1
|
Xu Y, Li S, Xu Y, Sun X, Wei Y, Wang Y, Li S, Ji Y, Hu K, Xu Y, Zhu C, Lu B, Wang D. Visualize neuronal membrane cholesterol with split-fluorescent protein tagged YDQA sensor. J Lipid Res 2025; 66:100781. [PMID: 40118459 DOI: 10.1016/j.jlr.2025.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Cholesterol is a major component of the cellular plasma membrane (PM), and its homeostasis is essential for brain health. Dysregulated cholesterol homeostasis has been strongly implicated in the pathogenesis of various neurological disorders, including Alzheimer's disease (AD). However, in vivo visualization of cholesterol has remained challenging, hindering a comprehensive understanding of AD pathology. In this study, we generated a new sensor combining the split-fluorescent protein tags with YDQA, a derivate of cholesterol-dependent cytolysin PFO. Through a series of validations in cell and C. elegans models, we demonstrate that the new sensor (name as sfPMcho) efficiently detects neuronal PM cholesterol. We further applied this sensor in 5X FAD and APOE KO mice models and revealed the cholesterol changes within neurons. PM cholesterol became sparse and locally aggregated in neuron bodies but significantly accumulated in nerve fibers. Collectively, this study provides a new tool for detecting neuronal PM cholesterol in vivo and uncovers cholesterol abnormalities in AD-related pathology at the cellular level. Further development based on this sensor or a similar strategy is to be expected.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Saixuan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yiran Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Xiaoqin Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuqing Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuejun Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Shuang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yongqi Ji
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Keyi Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuxia Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China.
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China.
| | - Bin Lu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China.
| | - Dandan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
2
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 PMCID: PMC11971557 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Midorikawa R, Wakazono Y, Takamiya K. Aβ peptide enhances GluA1 internalization via lipid rafts in Alzheimer's-related hippocampal LTP dysfunction. J Cell Sci 2024; 137:jcs261281. [PMID: 38668720 DOI: 10.1242/jcs.261281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024] Open
Abstract
Amyloid β (Aβ) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aβ disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aβ oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aβ mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aβ enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aβ-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aβ-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aβ, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Ryosuke Midorikawa
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshihiko Wakazono
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Laboratory of Biophysical Research, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kogo Takamiya
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Laboratory of Biophysical Research, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
4
|
Hu ZL, Yuan YQ, Tong Z, Liao MQ, Yuan SL, Jian Y, Yang JL, Liu WF. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer's Disease. Mol Neurobiol 2023; 60:6852-6868. [PMID: 37507575 DOI: 10.1007/s12035-023-03529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.
Collapse
Affiliation(s)
- Ze-Lin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yang-Qi Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zhen Tong
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei-Qing Liao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shun-Ling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jia-Lun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wen-Feng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Wang X, Zhou R, Sun X, Li J, Wang J, Yue W, Wang L, Liu H, Shi Y, Zhang D. Preferential Regulation of Γ-Secretase-Mediated Cleavage of APP by Ganglioside GM1 Reveals a Potential Therapeutic Target for Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303411. [PMID: 37759382 PMCID: PMC10646247 DOI: 10.1002/advs.202303411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/20/2023] [Indexed: 09/29/2023]
Abstract
A hallmark of Alzheimer's disease (AD) is the senile plaque, which contains β-amyloid peptides (Aβ). Ganglioside GM1 is the most common brain ganglioside. However, the mechanism of GM1 in modulating Aβ processing is rarely known. Aβ levels are detected by using Immunohistochemistry (IHC) and enzyme-linked immune-sorbent assay (ELISA). Cryo-electron microscopy (Cryo-EM) is used to determine the structure of γ-secretase supplemented with GM1. The levels of the cleavage of amyloid precursor protein (APP)/Cadherin/Notch1 are detected using Western blot analysis. Y maze, object translocation, and Barnes maze are performed to evaluate cognitive functions. GM1 leads to conformational change of γ-secretase structure and specifically accelerates γ-secretase cleavage of APP without affecting other substrates including Notch1, potentially through its interaction with the N-terminal fragment of presenilin 1 (PS1). Reduction of GM1 levels decreases amyloid plaque deposition and improves cognitive dysfunction. This study reveals the mechanism of GM1 in Aβ generation and provides the evidence that decreasing GM1 levels represents a potential strategy in AD treatment. These results provide insights into the detailed mechanism of the effect of GM1 on PS1, representing a step toward the characterization of its novel role in the modulation of γ-secretase activity and the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiaotong Wang
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
- Changping LaboratoryBeijing102206China
| | - Rui Zhou
- Beijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Xiaqin Sun
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
| | - Jun Li
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
| | - Jinxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Weihua Yue
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lifang Wang
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
| | - Hesheng Liu
- Changping LaboratoryBeijing102206China
- Biomedical Pioneering Innovation CenterPeking UniversityBeijing100871China
| | - Yigong Shi
- Beijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Westlake Laboratory of Life Science and BiomedicineHangzhouZhejiang310024China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan Road, Xihu DistrictHangzhouZhejiang310024China
| | - Dai Zhang
- Peking University Sixth HospitalPeking University Institute of Mental HealthNHC Key Laboratory of Mental Health (Peking University)National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital)Beijing100191China
- Changping LaboratoryBeijing102206China
| |
Collapse
|
6
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Griffiths J, Grant SGN. Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:13-23. [PMID: 35690535 DOI: 10.1016/j.semcdb.2022.05.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
Synapse loss and damage are central features of Alzheimer's disease (AD) and contribute to the onset and progression of its behavioural and physiological features. Here we review the literature describing synapse pathology in AD, from what we have learned from microscopy in terms of its impacts on synapse architecture, to the mechanistic role of Aβ, tau and glial cells, mitochondrial dysfunction, and the link with AD risk genes. We consider the emerging view that synapse pathology may operate at a further level, that of synapse diversity, and discuss the prospects for leveraging new synaptome mapping methods to comprehensively understand the molecular properties of vulnerable and resilient synapses. Uncovering AD impacts on brain synapse diversity should inform therapeutic approaches targeted at preserving or replenishing lost and damaged synapses and aid the interpretation of clinical imaging approaches that aim to measure synapse damage.
Collapse
Affiliation(s)
- Jessica Griffiths
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
8
|
The interactions of amyloid β aggregates with phospholipid membranes and the implications for neurodegeneration. Biochem Soc Trans 2023; 51:147-159. [PMID: 36629697 DOI: 10.1042/bst20220434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Misfolding, aggregation and accumulation of Amyloid-β peptides (Aβ) in neuronal tissue and extracellular matrix are hallmark features of Alzheimer's disease (AD) pathology. Soluble Aβ oligomers are involved in neuronal toxicity by interacting with the lipid membrane, compromising its integrity, and affecting the function of receptors. These facts indicate that the interaction between Aβ oligomers and cell membranes may be one of the central molecular level factors responsible for the onset of neurodegeneration. The present review provides a structural understanding of Aβ neurotoxicity via membrane interactions and contributes to understanding early events in Alzheimer's disease.
Collapse
|
9
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
10
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
11
|
Budvytyte R, Ambrulevičius F, Jankaityte E, Valincius G. Electrochemical Assessment of Dielectric Damage to Phospholipid Bilayers by Amyloid β-Oligomers. Bioelectrochemistry 2022; 145:108091. [DOI: 10.1016/j.bioelechem.2022.108091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
|
12
|
Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23020693. [PMID: 35054879 PMCID: PMC8775466 DOI: 10.3390/ijms23020693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.
