1
|
Sidhu RK, Maparu K, Singh S, Aran KR. Unveiling the role of Na⁺/K⁺-ATPase pump: neurodegenerative mechanisms and therapeutic horizons. Pharmacol Rep 2025; 77:576-592. [PMID: 40117043 DOI: 10.1007/s43440-025-00717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Sodium and potassium-activated adenosine 5'-triphosphatase (Na+/K+-ATPase) is a pivotal plasma membrane enzyme involved in neuronal activity and cellular homeostasis. The dysregulation of these enzymes has been implicated in a spectrum of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and neurodevelopmental disorders including autism spectrum disorder (ASD), psychiatric disorders such as schizophrenia, and neurological problems like epilepsy. A hallmark of these disorders is the gradual loss of neuronal integrity and function, often exacerbated by protein accumulation within brain cells. This review delves into the multifaceted role of Na+/K+-ATPase dysfunction in driving oxidative stress, excitotoxicity, and neuroinflammation, contributing to synaptic and neuronal damage. Emerging therapeutic strategies, such as gene therapy and developing isoform-specific enzyme modulators, offer promising avenues for targeted interventions. Furthermore, this review highlights innovative research directions, including the role of Na⁺/K⁺-ATPase in synaptic plasticity, the identification of endogenous regulators, and its contribution to neuroinflammatory pathways. Personalized medicine and advanced gene-editing technologies are positioned as transformative tools for crafting safer and more precise therapies tailored to individual patients. This comprehensive exploration underscores the enzyme's therapeutic potential and sets the stage for developing novel targeted strategies to mitigate the burden of Na⁺/K⁺-ATPase-linked neurological disorders.
Collapse
Affiliation(s)
- Ramandeep Kaur Sidhu
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Medd MM, Yon JE, Dong H. RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer's Disease. Curr Issues Mol Biol 2025; 47:124. [PMID: 39996845 PMCID: PMC11854763 DOI: 10.3390/cimb47020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that plays a crucial role in the pathogenesis of AD. RhoA, a small GTPase, along with its downstream effector, ROCK, regulates various cellular processes, including actin cytoskeleton dynamics, apoptosis, and synaptic plasticity. GSK3β, a serine/threonine kinase, plays a key role in neuronal function and AD pathology, including the regulation of tau phosphorylation and amyloid-beta cleavage. Overactive GSK3β has been closely linked to tau hyperphosphorylation, neurodegeneration, and the progression of AD. Thus, GSK3β has been considered as a promising therapeutic target for treating AD and mitigating cognitive impairment. However, clinical trials of GSK3β in AD have faced considerable challenges due to the complexity of the specific neuronal inhibition of GSK3β. In this review, we summarize the literature regarding the relationship of RhoA/ROCK and GSK3β signaling pathways in AD pathogenesis. We further discuss recent findings of the sTREM2-transgelin-2 (TG2) axis as a potential mediator of this complex pathway and provide our review on a novel targeting strategy for AD.
Collapse
Affiliation(s)
- Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Jayden E. Yon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Hongxin Dong
- Stephen M. Stahl Center for Psychiatric Neuroscience, Departments of Psychiatry & Behavioral Sciences and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Wohlfert AJ, Phares J, Granholm AC. The mTOR Pathway: A Common Link Between Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:6183. [PMID: 39458132 PMCID: PMC11508835 DOI: 10.3390/jcm13206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Down syndrome (DS) is a chromosomal condition that causes many systemic dysregulations, leading to several possible age-related diseases including Alzheimer's disease (AD). This may be due to the triplication of the Amyloid precursor protein (APP) gene or other alterations in mechanistic pathways, such as the mTOR pathway. Impairments to upstream regulators of mTOR, such as insulin, PI3K/AKT, AMPK, and amino acid signaling, have been linked to amyloid beta plaques (Aβ) and neurofibrillary tangles (NFT), the most common AD pathologies. However, the mechanisms involved in the progression of pathology in human DS-related AD (DS-AD) are not fully investigated to date. Recent advancements in omics platforms are uncovering new insights into neurodegeneration. Genomics, spatial transcriptomics, proteomics, and metabolomics are novel methodologies that provide more data in greater detail than ever before; however, these methods have not been used to analyze the mTOR pathways in connection to DS-AD. Using these new techniques can unveil unexpected insights into pathological cellular mechanisms through an unbiased approach.
