fj.201900723rrr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid receptors (GR) signaling impairment. However, the precise role of GR in the pathophysiology of AD remains unclear. Using an acute model of AD induced by the intracerebroventricular injection of amyloid-β oligomers (oAβ), we analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, processing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in AD and involved in HPA axis control and cognitive functions. We found that oAβ impaired cognitive and emotional behaviors, increased plasma GC levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oAβ potentiated the amyloidogenic pathway and enzymes involved both in Tau hyperphosphorylation and GR activation. Treatment with a selective GR modulator (sGRm) normalized plasma GC levels and all behavioral and biochemical parameters analyzed. GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology of AD, in perturbing Aβ and Tau homeostasis. These results also reinforce the therapeutic potential of sGRm in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Fanny Pineau
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Véronique Perrier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Joan Torrent
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | | | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
16
|
Liu G, Thangavel R, Rysted J, Kim Y, Francis MB, Adams E, Lin Z, Taugher RJ, Wemmie JA, Usachev YM, Lee G. Loss of tau and Fyn reduces compensatory effects of MAP2 for tau and reveals a Fyn-independent effect of tau on calcium. J Neurosci Res 2019; 97:1393-1413. [PMID: 31452242 PMCID: PMC6850396 DOI: 10.1002/jnr.24517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Microtubule-associated protein tau associates with Src family tyrosine kinase Fyn and is tyrosine phosphorylated by Fyn. The presence of tyrosine phosphorylated tau in AD and the involvement of Fyn in AD has drawn attention to the tau-Fyn complex. In this study, a tau-Fyn double knockout (DKO) mouse was generated to investigate the role of the complex. DKO mice resembled Fyn KO in novel object recognition and contextual fear conditioning tasks and resembled tau KO mice in the pole test and protection from pentylenetetrazole-induced seizures. In glutamate-induced Ca2+ response, Fyn KO was decreased relative to WT and DKO had a greater reduction relative to Fyn KO, suggesting that tau may have a Fyn-independent role. Since tau KO resembled WT in its Ca2+ response, we investigated whether microtubule-associated protein 2 (MAP2) served to compensate for tau, since the MAP2 level was increased in tau KO but decreased in DKO mice. We found that like tau, MAP2 increased Fyn activity. Moreover, tau KO neurons had increased density of dendritic MAP2-Fyn complexes relative to WT neurons. Therefore, we hypothesize that in the tau KO, the absence of tau would be compensated by MAP2, especially in the dendrites, where tau-Fyn complexes are of critical importance. In the DKO, decreased levels of MAP2 made compensation more difficult, thus revealing the effect of tau in the Ca2+ response.
Collapse
Affiliation(s)
- Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ramasamy Thangavel
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jacob Rysted
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yohan Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan B Francis
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric Adams
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhihong Lin
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rebecca J Taugher
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - John A Wemmie
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Yuriy M Usachev
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP. Quality Control in Huntington's Disease: a Therapeutic Target. Neurotox Res 2019; 36:612-626. [PMID: 31297710 DOI: 10.1007/s12640-019-00087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is a fatal autosomal dominantly inherited brain disease caused by excessively expanded CAG repeats in gene which encodes huntingtin protein. These abnormally encoded huntingtin proteins and their truncated fragments result in disruption of cellular quality mechanism ultimately triggering neuronal death. Despite great efforts, a potential causative agent leading to genetic mutation in HTT, manifesting the neurons more prone to oxidative stress, cellular inflammation, energy depletion and apoptotic death, has not been established yet. Current scenario concentrates on symptomatic pathologies to improvise the disease progression and to better the survival. Most of the therapeutic developments have been converged to rescue the protein homeostasis. In HD, abnormal expansion of glutamine repeats in the protein huntingtin leads to toxic aggregation of huntingtin which in turn impairs the quality control mechanism of cells through damaging the machineries involved in removal of aggregated abnormal protein. Therapeutic approaches to improve the efficiency of aggregate clearance through quality control mechanisms involve protein folding machineries such as chaperones and protein degradation machineries such as proteasome and autophagy. Also, to reduce protein aggregation by enhancing proper folding, to degrade and eliminate the aggregates are suggested to negatively regulate the HD progression associated with the disruption of protein homeostasis. This review focuses on the collection of therapeutic strategies targeting enhancement of protein quality control activity to delay the HD pathogenesis.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Centre, Columbia University, New York, NY, 10032, USA