Collapse
|
13
|
Han Y, Chen L, Guo Y, Wang C, Zhang C, Kong L, Ma H. Class I HDAC Inhibitor Improves Synaptic Proteins and Repairs Cytoskeleton Through Regulating Synapse-Related Genes In vitro and In vivo. Front Aging Neurosci 2021; 12:619866. [PMID: 33542682 PMCID: PMC7852506 DOI: 10.3389/fnagi.2020.619866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
β-amyloid (Aβ) is an important protein molecule in the pathology of Alzheimer’s disease (AD). Accumulation of Aβ leads to the loss of dendritic spines and synapses. These impairments can be ameliorated by histone deacetylase inhibitors (HDACI). However, the mechanisms of HDACIs underlying the effect on synapse are not fully understood. In this study, we examined the relationship between HDAC activity and synapse-related genes and proteins by the administration of a class I HDAC inhibitor, BG45, in the exogenous Aβ-treated cells and mice. Our studies showed that the treatment of HF-488-Aβ1–42 to SH-SY5Y cells first increased the expression of the postsynaptic dendritic protein (PSD), then decreased it after 36 h. BG45 can alleviate the reduction of the expression of PSD-95 as well as spinophilin and cytoskeletal protein induced by HF-488-Aβ1–42 aggregation in SH-SY5Y cells. Similar to the results in vitro, PSD-95 in the hippocampus was temporarily increased in the early days of intravenous injection HF-488-Aβ1–40 to the mice, followed by the decreased expression of PSD-95 on the 9th day. In further studies, for the mice treated with Aβ for 9 days, we found that BG45 decreased the expression of HDAC1 and 2, increased the expression of PSD-95, spinophilin, and synaptophysin (SYP). Our data also showed that BG45 upregulated levels of three synapse-related genes and proteins GRIK2, SCN3B, and SYNPR. These findings suggest that the exogenous Aβ may stimulate transiently the expression of PSD-95 at an early stage, but subsequently contribute to synaptic defects. HDAC1 and 2 are involved in synaptic defects, and BG45 may improve the expression of synaptic and cytoskeletal proteins and repair cytoskeletal damage by specifically inhibiting HDAC1 and 2, thereby modulating synapse-related genes. BG45 might be a potential therapeutic agent for the treatment of an early stage of Aβ-related neurodegenerative disease.
Collapse
Affiliation(s)
- Ying Han
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Le Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chunyang Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chenghong Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Moll T, Shaw PJ, Cooper-Knock J. Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. Brain 2020; 143:1332-1340. [PMID: 31724708 PMCID: PMC7241952 DOI: 10.1093/brain/awz358] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Glycosyltransferases represent a large family of enzymes that catalyse the biosynthesis of oligosaccharides, polysaccharides, and glycoconjugates. A number of studies have implicated glycosyltransferases in the pathogenesis of neurodegenerative diseases but differentiating cause from effect has been difficult. We have recently discovered that mutations proximal to the substrate binding site of glycosyltransferase 8 domain containing 1 (GLT8D1) are associated with familial amyotrophic lateral sclerosis (ALS). We demonstrated that ALS-associated mutations reduce activity of the enzyme suggesting a loss-of-function mechanism that is an attractive therapeutic target. Our work is the first evidence that isolated dysfunction of a glycosyltransferase is sufficient to cause a neurodegenerative disease, but connection between neurodegeneration and genetic variation within glycosyltransferases is not new. Previous studies have identified associations between mutations in UGT8 and sporadic ALS, and between ST6GAL1 mutations and conversion of mild cognitive impairment into clinical Alzheimer’s disease. In this review we consider potential mechanisms connecting glycosyltransferase dysfunction to neurodegeneration. The most prominent candidates are ganglioside synthesis and impaired addition of O-linked β-N-acetylglucosamine (O-GlcNAc) groups to proteins important for axonal and synaptic function. Special consideration is given to examples where genetic mutations within glycosyltransferases are associated with neurodegeneration in recognition of the fact that these changes are likely to be upstream causes present from birth.
Collapse
Affiliation(s)
- Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | | |
Collapse
|
15
|
Plant isoquinoline alkaloids as potential neurodrugs: A comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chem Biol Interact 2020; 334:109300. [PMID: 33098838 PMCID: PMC7577920 DOI: 10.1016/j.cbi.2020.109300] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Herein we present a comparative study of the effects of isoquinoline alkaloids belonging to benzo[c]phenanthridine and berberine families on β-amyloid aggregation. Results obtained using a Thioflavine T (ThT) fluorescence assay and circular dichroism (CD) spectroscopy suggested that the benzo[c]phenanthridine nucleus, present in both sanguinarine and chelerythrine molecules, was directly involved in an inhibitory effect of Aβ1-42 aggregation. Conversely, coralyne, that contains the isomeric berberine nucleus, significantly increased propensity for Aβ1-42 to aggregate. Surface Plasmon Resonance (SPR) experiments provided quantitative estimation of these interactions: coralyne bound to Aβ1-42 with an affinity (KD = 11.6 μM) higher than benzo[c]phenanthridines. Molecular docking studies confirmed that all three compounds are able to recognize Aβ1-42 in different aggregation forms suggesting their effective capacity to modulate the Aβ1-42 self-recognition mechanism. Molecular dynamics simulations indicated that coralyne increased the β-content of Aβ1-42, in early stages of aggregation, consistent with fluorescence-based promotion of the Aβ1-42 self-recognition mechanism by this alkaloid. At the same time, sanguinarine induced Aβ1-42 helical conformation corroborating its ability to delay aggregation as experimentally proved in vitro. The investigated compounds were shown to interfere with aggregation of Aβ1-42 demonstrating their potential as starting leads for the development of therapeutic strategies in neurodegenerative diseases.
Collapse
|
16
|
Rudajev V, Novotny J. The Role of Lipid Environment in Ganglioside GM1-Induced Amyloid β Aggregation. MEMBRANES 2020; 10:membranes10090226. [PMID: 32916822 PMCID: PMC7558528 DOI: 10.3390/membranes10090226] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023]
Abstract
Ganglioside GM1 is the most common brain ganglioside enriched in plasma membrane regions known as lipid rafts or membrane microdomains. GM1 participates in many modulatory and communication functions associated with the development, differentiation, and protection of neuronal tissue. It has, however, been demonstrated that GM1 plays a negative role in the pathophysiology of Alzheimer's disease (AD). The two features of AD are the formation of intracellular neurofibrillary bodies and the accumulation of extracellular amyloid β (Aβ). Aβ is a peptide characterized by intrinsic conformational flexibility. Depending on its partners, Aβ can adopt different spatial arrangements. GM1 has been shown to induce specific changes in the spatial organization of Aβ, which lead to enhanced peptide accumulation and deleterious effect especially on neuronal membranes containing clusters of this ganglioside. Changes in GM1 levels and distribution during the development of AD may contribute to the aggravation of the disease.
