1
|
Sharma V, Verma R, Singh TG. Targeting hypoxia-related pathobiology in Alzheimer's disease: strategies for prevention and treatment. Mol Biol Rep 2025; 52:416. [PMID: 40266407 DOI: 10.1007/s11033-025-10520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION Alzheimer's Disease (AD) is a neurodegenerative condition characterised by cognitive decline and memory impairment. Recent research highlights the important role of hypoxia, a state of insufficient oxygen availability, in exacerbating AD pathogenesis. MATERIALS AND METHODS Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the role of hypoxia mediated pathobiology in AD. Only peerreviewed articles published in reputable journals in English language were included. Conversely, non-peer-reviewed articles, conference abstracts, and editorials were excluded, along with studies lacking experimental or clinical relevance or those unavailable in full text. CONCLUSION Hypoxia exacerbates core pathological features such as oxidative stress, neuroinflammation, mitochondrial dysfunction, amyloid-beta (Aβ) dysregulation, and hyperphosphorylation of tau protein. These interlinked mechanisms establish a self-perpetuating cycle of neuronal damage, accelerating disease progression. Addressing hypoxia as a modifiable risk factor offers potential for both prevention and treatment of AD. Exploring hypoxia and the HIF signalling pathway may help counteract the neuropathological and symptomatic effects of neurodegeneration.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Reet Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Gambarotto L, Wosnitzka E, Nikoletopoulou V. The Life and Times of Brain Autophagic Vesicles. J Mol Biol 2025:169105. [PMID: 40154918 DOI: 10.1016/j.jmb.2025.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Most of the knowledge on the mechanisms and functions of autophagy originates from studies in yeast and other cellular models. How this valuable information is translated to the brain, one of the most complex and evolving organs, has been intensely investigated. Fueled by the tight dependence of the mammalian brain on autophagy, and the strong links of human brain diseases with autophagy impairment, the field has revealed adaptations of the autophagic machinery to the physiology of neurons and glia, the highly specialized cell types of the brain. Here, we first provide a detailed account of the tools available for studying brain autophagy; we then focus on the recent advancements in understanding how autophagy is regulated in brain cells, and how it contributes to their homeostasis and integrated functions. Finally, we discuss novel insights and open questions that the new knowledge has raised in the field.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Khowdiary MM, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhenawy AA, Rashwan EK, Alexiou A, Papadakis M, Fetoh MEAE, Batiha GES. The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Neuromolecular Med 2025; 27:20. [PMID: 40032716 PMCID: PMC11876215 DOI: 10.1007/s12017-025-08836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) and atherosclerosis (AS) are two chronic diseases with seemingly distinct pathologies. However, emerging research points to a bidirectional relationship driven by common mechanisms, such as inflammation, oxidative stress, and dysregulation of Amyloid-Beta (Aβ). This review focuses on the role of Aβ as a critical molecular link between AD and AS, emphasizing its contribution to neuronal impairment and vascular damage. Specifically, peripheral Aβ produced in the pancreas and skeletal muscle tissues exacerbates AS by promoting endothelial dysfunction and insulin resistance (IR). Furthermore, AS accelerates AD progression by impairing cerebral blood flow and inducing chronic hypoxia, causing Aβ accumulation. This review critically evaluates recent findings, highlighting inconsistencies in clinical studies and suggesting future research directions. Understanding the bidirectional influence of AD and AS could pave the way for novel therapeutic approaches targeting shared molecular pathways, particularly emphasizing Aβ clearance and inflammation.
Collapse
Affiliation(s)
- Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, 24382, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO. Box13, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Chemistry Department, Faculty of Science, AlBaha University, 65731, Al Bahah, Saudi Arabia
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Akaka, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, 11741, Athens, Attiki, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- University Hospital, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohammed E Abo-El Fetoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
4
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
5
|
Sacchini S. Neurodegenerative Diseases: What Can Be Learned from Toothed Whales? Neurosci Bull 2025; 41:326-338. [PMID: 39485652 PMCID: PMC11794736 DOI: 10.1007/s12264-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.
Collapse
Affiliation(s)
- Simona Sacchini
- Department of Morphology, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de San Cristóbal, c/ Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
6
|
Porel P, Bala K, Aran KR. Exploring the role of HIF-1α on pathogenesis in Alzheimer's disease and potential therapeutic approaches. Inflammopharmacology 2025; 33:669-678. [PMID: 39465478 DOI: 10.1007/s10787-024-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a crucial transcription factor that regulates cellular responses to low oxygen levels (hypoxia). In Alzheimer's disease (AD), emerging evidence suggests a significant involvement of HIF-1α in disease pathogenesis. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to neuronal dysfunction and cognitive decline. HIF-1α is implicated in AD through its multifaceted roles in various cellular processes. Firstly, in response to hypoxia, HIF-1α promotes the expression of genes involved in angiogenesis, which is crucial for maintaining cerebral blood flow and oxygen delivery to the brain. However, in the context of AD, dysregulated HIF-1α activation may exacerbate cerebral hypoperfusion, contributing to neuronal damage. Moreover, HIF-1α is implicated in the regulation of Aβ metabolism. It can influence the production and clearance of Aβ peptides, potentially modulating their accumulation and toxicity in the brain. Additionally, HIF-1α activation has been linked to neuroinflammation, a key feature of AD pathology. It can promote the expression of pro-inflammatory cytokines and exacerbate neuronal damage. Furthermore, HIF-1α may play a role in synaptic plasticity and neuronal survival, which are impaired in AD. Dysregulated HIF-1α signaling could disrupt these processes, contributing to cognitive decline and neurodegeneration. Overall, the involvement of HIF-1α in various aspects of AD pathophysiology highlights its potential as a therapeutic target. Modulating HIF-1α activity could offer novel strategies for mitigating neurodegeneration and preserving cognitive function in AD patients. However, further research is needed to elucidate the precise mechanisms underlying HIF-1α dysregulation in AD and to develop targeted interventions.
Collapse
Affiliation(s)
- Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
7
|
Heller LI, Lowe AS, Del Rosario Hernández T, Gore SV, Chatterjee M, Creton R. Target the Heart: a new axis of Alzheimer's disease prevention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634057. [PMID: 39975163 PMCID: PMC11838187 DOI: 10.1101/2025.01.27.634057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cyclosporine A and other calcineurin inhibitors have been identified as prospective treatments for preventing Alzheimer's disease. Utilizing a neural network model, Z-LaP Tracker, we previously found that calcineurin inhibitors elicit a unique behavioral profile in zebrafish larvae characterized by increased activity, acoustic hyperexcitability, and reduced visually guided behaviors. Screening a large library of FDA-approved drugs using Z-LaP Tracker revealed a cluster of 65 drugs demonstrating a cyclosporine A-like behavioral profile. 14 of these drugs were heart medications, including angiotensin receptor blockers, beta-blockers, alpha-adrenergic receptor antagonists, and a statin. This suggests some heart medications may be effective in preventing or ameliorating Alzheimer's disease pathology. Other studies have shown that many of these 14 drugs directly or indirectly inhibit the calcineurin-NFAT pathway, alike cyclosporine A. Dual administration of the heart medications with cyclosporine A in Z-LaP Tracker revealed synergistic effects: lower doses of each heart medication could be delivered in conjunction with a lower dose of cyclosporine A to evoke a similar or larger behavioral effect than higher doses of each drug independently. This indicates that co-administering a low dose of cyclosporine A with select cardiac drugs could be a potentially effective treatment strategy for Alzheimer's disease and cardiovascular dysfunction, while mitigating side effects associated with higher doses of cyclosporine A. Given that heart disease precedes Alzheimer's disease in many patients, physicians may be able to create a treatment regimen that simultaneously addresses both conditions. Our results suggest that cyclosporine A combined with simvastatin, irbesartan, cilostazol, doxazosin, or nebivolol are the most promising candidates for future exploration.
Collapse
Affiliation(s)
- Lawrence I Heller
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Allison S Lowe
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Mallika Chatterjee
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, 201303, India
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
8
|
Huang S, Nunez J, Toresco DL, Wen C, Slotabec L, Wang H, Zhang H, Rouhi N, Adenawoola MI, Li J. Alterations in the inflammatory homeostasis of aging-related cardiac dysfunction and Alzheimer's diseases. FASEB J 2025; 39:e70303. [PMID: 39758048 DOI: 10.1096/fj.202402725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is well known among the elderly and has a profound impact on both patients and their families. Increasing research indicates that AD is a systemic disease, with a strong connection to cardiovascular disease. They share common genetic factors, such as mutations in the presenilin (PS1 and PS2) and the apolipoprotein E (APOE) genes. Cardiovascular conditions can lead to reduced cerebral blood flow and increased oxidative stress. These factors contribute to the accumulation of Aβ plaques and the formation of abnormal tau protein tangles, which are both key pathological features of AD. Additionally, Aβ deposits and abnormal protein responses have been observed in cardiomyocytes as well as in peripheral tissues. The toxic Aβ deposition intensifies damage to the microvascular structure associated with blood-brain barrier disruption and the initiation of neuroinflammation, which may accelerate the onset of neurocognitive deficits and cardiovascular dysfunction. Thus, we discuss the main mechanisms linking AD and cardiac dysfunction to enhance our understanding of these conditions. Ultimately, insights into the brain-heart axis may help us develop effective treatment strategies in the future.