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Xie Z, Shapiro LP, Cahill ME, Russell TA, Lacor PN, Klein WL, Penzes P. Kalirin-7 prevents dendritic spine dysgenesis induced by amyloid beta-derived oligomers. Eur J Neurosci 2019; 49:1091-1101. [PMID: 30565792 DOI: 10.1111/ejn.14311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
Synapse degeneration and dendritic spine dysgenesis are believed to be crucial early steps in Alzheimer's disease (AD), and correlate with cognitive deficits in AD patients. Soluble amyloid beta (Aβ)-derived oligomers, also termed Aβ-derived diffusible ligands (ADDLs), accumulate in the brain of AD patients and play a crucial role in AD pathogenesis. ADDLs bind to mature hippocampal neurons, induce structural changes in dendritic spines and contribute to neuronal death. However, mechanisms underlying structural and toxic effects are not fully understood. Here, we report that ADDLs bind to cultured mature cortical pyramidal neurons and induce spine dysgenesis. ADDL treatment induced the rapid depletion of kalirin-7, a brain-specific guanine-nucleotide exchange factor for the small GTPase Rac1, from spines. Kalirin-7 is a key regulator of dendritic spine morphogenesis and maintenance in forebrain pyramidal neurons and here we show that overexpression of kalirin-7 prevents ADDL-induced spine degeneration. Taken together, our results suggest that kalirin-7 may play a role in the early events leading to synapse degeneration, and its pharmacological activation may prevent or delay synapse pathology in AD.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lauren P Shapiro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael E Cahill
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Theron A Russell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pascale N Lacor
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Giacomini C, Koo CY, Yankova N, Tavares IA, Wray S, Noble W, Hanger DP, Morris JDH. A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathol Commun 2018; 6:37. [PMID: 29730992 PMCID: PMC5937037 DOI: 10.1186/s40478-018-0539-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/21/2018] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer’s disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.
Collapse
|
20
|
Köhler C, Fuhr V, Dinekov M. Distribution of spleen tyrosine kinase and tau phosphorylated at tyrosine 18 in a mouse model of tauopathy and in the human hippocampus. Brain Res 2017; 1677:1-13. [DOI: 10.1016/j.brainres.2017.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 12/01/2022]
|
21
|
Liu W, Zhao J, Lu G. miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer's disease. Biochem Biophys Res Commun 2016; 478:852-7. [PMID: 27520374 DOI: 10.1016/j.bbrc.2016.08.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/06/2016] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Increasing evidence has revealed that microRNAs (miRNAs) are implicated in the pathogenesis of AD. However, the effect of miRNAs on abnormal tau phosphorylation remains largely unclear so far. In this study, we investigated the role of miR-106b in tau phosphorylation and identified a new molecular mechanism of the hyperphosphorylation of tau. The results of qRT-PCR showed that the expression level of miR-106b was decreased, but Fyn was increased in the temporal cortex of AD patients. Overexpression of miR-106b inhibited Aβ1-42-induced tau phosphorylation at Tyr18 in SH-SY5Y cells stably expressing tau (SH-SY5Y/tau), whereas no changes were observed in tau phosphorylation at Ser396/404. Dual-luciferase reporter gene assay validated that Fyn was a direct target gene of miR-106b. In addition, western blot analysis revealed that Fyn protein expression was suppressed when SH-SY5Y cells were transfected with miR-106b mimics. Endogenous Fyn expression was knockdown by transfection with a small interfering RNA specific for Fyn (si-Fyn). The phosphorylation level of tau at Tyr 18 was decreased in the si-Fyn group compared with the negative control group, but the inhibitory effect of si-Fyn on tau phosphorylation was attenuated when miR-106b expression was inhibited. Taken together, these data suggest that miR-106b inhibits Aβ1-42-induced tau phosphorylation at Tyr18 by targeting Fyn. Our findings extend the knowledge about the regulation of tau phosphorylation and the regulatory mechanism of Fyn gene expression.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jingya Zhao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Guangxiu Lu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
22
|
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12:633-44. [PMID: 26776762 DOI: 10.1016/j.jalz.2015.12.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Loss of synapses best correlates to cognitive deficits in Alzheimer's disease (AD) in which oligomeric neurotoxic species of amyloid-β appears to contribute synaptic pathology. Although a number of clinical pathologic studies have been performed with limited sample size, there are no systematic studies encompassing large samples. Therefore, we performed a meta-analysis study. METHODS We identified 417 publications reporting postmortem synapse and synaptic marker loss from AD patients. Two meta-analyses were performed using a single database of subselected publications and calculating the standard mean differences. RESULTS Meta-analysis confirmed synaptic loss in selected brain regions is an early event in AD pathogenesis. The second meta-analysis of 57 synaptic markers revealed that presynaptic makers were affected more than postsynaptic markers. DISCUSSION The present meta-analysis study showed a consistent synaptic loss across brain regions and that molecular machinery including endosomal pathways, vesicular assembly mechanisms, glutamate receptors, and axonal transport are often affected.