Collapse
|
17
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Matsuzaki K. Aβ-ganglioside interactions in the pathogenesis of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183233. [PMID: 32142821 DOI: 10.1016/j.bbamem.2020.183233] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/20/2023]
Abstract
It is widely accepted that the abnormal self-association of amyloid β-protein (Aβ) is central to the pathogenesis of Alzheimer's disease, the most common form of dementia. Accumulating evidence, both in vivo and in vitro, suggests that the binding of Aβ to gangliosides, especially monosialoganglioside GM1, plays an important role in the aggregation of Aβ. This review summarizes the molecular details of the binding of Aβ to ganglioside-containing membranes and subsequent structural changes, as revealed by liposomal and cellular studies. Furthermore, mechanisms of cytotoxicity by aggregated Aβ are also discussed.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
20
|
Petrov AM, Pikuleva IA. Cholesterol 24-Hydroxylation by CYP46A1: Benefits of Modulation for Brain Diseases. Neurotherapeutics 2019; 16:635-648. [PMID: 31001737 PMCID: PMC6694357 DOI: 10.1007/s13311-019-00731-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cholesterol 24-hydroxylation is the major mechanism for cholesterol removal from the brain and the reaction catalyzed by cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. This review describes CYP46A1 in the context of cholesterol homeostasis in the brain and summarizes available experimental data on CYP46A1 association with different neurologic diseases, including the mechanisms by which changes in the CYP46A1 activity in the brain could be beneficial for these diseases. The modulation of CYP46A1 activity by genetic and pharmacologic means is also presented along with a brief synopsis of the two clinical trials that evaluate CYP46A1 as a therapeutic target for Alzheimer's disease as well as Dravet and Lennox-Gastaut syndromes.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Apolipoprotein E/Amyloid-β Complex Accumulates in Alzheimer Disease Cortical Synapses via Apolipoprotein E Receptors and Is Enhanced by APOE4. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1621-1636. [PMID: 31108099 DOI: 10.1016/j.ajpath.2019.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Apolipoprotein E (apoE) colocalizes with amyloid-β (Aβ) in Alzheimer disease (AD) plaques and in synapses, and evidence suggests that direct interactions between apoE and Aβ are important for apoE's effects in AD. The present work examines the hypothesis that apoE receptors mediate uptake of apoE/Aβ complex into synaptic terminals. Western blot analysis shows multiple SDS-stable assemblies in synaptosomes from human AD cortex; apoE/Aβ complex was markedly increased in AD compared with aged control samples. Complex formation between apoE and Aβ was confirmed by coimmunoprecipitation experiments. The apoE receptors low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) were quantified in synaptosomes using flow cytometry, revealing up-regulation of LRP1 in early- and late-stage AD. Dual-labeling flow cytometry analysis of LRP1- and LDLR positives indicate most (approximately 65%) of LDLR and LRP1 is associated with postsynaptic density-95 (PSD-95)-positive synaptosomes, indicating that remaining LRP1 and LDLR receptors are exclusively presynaptic. Flow cytometry analysis of Nile red labeling revealed a reduction in cholesterol esters in AD synaptosomes. Dual-labeling experiments showed apoE and Aβ concentration into LDLR and LRP1-positive synaptosomes, along with free and esterified cholesterol. Synaptic Aβ was increased by apoE4 in control and AD samples. These results are consistent with uptake of apoE/Aβ complex and associated lipids into synaptic terminals, with subsequent Aβ clearance in control synapses and accumulation in AD synapses.
Collapse
|
22
|
Okada Y, Okubo K, Ikeda K, Yano Y, Hoshino M, Hayashi Y, Kiso Y, Itoh-Watanabe H, Naito A, Matsuzaki K. Toxic Amyloid Tape: A Novel Mixed Antiparallel/Parallel β-Sheet Structure Formed by Amyloid β-Protein on GM1 Clusters. ACS Chem Neurosci 2019; 10:563-572. [PMID: 30346704 DOI: 10.1021/acschemneuro.8b00424] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The abnormal aggregation of amyloid β-protein (Aβ) is considered central in the pathogenesis of Alzheimer's disease. We focused on membrane-mediated amyloidogenesis and found that amyloid fibrils formed on monosialoganglioside GM1 clusters were more toxic than those formed in aqueous solution. In this study, we investigated the structure of the toxic fibrils by Aβ-(1-40) in detail in comparison with less-toxic fibrils formed in aqueous solution. The less-toxic fibrils contain in-resister parallel β-sheets, whereas the structure of the toxic fibrils is unknown. Atomic force microscopy revealed that the toxic fibrils had a flat, tape-like morphology composed of a single β-sheet layer. Isotope-edited infrared spectroscopy indicated that almost the entire sequence of Aβ is included in the β-sheet. Chemical cross-linking experiments using Cys-substituted Aβs suggested that the fibrils mainly contained both in-resister parallel and two-residue-shifted antiparallel β-sheet structures. Solid-state NMR experiments also supported this conclusion. Thus, the toxic fibrils were found to possess a novel unique structure.
Collapse
Affiliation(s)
- Yuki Okada
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kaori Okubo
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshio Hayashi
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiaki Kiso
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Hikari Itoh-Watanabe
- Graduate School of Engineering, Yokohama Naitional University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama Naitional University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Dehelean L, Sarbu M, Petrut A, Zamfir AD. Trends in Glycolipid Biomarker Discovery in Neurodegenerative Disorders by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:703-729. [DOI: 10.1007/978-3-030-15950-4_42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Staneva G, Puff N, Stanimirov S, Tochev T, Angelova MI, Seigneuret M. The Alzheimer's disease amyloid-β peptide affects the size-dynamics of raft-mimicking Lo domains in GM1-containing lipid bilayers. SOFT MATTER 2018; 14:9609-9618. [PMID: 30457145 DOI: 10.1039/c8sm01636d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is characterized by the overproduction of the amyloid-β peptide (Aβ) which forms fibrils under the influence of raft microdomains containing the ganglioside GM1. Raft-mimicking artificial liquid ordered (Lo) domains containing GM1 enhance amyloid-β polymerization. Other experiments suggest that Aβ binds preferably to the non-raft liquid disordered (Ld) phase rather than to the Lo phase in the presence of GM1. Here, the interaction of Aβ(1-42) with GM1-containing biphasic Lo-Ld giant vesicles was investigated. Fluorescence colocalisation experiments confirm that Aβ(1-42) binds preferentially to the Ld phase. The effect of Aβ(1-42) on the Lo-Ld size dynamics was studied using photoinduced spinodal decomposition which mimics the nanodomain-microdomain raft coalescence. Aβ affects the kinetics of the coarsening phase and the size of the resulting microdomains. The effect depends on which phase is in a majority: when the Lo microdomains are formed inside an Ld phase, their growth rate becomes slower and their final size smaller in the presence of Aβ(1-42), whereas when the Ld microdomains are formed inside an Lo phase, the growth rate becomes faster and the final size larger. Fluorimetric measurements on large vesicles using the probe Laurdan indicate that Aβ(1-42) binding respectively increases or decreases the packing of the Ld phase in the presence or absence of GM1. The differential effects of Aβ on spinodal decomposition are accordingly interpreted as resulting from distinct effects of the peptide on the Lo-Ld line tension modulated by GM1. Such modulating effect of Aβ on domain dynamics could be important for lipid rafts in signaling disorders in AD as well as in Aβ fibrillation.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
25
|
Nakhate KT, Bharne AP, Verma VS, Aru DN, Kokare DM. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother 2018; 101:379-390. [DOI: 10.1016/j.biopha.2018.02.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
|
26
|
Osborne C, West E, Bate C. The phospholipase A 2 pathway controls a synaptic cholesterol ester cycle and synapse damage. J Cell Sci 2018; 131:jcs.211789. [PMID: 29588394 DOI: 10.1242/jcs.211789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
The cellular prion protein (PrPC) acts as a scaffold protein that organises signalling complexes. In synaptosomes, the aggregation of PrPC by amyloid-β (Aβ) oligomers attracts and activates cytoplasmic phospholipase A2 (cPLA2), leading to synapse degeneration. The signalling platform is dependent on cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs). The activation of cPLA2 requires cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs), enzymes dependent upon platelet activating factor (PAF) released by activated cPLA2 This demonstrates a positive feedback system in which activated cPLA2 increased cholesterol concentrations, which in turn facilitated cPLA2 activation. PAF was also required for the incorporation of the tyrosine kinase Fyn and cyclooxygenase (COX)-2 into Aβ-PrPC-cPLA2 complexes. As a failure to deactivate signalling complexes can lead to pathology, the mechanisms involved in their dispersal were studied. PAF facilitated the incorporation of acyl-coenzyme A:cholesterol acyltransferase (ACAT)-1 into Aβ-PrPC-cPLA2-COX-2-Fyn complexes. The esterification of cholesterol reduced cholesterol concentrations, causing dispersal of Aβ-PrPC-cPLA2-COX-2-Fyn complexes and the cessation of signalling. This study identifies PAF as a key mediator regulating the cholesterol ester cycle, activation of cPLA2 and COX-2 within synapses, and synapse damage.