Collapse
Affiliation(s)
- Shuli Huang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeremiah Nunez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Dai Lan Toresco
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haibei Zhang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
9
|
Ning Z, Zhong X, Wang Y, Hu D, Tang X, Deng M. Cerebral ischemic injury impairs autophagy and exacerbates cognitive impairment in APP/PS1 mice. Int Immunopharmacol 2024; 143:113581. [PMID: 39522311 DOI: 10.1016/j.intimp.2024.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Autophagy plays a pivotal role in the pathogenesis and progression of Alzheimer's disease (AD). Oxidative stress and neuroinflammation involved in autophagy are associated with the cerebral ischemia-induced exacerbation of cognitive deficits in individuals with AD. APP/PS1 mice underwent bilateral common carotid artery clamping for 15 min. The degrees of Aβ deposition, oxidative stress, neuroinflammation, and neuronal and synaptic loss after cerebral ischemia were detected. Autophagy levels were assessed by RT-qPCR, western blotting, immunofluorescence staining, and transmission electron microscopy. DPEs occurring in the hippocampus of APP/PS1 mice after cerebral ischemia were analyzed via label-free proteomics. The present study demonstrated that cerebral ischemia exacerbates learning and memory deficits in APP/PS1 mice. Cerebral ischemia aggravated the cognitive impairment in APP/PS1 mice by worsening neuronal and synaptic loss through damage to intracellular autophagy, increased oxidative stress, and neuroinflammation. Notably, cerebral ischemia interfered with mitochondrial and nuclear transport functions in APP/PS1 transgenic mice, thereby aggravating cognitive deficits. Cellular transport functions may be a target for preventing AD progression. In summary, autophagy is impaired in APP/PS1 mice compared with WT mice, and oxidative stress and neuroinflammation caused by cerebral ischemia exacerbate autophagy-induced damage and are responsible for cognitive decline. Label-free proteomics indicated that cerebral ischemia results in abnormal Abcb8, Sestd1, TPR, and Rab8a protein expression in the hippocampus of APP/PS1 transgenic mice and that an imbalance of mitochondrial transport and nuclear transport functions exacerbates cognitive deficits. Improving autophagy and restoring organelle transport may be targets for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Zhenqiu Ning
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, China, Guangzhou 510120, PR China
| | - Xiaoqin Zhong
- Department of Rheumatology, Baoan Hospital of Traditional Chinese Medicine Affiliated with Guangzhou University of Chinese Medicine, Shenzhen 518100, PR China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Dafeng Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Xialin Tang
- Department of Neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Minzhen Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| |
Collapse
|
10
|
Jiménez-Ruiz A, Aguilar-Fuentes V, Becerra-Aguiar NN, Roque-Sanchez I, Ruiz-Sandoval JL. Vascular cognitive impairment and dementia: a narrative review. Dement Neuropsychol 2024; 18:e20230116. [PMID: 39318380 PMCID: PMC11421556 DOI: 10.1590/1980-5764-dn-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 06/09/2024] [Indexed: 09/26/2024] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of cognitive impairment after Alzheimer's disease. The VCI spectrum involves a decline in cognition attributable to vascular pathologies (e.g., large infarcts or hemorrhages, microinfarcts, microbleeds, lacunar infarcts, white matter hyperintensities, and perivascular space dilation). Pathophysiological mechanisms include direct tissue injury, small vessel disease, inflammaging (inflammation + aging), atrophy, and altered neurotransmission. VCI is diagnosed using distinct clinical and radiological criteria. It may lead to long-term disability and reduced quality of life. An essential factor for reducing cognitive impairment incidence is preventing stroke by managing traditional and non-traditional cerebrovascular risk factors. This article reviews the spectrum of VCI, epidemiology, risk factors, pathophysiology, diagnosis, available treatment, and preventive strategies.
Collapse
Affiliation(s)
- Amado Jiménez-Ruiz
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Victor Aguilar-Fuentes
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Naomi Nazareth Becerra-Aguiar
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Ivan Roque-Sanchez
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
| | - Jose Luis Ruiz-Sandoval
- Stroke & Cerebrovascular Disease Clinic, Hospital Civil Fray Antonio Alcalde, Neurology Department, Guadalajara, Jalisco, Mexico
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Neurociencias, Guadalajara, Jalisco, Mexico
| |
Collapse
|
11
|
Ogbu I, Menon T, Chahil V, Kahlon A, Devanand D, Kalra DK. Sleep Disordered Breathing and Neurocognitive Disorders. J Clin Med 2024; 13:5001. [PMID: 39274214 PMCID: PMC11396397 DOI: 10.3390/jcm13175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Sleep-disordered breathing (SDB), which includes conditions such as obstructive sleep apnea (OSA) and central sleep apnea (CSA), is an independent risk factor for cerebral small vessel disease (CSVD), stroke, heart failure, arrhythmias, and other cardiovascular disorders. The influence of OSA on brain structure and cognitive function has become an essential focus in the heart-brain axis, given its potential role in developing neurocognitive abnormalities. In this review, we found that OSA plays a significant role in the cardio-neural pathway that leads to the development of cerebral small vessel disease and neurocognitive decline. Although data is still limited on this topic, understanding the critical role of OSA in the heart-brain axis could lead to the utilization of imaging modalities to simultaneously identify early signs of pathology in both organ systems based on the known OSA-driven pathological pathways that result in a disease state in both the cardiovascular and cerebrovascular systems. This narrative review aims to summarize the current link between OSA and neurocognitive disorders, cardio-neural pathophysiology, and the treatment options available for patients with OSA-related neurocognitive disorders.
Collapse
Affiliation(s)
- Ikechukwu Ogbu
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | - Tushar Menon
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | - Vipanpreet Chahil
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | - Amrit Kahlon
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Dinesh K Kalra
- Department of Cardiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
12
|
Shi Z, Stern N, Liu J, Tuomilehto J, Kronfeld-Schor N, El-Osta A, Alberti G, Chai Z, Bilu C, Einat H, Marcus Y, Zimmet P. The circadian syndrome is a predictor for cognition impairment in middle-aged adults: Comparison with the metabolic syndrome. Diabetes Metab Res Rev 2024; 40:e3827. [PMID: 38837323 DOI: 10.1002/dmrr.3827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
AIMS Circadian syndrome (CircS) is considered a better predictor for cardiovascular disease than the metabolic syndrome (MetS). We aim to examine the associations between CircS and MetS with cognition in Chinese adults. METHOD We used the data of 8546 Chinese adults aged ≥40 years from the 2011 China Health and Retirement Longitudinal Study. MetS was defined using harmonised criteria. CircS included the components of MetS plus short sleep and depression. The cut-off for CircS was set as ≥4. Global cognitive function was assessed during the face-to-face interview. RESULTS CircS and MetS had opposite associations with the global cognition score and self-reported poor memory. Compared with individuals without the CircS and MetS, the regression coefficients (95%CI) for global cognition score were -1.02 (-1.71 to -0.34) for CircS alone and 0.52 (0.09 to 0.96) for MetS alone in men; -1.36 (-2.00 to -0.72) for CircS alone and 0.60 (0.15 to 1.06) for MetS alone in women. Having CircS alone was 2.53 times more likely to report poor memory in men (95%CI 1.80-3.55) and 2.08 times more likely in women (95%CI 1.54-2.81). In contrast, having MetS alone was less likely to report poor memory (OR 0.64 (0.49-0.84) in men and 0.65 (0.52-0.81) in women). People with CircS and MetS combined were more likely to have self-reported poor memory. CONCLUSIONS CircS is a strong and better predictor for cognition impairment than MetS in Chinese middle-aged adults. MetS without short sleep and depression is associated with better cognition.
Collapse
Affiliation(s)
- Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Naftali Stern
- Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jianghong Liu
- University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
| | - Jaakko Tuomilehto
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Assam El-Osta
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Epigenetics in Human Health and Disease, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - George Alberti
- Department of Endocrinology and Metabolism, Imperial College London, London, UK
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Haim Einat
- School of Behavioural Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - Yonit Marcus
- Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Sagol Center for Epigenetics of Aging and Metabolism, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Patel V, Edison P. Cardiometabolic risk factors and neurodegeneration: a review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2024; 95:581-589. [PMID: 38290839 PMCID: PMC11103343 DOI: 10.1136/jnnp-2023-332661] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
A growing body of evidence suggests that cardiometabolic risk factors play a significant role in Alzheimer's disease (AD). Diabetes, obesity and hypertension are highly prevalent and can accelerate neurodegeneration and perpetuate the burden of AD. Insulin resistance and enzymes including insulin degrading enzymes are implicated in AD where breakdown of insulin is prioritised over amyloid-β. Leptin resistance and inflammation demonstrated by higher plasma and central nervous system levels of interleukin-6 (IL-6), IL-1β and tumour necrosis factor-α, are mechanisms connecting obesity and diabetes with AD. Leptin has been shown to ameliorate AD pathology and enhance long-term potentiation and hippocampal-dependent cognitive function. The renin-aldosterone angiotensin system, involved in hypertension, has been associated with AD pathology and neurotoxic reactive oxygen species, where angiotensin binds to specific angiotensin-1 receptors in the hippocampus and cerebral cortex. This review aims to consolidate the evidence behind putative processes stimulated by obesity, diabetes and hypertension, which leads to increased AD risk. We focus on how novel knowledge can be applied clinically to facilitate recognition of efficacious treatment strategies for AD.
Collapse
Affiliation(s)
- Vijay Patel
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
14
|
Singrang N, Nopparat C, Panmanee J, Govitrapong P. Melatonin Inhibits Hypoxia-Induced Alzheimer's Disease Pathogenesis by Regulating the Amyloidogenic Pathway in Human Neuroblastoma Cells. Int J Mol Sci 2024; 25:5225. [PMID: 38791263 PMCID: PMC11121645 DOI: 10.3390/ijms25105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of β-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aβ) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.