Collapse
Affiliation(s)
- Martijn C de Wilde
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Cassia R Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John W Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Lee C, Low CYB, Francis PT, Attems J, Wong PTH, Lai MK, Tan MG. An isoform-specific role of FynT tyrosine kinase in Alzheimer's disease. J Neurochem 2015; 136:637-50. [DOI: 10.1111/jnc.13429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Chingli Lee
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Clara Y. B. Low
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Paul T. Francis
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Johannes Attems
- Institute of Neuroscience; Newcastle University; Campus for Aging and Vitality; Newcastle upon Tyne UK
| | - Peter T.-H. Wong
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
| | - Mitchell K.P. Lai
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Michelle G.K. Tan
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| |
Collapse
|
24
|
Tampellini D. Synaptic activity and Alzheimer's disease: a critical update. Front Neurosci 2015; 9:423. [PMID: 26582973 PMCID: PMC4631827 DOI: 10.3389/fnins.2015.00423] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022] Open
Abstract
Synapses have been known for many years to be the crucial target of pathology in different forms of dementia, in particular Alzheimer's disease (AD). Synapses and their appropriate activation or inhibition are fundamental for the proper brain function. Alterations in synaptic/neuronal activity and brain metabolism are considered among the earliest symptoms linked to the progression of AD, and lead to a central question in AD research: what is the role played by synaptic activity in AD pathogenesis? Intriguingly, in the last decade, important studies demonstrated that the state of activation of synapses affects the homeostasis of beta-amyloid (Aβ) and tau, both of which aggregate and accumulate during AD, and are involved in neuronal dysfunction. In this review we aim to summarize the up-to-date data linking synaptic/neuronal activity with Aβ and tau; moreover, we also intend to provide a critical overview on brain activity alterations in AD, and their role in the disease's pathophysiology.
Collapse
Affiliation(s)
- Davide Tampellini
- U 1195 Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Université Paris-Saclay Le Kremlin-Bicêtre, France
| |
Collapse
|
25
|
Bourdenx M, Koulakiotis NS, Sanoudou D, Bezard E, Dehay B, Tsarbopoulos A. Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Prog Neurobiol 2015. [PMID: 26209472 DOI: 10.1016/j.pneurobio.2015.07.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's and Parkinson's diseases are the most prevalent neurodegenerative diseases that generate important health-related direct and indirect socio-economic costs. They are characterized by severe neuronal losses in several disease-specific brain regions associated with deposits of aggregated proteins. In Alzheimer's disease, β-amyloid peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein tau are the two main neuropathological lesions, while Parkinson's disease is defined by the presence of Lewy Bodies that are intraneuronal proteinaceous cytoplasmic inclusions. α-Synuclein has been identified as a major protein component of Lewy Bodies and heavily implicated in the pathogenesis of Parkinson's disease. In the past few years, evidence has emerged to explain how these aggregate-prone proteins can undergo spontaneous self-aggregation, propagate from cell to cell, and mediate neurotoxicity. Current research now indicates that oligomeric forms are probably the toxic species. This article discusses recent progress in the understanding of the pathogenesis of these diseases, with a focus on the underlying mechanisms of protein aggregation, and emphasizes the pathophysiological molecular mechanisms leading to cellular toxicity. Finally, we present the putative direct link between β-amyloid peptide and tau in causing toxicity in Alzheimer's disease as well as α-synuclein in Parkinson's disease, along with some of the most promising therapeutic strategies currently in development for those incurable neurodegenerative disorders.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | - Despina Sanoudou
- National and Kapodistrian University of Athens Medical School, Department of Internal Medicine, 75 Mikras Asias Street, Athens 11527, Greece
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Anthony Tsarbopoulos
- GAIA Research Center, Bioanalytical Department, The Goulandris Natural History Museum, Kifissia 14562, Greece; National and Kapodistrian University of Athens Medical School, Department of Pharmacology, 75 Mikras Asias Street, Athens 11527, Greece.
| |
Collapse
|
26
|
Koob AO, Shaked GM, Bender A, Bisquertt A, Rockenstein E, Masliah E. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson's disease. Brain Res 2014; 1591:102-10. [PMID: 25446004 PMCID: PMC4943923 DOI: 10.1016/j.brainres.2014.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/26/2022]
Abstract
Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson's disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson's disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson's disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson's disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory.
Collapse
Affiliation(s)
- Andrew O Koob
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States; Departments of Psychiatry, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States.
| | - Gideon M Shaked
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Andreas Bender
- Department of Neurology, University of Munich, Klinikum der Universität München-Großhadern, 81377 München, Germany
| | - Alejandro Bisquertt
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Edward Rockenstein
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States
| | - Eliezer Masliah
- Departments of Neurosciences, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States; Departments of Pathology, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093-0624, United States.
| |
Collapse
|
27
|
Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495091. [PMID: 25386560 PMCID: PMC4217372 DOI: 10.1155/2014/495091] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/23/2014] [Indexed: 01/26/2023]
Abstract
The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer's disease, tauopathies, and Huntington's diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.