Collapse
Affiliation(s)
- Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| |
Collapse
|
27
|
Fu Y, Hsiao JHT, Paxinos G, Halliday GM, Kim WS. ABCA7 Mediates Phagocytic Clearance of Amyloid-β in the Brain. J Alzheimers Dis 2018; 54:569-84. [PMID: 27472885 DOI: 10.3233/jad-160456] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia and abnormal deposits of aggregated amyloid-β in the brain. Recent genome-wide association studies have revealed that ABCA7 is strongly associated with AD. In vitro evidence suggests that the role of ABCA7 is related to phagocytic activity. Deletion of ABCA7 in a mouse model of AD exacerbates cerebral amyloid-β plaque load. However, the biological role of ABCA7 in AD brain pathogenesis is unknown. We show that ABCA7 is highly expressed in microglia and when monocytes are differentiated into macrophages. We hypothesized that ABCA7 plays a protective role in the brain that is related to phagocytic clearance of amyloid-β. We isolated microglia and macrophages from Abca7-/- and wild type mice and tested them for their capacity to phagocytose amyloid-β oligomers. We found that the phagocytic clearance of amyloid-β was substantially reduced in both microglia and macrophages from Abca7-/- mice compared to wild type mice. Consistent with these results, in vivo phagocytic clearance of amyloid-β oligomers in the hippocampus was reduced in Abca7-/- mice. Furthermore, ABCA7 transcription was upregulated in AD brains and in amyloidogenic mouse brains specifically in the hippocampus as a response to the amyloid-β pathogenic state. Together these results indicate that ABCA7 mediates phagocytic clearance of amyloid-β in the brain, and reveal a mechanism by which loss of function of ABCA7 increases the susceptibility to AD.
Collapse
Affiliation(s)
- YuHong Fu
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jen-Hsiang T Hsiao
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - George Paxinos
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Bate C, Williams A. Monomeric amyloid-β reduced amyloid-β oligomer-induced synapse damage in neuronal cultures. Neurobiol Dis 2017; 111:48-58. [PMID: 29272738 DOI: 10.1016/j.nbd.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/12/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) in the brain. Aβ oligomers are believed to cause synapse damage resulting in the memory deficits that are characteristic of this disease. Since the loss of synaptic proteins in the brain correlates closely with the degree of dementia in Alzheimer's disease, the process of Aβ-induced synapse damage was investigated in cultured neurons by measuring the loss of synaptic proteins. Soluble Aβ oligomers, derived from Alzheimer's-affected brains, caused the loss of cysteine string protein and synaptophysin from neurons. When applied to synaptosomes Aβ oligomers increased cholesterol concentrations and caused aberrant activation of cytoplasmic phospholipase A2 (cPLA2). In contrast, Aβ monomer preparations did not affect cholesterol concentrations or activate synaptic cPLA2, nor did they damage synapses. The Aβ oligomer-induced aggregation of cellular prion proteins (PrPC) at synapses triggered the activation of cPLA2 that leads to synapse degeneration. Critically, Aβ monomer preparations did not cause the aggregation of PrPC; rather they reduced the Aβ oligomer-induced aggregation of PrPC. The presence of Aβ monomer preparations also inhibited the Aβ oligomer-induced increase in cholesterol concentrations and activation of cPLA2 in synaptosomes and protected neurons against the Aβ oligomer-induced synapse damage. These results support the hypothesis that Aβ monomers are neuroprotective. We hypothesise that synapse damage may result from a pathological Aβ monomer:oligomer ratio rather than the total concentrations of Aβ within the brain.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK.
| | - Alun Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
29
|
Bate C. Breaking the Cycle, Cholesterol Cycling, and Synapse Damage in Response to Amyloid-β. J Exp Neurosci 2017; 11:1179069517733096. [PMID: 29238218 PMCID: PMC5721958 DOI: 10.1177/1179069517733096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
Soluble amyloid-β (Aβ) oligomers, a key driver of pathogenesis in Alzheimer disease, bind to cellular prion proteins (PrPC) expressed on synaptosomes resulting in increased cholesterol concentrations, movement of cytoplasmic phospholipase A2 (cPLA2) to lipid rafts and activation of cPLA2. The formation of Aβ-PrPC-cPLA2 complexes was controlled by the cholesterol ester cycle. Thus, Aβ activated cholesterol ester hydrolases which released cholesterol from stores of cholesterol esters; the increased cholesterol concentrations stabilised Aβ-PrPC-cPLA2 complexes. Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC-cPLA2. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; inhibition of cholesterol ester hydrolases protected neurons, whereas inhibition of cholesterol esterification increased the Aβ-induced synapse damage. Here, I speculate that a failure to deactivate signalling pathways can lead to pathology. Consequently, the esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms and synapse degeneration.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield,UK
| |
Collapse
|
30
|
West E, Osborne C, Bate C. The cholesterol ester cycle regulates signalling complexes and synapse damage caused by amyloid-β. J Cell Sci 2017; 130:3050-3059. [PMID: 28760925 DOI: 10.1242/jcs.205484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/26/2017] [Indexed: 02/01/2023] Open
Abstract
Cholesterol is required for the formation and function of some signalling platforms. In synaptosomes, amyloid-β (Aβ) oligomers, the causative agent in Alzheimer's disease, bind to cellular prion proteins (PrPC) resulting in increased cholesterol concentrations, translocation of cytoplasmic phospholipase A2 (cPLA2, also known as PLA2G4A) to lipid rafts, and activation of cPLA2 The formation of Aβ-PrPC complexes is controlled by the cholesterol ester cycle. In this study, Aβ activated cholesterol ester hydrolases, which released cholesterol from stores of cholesterol esters and stabilised Aβ-PrPC complexes, resulting in activated cPLA2 Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC complexes. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; cholesterol ester hydrolase inhibitors protected neurons, while inhibition of cholesterol esterification significantly increased Aβ-induced synapse damage. An understanding of the molecular mechanisms involved in the dispersal of signalling complexes is important as failure to deactivate signalling pathways can lead to pathology. This study demonstrates that esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms involved in the activation of cPLA2 and synapse degeneration.