Collapse
Affiliation(s)
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | | |
Collapse
|
15
|
Mitroshina EV, Vedunova MV. The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration. Int J Mol Sci 2024; 25:4581. [PMID: 38731800 PMCID: PMC11083463 DOI: 10.3390/ijms25094581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia;
| | | |
Collapse
|
16
|
Florance I, Ramasubbu S. Regulation of genes involved in the metabolic adaptation of murine microglial cells in response to elevated HIF-1α mediated activation. Immunogenetics 2024; 76:93-108. [PMID: 38326657 DOI: 10.1007/s00251-024-01334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Microglia cells are activated in response to different stress signals. Several metabolic adaptations underlie microglia activation in the brain. Among these, in conditions like ischemic stroke and, hypoxic stress stimuli activate microglia cells. Hypoxic stress is mediated by HIF-1α. Although HIF-1α has been implicated in the alteration of metabolic pathways, changes in microglia lipid metabolism during M1 activation of microglia induced by elevated HIF-1α levels are yet to be understood. This can also merit interest in the development of novel targets to mitigate chronic inflammation. Our study aims to elucidate the transcriptional regulation of metabolic pathways in microglia cells during HIF-1α mediated activation. To study the adaptations in the metabolic pathways we induced microglia activation, by activating HIF-1α. Here, we show that microglia cells activated in response to elevated HIF-1α require ongoing lipogenesis and fatty acid breakdown. Notably, autophagy is activated during the initial stages of microglia activation. Inhibition of autophagy in activated microglia affects their viability and phagocytic activity. Collectively, our study expands the understanding of the molecular link between autophagy, lipid metabolism, and inflammation during HIF-1α mediated microglial activation that can lead to the development of promising strategies for controlling maladaptive activation states of microglia responsible for neuroinflammation. Together, our findings suggest that the role of HIF-1α in regulating metabolic pathways during hypoxia in microglia is beyond optimization of glucose utilization and distinctly regulates lipid metabolism during pro-inflammatory activation.
Collapse
Affiliation(s)
- Ida Florance
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Seenivasan Ramasubbu
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
Yuan M, Feng Y, Zhao M, Xu T, Li L, Guo K, Hou D. Identification and verification of genes associated with hypoxia microenvironment in Alzheimer's disease. Sci Rep 2023; 13:16252. [PMID: 37759083 PMCID: PMC10533856 DOI: 10.1038/s41598-023-43595-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
As the incidence of Alzheimer's disease (AD) increases year by year, more people begin to study this disease. In recent years, many studies on reactive oxygen species (ROS), neuroinflammation, autophagy, and other fields have confirmed that hypoxia is closely related to AD. However, no researchers have used bioinformatics methods to study the relationship between AD and hypoxia. Therefore, our study aimed to screen the role of hypoxia-related genes in AD and clarify their diagnostic significance. A total of 7681 differentially expressed genes (DEGs) were identified in GSE33000 by differential expression analysis and cluster analysis. Weighted gene co-expression network analysis (WGCNA) was used to detect 9 modules and 205 hub genes with high correlation coefficients. Next, machine learning algorithms were applied to 205 hub genes and four key genes were selected. Through the verification of external dataset and quantitative real-time PCR (qRT-PCR), the AD diagnostic model was established by ANTXR2, BDNF and NFKBIA. The bioinformatics analysis results suggest that hypoxia-related genes may increase the risk of AD. However, more in-depth studies are still needed to investigate their association, this article would guide the insights and directions for further research.
Collapse
Affiliation(s)
- Mingyang Yuan
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Yanjin Feng
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Mingri Zhao
- School of Life Sciences, Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410000, China
| | - Ting Xu
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Liuhong Li
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Ke Guo
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Deren Hou
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China.
| |
Collapse
|
18
|
Sharma M, Subramaniam A, Sengar K, Suri V, Agrawal D, Chakraborty N, Pandey RM, Malhotra R, Lalwani S. Pathological Spectrum and β-APP Immunoreactivity as a Diagnostic Tool of Diffuse Axonal Injury following Traumatic Brain Injury: A Novel Classification. J Lab Physicians 2023; 15:399-408. [PMID: 37564231 PMCID: PMC10411120 DOI: 10.1055/s-0043-1761926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Aim Different deposition patterns and grading systems used to define and identify DAI remain discordant and to date these are a challenge in clinical practice. Our main objective was to study the post-mortem axonal changes and develop a grading system to identify DAI on the basis of histopathological and immunoreactive β-amyloid precursor protein (β-APP) observations in severe TBI cases. Methods Prospective study with 35 decedents with sTBI (GCS score ≤ 8) was conducted and samples were collected from three different sites-corpus callosum, thalamus and brain stem. Serial sections from each site were stained with hematoxylin and eosin (H&E), and immunohistochemistry (IHC) of β-APP. Results We developed a grading system based on histopathological characteristics to assess the overall damage of axonal injury. We found maximum histopathological changes in cases with prolonged stay. Corpus callosum showed maximum changes in both gradings. Curiously, we also detected axonal swellings with H&E staining. Usually neglected, the thalamus also showed significant histopathological and immunoreactive changes for sTBI. Conclusion Our study based on histopathological and β-APP scoring system to define and identify DAI thus facilitates accurate diagnosis of DAI post mortem, which has forensic implications, and may further contribute toward survival and improvement of quality of life of sTBI patients.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Division of Forensic Pathology and Molecular DNA Laboratory, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Arulselvi Subramaniam
- Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Kangana Sengar
- Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, Center for Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Nabarun Chakraborty
- Division of Forensic Pathology and Molecular DNA Laboratory, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindra Mohan Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Malhotra
- Department of Orthopaedics, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Lalwani
- Division of Forensic Pathology and Molecular DNA Laboratory, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Liu C, Nikain C, Li YM. γ-Secretase fanning the fire of innate immunity. Biochem Soc Trans 2023; 51:1597-1610. [PMID: 37449907 PMCID: PMC11212119 DOI: 10.1042/bst20221445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Innate immunity is the first line of defense against pathogens, alerting the individual cell and surrounding area to respond to this potential invasion. γ-secretase is a transmembrane protease complex that plays an intricate role in nearly every stage of this innate immune response. Through regulation of pattern recognition receptors (PRR) such as TREM2 and RAGE γ-secretase can modulate pathogen recognition. γ-secretase can act on cytokine receptors such as IFNαR2 and CSF1R to dampen their signaling capacity. While γ-secretase-mediated regulated intramembrane proteolysis (RIP) can further moderate innate immune responses through downstream signaling pathways. Furthermore, γ-secretase has also been shown to be regulated by the innate immune system through cytokine signaling and γ-secretase modulatory proteins such as IFITM3 and Hif-1α. This review article gives an overview of how γ-secretase is implicated in innate immunity and the maintenance of its responses through potentially positive and negative feedback loops.
Collapse
Affiliation(s)
- Chenge Liu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Cyrus Nikain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| |
Collapse
|
20
|
Fulop T, Ramassamy C, Lévesque S, Frost EH, Laurent B, Lacombe G, Khalil A, Larbi A, Hirokawa K, Desroches M, Rodrigues S, Bourgade K, Cohen AA, Witkowski JM. Viruses - a major cause of amyloid deposition in the brain. Expert Rev Neurother 2023; 23:775-790. [PMID: 37551672 DOI: 10.1080/14737175.2023.2244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Simon Lévesque
- CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Abedelouahed Khalil
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo Medical Dental University, Tokyo and Nito-Memory Nakanosogo Hospital, Tokyo, Japan
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Biot, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, BCAM, the Basque Foundation for Science and BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Karine Bourgade
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
21
|
Wang M, Chen X, Niu L, Xu J, Yu H, Xu X, Yang Q, Xiang Y, Le W. APP swe /PS1 ΔE9 mice exhibit low oxygen saturation and alterations of erythrocytes preceding the neuropathology and cognitive deficiency during Alzheimer's disease. CNS Neurosci Ther 2023; 29:1889-1897. [PMID: 36883266 PMCID: PMC10546960 DOI: 10.1111/cns.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
AIM The molecular mechanism underlying Alzheimer's disease (AD) pathologies remains unclear. The brain is extremely sensitive to oxygen deprivation, and brief interruptions in oxygen supply may lead to permanent brain damage. The objective here was to access the red blood cell (RBC) physiological alterations and the changes in blood oxygen saturation of an AD model as well as to explore the possible mechanism underlying these pathologies. METHODS We used female APPswe /PS1ΔE9 mice as AD models. Data were collected at the age of 3, 6, and 9 months. In addition to examining classic features of AD, namely cognitive deficiency and Aβ depositions, 24 h blood oxygen saturation was monitored by Plus oximeters in real time. In addition, RBC physiological parameters were measured by blood cell counter using peripheral blood from the epicanthal veins. Furthermore, in the mechanism investigations, the expression of phosphorylated band 3 protein was examined by a series of Western blot analyses, and the levels of soluble Aβ40 and Aβ42 on the membrane of RBCs were determined by ELISA. RESULTS Our results showed that the blood oxygen saturation in the AD mice was significantly reduced as early as at 3 months of age, preceding the neuropathological changes and cognitive impairments. Meanwhile, the expression of phosphorylated band 3 protein and levels of soluble Aβ40 and Aβ42 were all elevated in the erythrocytes of the AD mice. CONCLUSION APPswe /PS1ΔE9 mice exhibited decreased oxygen saturation together with reduced RBC counts and hemoglobin concentrations at the early stage, which may aid in the development of predictive markers for AD diagnosis. The increased expression of band 3 protein and elevated Aβ40 and Aβ42 levels may contribute to the deformation of RBCs and, in turn, cause the subsequent AD development.