Collapse
|
28
|
Li J, Zhou HD, Deng J, Zhu J, Li L, Zhang M, Zeng F, Wang YJ. The association of single nucleotide polymorphism of the Fyn gene with sporadic Alzheimer's disease in the Chinese Han population. Neurosci Lett 2014; 575:80-4. [PMID: 24852829 DOI: 10.1016/j.neulet.2014.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/19/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Recent studies suggested genetic factors contribute to the pathogenesis of sporadic Alzheimer's disease (sAD). Fibroblast Yes related novel (Fyn), a tau kinase, has been reported to be associated with aberrant phosphorylated tau and neurofibrillary tangles formation. Fyn gene may be a potential candidate gene for AD. To investigate the association of the polymorphisms in Fyn gene with the susceptibility to sAD, we conducted a case-control study in a Chinese Han cohort including 200 sAD patients and 243 control participants. Four single nucleotide polymorphisms (SNPs) (rs111787668, rs1057979, rs6916861 and rs12910) within the promoter region of Fyn gene and one (rs7768046) in intron were selected and genotyped with a polymerase chain reaction-ligase detection reaction (PCR-LDR) method. Logistic regression under four genetic models was used to analyze the association between target SNPs and the risk of sAD. After adjusting for age, sex and APOE ɛ4 status, no association was revealed between these SNPs or the haplotypes containing four SNPs and the risk of sAD (P>0.05). The SNPs in the selected regions of the Fyn gene are unlikely to confer the susceptibility of sAD in the Chinese Han population. Further studies with a larger sample size and different ethnic populations are needed to reveal the role of Fyn gene in the pathogenesis of sAD.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hua-Dong Zhou
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Juan Deng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jie Zhu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Meng Zhang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fan Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
| | | |
Collapse
|
29
|
Xia D, Götz J. Premature lethality, hyperactivity, and aberrant phosphorylation in transgenic mice expressing a constitutively active form of Fyn. Front Mol Neurosci 2014; 7:40. [PMID: 24860422 PMCID: PMC4026715 DOI: 10.3389/fnmol.2014.00040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/22/2014] [Indexed: 01/10/2023] Open
Abstract
The kinase Fyn, the microtubule-associated protein tau and the peptide amyloid-β (Aβ) constitute a toxic triad in Alzheimer's disease (AD). Tau's subcellular localization is mainly regulated by phosphorylation whereas Fyn's localization is dictated by palmitoylation targeting it to the plasma membrane in a reversible manner. We have previously shown that tau is required for Fyn to be targeted to the dendritic spine. We had also shown that a truncated form of tau (Δtau) that accumulates in the cell soma is capable of trapping Fyn and preventing it from entering the spine. Here we determined that palmitoylation is required for Fyn's membrane and spine localization. We further evaluated the functional consequences of neuronal over-expression of the constitutively active Y531F mutant form of Fyn (FynCA) in transgenic mice. We found that the FynCA transgenic mice displayed a reduced weight, a massively reduced lifespan and a high level of hyperactivity. The lifespan of the FynCA mice was only slightly extended by crossing them with Δtau transgenic mice, possibly reflecting differences in expression patterns of the transgenes and high levels of transgenic FynCA compared to endogenous Fyn. Analysis of synaptosomes revealed that FynCA accumulated at high levels in the spine, resulting in increased levels of the NMDA receptor subunit NR2b phosphorylated at residue Y1472. Tau was strongly phosphorylated at the AT8 epitope S202/T205 as shown by Western blot and immunohistochemistry indicating that an increased tyrosine kinase activity of Fyn has down-stream consequences for serine/threonine-directed phosphorylation.
Collapse
Affiliation(s)
- Di Xia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
30
|
Nygaard HB. Current and emerging therapies for Alzheimer's disease. Clin Ther 2014; 35:1480-9. [PMID: 24139420 DOI: 10.1016/j.clinthera.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder, with a rapidly increasing worldwide prevalence. Although no cure for AD has yet been found, substantial progress has been made in our understanding of AD pathogenesis. This progress has led to the development of numerous promising compounds in various stages of clinical testing. In this review, the current pharmacologic treatments for AD are discussed in detail, followed by an overview of the main experimental strategies that will shape AD therapeutics over the next decade.