Collapse
Affiliation(s)
- Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK
| |
Collapse
|
31
|
The Study of Postmortem Human Synaptosomes for Understanding Alzheimer's Disease and Other Neurological Disorders: A Review. Neurol Ther 2017; 6:57-68. [PMID: 28733958 PMCID: PMC5520816 DOI: 10.1007/s40120-017-0070-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction is thought to play important roles in the pathophysiology of many neurological diseases, including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Over the past few decades, there have been systematic efforts to collect postmortem brain tissues via autopsies, leading to the establishment of dozens of human brain banks around the world. From cryopreserved human brain tissues, it is possible to isolate detached-and-resealed synaptic terminals termed synaptosomes, which remain metabolically and enzymatically active. Synaptosomes have become important model systems for studying human synaptic functions, being much more accessible than ex vivo brain slices or primary neuronal cultures. Here we review recent advances in the establishment of human brain banks, the isolation of synaptosomes, their biological activities, and various analytical techniques for investigating their biochemical and ultrastructural properties. There are unique insights to be gained by directly examining human synaptosomes, which cannot be substituted by animal models. We will also discuss how human synaptosome research has contributed to better understanding of neurological disorders, especially Alzheimer’s disease.
Collapse
|
32
|
Tau Spread, Apolipoprotein E, Inflammation, and More: Rapidly Evolving Basic Science in Alzheimer Disease. Neurol Clin 2017; 35:175-190. [PMID: 28410655 DOI: 10.1016/j.ncl.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To date, Alzheimer disease drug candidates have produced negative results in human trials, and progress in moving new targets out of the laboratory and into trials has been slow. However, based on 3 decades of previous work, there is reason to hope that amyloid-based and other novel therapies will move at a faster pace toward successful clinical trials. This article highlights selected preclinical research topics that are rapidly advancing in the laboratory.
Collapse
|
33
|
Cebecauer M, Hof M, Amaro M. Impact of GM 1 on Membrane-Mediated Aggregation/Oligomerization of β-Amyloid: Unifying View. Biophys J 2017; 113:1194-1199. [PMID: 28410623 DOI: 10.1016/j.bpj.2017.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
In this perspective we summarize current knowledge of the effect of monosialoganglioside GM1 on the membrane-mediated aggregation of the β-amyloid (Aβ) peptide. GM1 has been suggested to be actively involved in the development of Alzheimer's disease due to its ability to seed the aggregation of Aβ. However, GM1 is known to be neuroprotective against Aβ-induced toxicity. Here we suggest that the two scenarios are not mutually exclusive but rather complementary, and might depend on the organization of GM1 in membranes. Improving our understanding of the molecular details behind the role of gangliosides in neurodegenerative amyloidoses might help in developing disease-modifying treatments.
Collapse
Affiliation(s)
- Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic.
| | - Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic.
| |
Collapse
|
34
|
Whyte LS, Lau AA, Hemsley KM, Hopwood JJ, Sargeant TJ. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease? J Neurochem 2017; 140:703-717. [PMID: 28027395 DOI: 10.1111/jnc.13935] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology. The lysosome hydrolyses and processes cargo delivered by multiple pathways, including endocytosis and autophagy. The endo-lysosomal and autophagic networks are central to clearance of cellular macromolecules, which is important given there is a deficit in clearance of amyloid-β in AD. Numerous studies show prominent lysosomal dysfunction in AD, including perturbed trafficking of lysosomal enzymes and accumulation of the same substrates that accumulate in lysosomal storage disorders. Examination of the brain in lysosomal storage disorders shows the accumulation of amyloid precursor protein metabolites, which further links lysosomal dysfunction with AD. This and other evidence leads us to hypothesise that genetic variation in lysosomal genes modifies the disease course of sporadic AD.
Collapse
Affiliation(s)
- Lauren S Whyte
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Adeline A Lau
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
35
|
Bilousova T, Miller CA, Poon WW, Vinters HV, Corrada M, Kawas C, Hayden EY, Teplow DB, Glabe C, Albay R, Cole GM, Teng E, Gylys KH. Synaptic Amyloid-β Oligomers Precede p-Tau and Differentiate High Pathology Control Cases. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:185-98. [PMID: 26718979 DOI: 10.1016/j.ajpath.2015.09.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023]
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (p-tau) aggregates form the two discrete pathologies of Alzheimer disease (AD), and oligomeric assemblies of each protein are localized to synapses. To determine the sequence by which pathology appears in synapses, Aβ and p-tau were quantified across AD disease stages in parietal cortex. Nondemented cases with high levels of AD-related pathology were included to determine factors that confer protection from clinical symptoms. Flow cytometric analysis of synaptosome preparations was used to quantify Aβ and p-tau in large populations of individual synaptic terminals. Soluble Aβ oligomers were assayed by a single antibody sandwich enzyme-linked immunosorbent assay. Total in situ Aβ was elevated in patients with early- and late-stage AD dementia, but not in high pathology nondemented controls compared with age-matched normal controls. However, soluble Aβ oligomers were highest in early AD synapses, and this assay distinguished early AD cases from high pathology controls. Overall, synapse-associated p-tau did not increase until late-stage disease in human and transgenic rat cortex, and p-tau was elevated in individual Aβ-positive synaptosomes in early AD. These results suggest that soluble oligomers in surviving neocortical synaptic terminals are associated with dementia onset and suggest an amyloid cascade hypothesis in which oligomeric Aβ drives phosphorylated tau accumulation and synaptic spread. These results indicate that antiamyloid therapies will be less effective once p-tau pathology is developed.
Collapse
Affiliation(s)
- Tina Bilousova
- University of California Los Angeles School of Nursing, Los Angeles, California; Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California
| | - Carol A Miller
- Departments of Pathology, Neurology, and the Program in Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California
| | - Harry V Vinters
- Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California; Department of Pathology and Laboratory Medicine, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Maria Corrada
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California; Department of Neurology, University of California Irvine, Irvine, California
| | - Claudia Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California; Department of Neurology, University of California Irvine, Irvine, California; Department of Neurobiology & Behavior, University of California Irvine, Irvine, California
| | - Eric Y Hayden
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California
| | - David B Teplow
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Charles Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Ricardo Albay
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California
| | - Gregory M Cole
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California; Department of Medicine, University of California Los Angeles School of Medicine, Los Angeles, California; Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Edmond Teng
- Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California; Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, California; Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Karen H Gylys
- University of California Los Angeles School of Nursing, Los Angeles, California; Mary S. Easton Center for Alzheimer's Research at the University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
36
|
Amyloid-β peptides in interaction with raft-mime model membranes: a neutron reflectivity insight. Sci Rep 2016; 6:20997. [PMID: 26880066 PMCID: PMC4754687 DOI: 10.1038/srep20997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
The role of first-stage β–amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β–amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment.
Collapse
|
37
|
Glimepiride protects neurons against amyloid-β-induced synapse damage. Neuropharmacology 2016; 101:225-36. [DOI: 10.1016/j.neuropharm.2015.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
|
38
|
Region-specific effects of repeated ketamine administration on the presynaptic GABAergic neurochemistry in rat brain. Neurochem Int 2015; 91:13-25. [PMID: 26492822 DOI: 10.1016/j.neuint.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that clinical use of ketamine as a promising antidepressant can be accompanied by psychotic-like side effects. Although, the generation of such effects is thought to be attributed to dysfunction of prefrontal GABAergic interneurons, the mechanism underlying ketamine's propsychotic-like action is not fully understood. Due to wide spectrum of behavioral abnormalities, it is hypothesized that ketamine action is not limited to only cortical GABA metabolism but may also involve alterations in other functional brain areas. To test it, we treated rats with ketamine (30 mg/kg, i.p.) for 5 days, and next we analyzed GABA metabolizing enzymes in cortex, cerebellum, hippocampus and striatum. Our results demonstrated that diminished GAD67 expression in cortex, cerebellum (by ∼60%) and in hippocampus (by ∼40%) correlated with lowered protein level in these areas. The expression of GAD65 isoform decreased by ∼45% in striatum, but pronounced increase by ∼90% was observed in hippocampus. Consecutively, reduction in glutamate decarboxylase activity and GABA concentration were detected in cortex, cerebellum and striatum, but not in hippocampus. Ketamine administration decreased GABA transaminase protein in cortex and striatum (by ∼50% and 30%, respectively), which was reflected in diminished activity of the enzyme. Also, a significant drop in succinic semialdehyde dehydrogenase activity in cortex, cerebellum and striatum was present. These data suggest a reduced utilization of GABA for energetic purposes. In addition, we observed synaptic GABA release to be reduced by ∼30% from striatal terminals. It correlated with lowered KCl-induced Ca(2+) influx and decreased amount of L-type voltage-dependent calcium channel. Our results indicate that unique changes in GABA metabolism triggered by chronic ketamine treatment in functionally distinct brain regions may be involved in propsychotic-like effects of this drug.