Collapse
Affiliation(s)
- Manli Wang
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Jianli Xu
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| | - Hang Yu
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| | - Xiaojiao Xu
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| | - Qiu Yang
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| | - Yang Xiang
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina
| |
Collapse
|
22
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
23
|
Yamagata K. Docosahexaenoic acid inhibits ischemic stroke to reduce vascular dementia and Alzheimer’s disease. Prostaglandins Other Lipid Mediat 2023; 167:106733. [PMID: 37028469 DOI: 10.1016/j.prostaglandins.2023.106733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Stroke and dementia are global leading causes of neurological disability and death. The pathology of these diseases is interrelated and they share common, modifiable risk factors. It is suggested that docosahexaenoic acid (DHA) prevents neurological and vascular disorders induced by ischemic stroke and also prevent dementia. The purpose of this study was to review the potential preventative role of DHA against ischemic stroke-induced vascular dementia and Alzheimer's disease. In this review, I analyzed studies on stroke-induced dementia from the PubMed, ScienceDirect, and Web of Science databases as well as studies on the effects of DHA on stroke-induced dementia. As per the results of interventional studies, DHA intake can potentially ameliorate dementia and cognitive function. In particular, DHA derived from foods such as fish oil enters the blood and then migrates to the brain by binding to fatty acid binding protein 5 that is present in cerebral vascular endothelial cells. At this point, the esterified form of DHA produced by lysophosphatidylcholine is preferentially absorbed into the brain instead of free DHA. DHA accumulates in nerve cell membrane and is involved in the prevention of dementia. The antioxidative and anti-inflammatory properties of DHA and DHA metabolites as well as their ability to decrease amyloid beta (Aβ) 42 production were implicated in the improvement of cognitive function. The antioxidant effect of DHA, the inhibition of neuronal cell death by Aβ peptide, improvement in learning ability, and enhancement of synaptic plasticity may contribute to the prevention of dementia induced by ischemic stroke.
Collapse
|
24
|
Ma HH, Wen JR, Fang H, Su S, Wan C, Zhang C, Lu FM, Fan LL, Wu GL, Zhou ZY, Qiao LJ, Zhang SJ, Cai YF. Hydroxysafflor Yellow A Exerts Neuroprotective Effect by Reducing Aβ Toxicity Through Inhibiting Endoplasmic Reticulum Stress in Oxygen-Glucose Deprivation/Reperfusion Cell Model. Rejuvenation Res 2023; 26:57-67. [PMID: 36734410 DOI: 10.1089/rej.2022.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ischemia stroke is thought to be one of the vascular risks associated with neurodegenerative diseases, such as Alzheimer's disease (AD). Hydroxysafflor yellow A (HSYA) has been reported to protect against stroke and AD, while the underlying mechanism remains unclear. In this study, SH-SY5Y cell model treated with oxygen-glucose deprivation/reperfusion (OGD/R) was used to explore the potential mechanism of HSYA. Results from cell counting kit-8 (CCK-8) showed that 10 μM HSYA restored the cell viability after OGD 2 hours/R 24 hours. HSYA reduced the levels of malondialdehyde and reactive oxygen species, while improved the levels of superoxide dismutase and glutathione peroxidase. Furthermore, apoptosis was inhibited, and the expression of brain-derived neurotrophic factor was improved after HSYA treatment. In addition, the expression levels of amyloid-β peptides (Aβ) and BACE1 were decreased by HSYA, as well as the expression levels of binding immunoglobulin heavy chain protein, PKR-like endoplasmic reticulum (ER) kinase pathway, and activating transcription factor 6 pathway, whereas the expression level of protein disulfide isomerase was increased. Based on these results, HSYA might reduce Aβ toxicity after OGD/R by interfering with apoptosis, oxidation, and neurotrophic factors, as well as relieving ER stress.
Collapse
Affiliation(s)
- Hui-Han Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jun-Ru Wen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chao Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ling-Ling Fan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zi-Yi Zhou
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Kong W, Zang Y. Alzheimer's disease biomarkers in patients with obstructive sleep apnea hypopnea syndrome and effects of surgery: A prospective cohort study. Front Aging Neurosci 2023; 14:959472. [PMID: 36733500 PMCID: PMC9887197 DOI: 10.3389/fnagi.2022.959472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Background Obstructive sleep apnea hypopnea syndrome (OSAHS) may cause Alzheimer's disease (AD), t-tau, p-tau, Aβ42, and Aβ40 are important elements in the process of AD, and changes in the levels of these biomarkers may affect the cognitive functioning of patients. Our objective was to investigate whether uvulopalatopharyngoplasty could reduce the plasma levels of AD biomarkers in OSAHS patients and the potential correlations of AD biomarkers with cognitive impairment and sleepiness, and explore the independent influencing factors of cognitive function. Methods Alzheimer's disease biomarkers were measured in the plasma of 35 patients with severe OSAHS requiring surgical treatment and 16 healthy controls without OSAHS. The cognitive function and sleepiness of OSAHS patients was also evaluated. The case group was given uvulopalatopharyngoplasty and followed at the postoperative sixth month, the follow-up cases were 27, and plasma AD biomarker levels, cognitive function, and sleepiness were re-evaluated. The preoperative and postoperative AD biomarker levels OSAHS patients were compared with each other and those of the control group. Linear stepwise regression and lasso regression were used to explore the relationships of AD biomarkers with cognitive impairment and sleepiness. Results Significantly higher Aβ40, t-tau, p-tau in plasma were observed preoperatively in OSAHS patients comparing to controls (29.24 ± 32.52 vs. 13.18 ± 10.78, p = 0.049; 11.88 ± 7.05 vs. 7.64 ± 4.17, p = 0.037; 26.31 ± 14.41 vs. 17.34 ± 9.12, p = 0.027). The sixth month of postoperation, the plasma AD biomarkers (Aβ42, Aβ40, t-tau, p-tau) in plasma levels decreased significantly (0.23 ± 0.17 vs. 0.20 ± 0.16, p = 0.0001; 29.24 ± 32.52 vs. 23.52 ± 24.46, p = 0.0046; 11.88 ± 7.05 vs. 8.88 ± 6.21, p = 0.0001;26.31 ± 14.41 vs. 20.43 ± 10.50, p = 0.0001). A comparison of MMSE and ESS scores from before to after surgery revealed obvious differences (27.14 ± 1.65 vs. 29.07 ± 1.78, p = 0.0001; 11.91 ± 4.84 vs. 5.89 ± 2.83, p = 0.0001). Changes in cognitive function and sleepiness scores from before to after uvulopalatopharyngoplasty were significantly correlated with AD biomarkers. Body mass index and t-tau were potential influencing factors cognitive function. Conclusion Obstructive sleep apnea hypopnea syndrome can increase plasma AD biomarkers levels. Uvulopalatopharyngoplasty can improve patients' cognition and sleepiness, and the mechanism may be related to changes in plasma AD biomarkers. Higher AHI and higher t-tau level were identified as independent risk factors for cognitive decline.
Collapse
Affiliation(s)
- Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zang
- Department of Information Management, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China,*Correspondence: Yi Zang,
| |
Collapse
|
26
|
Le WD, Yang C, Yang Q, Xiang Y, Zeng XR, Xiao J. The neuroprotective effects of oxygen therapy in Alzheimer’s disease: a narrative review. Neural Regen Res 2023. [PMID: 35799509 PMCID: PMC9241400 DOI: 10.4103/1673-5374.343897] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative neurological disease that primarily affects the elderly. Drug therapy is the main strategy for AD treatment, but current treatments suffer from poor efficacy and a number of side effects. Non-drug therapy is attracting more attention and may be a better strategy for treatment of AD. Hypoxia is one of the important factors that contribute to the pathogenesis of AD. Multiple cellular processes synergistically promote hypoxia, including aging, hypertension, diabetes, hypoxia/obstructive sleep apnea, obesity, and traumatic brain injury. Increasing evidence has shown that hypoxia may affect multiple pathological aspects of AD, such as amyloid-beta metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum stress, and mitochondrial and synaptic dysfunction. Treatments targeting hypoxia may delay or mitigate the progression of AD. Numerous studies have shown that oxygen therapy could improve the risk factors and clinical symptoms of AD. Increasing evidence also suggests that oxygen therapy may improve many pathological aspects of AD including amyloid-beta metabolism, tau phosphorylation, neuroinflammation, neuronal apoptosis, oxidative stress, neurotrophic factors, mitochondrial function, cerebral blood volume, and protein synthesis. In this review, we summarized the effects of oxygen therapy on AD pathogenesis and the mechanisms underlying these alterations. We expect that this review can benefit future clinical applications and therapy strategies on oxygen therapy for AD.
Collapse
|
27
|
HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int J Mol Sci 2022; 23:ijms232416140. [PMID: 36555780 PMCID: PMC9783654 DOI: 10.3390/ijms232416140] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic hypoxia is a risk factor for Alzheimer's disease (AD), and the neurofibrillary tangle (NFT) formed by hyperphosphorylated tau is one of the two major pathological changes in AD. However, the effect of chronic hypoxia on tau phosphorylation and its mechanism remains unclear. In this study, we investigated the role of HIF-1α (the functional subunit of hypoxia-inducible factor 1) in tau pathology. It was found that in Sprague-Dawley (SD) rats, global hypoxia (10% O2, 6 h per day) for one month induced cognitive impairments. Meanwhile it induced HIF-1α increase, tau hyperphosphorylation, and protein phosphatase 2A (PP2A) deficiency with leucine carboxyl methyltransferase 1(LCMT1, increasing PP2A activity) decrease in the rats' hippocampus. The results were replicated by hypoxic treatment in primary hippocampal neurons and C6/tau cells (rat C6 glioma cells stably expressing human full-length tau441). Conversely, HIF-1α silencing impeded the changes induced by hypoxia, both in primary neurons and SD rats. The result of dual luciferase assay proved that HIF-1α acted as a transcription factor of LCMT1. Unexpectedly, HIF-1α decreased the protein level of LCMT1. Further study uncovered that both overexpression of HIF-1α and hypoxia treatment resulted in a sizable degradation of LCMT1 via the autophagy--lysosomal pathway. Together, our data strongly indicated that chronic hypoxia upregulates HIF-1α, which obviously accelerated LCMT1 degradation, thus counteracting its transcriptional expression. The increase in HIF-1α decreases PP2A activity, finally resulting in tau hyperphosphorylation and cognitive dysfunction. Lowering HIF-1α in chronic hypoxia conditions may be useful in AD prevention.