Collapse
Affiliation(s)
- Haakon B Nygaard
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
31
|
Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso ADC. Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 2014; 30:346-58. [PMID: 24733656 DOI: 10.1007/s12264-013-1414-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022] Open
Abstract
The accumulation of hyperphosphorylated tau is a common feature of several dementias. Tau is one of the brain microtubule-associated proteins. Here we discuss tau's functions in microtubule assembly and stabilization and with regard to its interactions with other proteins. We describe and analyze important post-translational modifications: hyperphosphorylation, ubiquitination, glycation, glycosylation, nitration, polyamination, proteolysis, acetylation, and methylation. We discuss how these post-translational modifications can alter tau's biological function. We analyze the role of mitochondrial health in neurodegeneration. We propose that microtubules could be a therapeutic target and review different approaches. Finally, we consider whether tau accumulation or its conformational change is related to tau-induced neurodegeneration, and propose a mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Cindy Beharry
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, 10314, USA
| | | | | | | | | | | |
Collapse
|
32
|
Cochran JN, Hall AM, Roberson ED. The dendritic hypothesis for Alzheimer's disease pathophysiology. Brain Res Bull 2014; 103:18-28. [PMID: 24333192 PMCID: PMC3989444 DOI: 10.1016/j.brainresbull.2013.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 01/02/2023]
Abstract
Converging evidence indicates that processes occurring in and around neuronal dendrites are central to the pathogenesis of Alzheimer's disease. These data support the concept of a "dendritic hypothesis" of AD, closely related to the existing synaptic hypothesis. Here we detail dendritic neuropathology in the disease and examine how Aβ, tau, and AD genetic risk factors affect dendritic structure and function. Finally, we consider potential mechanisms by which these key drivers could affect dendritic integrity and disease progression. These dendritic mechanisms serve as a framework for therapeutic target identification and for efforts to develop disease-modifying therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Alicia M Hall
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
33
|
Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, Yu X, Cheng S, Yan R, Wang Q, Liu DH, Deng W, Lai Y, Zhou JH, Zhang SX, Lin WW, Chen DF. β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 2014; 1552:41-54. [DOI: 10.1016/j.brainres.2014.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 12/14/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022]
|
34
|
Ordóñez-Gutiérrez L, Torres JM, Gavín R, Antón M, Arroba-Espinosa AI, Espinosa JC, Vergara C, del Río JA, Wandosell F. Cellular prion protein modulates β-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging 2013; 34:2793-804. [DOI: 10.1016/j.neurobiolaging.2013.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
|
35
|
Gendreau KL, Hall GF. Tangles, Toxicity, and Tau Secretion in AD - New Approaches to a Vexing Problem. Front Neurol 2013; 4:160. [PMID: 24151487 PMCID: PMC3801151 DOI: 10.3389/fneur.2013.00160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
When the microtubule (MT)-associated protein tau is not bound to axonal MTs, it becomes hyperphosphorylated and vulnerable to proteolytic cleavage and other changes typically seen in the hallmark tau deposits (neurofibrillary tangles) of tau-associated neurodegenerative diseases (tauopathies). Neurofibrillary tangle formation is preceded by tau oligomerization and accompanied by covalent crosslinking and cytotoxicity, making tangle cytopathogenesis a natural central focus of studies directed at understanding the role of tau in neurodegenerative disease. Recent studies suggest that the formation of tau oligomers may be more closely related to tau neurotoxicity than the presence of the tangles themselves. It has also become increasingly clear that tau pathobiology involves a wide variety of other cellular abnormalities including a disruption of autophagy, vesicle trafficking mechanisms, axoplasmic transport, neuronal polarity, and even the secretion of tau, which is normally a cytosolic protein, to the extracellular space. In this review, we discuss tau misprocessing, toxicity and secretion in the context of normal tau functions in developing and mature neurons. We also compare tau cytopathology to that of other aggregation-prone proteins involved in neurodegeneration (alpha synuclein, prion protein, and APP). Finally, we consider potential mechanisms of intra- and interneuronal tau lesion spreading, an area of particular recent interest.