Collapse
|
39
|
Williams RSB, Bate C. An in vitro model for synaptic loss in neurodegenerative diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling. Neuropharmacology 2015; 101:566-75. [PMID: 26116815 DOI: 10.1016/j.neuropharm.2015.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Many neurodegenerative diseases present the loss of synapses as a common pathological feature. Here we have employed an in vitro model for synaptic loss to investigate the molecular mechanism of a therapeutic treatment, valproic acid (VPA). We show that amyloid-β (Aβ), isolated from patient tissue and thought to be the causative agent of Alzheimer's disease, caused the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine-string protein from cultured mouse neurons. Aβ-induced synapse damage was reduced by pre-treatment with physiologically relevant concentrations of VPA (10 μM) and a structural variant propylisopropylacetic acid (PIA). These drugs also reduced synaptic damage induced by other neurodegenerative-associated proteins α-synuclein, linked to Lewy body dementia and Parkinson's disease, and the prion-derived peptide PrP82-146. Consistent with these effects, synaptic vesicle recycling was also inhibited by these proteins and protected by VPA and PIA. We show a mechanism for this damage through aberrant activation of cytoplasmic phospholipase A2 (cPLA2) that is reduced by both drugs. Furthermore, Aβ-dependent cPLA2 activation correlates with its accumulation in lipid rafts, and is likely to be caused by elevated cholesterol (stabilising rafts) and decreased cholesterol ester levels, and this mechanism is reduced by VPA and PIA. Such observations suggest that VPA and PIA may provide protection against synaptic damage that occurs during Alzheimer's and Parkinson's and prion diseases.
Collapse
Affiliation(s)
- Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA, UK.
| |
Collapse
|
40
|
Knight EM, Williams HN, Stevens AC, Kim SH, Kottwitz JC, Morant AD, Steele JW, Klein WL, Yanagisawa K, Boyd RE, Lockhart DJ, Sjoberg ER, Ehrlich ME, Wustman BA, Gandy S. Evidence that small molecule enhancement of β-hexosaminidase activity corrects the behavioral phenotype in Dutch APP(E693Q) mice through reduction of ganglioside-bound Aβ. Mol Psychiatry 2015; 20:109-17. [PMID: 25349165 PMCID: PMC5189927 DOI: 10.1038/mp.2014.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/07/2014] [Accepted: 08/28/2014] [Indexed: 01/08/2023]
Abstract
Certain mutant Alzheimer's amyloid-β (Aβ) peptides (that is, Dutch mutant APP(E693Q)) form complexes with gangliosides (GAβ). These mutant Aβ peptides may also undergo accelerated aggregation and accumulation upon exposure to GM2 and GM3. We hypothesized that increasing β-hexosaminidase (β-hex) activity would lead to a reduction in GM2 levels, which in turn, would cause a reduction in Aβ aggregation and accumulation. The small molecule OT1001 is a β-hex-targeted pharmacological chaperone with good bioavailability, blood-brain barrier penetration, high selectivity for β-hex and low cytotoxicity. Dutch APP(E693Q) transgenic mice accumulate oligomeric Aβ as they age, as well as Aβ oligomer-dose-dependent anxiety and impaired novel object recognition (NOR). Treatment of Dutch APP(E693Q) mice with OT1001 caused a dose-dependent increase in brain β-hex levels up to threefold over those observed at baseline. OT1001 treatment was associated with reduced anxiety, improved learning behavior in the NOR task and dramatically reduced GAβ accumulation in the subiculum and perirhinal cortex, both of which are brain regions required for normal NOR. Pharmacological chaperones that increase β-hex activity may be useful in reducing accumulation of certain mutant species of Aβ and in preventing the associated behavioral pathology.
Collapse
Affiliation(s)
- E M Knight
- Departments of Neurology and Psychiatry, and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - S H Kim
- Departments of Neurology and Psychiatry, and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J C Kottwitz
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A D Morant
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - W L Klein
- Department of Neurobiology and Cognitive Neurology, and Alzheimer's Disease Center, Northwestern University, Evanston, IL, USA
| | - K Yanagisawa
- Research Institute, National Center for Geriatrics and Gerontology, Obu City, Aichi, Japan
| | - R E Boyd
- Amicus Therapeutics, Cranbury, NJ, USA
| | | | | | - M E Ehrlich
- Departments of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - S Gandy
- Departments of Neurology and Psychiatry, and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY, USA
| |
Collapse
|
41
|
Nisbet RM, Polanco JC, Ittner LM, Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 2015; 129:207-20. [PMID: 25492702 PMCID: PMC4305093 DOI: 10.1007/s00401-014-1371-2] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023]
Abstract
Neurofibrillary tangles and amyloid plaques constitute the hallmark brain lesions of Alzheimer's disease (AD) patients. Tangles are composed of fibrillar aggregates of the microtubule-associated protein tau, and plaques comprise fibrillar forms of a proteolytic cleavage product, amyloid-β (Aβ). Although plaques and tangles are the end-stage lesions in AD, small oligomers of Aβ and tau are now receiving increased attention as they are shown to correlate best with neurotoxicity. One key question of debate, however, is which of these pathologies appears first and hence is upstream in the pathocascade. Studies suggest that there is an intense crosstalk between the two molecules and, based on work in animal models, there is increasing evidence that Aβ, at least in part, exerts its toxicity via tau, with the Src kinase Fyn playing a crucial role in this process. In other experimental paradigms, Aβ and tau have been found to exert both separate and synergistic modes of toxicity. The challenge, however, is to integrate these different scenarios into a coherent picture. Furthermore, the ability of therapeutic interventions targeting just one of these molecules, to successfully neutralize the toxicity of the other, needs to be ascertained to improve current therapeutic strategies, such as immunotherapy, for the treatment of AD. Although this article is not intended to provide a comprehensive review of the currently pursued therapeutic strategies, we will discuss what has been achieved by immunotherapy and, in particular, how the inherent limitations of this approach can possibly be overcome by novel strategies that involve single-chain antibodies.