Collapse
|
28
|
Thiamine insufficiency induces Hypoxia Inducible Factor-1α as an upstream mediator for neurotoxicity and AD-like pathology. Mol Cell Neurosci 2022; 123:103785. [PMID: 36241022 DOI: 10.1016/j.mcn.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insufficiencies of the micronutrient thiamine (Vitamin B1) have been associated with inducing Alzheimer's disease (AD)-like neuropathology. The hypometabolic state associated with chronic thiamine insufficiency (TI) has been demonstrated to be a contributor towards the development of amyloid plaque deposition and neurotoxicity. However, the molecular mechanism underlying TI induced AD pathology is still unresolved. Previously, we have established that TI stabilizes the metabolic stress transcriptional factor, Hypoxia Inducible Factor-1α (HIF1α). Utilizing neuronal hippocampal cells (HT22), TI-induced HIF1α activation triggered the amyloidogenic cascade through transcriptional expression and increased activity of β-secretase (BACE1). Knockdown and pharmacological inhibition of HIF1α during TI significantly reduced BACE1 and C-terminal Fragment of 99 amino acids (C99) formation. TI also increased the expression of the HIF1α regulated pro-apoptotic protein, BCL2/adenovirus E1B 19 kDa protein-interacting protein (BNIP3). Correspondingly, cell toxicity during TI conditions was significantly reduced with HIF1α and BNIP3 knockdown. The role of BNIP3 in TI-mediated toxicity was further highlighted by localization of dimeric BNIP3 into the mitochondria and nuclear accumulation of Endonuclease G. Subsequently, TI decreased mitochondrial membrane potential and enhanced chromatin fragmentation. However, cell toxicity via the HIF1α/BNIP3 cascade required TI induced oxidative stress. HIF1α, BACE1 and BNIP3 expression was induced in 3xTg-AD mice after TI and administration with the HIF1α inhibitor YC1 significantly attenuated HIF1α and target genes levels in vivo. Overall, these findings demonstrate a critical stress response during TI involving the induction of HIF1α transcriptional activity that directly promotes neurotoxicity and AD-like pathology.
Collapse
|
29
|
Noll JM, Augello CJ, Kürüm E, Pan L, Pavenko A, Nam A, Ford BD. Spatial Analysis of Neural Cell Proteomic Profiles Following Ischemic Stroke in Mice Using High-Plex Digital Spatial Profiling. Mol Neurobiol 2022; 59:7236-7252. [PMID: 36151369 PMCID: PMC9616789 DOI: 10.1007/s12035-022-03031-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Stroke is ranked as the fifth leading cause of death and the leading cause of adult disability in the USA. The progression of neuronal damage after stroke is recognized to be a complex integration of glia, neurons, and the surrounding extracellular matrix, therefore potential treatments must target the detrimental effects created by these interactions. In this study, we examined the spatial cellular and neuroinflammatory mechanisms occurring early after ischemic stroke utilizing Nanostring Digital Spatial Profiling (DSP) technology. Male C57bl/6 mice were subjected to photothrombotic middle cerebral artery occlusion (MCAO) and sacrificed at 3 days post-ischemia. Spatial distinction of the ipsilateral hemisphere was studied according to the regions of interest: the ischemic core, peri-infarct tissues, and peri-infarct normal tissue (PiNT) in comparison to the contralateral hemisphere. We demonstrated that the ipsilateral hemisphere initiates distinct spatial regulatory proteomic profiles with DSP technology that can be identified consistently with the immunohistochemical markers, FJB, GFAP, and Iba-1. The core border profile demonstrated an induction of neuronal death, apoptosis, autophagy, immunoreactivity, and early degenerative proteins. Most notably, the core border resulted in a decrease of the neuronal proteins Map2 and NeuN; an increase in the autophagy proteins BAG3 and CTSD; an increase in the microglial and peripheral immune invasion proteins Iba1, CD45, CD11b, and CD39; and an increase in the neurodegenerative proteins BACE1, APP, amyloid β 1-42, ApoE, and hyperphosphorylated tau protein S-199. The peri-infarct region demonstrated increased astrocytic, immunoreactivity, apoptotic, and neurodegenerative proteomic profiles, with an increase in BAG3, GFAP, and hyperphosphorylated tau protein S-199. The PiNT region displayed minimal changes compared to the contralateral cortex with only an increase in GFAP. In this study, we showed that mechanisms known to be associated with stroke, such as apoptosis and inflammation, occur in distinct spatial domains of the injured brain following ischemia. We also demonstrated the dysregulation of specific autophagic pathways that may lead to neurodegeneration in peri-infarct brain tissues. Taken together, these data suggest that identifying post-ischemic mechanisms occurring in a spatiotemporal manner may lead to more precise targets for successful therapeutic interventions to treat stroke.
Collapse
Affiliation(s)
- Jessica M Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, 900 University Ave, Riverside, CA, 92521, USA
| | - Catherine J Augello
- Division of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Esra Kürüm
- Department of Statistics, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Liuliu Pan
- Nanostring Technologies, Seattle, WA, 98109, USA
| | - Anna Pavenko
- Nanostring Technologies, Seattle, WA, 98109, USA
| | - Andy Nam
- Nanostring Technologies, Seattle, WA, 98109, USA
| | - Byron D Ford
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
30
|
Alexander C, Li T, Hattori Y, Chiu D, Frost GR, Jonas L, Liu C, Anderson CJ, Wong E, Park L, Iadecola C, Li YM. Hypoxia Inducible Factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion. Mol Psychiatry 2022; 27:4264-4273. [PMID: 35764706 PMCID: PMC9722522 DOI: 10.1038/s41380-022-01676-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Hypoxic-ischemic injury has been linked with increased risk for developing Alzheimer's disease (AD). The underlying mechanism of this association is poorly understood. Here, we report distinct roles for hypoxia-inducible factor-1α (Hif-1α) in the regulation of BACE1 and γ-secretase activity, two proteases involved in the production of amyloid-beta (Aβ). We have demonstrated that Hif-1α upregulates both BACE1 and γ-secretase activity for Aβ production in brain hypoxia-induced either by cerebral hypoperfusion or breathing 10% O2. Hif-1α binds to γ-secretase, which elevates the amount of active γ-secretase complex without affecting the level of individual subunits in hypoxic-ischemic mouse brains. Additionally, the expression of full length Hif-1α increases BACE1 and γ-secretase activity in primary neuronal culture, whereas a transcriptionally incompetent Hif-1α variant only activates γ-secretase. These findings indicate that Hif-1α transcriptionally upregulates BACE1 and nontranscriptionally activates γ-secretase for Aβ production in hypoxic-ischemic conditions. Consequently, Hif-1α-mediated Aβ production may be an adaptive response to hypoxic-ischemic injury, subsequently leading to increased risk for AD. Preventing the interaction of Hif-1α with γ-secretase may therefore be a promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Courtney Alexander
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Thomas Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yorito Hattori
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Danica Chiu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Lauren Jonas
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chenge Liu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Corey J Anderson
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Programs of Neurosciences and Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
| |
Collapse
|
31
|
Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s Disease and Inflammaging. Brain Sci 2022; 12:brainsci12091237. [PMID: 36138973 PMCID: PMC9496782 DOI: 10.3390/brainsci12091237] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease is one of the most common age-related neurodegenerative disorders. The main theory of Alzheimer’s disease progress is the amyloid-β cascade hypothesis. However, the initial mechanisms of insoluble forms of amyloid-β formation and hyperphosphorylated tau protein in neurons remain unclear. One of the factors, which might play a key role in senile plaques and tau fibrils generation due to Alzheimer’s disease, is inflammaging, i.e., systemic chronic low-grade age-related inflammation. The activation of the proinflammatory cell phenotype is observed during aging, which might be one of the pivotal mechanisms for the development of chronic inflammatory diseases, e.g., atherosclerosis, metabolic syndrome, type 2 diabetes mellitus, and Alzheimer’s disease. This review discusses the role of the inflammatory processes in developing neurodegeneration, activated during physiological aging and due to various diseases such as atherosclerosis, obesity, type 2 diabetes mellitus, and depressive disorders.