Collapse
Affiliation(s)
- Kerry L Gendreau
- Department of Biological Sciences, University of Massachusetts Lowell , Lowell, MA , USA
| | | |
Collapse
|
36
|
Köhler C, Dinekov M, Götz J. Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging 2013; 34:1369-79. [DOI: 10.1016/j.neurobiolaging.2012.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/05/2012] [Accepted: 11/22/2012] [Indexed: 02/08/2023]
|
37
|
Burnouf S, Martire A, Derisbourg M, Laurent C, Belarbi K, Leboucher A, Fernandez-Gomez FJ, Troquier L, Eddarkaoui S, Grosjean ME, Demeyer D, Muhr-Tailleux A, Buisson A, Sergeant N, Hamdane M, Humez S, Popoli P, Buée L, Blum D. NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a Tau transgenic model. Aging Cell 2013; 12:11-23. [PMID: 23082852 DOI: 10.1111/acel.12018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
Abstract
While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus-dependent synaptic plasticity and memory. When applied on hippocampal slices, BDNF is able to enhance AMPA receptor-dependent hippocampal basal synaptic transmission through a mechanism involving TrkB and N-methyl-d-Aspartate receptors (NMDAR). Using THY-Tau22 transgenic mice, we demonstrated that hippocampal Tau pathology is associated with loss of synaptic enhancement normally induced by exogenous BDNF. This defective response was concomitant to significant memory impairments. We show here that loss of BDNF response was due to impaired NMDAR function. Indeed, we observed a significant reduction of NMDA-induced field excitatory postsynaptic potential depression in the hippocampus of Tau mice together with a reduced phosphorylation of NR2B at the Y1472, known to be critical for NMDAR function. Interestingly, we found that both NR2B and Src, one of the NR2B main kinases, interact with Tau and are mislocalized to the insoluble protein fraction rich in pathological Tau species. Defective response to BDNF was thus likely related to abnormal interaction of Src and NR2B with Tau in THY-Tau22 animals. These are the first data demonstrating a relationship between Tau pathology and synaptic effects of BDNF and supporting a contribution of defective BDNF response and impaired NMDAR function to the cognitive deficits associated with Tauopathies.
Collapse
Affiliation(s)
| | - Alberto Martire
- Department of Therapeutic Research and Medicine Evaluation; Istituto Superiore di Sanità; I-00161; Rome; Italy
| | | | | | | | | | | | | | | | | | | | | | - Alain Buisson
- Grenoble Institute Neurosciences; U836 INSERM; Université J. Fourier; 38042; Grenoble; France
| | | | | | | | - Patrizia Popoli
- Department of Therapeutic Research and Medicine Evaluation; Istituto Superiore di Sanità; I-00161; Rome; Italy
| | | | | |
Collapse
|
38
|
Abstract
AbstractRecent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.
Collapse
|
39
|
Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Teng E, Hu S, Chen PP, Maiti P, Teter B, Cole GM, Frautschy SA. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem 2012; 288:4056-65. [PMID: 23264626 DOI: 10.1074/jbc.m112.393751] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, the Geriatric, Research, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bekris LM, Millard S, Lutz F, Li G, Galasko DR, Farlow MR, Quinn JF, Kaye JA, Leverenz JB, Tsuang DW, Yu CE, Peskind ER. Tau phosphorylation pathway genes and cerebrospinal fluid tau levels in Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:874-83. [PMID: 22927204 PMCID: PMC3626266 DOI: 10.1002/ajmg.b.32094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5' and 3' regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner.
Collapse
Affiliation(s)
- Lynn M. Bekris
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington,Correspondence to: Lynn M. Bekris, Ph.D., Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, VAPSHCS GRECC S182B, 1660 South Columbian Way, Seattle, WA 98108.
| | - Steve Millard
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington
| | - Franziska Lutz
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| | - Gail Li
- Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Doug R. Galasko
- Department of Neurosciences, University of California at San Diego and VA Medical Center San Diego, San Diego, California
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, Oregon,Portland VA Medical Center, Portland, Oregon
| | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health and Science University, Portland, Oregon,Portland VA Medical Center, Portland, Oregon
| | - James B. Leverenz
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington,Department of Neurology, University of Washington School of Medicine, Seattle, Washington,Northwest Network VISN-20 Parkinson’s Disease Research, Education and Clinical Center (PADRECC), Roseburg, Oregon
| | - Debby W. Tsuang
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Chang-En Yu
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| | - Elaine R. Peskind
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
41
|
In silico study of Alzheimer’s disease in relation to FYN gene. Interdiscip Sci 2012; 4:153-60. [DOI: 10.1007/s12539-012-0123-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/06/2011] [Accepted: 09/22/2011] [Indexed: 10/28/2022]
|
42
|
Stempler S, Waldman YY, Wolf L, Ruppin E. Hippocampus neuronal metabolic gene expression outperforms whole tissue data in accurately predicting Alzheimer's disease progression. Neurobiol Aging 2012; 33:2230.e13-2230.e21. [PMID: 22560482 DOI: 10.1016/j.neurobiolaging.2012.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/01/2012] [Accepted: 04/05/2012] [Indexed: 01/17/2023]
Abstract
Numerous metabolic alterations are associated with the impairment of brain cells in Alzheimer's disease (AD). Here we use gene expression microarrays of both whole hippocampus tissue and hippocampal neurons of AD patients to investigate the ability of metabolic gene expression to predict AD progression and its cognitive decline. We find that the prediction accuracy of different AD stages is markedly higher when using neuronal expression data (0.9) than when using whole tissue expression (0.76). Furthermore, the metabolic genes' expression is shown to be as effective in predicting AD severity as the entire gene list. Remarkably, a regression model from hippocampal metabolic gene expression leads to a marked correlation of 0.57 with the Mini-Mental State Examination cognitive score. Notably, the expression of top predictive neuronal genes in AD is significantly higher than that of other metabolic genes in the brains of healthy subjects. All together, the analyses point to a subset of metabolic genes that is strongly associated with normal brain functioning and whose disruption plays a major role in AD.