Collapse
Affiliation(s)
- Rebecca M. Nisbet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Juan-Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Lars M. Ittner
- Dementia Research Unit, Wallace Wurth Building, The University of New South Wales, Sydney, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Yamamoto N, Arima H, Sugiura T, Hirate H, Kusama N, Suzuki K, Sobue K. Midazolam inhibits the formation of amyloid fibrils and GM1 ganglioside-rich microdomains in presynaptic membranes through the gamma-aminobutyric acid A receptor. Biochem Biophys Res Commun 2015; 457:547-53. [PMID: 25600806 DOI: 10.1016/j.bbrc.2015.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/08/2015] [Indexed: 01/23/2023]
Abstract
Recent studies have suggested that a positive correlation exists between surgical interventions performed under general anesthesia and the risk of developing Alzheimer's disease (AD) in the late postoperative period. It has been reported that amyloid β-protein (Αβ) fibrillogenesis, which is closely related to AD, is accelerated by exposure to anesthetics. However, the mechanisms underlying these effects remain uncertain. This study was designed to investigate whether the anesthetic midazolam affects Αβ fibrillogenesis, and if so, whether it acts through GM1 ganglioside (GM1) on the neuronal surface. Midazolam treatment decreased GM1 expression in the detergent-resistant membrane microdomains of neurons, and these effects were regulated by the gamma-aminobutyric acid-A receptor. Midazolam inhibited Αβ fibril formation from soluble Αβ on the neuronal surface. In addition, midazolam suppressed GM1-induced fibril formation in a cell-free system. Moreover, midazolam inhibited the formation of Αβ assemblies in synaptosomes isolated from aged mouse brains. These finding suggested that midazolam has direct and indirect inhibitory effects on Αβ fibrillogenesis.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa, Japan; Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | - Hajime Arima
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Takeshi Sugiura
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Hiroyuki Hirate
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Nobuyoshi Kusama
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazuya Sobue
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, Japan
| |
Collapse
|
43
|
Yang DS, Stavrides P, Saito M, Kumar A, Rodriguez-Navarro JA, Pawlik M, Huo C, Walkley SU, Saito M, Cuervo AM, Nixon RA. Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits. ACTA ACUST UNITED AC 2014; 137:3300-18. [PMID: 25270989 DOI: 10.1093/brain/awu278] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B inhibition on lysosomal proteases suggests that enhancing lysosomal proteolysis improves the overall environment of the lysosome and its clearance functions, which may be possibly relevant to a broader range of lysosomal disorders beyond Alzheimer's disease.
Collapse
Affiliation(s)
- Dun-Sheng Yang
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Philip Stavrides
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Mitsuo Saito
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Asok Kumar
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Jose A Rodriguez-Navarro
- 3 Department of Developmental and Molecular Biology, Institute for Ageing Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Monika Pawlik
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Steven U Walkley
- 4 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Mariko Saito
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| | - Ana M Cuervo
- 3 Department of Developmental and Molecular Biology, Institute for Ageing Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ralph A Nixon
- 1 Centre for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA 2 Department of Psychiatry, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA 5 Department of Cell Biology, New York University Langone Medical Centre, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
44
|
Martín MG, Pfrieger F, Dotti CG. Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 2014; 15:1036-52. [PMID: 25223281 DOI: 10.15252/embr.201439225] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell-cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function.
Collapse
Affiliation(s)
- Mauricio G Martín
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Frank Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Carlos G Dotti
- Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, Madrid, Spain
| |
Collapse
|
45
|
Matsuzaki K. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Acc Chem Res 2014; 47:2397-404. [PMID: 25029558 DOI: 10.1021/ar500127z] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD), a severe neurodegenerative disorder, causes more than half of dementia cases. According to the popular "Aβ hypothesis" to explain the mechanism of this disease, amyloid β-peptides (Aβ) of 39-43 amino acid residues aggregate and deposit onto neurons, igniting the neurotoxic cascade of the disease. Therefore, researchers studying AD would like to elucidate the mechanisms by which essentially water-soluble but hydrophobic Aβ aggregates under pathological conditions. Most researchers have investigated the aggregation of Aβ in aqueous solution, and they concluded that the final aggregation product, the amyloid fibrils, were less toxic than the component peptide oligomers. They consequently shifted their interests to more toxic "soluble oligomers", structures that form as intermediates or off-pathway products during the aggregation process. Some researchers have also investigated artificial oligomers prepared under nonphysiological conditions. In contrast to these "in solution" studies, we have focused on "membrane-mediated" amyloidogenesis. In an earlier study, other researchers identified a specific form of Aβ that was bound to monosialoganglioside GM1, a sugar lipid, in brains of patients who exhibited the early pathological changes associated with AD. This Account summarizes 15 years of our research on this topic. We have found that Aβ specifically binds to GM1 that occurs in clusters, but not when it is uniformly distributed. Clustering is facilitated by cholesterol. Upon binding, Aβ changes its conformation from a random coil to an α-helix-rich structure. A CH-π interaction between the aromatic side chains of Aβ and carbohydrate moieties appended to GM1 appears to be important for binding. In addition, as Aβ accumulates and reaches its first threshold concentration (Aβ/GM1 = ∼0.013), aggregated β-sheets of ∼15 molecules appear and coexist with the helical form. However, this β-structure is stable and does not form larger aggregates. When the disease progresses further and the Aβ/GM1 ratio exceeds ∼0.044, the β-structure converts to a second β-structure that can seed aggregates. The seed recruits monomers from the aqueous phase to form toxic amyloid fibrils that have larger surface hydrophobicity and can contain antiparallel β-sheets. In contrast, amyloid fibrils formed in aqueous solution are less toxic and have parallel β-sheets. The less polar environments of GM1 clusters play an important role in the formation of these toxic fibrils. Membranes that contain GM1 clusters not only accelerate the aggregation of Aβ by locally concentrating Aβ molecules but also generate amyloid fibrils with unique structures and significant cytotoxicity. The inhibition of this aggregation cascade could be a promising strategy for the development of AD-modulating therapies.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29
Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
46
|
Yamamoto N, Tanida M, Kasahara R, Sobue K, Suzuki K. Leptin inhibits amyloid β-protein fibrillogenesis by decreasing GM1 gangliosides on the neuronal cell surface through PI3K/Akt/mTOR pathway. J Neurochem 2014; 131:323-32. [PMID: 25039425 DOI: 10.1111/jnc.12828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/07/2023]
Abstract
Leptin is a centrally acting hormone that controls metabolic pathways. Recent epidemiological studies suggest that plasma leptin is protective against Alzheimer's disease. However, the mechanism that underlies this effect remains uncertain. To investigate whether leptin inhibits the assembly of amyloid β-protein (Aβ) on the cell surface of neurons, we treated primary neurons with leptin. Leptin treatment decreased the GM1 ganglioside (GM1) levels in the detergent-resistant membrane microdomains (DRMs) of neurons. The increase in GM1 expression induced by leptin was inhibited after pre-treatment with inhibitors of phosphatidylinositol 3-kinase (LY294002), Akt (triciribine) and the mammalian target of rapamycin (i.e. rapamycin), but not by an inhibitor of extracellular signal-regulated kinase (PD98059). In addition, pre-treatment with these reagents blocked the induction of GM1 in DRMs by leptin. Furthermore, Aβ assembly on the cell surface of neurons was inhibited greatly after treatment with leptin. This reduction was markedly inhibited after pre-treatment with LY294002, triciribine, and rapamycin. These results suggest that leptin significantly inhibits Aβ assembly by decreasing GM1 expression in DRMs of the neuronal surface through the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway. These findings highlight the importance of understanding the function of leptin in AD brains. In this study, our aim was to determine whether leptin regulates the expression and localization of GM1 on the neuronal membrane and if it induces the formation of Aβ assembly on the cell surface of neurons. Our results suggest that leptin regulates the expression of GM1 in DRMs of the neuronal membranes. Moreover, leptin does not seem to facilitate fibrillogenesis of exogenously added soluble Aβ from the cell surface of neurons.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa, Japan; Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