Collapse
|
32
|
Ollonen T, Kurkela M, Laitakari A, Sakko S, Koivisto H, Myllyharju J, Tanila H, Serpi R, Koivunen P. Activation of the hypoxia response protects mice from amyloid-β accumulation. Cell Mol Life Sci 2022; 79:432. [PMID: 35852609 PMCID: PMC9296391 DOI: 10.1007/s00018-022-04460-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia with limited treatment options affecting millions of people and the prevalence increasing with the aging population. The current knowledge on the role of the hypoxia/hypoxia-inducible factor (HIF) in the AD pathology is restricted and controversial. We hypothesized based on benefits of the genetic long-term inactivation of HIF prolyl 4-hydroxylase-2 (HIF-P4H-2) on metabolism, vasculature and inflammatory response that prolonged moderate activation of the hypoxia response could hinder AD pathology. We used an aging model to study potential spontaneous accumulation of amyloid-β (Aβ) in HIF-P4H-2-deficient mice and a transgenic APP/PSEN1 mouse model subjected to prolonged sustained environmental hypoxia (15% O2 for 6 weeks) at two different time points of the disease; at age of 4 and 10 months. In both settings, activation of the hypoxia response reduced brain protein aggregate levels and this associated with higher vascularity. In the senescent HIF-P4H-2-deficient mice metabolic reprogramming also contributed to less protein aggregates while in APP/PSEN1 mice lesser Aβ associated additionally with hypoxia-mediated favorable responses to neuroinflammation and amyloid precursor protein processing. In conclusion, continuous, non-full-scale activation of the HIF pathway appears to mediate protection against neurodegeneration via several mechanisms and should be studied as a treatment option for AD.
Collapse
Affiliation(s)
- Teemu Ollonen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Margareta Kurkela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Samuli Sakko
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Henna Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
33
|
Bacterial pneumonia and subsequent dementia risk: A nationwide cohort study. Brain Behav Immun 2022; 103:12-18. [PMID: 35390468 DOI: 10.1016/j.bbi.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Bacterial pneumonia is associated with an increased risk of dementia. However, the association between different pathogens of bacterial pneumonia and the risk of dementia remains unclear. METHODS Using the Taiwan National Health Insurance Research Database, we recruited 11,712 patients with bacterial pneumonia and 11,120 controls between 1997 and 2012 and followed them up until the end of 2013. A diagnosis of dementia, Alzheimer's disease (AD), vascular dementia (VaD), and unspecified dementia were identified during the follow-up period. Cox regression analyses were performed with adjustments for confounders. Sensitivity analysis was conducted to exclude patients with prodromal dementia. RESULTS Patients with bacterial pneumonia were more likely to develop dementia (hazard ratio [HR]: 2.83, 95% confidence interval [CI]: 2.53-3.18), AD (HR: 2.44, 95% CI: 1.65-3.61), VaD (HR: 4.15, 95% CI: 3.20-5.38), and unspecified dementia (HR: 2.62, 95% CI: 2.29-3.00) compared with controls after adjusting for potential confounders. Subgroup pathogen analyses showed that the HR of AD was 3.85 (1.66-8.96) for Hemophilus, and the HR of VaD was 5.40 for Staphylococcus. The risks of dementia and VaD were associated with repeated hospitalization due to bacterial pneumonia in a dose-dependent manner. Sensitivity analyses after exclusion of the first three years or first five years of observation and after exclusion case enrollment before 2010 or 2008 showed consistent findings. CONCLUSION Different pathogens are associated with different risks of AD, VaD, and unspecified dementia. Further studies are necessary to investigate the underlying mechanisms of bacterial pneumonia and dementia.
Collapse
|
34
|
Kim DK, Lee IH, Lee BC, Lee CY. Effect of Sleep Disturbance on Cognitive Function in Elderly Individuals: A Prospective Cohort Study. J Pers Med 2022; 12:jpm12071036. [PMID: 35887533 PMCID: PMC9319469 DOI: 10.3390/jpm12071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Many epidemiologic and clinical studies have shown significant links between the degree of sleep disturbance and severity of impairment of selective cognitive functions, including the risk of neurodegenerative diseases. However, the sleep parameters that affect cognitive function in old age are unclear. Therefore, we investigated the association between sleep parameters and cognitive function in older patients. Patients aged above 65 years who complained of sleep-disordered breathing were enrolled consecutively. The Mini-Mental-State Examination tool was used to evaluate cognitive function. Eighty patients (normal cognitive function, n = 32 and cognitive impairment, n = 42) were included in this study. Multiple linear regression and binary logistic regression analyses were performed to explain the relationship between sleep parameters and cognitive function. We found that the body mass index (BMI) was significantly lower in the cognitive impairment group than in the normal cognitive function group. Additionally, the cognitive impairment group showed significantly decreased sleep efficiency and an increased apnea index compared with normal subjects. Moreover, lower BMI, reduced sleep efficiency, and high frequency of apnea events during sleep were associated with an increased risk of cognitive impairment.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (D.-K.K.); (I.H.L.); (B.C.L.)
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Il Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (D.-K.K.); (I.H.L.); (B.C.L.)
| | - Byeong Chan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (D.-K.K.); (I.H.L.); (B.C.L.)
| | - Chang Youl Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
- Correspondence: ; Tel.: +82-33-240-5482; Fax: +82-33-255-4291
| |
Collapse
|
35
|
Lee ATC, Fung AWT, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW. Late-life longitudinal blood pressure trajectories as predictor of dementia. Sci Rep 2022; 12:1630. [PMID: 35102219 PMCID: PMC8803958 DOI: 10.1038/s41598-022-05680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
While hypertension is widely recognized as a risk factor for dementia, few observational studies and clinical trials fully accounted for the effect of age on blood pressure (BP) changes prior to dementia onset. In this territory-wide population-based longitudinal study of 16,591 community-living dementia-free older adults, we followed their BP and cognitive status and tested if loss of longitudinal increase in BP in late life was associated with higher dementia risk in 6 years, with consideration of the confounding effects of hypertension, hypotension, BP variability, and other health problems and behaviours and, in the data analysis, exclusion of individuals who developed dementia within 3 years after baseline to minimize risk of reverse causality. Over 72,997 person-years of follow-up, 1429 participants developed dementia. We found that loss of longitudinal increase in systolic BP (defined as SBP increased by either < 10 mmHg or 10%) from baseline to Year 3 was independently associated with higher risk of incident dementia at Years 4 to 6 (adjusted OR 1.22, 95% CI 1.02-1.45, p = 0.03; adjusted OR 1.24, 95% CI 1.03-1.50, p = 0.02; respectively). Our findings suggest that late-life SBP trajectory changes might independently predict dementia onset and highlight the importance of including longitudinal BP monitoring in dementia risk assessment.
Collapse
Affiliation(s)
- Allen T C Lee
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ada W T Fung
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Wai C Chan
- Department of Psychiatry, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Helen F K Chiu
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ruby S Y Lee
- Elderly Health Service, Department of Health, The Government of Hong Kong SAR, Hong Kong SAR, China
| | - Linda C W Lam
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
36
|
Custodia A, Ouro A, Romaus-Sanjurjo D, Pías-Peleteiro JM, de Vries HE, Castillo J, Sobrino T. Endothelial Progenitor Cells and Vascular Alterations in Alzheimer’s Disease. Front Aging Neurosci 2022; 13:811210. [PMID: 35153724 PMCID: PMC8825416 DOI: 10.3389/fnagi.2021.811210] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease representing the most common type of dementia worldwide. The early diagnosis of AD is very difficult to achieve due to its complexity and the practically unknown etiology. Therefore, this is one of the greatest challenges in the field in order to develop an accurate therapy. Within the different etiological hypotheses proposed for AD, we will focus on the two-hit vascular hypothesis and vascular alterations occurring in the disease. According to this hypothesis, the accumulation of β-amyloid protein in the brain starts as a consequence of damage in the cerebral vasculature. Given that there are several vascular and angiogenic alterations in AD, and that endothelial progenitor cells (EPCs) play a key role in endothelial repair processes, the study of EPCs in AD may be relevant to the disease etiology and perhaps a biomarker and/or therapeutic target. This review focuses on the involvement of endothelial dysfunction in the onset and progression of AD with special emphasis on EPCs as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Alberto Ouro,
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Helga E. de Vries
- Neuroimmunology Research Group, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino,
| |
Collapse
|
37
|
Correia SC, Moreira PI. Oxygen Sensing and Signaling in Alzheimer's Disease: A Breathtaking Story! Cell Mol Neurobiol 2022; 42:3-21. [PMID: 34510330 PMCID: PMC11441261 DOI: 10.1007/s10571-021-01148-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Oxygen sensing and homeostasis is indispensable for the maintenance of brain structural and functional integrity. Under low-oxygen tension, the non-diseased brain has the ability to cope with hypoxia by triggering a homeostatic response governed by the highly conserved hypoxia-inducible family (HIF) of transcription factors. With the advent of advanced neuroimaging tools, it is now recognized that cerebral hypoperfusion, and consequently hypoxia, is a consistent feature along the Alzheimer's disease (AD) continuum. Of note, the reduction in cerebral blood flow and tissue oxygenation detected during the prodromal phases of AD, drastically aggravates as disease progresses. Within this scenario a fundamental question arises: How HIF-driven homeostatic brain response to hypoxia "behaves" during the AD continuum? In this sense, the present review is aimed to critically discuss and summarize the current knowledge regarding the involvement of hypoxia and HIF signaling in the onset and progression of AD pathology. Importantly, the promises and challenges of non-pharmacological and pharmacological strategies aimed to target hypoxia will be discussed as a new "hope" to prevent and/or postpone the neurodegenerative events that occur in the AD brain.
Collapse
Affiliation(s)
- Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
38
|
Han J, Hyun J, Park J, Jung S, Oh Y, Kim Y, Ryu SH, Kim SH, Jeong EI, Jo DG, Park SH, Jung YK. Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimer's disease. Cell Rep 2021; 37:110102. [PMID: 34879266 DOI: 10.1016/j.celrep.2021.110102] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
Abstract
Toxic amyloid beta (Aβ) species cause synaptic dysfunction and neurotoxicity in Alzheimer's disease (AD). As of yet, however, there are no reported regulators for gamma-secretase, which links a risky environment to amyloid accumulation in AD. Here, we report that pyruvate kinase M2 (PKM2) is a positive regulator of gamma-secretase under hypoxia. From a genome-wide functional screen, we identify PKM2 as a gamma-secretase activator that is highly expressed in the brains of both patients and murine models with AD. PKM2 regulates Aβ production and the amount of active gamma-secretase complex by changing the gene expression of aph-1 homolog. Hypoxia induces PKM2 expression, thereby promoting gamma-secretase activity. Moreover, transgenic expression of PKM2 in 3xTg AD model mice enhances hippocampal production of Aβ and exacerbates the impairment of spatial and recognition memory. Taken together, these findings indicate that PKM2 is an important gamma-secretase regulator that promotes Aβ production and memory impairment under hypoxia.