Collapse
Affiliation(s)
- Shiri Stempler
- The Sackler School of Medicine-Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
43
|
Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model. Int J Alzheimers Dis 2012; 2012:172837. [PMID: 22315694 PMCID: PMC3270555 DOI: 10.1155/2012/172837] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023] Open
Abstract
We used a nontransgenic cellular tauopathy model in which individual giant neurons in the lamprey CNS (ABCs) overexpress human tau isoforms cell autonomously to characterize the still poorly understood consequences of disease-associated tau processing in situ. In this model, tau colocalizes with endogenous microtubules and is nontoxic when expressed at low levels, but is misprocessed by a toxicity-associated alternative pathway when expressed above levels that saturate dendritic microtubules, causing abnormally phosphorylated, vesicle-associated tau to accumulate in ABC distal dendrites. This causes localized microtubule loss and eventually dendritic degeneration, which is preceded by tau secretion to the extracellular space. This sequence is reiterated at successively more proximal dendritic locations over time, suggesting that tau-induced dendritic degeneration is driven by distal dendritic accumulation of hyperphosphorylated, vesicle-associated tau perpetuated by localized microtubule loss. The implications for the diagnosis and treatment of human disease are discussed.
Collapse
|
44
|
Abstract
Tauopathies are age-related neurodegenerative diseases that are characterized by the presence of aggregates of abnormally phosphorylated tau. As tau was originally discovered as a microtubule-associated protein, it has been hypothesized that neurodegeneration results from a loss of the ability of tau to associate with microtubules. However, tau has been found to have other functions aside from the promotion and stabilization of microtubule assembly. It is conceivable that such functions may be affected by the abnormal phosphorylation of tau and might have consequences for neuronal function or viability. This chapter provides an overview of tau structure, functions, and its involvement in neurodegenerative diseases.
Collapse
|
45
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
46
|
Wielgat P, Walesiuk A, Braszko JJ. Effects of chronic stress and corticosterone on sialidase activity in the rat hippocampus. Behav Brain Res 2011; 222:363-7. [DOI: 10.1016/j.bbr.2011.03.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 01/27/2023]
|
47
|
Kanaan NM, Morfini G, Pigino G, LaPointe NE, Andreadis A, Song Y, Leitman E, Binder LI, Brady ST. Phosphorylation in the amino terminus of tau prevents inhibition of anterograde axonal transport. Neurobiol Aging 2011; 33:826.e15-30. [PMID: 21794954 DOI: 10.1016/j.neurobiolaging.2011.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/19/2011] [Accepted: 06/06/2011] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) and other tauopathies are characterized by fibrillar inclusions composed of the microtubule-associated protein, tau. Recently, we demonstrated that the N-terminus of tau (amino acids [aa] 2-18) in filamentous aggregates or N-terminal tau isoforms activate a signaling cascade involving protein phosphatase 1 and glycogen synthase kinase 3 that results in inhibition of anterograde fast axonal transport (FAT). We have termed the functional motif comprised of aa 2-18 in tau the phosphatase-activating domain (PAD). Here, we show that phosphorylation of tau at tyrosine 18, which is a fyn phosphorylation site within PAD, prevents inhibition of anterograde FAT induced by both filamentous tau and 6D tau. Moreover, Fyn-mediated phosphorylation of tyrosine 18 is reduced in disease-associated forms of tau (e.g., tau filaments). A novel PAD-specific monoclonal antibody revealed that exposure of PAD in tau occurs before and more frequently than tyrosine 18 phosphorylation in the evolution of tangle formation in AD. These results indicate that N-terminal phosphorylation may constitute a regulatory mechanism that controls tau-mediated inhibition of anterograde FAT in AD.