47
|
Oikawa N, Hatsuta H, Murayama S, Suzuki A, Yanagisawa K. Influence of APOE genotype and the presence of Alzheimer's pathology on synaptic membrane lipids of human brains. J Neurosci Res 2014; 92:641-50. [PMID: 24446209 DOI: 10.1002/jnr.23341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/28/2013] [Accepted: 11/09/2013] [Indexed: 12/26/2022]
Abstract
The APOE genotype is the major risk factor for Alzheimer's disease (AD); however, it remains unclarified how the ε4 allele accelerates whereas the ε2 allele suppresses AD development, compared with the more common ε3 allele. On the basis of the previous finding that the assembly of the amyloid-β protein (Aβ) into fibrils in the brain, an early and invariable pathological feature of AD, depends on the lipid environment, we determined the levels of synaptic membrane lipids in aged individuals of different APOE genotypes. In the comparison between amyloid-free ε2/ε3 and ε3/ε3 brains, the presence of the ε2 allele significantly decreased the level of cholesterol. Alternatively, in the comparison among ε3/ε3 brains, the presence of AD pathology substantially decreased the levels of cholesterol. This study suggests that the ε2 allele suppresses the initiation of AD development by lowering the cholesterol levels in synaptic membranes.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Drug Discovery, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | | | | | | | | |
Collapse
|
48
|
Marquet-de Rougé P, Clamagirand C, Facchinetti P, Rose C, Sargueil F, Guihenneuc-Jouyaux C, Cynober L, Moinard C, Allinquant B. Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1589-1606. [PMID: 22918749 PMCID: PMC3776113 DOI: 10.1007/s11357-012-9462-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
The levels of molecules crucial for signal transduction processing change in the brain with aging. Lipid rafts are membrane microdomains involved in cell signaling. We describe here substantial biophysical and biochemical changes occurring within the rafts in hippocampus neurons from aging wild-type rats and mice. Using continuous sucrose density gradients, we observed light-, medium-, and heavy raft subpopulations in young adult rodent hippocampus neurons containing very low levels of amyloid precursor protein (APP) and almost no caveolin-1 (CAV-1). By contrast, old rodents had a homogeneous age-specific high-density caveolar raft subpopulation containing significantly more cholesterol (CHOL), CAV-1, and APP. C99-APP-Cter fragment detection demonstrates that the first step of amyloidogenic APP processing takes place in this caveolar structure during physiological aging of the rat brain. In this age-specific caveolar raft subpopulation, levels of the C99-APP-Cter fragment are exponentially correlated with those of APP, suggesting that high APP concentrations may be associated with a risk of large increases in beta-amyloid peptide levels. Citrulline (an intermediate amino acid of the urea cycle) supplementation in the diet of aged rats for 3 months reduced these age-related hippocampus raft changes, resulting in raft patterns tightly close to those in young animals: CHOL, CAV-1, and APP concentrations were significantly lower and the C99-APP-Cter fragment was less abundant in the heavy raft subpopulation than in controls. Thus, we report substantial changes in raft structures during the aging of rodent hippocampus and describe new and promising areas of investigation concerning the possible protective effect of citrulline on brain function during aging.
Collapse
Affiliation(s)
- Perrine Marquet-de Rougé
- />EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Christine Clamagirand
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Patricia Facchinetti
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Christiane Rose
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | | | - Chantal Guihenneuc-Jouyaux
- />EA 4064, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Luc Cynober
- />EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
- />Service de Biochimie Hôtel-Dieu et Cochin, AP-HP, Paris, France
| | - Christophe Moinard
- />EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Bernadette Allinquant
- />INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
49
|
Propofol and thiopental suppress amyloid fibril formation and GM1 ganglioside expression through the γ-aminobutyric acid A receptor. Anesthesiology 2013; 118:1408-16. [PMID: 23422796 DOI: 10.1097/aln.0b013e31828afc16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The incidence of Alzheimer disease may increase after surgical interventions. Amyloid β-protein (Aβ) fibrillogenesis, which is closely related to Alzheimer disease, is reportedly accelerated by exposure to anesthetics. However, the effects of GM1 ganglioside (GM1) on Αβ fibrillogenesis have not yet been reported. The current study was designed to examine whether the anesthetics propofol and thiopental are associated with Αβ assembly and GM1 expression on the neuronal cell surface. METHODS PC12N cells and cultured neuronal cells were treated with propofol or thiopental, and GM1 expression in treated and untreated cells was determined by the specific binding of horseradish peroxidase-conjugated cholera toxin subunit B (n = 5). The effects of an inhibitor of the γ-aminobutyric acid A receptor was also examined (n= 5). In addition, the effects of the anesthetics on GM1 liposome-induced Αβ assembly were investigated (n = 5). Finally, the neurotoxicity of the assembled Αβ fibrils was studied by the lactate dehydrogenase release assay (n = 6). RESULTS Propofol (31.2 ± 4.7%) and thiopental (34.6 ± 10.5%) decreased GM1 expression on the cell surface through the γ-aminobutyric acid A receptor. The anesthetics inhibited Αβ fibril formation from soluble Αβ in cultured neurons. Moreover, propofol and thiopental suppressed GM1-induced fibril formation in a cell-free system (propofol, 75.8 ± 1.9%; thiopental, 83.6 ± 1.9%) and reduced the neurotoxicity of a mixture containing Aβ and GM1 liposomes (propofol, 35.3 ± 16.4%; thiopental, 21.3 ± 11.6%). CONCLUSIONS Propofol and thiopental have direct and indirect inhibitory effects on Αβ fibrillogenesis.
Collapse
|
50
|
Tai LM, Bilousova T, Jungbauer L, Roeske SK, Youmans KL, Yu C, Poon WW, Cornwell LB, Miller CA, Vinters HV, Van Eldik LJ, Fardo DW, Estus S, Bu G, Gylys KH, Ladu MJ. Levels of soluble apolipoprotein E/amyloid-β (Aβ) complex are reduced and oligomeric Aβ increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J Biol Chem 2013; 288:5914-26. [PMID: 23293020 DOI: 10.1074/jbc.m112.442103] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human apolipoprotein E (apoE) isoforms may differentially modulate amyloid-β (Aβ) levels. Evidence suggests physical interactions between apoE and Aβ are partially responsible for these functional effects. However, the apoE/Aβ complex is not a single static structure; rather, it is defined by detection methods. Thus, literature results are inconsistent and difficult to interpret. An ELISA was developed to measure soluble apoE/Aβ in a single, quantitative method and was used to address the hypothesis that reduced levels of soluble apoE/Aβ and an increase in soluble Aβ, specifically oligomeric Aβ (oAβ), are associated with APOE4 and AD. Previously, soluble Aβ42 and oAβ levels were greater with APOE4 compared with APOE2/APOE3 in hippocampal homogenates from EFAD transgenic mice (expressing five familial AD mutations and human apoE isoforms). In this study, soluble apoE/Aβ levels were lower in E4FAD mice compared with E2FAD and E3FAD mice, thus providing evidence that apoE/Aβ levels isoform-specifically modulate soluble oAβ clearance. Similar results were observed in soluble preparations of human cortical synaptosomes; apoE/Aβ levels were lower in AD patients compared with controls and lower with APOE4 in the AD cohort. In human CSF, apoE/Aβ levels were also lower in AD patients and with APOE4 in the AD cohort. Importantly, although total Aβ42 levels decreased in AD patients compared with controls, oAβ levels increased and were greater with APOE4 in the AD cohort. Overall, apoE isoform-specific formation of soluble apoE/Aβ modulates oAβ levels, suggesting a basis for APOE4-induced AD risk and a mechanistic approach to AD biomarkers.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|