Collapse
Affiliation(s)
- Jonghee Han
- School of Biological Science, Seoul National University, Seoul 08826, Korea; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junho Hyun
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Jaesang Park
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Sunmin Jung
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Yoonseo Oh
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Youbin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Korea
| | - Shin-Hyeon Ryu
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Seo-Hyun Kim
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Eun Il Jeong
- School of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Gyunggi-do 16419, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong-Keun Jung
- School of Biological Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
39
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
40
|
Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel) 2021; 10:antiox10091479. [PMID: 34573112 PMCID: PMC8468973 DOI: 10.3390/antiox10091479] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of Alzheimer's disease involves β amyloid (Aβ) accumulation known to induce synaptic dysfunction and neurodegeneration. The brain's vulnerability to oxidative stress (OS) is considered a crucial detrimental factor in Alzheimer's disease. OS and Aβ are linked to each other because Aβ induces OS, and OS increases the Aβ deposition. Thus, the answer to the question "which comes first: the chicken or the egg?" remains extremely difficult. In any case, the evidence for the primary occurrence of oxidative stress in AD is attractive. Thus, evidence indicates that a long period of gradual oxidative damage accumulation precedes and results in the appearance of clinical and pathological AD symptoms, including Aβ deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. Moreover, oxidative stress plays a crucial role in the pathogenesis of many risk factors for AD. Alzheimer's disease begins many years before its symptoms, and antioxidant treatment can be an important therapeutic target for attacking the disease.
Collapse
|
41
|
Shapira R, Gdalyahu A, Gottfried I, Sasson E, Hadanny A, Efrati S, Blinder P, Ashery U. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer's disease mouse model and in elderly patients. Aging (Albany NY) 2021; 13:20935-20961. [PMID: 34499614 PMCID: PMC8457592 DOI: 10.18632/aging.203485] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/10/2021] [Indexed: 04/21/2023]
Abstract
Vascular dysfunction is entwined with aging and in the pathogenesis of Alzheimer's disease (AD) and contributes to reduced cerebral blood flow (CBF) and consequently, hypoxia. Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis. HBOT increased arteriolar luminal diameter and elevated CBF, thus contributing to reduced hypoxia. Furthermore, HBOT reduced amyloid burden by reducing the volume of pre-existing plaques and attenuating the formation of new ones. This was associated with changes in amyloid precursor protein processing, elevated degradation and clearance of Aß protein and improved behavior of 5XFAD mice. Hence, our findings are consistent with the effects of HBOT being mediated partially through a persistent structural change in blood vessels that reduces brain hypoxia. Motivated by these findings, we exposed elderly patients with significant memory loss at baseline to HBOT and observed an increase in CBF and improvement in cognitive performances. This study demonstrates HBOT efficacy in hypoxia-related neurological conditions, particularly in AD and aging.
Collapse
Affiliation(s)
- Ronit Shapira
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Amos Gdalyahu
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Shai Efrati
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
42
|
Yuan Y, Chen J, Ge X, Deng J, Xu X, Zhao Y, Wang H. Activation of ERK-Drp1 signaling promotes hypoxia-induced Aβ accumulation by upregulating mitochondrial fission and BACE1 activity. FEBS Open Bio 2021; 11:2740-2755. [PMID: 34403210 PMCID: PMC8487051 DOI: 10.1002/2211-5463.13273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxia is a risk factor for Alzheimer's disease (AD). Besides, mitochondrial fission is increased in response to hypoxia. In this study, we sought to investigate whether hypoxia‐induced mitochondrial fission plays a critical role in regulating amyloid‐β (Aβ) production. Hypoxia significantly activated extracellular signal‐regulated kinase (ERK), increased phosphorylation of dynamin‐related protein 1 (Drp1) at serine 616, and decreased phosphorylation of Drp1 at serine 637. Importantly, hypoxia triggered mitochondrial dysfunction, elevated β‐secretase 1 (BACE1) and γ‐secretase activities, and promoted Aβ accumulation in HEK293 cells transfected with β‐amyloid precursor protein (APP) plasmid harboring the Swedish and Indiana familial Alzheimer's disease mutations (APPSwe/Ind HEK293 cells). Then, we investigated whether the ERK inhibitor PD325901 and Drp1 inhibitor mitochondrial division inhibitor‐1 (Mdivi‐1) would attenuate hypoxia‐induced mitochondrial fission and Aβ generation in APPSwe/Ind HEK293 cells. PD325901 and Mdivi‐1 inhibited phosphorylation of Drp1 at serine 616, resulting in reduced mitochondrial fission under hypoxia. Furthermore, hypoxia‐induced mitochondrial dysfunction, BACE1 activation, and Aβ accumulation were downregulated by PD325901 and Mdivi‐1. Our data demonstrate that hypoxia induces mitochondrial fission, impairs mitochondrial function, and facilitates Aβ generation. The ERK–Drp1 signaling pathway is partly involved in the hypoxia‐induced Aβ generation by regulating mitochondrial fission and BACE1 activity. Therefore, inhibition of hypoxia‐induced mitochondrial fission may prevent or slow the progression of AD.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Jingjiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xuhua Ge
- Department of General Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| |
Collapse
|
43
|
Song B, Zhu JC. A Narrative Review of Cerebellar Malfunctions and Sleep Disturbances. Front Neurosci 2021; 15:590619. [PMID: 34248474 PMCID: PMC8267147 DOI: 10.3389/fnins.2021.590619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/31/2021] [Indexed: 11/15/2022] Open
Abstract
Cerebellar malfunctions significantly impact the regulation of the sleep–wakefulness transition. The possible mechanism for this effect is still unknown. Evidence on the role of cerebellar processing in the sleep–wake cycle is derived mainly from animal studies, and clinical management of the sleep–wake cycle is also challenging. The purpose of this review is to investigate the role of cerebellar activity during normal sleep and the association between cerebellar dysfunction and sleep disorders. Large-scale, multicenter trials are still needed to confirm these findings and provide early identification and intervention strategies to improve cerebellar function and the sleep quality of patients.
Collapse
Affiliation(s)
- Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Anesthesiology, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Jun-Chao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Abstract
An aging-related reduction in the brain's functional reserve may explain why delirium is more frequent in the elderly than in younger people insofar as the reserve becomes inadequate to cover the metabolic requirements that are critically increased by stressors. The aim of this paper is to review the normal aging-related changes that theoretically compromise complex mental activities, neuronal and synaptic densities, and the neurocomputational flexibility of the functional reserve. A pivotal factor is diminished connectivity, which is substantially due to the loss of synapses and should specifically affect association systems and cholinergic fibres in delirious patients. However, micro-angiopathy with impaired blood flow autoregulation, increased blood/brain barrier permeability, changes in cerebrospinal fluid dynamics, weakened mitochondrial performance, and a pro-inflammatory involution of the immune system may also jointly affect neurons and their synaptic assets, and even cause the progression of delirium to dementia regardless of the presence of co-existing plaques, tangles, or other pathological markers. On the other hand, the developmental growth in functional reserve during childhood and adolescence makes the brain increasingly resistant to delirium, and residual reserve can allow the elderly to recover. These data support the view that functional reserve is the variable that confronts stressors and governs the risk and intensity of and recovery from delirium. Although people of any age are at risk of delirium, the elderly are at greater risk because aging and age-dependent structural changes inevitably affect the brain's functional reserve.
Collapse
|
45
|
Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen MJAP. Vascular Hypothesis of Alzheimer Disease: Topical Review of Mouse Models. Arterioscler Thromb Vasc Biol 2021; 41:1265-1283. [PMID: 33626911 DOI: 10.1161/atvbaha.120.311911] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Dorien M A Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Louise van der Weerd
- Departments of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands (L.v.d.W.)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije University of Amsterdam, the Netherlands (H.E.d.V.)