Collapse
Affiliation(s)
- Nicholas M Kanaan
- Division of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Minami SS, Clifford TG, Hoe HS, Matsuoka Y, Rebeck GW. Fyn knock-down increases Aβ, decreases phospho-tau, and worsens spatial learning in 3×Tg-AD mice. Neurobiol Aging 2011; 33:825.e15-24. [PMID: 21741124 DOI: 10.1016/j.neurobiolaging.2011.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 04/13/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Fyn kinase phosphorylates tau and exacerbates amyloid beta (Aβ)-mediated synaptic dysfunction. However, Fyn also increases the nonpathological cleavage of amyloid precursor protein (APP), suggesting opposing roles for Fyn in the pathogenesis of Alzheimer's disease (AD). To determine the effect of Fyn on both Aβ and tau pathologies, we crossed homozygous Alzheimer's disease triple transgenic (3×Tg) mice harboring mutations in amyloid precursor protein, presenilin-1, and tau with wild-type or Fyn knockout mice to generate Fyn(+/+)3×Tg(+/-) or Fyn(+/-)3×Tg(+/-) mice. We found that Fyn(+/-)3×Tg(+/-) mice had increased soluble and intracellular Aβ, and these changes were accompanied by impaired performance on the Morris water maze at 18 months. Fyn(+/-)3×Tg(+/-) mice had decreased phosphorylated tau at 15-18 months (as did Fyn knockout mice), but Fyn(+/-)3×Tg(+/-) mice had increased phosphorylated tau by 24 months. In addition, we observed that Fyn(+/-)3×Tg(+/-) males were delayed in developing Aβ pathology compared with females, and displayed better spatial learning performance at 18 months. Overall, these findings suggest that loss of Fyn at early stages of disease increases soluble Aβ accumulation and worsens spatial learning in the absence of changes in tau phosphorylation.
Collapse
Affiliation(s)
- S Sakura Minami
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057-1464, USA
| | | | | | | | | |
Collapse
|
49
|
Minami SS, Hoe HS, Rebeck GW. Fyn kinase regulates the association between amyloid precursor protein and Dab1 by promoting their localization to detergent-resistant membranes. J Neurochem 2011; 118:879-90. [PMID: 21534960 DOI: 10.1111/j.1471-4159.2011.07296.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adaptor protein Disabled1 (Dab1) interacts with amyloid precursor protein (APP) and decreases its pathological processing, an effect mediated by Fyn tyrosine kinase. Fyn is highly enriched in lipid rafts, a major site of pathological APP processing. To investigate the role of Fyn in the localization and phosphorylation of APP and Dab1 in lipid rafts, we isolated detergent-resistant membrane (DRM) fractions from wild-type and Fyn knock-out mice. In wild-type mice, all of the Fyn kinase, 17% of total APP, and 33% of total Dab1 were found in DRMs. Nearly all of the tyrosine phosphorylated forms of APP and Dab1 were in DRMs. APP and Dab1 co-precipitated both in and out of DRM fractions, indicating an association that is independent of subcellular localization. Fyn knock-out mice had decreased APP, Dab1, and tyrosine-phosphorylated Dab1 in DRMs but increased co-immunoprecipitation of DRM APP and Dab1. Expression of phosphorylation deficient APP or Dab1 constructs revealed that phosphorylation of APP increases, whereas phosphorylation of Dab1 decreases, the interaction between APP and Dab1. Consistent with these observations, Reelin treatment led to increased Dab1 phosphorylation and decreased association between APP and Dab1. Reelin also caused increased localization of APP and Dab1 to DRMs, an effect that was not seen in Fyn knock-out neurons. These findings suggest that Reelin treatment promotes the localization of APP and Dab1 to DRMs, and affects their phosphorylation by Fyn, thus regulating their interaction.
Collapse
Affiliation(s)
- S Sakura Minami
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia 20057-1464, USA
| | | | | |
Collapse
|
50
|
Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP. Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiol Aging 2011; 33:431.e27-38. [PMID: 21388709 DOI: 10.1016/j.neurobiolaging.2011.01.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/10/2010] [Accepted: 01/15/2011] [Indexed: 10/18/2022]
Abstract
Tau is an abundant cytosolic protein which regulates cytoskeletal stability by associating with microtubules in a phosphorylation-dependent manner. We have found a significant proportion of tau is located in the membrane fraction of rat cortical neurons and is dephosphorylated, at least at Tau-1 (Ser199/Ser202), AT8 (Ser199/Ser202/Thr205) and PHF-1 (Ser396/Ser404) epitopes. Inhibition of tau kinases casein kinase 1 (CK1) or glycogen synthase kinase-3 decreased tau phosphorylation and significantly increased amounts of tau in the membrane fraction. Mutation of serine/threonine residues to glutamate to mimic phosphorylation in the N-terminal, but not C-terminal, region of tau prevented its membrane localization in transfected cells, demonstrating that the phosphorylation state of tau directly impacts its localization. Inhibiting CK1 in neurons lacking the tyrosine kinase fyn also induced tau dephosphorylation but did not affect its membrane association. Furthermore, inhibition of CK1 increased binding of neuronal tau to the fyn-SH3 domain. We conclude that trafficking of tau between the cytosol and the neuronal membrane is dynamically regulated by tau phosphorylation through a mechanism dependent on fyn expression.
Collapse
Affiliation(s)
- Amy M Pooler
- King's College London, MRC Centre for Neurodegeneration Research, Department of Neuroscience, Institute of Psychiatry, London, UK.
| | | | | | | | | | | |
Collapse
|