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| |
Collapse
|
46
|
Wang YY, Huang ZT, Yuan MH, Jing F, Cai RL, Zou Q, Pu YS, Wang SY, Chen F, Yi WM, Zhang HJ, Cai ZY. Role of Hypoxia Inducible Factor-1α in Alzheimer's Disease. J Alzheimers Dis 2021; 80:949-961. [PMID: 33612545 DOI: 10.3233/jad-201448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amyloid-β (Aβ) peptides and hyperphosphorylated tau protein are the most important pathological markers of Alzheimer's disease (AD). Neuroinflammation and oxidative stress are also involved in the development and pathological mechanism of AD. Hypoxia inducible factor-1α (HIF-1α) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. Emerging evidence has revealed HIF-1α as a potential medicinal target for neurodegenerative diseases. On the one hand, HIF-1α increases AβPP processing and Aβ generation by promoting β/γ-secretases and suppressing α-secretases, inactivates microglia and reduces their activity, contributes to microglia death and neuroinflammation, which promotes AD pathogenesis. On the other hand, HIF-1α could resist the toxic effect of Aβ, inhibits tau hyperphosphorylation and promotes microglial activation. In summary, this review focuses on the potential complex roles and the future perspectives of HIF-1α in AD, in order to provide references for seeking new drug targets and treatment methods for AD.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhen-Ting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ming-Hao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Feng Jing
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ruo-Lan Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Zunyi Medical University, Zunyi, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yin-Shuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Sheng-Yuan Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Fei Chen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Wen-Min Yi
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Hui-Ji Zhang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhi-You Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
47
|
André C, Rehel S, Kuhn E, Landeau B, Moulinet I, Touron E, Ourry V, Le Du G, Mézenge F, Tomadesso C, de Flores R, Bejanin A, Sherif S, Delcroix N, Manrique A, Abbas A, Marchant NL, Lutz A, Klimecki OM, Collette F, Arenaza-Urquijo EM, Poisnel G, Vivien D, Bertran F, de la Sayette V, Chételat G, Rauchs G. Association of Sleep-Disordered Breathing With Alzheimer Disease Biomarkers in Community-Dwelling Older Adults: A Secondary Analysis of a Randomized Clinical Trial. JAMA Neurol 2021; 77:716-724. [PMID: 32202593 DOI: 10.1001/jamaneurol.2020.0311] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Increasing evidence suggests that sleep-disordered breathing (SDB) increases the risk of developing Alzheimer clinical syndrome. However, the brain mechanisms underlying the link between SDB and Alzheimer disease are still unclear. Objective To determine which brain changes are associated with the presence of SDB in older individuals who are cognitively unimpaired, including changes in amyloid deposition, gray matter volume, perfusion, and glucose metabolism. Design, Setting, and Participants This cross-sectional study was conducted using data from the Age-Well randomized clinical trial of the Medit-Ageing European project, acquired between 2016 and 2018 at Cyceron Center in Caen, France. Community-dwelling older adults were assessed for eligibility and were enrolled in the Age-Well clinical trial if they did not meet medical or cognitive exclusion criteria and were willing to participate. Participants who completed a detailed neuropsychological assessment, polysomnography, a magnetic resonance imaging, and florbetapir and fluorodeoxyglucose positron emission tomography scans were included in the analyses. Main Outcomes and Measures Based on an apnea-hypopnea index cutoff of 15 events per hour, participants were classified as having SDB or not. Voxelwise between-group comparisons were performed for each neuroimaging modality, and secondary analyses aimed at identifying which SDB parameter (sleep fragmentation, hypoxia severity, or frequency of respiratory disturbances) best explained the observed brain changes and assessing whether SDB severity and/or SDB-associated brain changes are associated with cognitive and behavioral changes. Results Of 157 participants initially assessed, 137 were enrolled in the Age-Well clinical trial, and 127 were analyzed in this study. The mean (SD) age of the 127 participants was 69.1 (3.9) years, and 80 (63.0%) were women. Participants with SDB showed greater amyloid burden (t114 = 4.51; familywise error-corrected P = .04; Cohen d, 0.83), gray matter volume (t119 = 4.12; familywise error-corrected P = .04; Cohen d, 0.75), perfusion (t116 = 4.62; familywise error-corrected P = .001; Cohen d, 0.86), and metabolism (t79 = 4.63; familywise error-corrected P = .001; Cohen d, 1.04), overlapping mainly over the posterior cingulate cortex and precuneus. No association was found with cognition, self-reported cognitive and sleep difficulties, or excessive daytime sleepiness symptoms. Conclusions and Relevance The SDB-associated brain changes in older adults who are cognitively unimpaired include greater amyloid deposition and neuronal activity in Alzheimer disease-sensitive brain regions, notably the posterior cingulate cortex and precuneus. These results support the need to screen and treat for SDB, especially in asymptomatic older populations, to reduce Alzheimer disease risk. Trial Registration ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Claire André
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France.,Normandie Université, Université de Caen, Paris Sciences & Lettres Université, École Pratique des Hautes Études, Institut National de la Santé et de la Recherche Médicale, Unité 1077 "Neuropsychologie et Imagerie de la Mémoire Humaine," Centre Hospitalier Universitaire de Caen, GIP Cyceron, Caen, France
| | - Stéphane Rehel
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France.,Normandie Université, Université de Caen, Paris Sciences & Lettres Université, École Pratique des Hautes Études, Institut National de la Santé et de la Recherche Médicale, Unité 1077 "Neuropsychologie et Imagerie de la Mémoire Humaine," Centre Hospitalier Universitaire de Caen, GIP Cyceron, Caen, France
| | - Elizabeth Kuhn
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Brigitte Landeau
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Inès Moulinet
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Edelweiss Touron
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Valentin Ourry
- Normandie Université, Université de Caen, Paris Sciences & Lettres Université, École Pratique des Hautes Études, Institut National de la Santé et de la Recherche Médicale, Unité 1077 "Neuropsychologie et Imagerie de la Mémoire Humaine," Centre Hospitalier Universitaire de Caen, GIP Cyceron, Caen, France
| | - Gwendoline Le Du
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Florence Mézenge
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Clémence Tomadesso
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Robin de Flores
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Alexandre Bejanin
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Siya Sherif
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Nicolas Delcroix
- Centre National de la Recherche Scientifique, Unité Mixte de Service 3048, GIP Cyceron, Caen, France
| | - Alain Manrique
- Normandie Université, Université de Caen, EA 4650 "Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique", GIP Cyceron, Caen, France
| | - Ahmed Abbas
- Normandie Université, Université de Caen, Paris Sciences & Lettres Université, École Pratique des Hautes Études, Institut National de la Santé et de la Recherche Médicale, Unité 1077 "Neuropsychologie et Imagerie de la Mémoire Humaine," Centre Hospitalier Universitaire de Caen, GIP Cyceron, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Antoine Lutz
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale Unité 1028, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Lyon University, Lyon, France
| | - Olga M Klimecki
- Swiss Center for Affective Sciences, Department of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre, In Vivo Imaging and Psychology and Cognitive Neuroscience Unit, Liège University, Liège, Belgium
| | - Eider M Arenaza-Urquijo
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Géraldine Poisnel
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Denis Vivien
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France.,Département de Recherche Clinique, Centre Hospitalier Universitaire de Caen-Normandie, Caen, France
| | - Françoise Bertran
- Unité d'Exploration et de Traitement des Troubles du Sommeil, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Vincent de la Sayette
- Normandie Université, Université de Caen, Paris Sciences & Lettres Université, École Pratique des Hautes Études, Institut National de la Santé et de la Recherche Médicale, Unité 1077 "Neuropsychologie et Imagerie de la Mémoire Humaine," Centre Hospitalier Universitaire de Caen, GIP Cyceron, Caen, France.,Service de Neurologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Gaël Chételat
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237 "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Géraldine Rauchs
- Normandie Université, Université de Caen, Paris Sciences & Lettres Université, École Pratique des Hautes Études, Institut National de la Santé et de la Recherche Médicale, Unité 1077 "Neuropsychologie et Imagerie de la Mémoire Humaine," Centre Hospitalier Universitaire de Caen, GIP Cyceron, Caen, France
| | | |
Collapse
|
48
|
Song B, Zhu J. A Novel Application of Ketamine for Improving Perioperative Sleep Disturbances. Nat Sci Sleep 2021; 13:2251-2266. [PMID: 34992482 PMCID: PMC8715868 DOI: 10.2147/nss.s341161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Perioperative sleep disturbances are commonly observed before, during, and after surgery and can be caused by several factors, such as preoperative negative moods, general anesthetics, surgery trauma, and pain. Over the past decade, the fast-acting antidepressant effects of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine represent one of the most attractive discoveries in the field of psychiatry, such as antidepressant and anxiolytic effects. It is also widely used as a short-acting anesthetic and analgesic. Recent research has revealed new possible applications for ketamine, such as for perioperative sleep disorders and circadian rhythm disorders. Here, we summarize the risk factors for perioperative sleep disturbances, outcomes of perioperative sleep disturbances, and mechanism of action of ketamine in improving perioperative sleep quality.
Collapse
Affiliation(s)
- Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Junchao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
49
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
50
|
Salminen A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer's disease. Neurochem Int 2020; 142:104919. [PMID: 33242538 DOI: 10.1016/j.neuint.2020.104919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which causes a non-reversible cognitive impairment and dementia. The primary cause of late-onset AD remains unknown although its pathology was discovered over a century ago. Recently, the vascular hypothesis of AD has received backing from evidence emerging from neuroimaging studies which have revealed the presence of a significant hypoperfusion in the brain regions vulnerable to AD pathology. In fact, hypoxia can explain many of the pathological changes evident in AD pathology, e.g. the deposition of β-amyloid plaques and chronic low-grade inflammation. Hypoxia-inducible factor-1α (HIF-1α) stimulates inflammatory responses and modulates both innate and adaptive immunity. It is known that hypoxia-induced inflammation evokes compensatory anti-inflammatory response involving tissue-resident microglia/macrophages and infiltrated immune cells. Hypoxia/HIF-1α induce immunosuppression by (i) increasing the expression of immunosuppressive genes, (ii) stimulating adenosinergic signaling, (iii) enhancing aerobic glycolysis, i.e. lactate production, and (iv) augmenting the secretion of immunosuppressive exosomes. Interestingly, it seems that these common mechanisms are also involved in the pathogenesis of AD. In AD pathology, an enhanced immunosuppression appears, e.g. as a shift in microglia/macrophage phenotypes towards the anti-inflammatory M2 phenotype and an increase in the numbers of regulatory T cells (Treg). The augmented anti-inflammatory capacity promotes the resolution of acute inflammation but persistent inflammation has crucial effects not only on immune cells but also harmful responses to the homeostasis of AD brain. I will examine in detail the mechanisms of the hypoperfusion/hypoxia-induced immunosuppressive state in general and especially, in its association with AD pathogenesis. These immunological observations support the vascular hypothesis of AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|