Collapse
Affiliation(s)
- Abigail J. Wohlfert
- Department of Modern Human Anatomy and Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| |
Collapse
|
4
|
Zhiyan C, Min Z, Yida D, Chunying H, Xiaohua H, Yutong L, Huan W, Linjuan S. Bioinformatic analysis of hippocampal histopathology in Alzheimer's disease and the therapeutic effects of active components of traditional Chinese medicine. Front Pharmacol 2024; 15:1424803. [PMID: 39221152 PMCID: PMC11362046 DOI: 10.3389/fphar.2024.1424803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Pathological changes in the central nervous system (CNS) begin before the clinical symptoms of Alzheimer's Disease (AD) manifest, with the hippocampus being one of the first affected structures. Current treatments fail to alter AD progression. Traditional Chinese medicine (TCM) has shown potential in improving AD pathology through multi-target mechanisms. This study investigates pathological changes in AD hippocampal tissue and explores TCM active components that may alleviate these changes. Methods GSE5281 and GSE173955 datasets were downloaded from GEO and normalized to identify differentially expressed genes (DEGs). Key functional modules and hub genes were analyzed using Cytoscape and R. Active TCM components were identified from literature and the Pharmacopoeia of the People's Republic of China. Enrichment analyses were performed on target genes overlapping with DEGs. Result From the datasets, 76 upregulated and 363 downregulated genes were identified. Hub genes included SLAMF, CD34, ELN (upregulated) and ATP5F1B, VDAC1, VDAC2, HSPA8, ATP5F1C, PDHA1, UBB, SNCA, YWHAZ, PGK1 (downregulated). Literature review identified 33 active components from 23 herbal medicines. Target gene enrichment and analysis were performed for six components: dihydroartemisinin, berberine, naringenin, calycosin, echinacoside, and icariside II. Conclusion Mitochondrial to synaptic vesicle dysfunction pathways were enriched in downregulated genes. Despite downregulation, UBB and SNCA proteins accumulate in AD brains. TCM studies suggest curcumin and echinacoside may improve hippocampal pathology and cognitive impairment in AD. Further investigation into their mechanisms is needed.
Collapse
Affiliation(s)
- Chen Zhiyan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhan Min
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Du Yida
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - He Chunying
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu Xiaohua
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yutong
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wang Huan
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Sun Linjuan
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| |
Collapse
|
5
|
Zhang T, Wang P, Li R, Wang Y, Yan S. Correlation between obesity and Alzheimer 's disease and the mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1052-1061. [PMID: 39788493 PMCID: PMC11495975 DOI: 10.11817/j.issn.1672-7347.2024.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a progressive central neurodegenerative disorder with an insidious onset. With global aging, the incidence and mortality of AD have been steadily increasing, yet effective treatments remain elusive. Obesity, characterized by excessive or abnormal fat accumulation, is a complex metabolic disorder and a confirmed risk factor for numerous diseases. Both obesity and AD have become major public health concerns, posing significant threats to human health and economic development. Studies have revealed a strong correlation between obesity and AD, with multiple contributing factors, including metabolic abnormalities of endocrine factors, inflammatory responses, and genetic interactions. Exploring the correlation and mechanisms between obesity and AD provides important insights and new strategies for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tenglin Zhang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000.
| | - Ping Wang
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ruonan Li
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000
- First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450000
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shuxun Yan
- Second Ward of Endocrinology Department, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000.
| |
Collapse
|
6
|
Zhao B, Wei D, Long Q, Chen Q, Wang F, Chen L, Li Z, Li T, Ma T, Liu W, Wang L, Yang C, Zhang X, Wang P, Zhang Z. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention. J Pharm Anal 2024; 14:348-370. [PMID: 38618251 PMCID: PMC11010627 DOI: 10.1016/j.jpha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 04/16/2024] Open
Abstract
Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.
Collapse
Affiliation(s)
- Binbin Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghua Long
- Medical School, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Qingjie Chen
- HuBei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Linlin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zefei Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tong Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Vaglio-Garro A, Kozlov AV, Smirnova YD, Weidinger A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int J Mol Sci 2024; 25:2276. [PMID: 38396952 PMCID: PMC10889519 DOI: 10.3390/ijms25042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
8
|
Yu H, Xiong M, Zhang Z. The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Front Mol Neurosci 2023; 16:1209703. [PMID: 37781096 PMCID: PMC10540228 DOI: 10.3389/fnmol.2023.1209703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Neurodegenerative diseases (NDDs) pose an increasingly prevalent threat to the well-being and survival of elderly individuals worldwide. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and so on. They are characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system and share several cellular and molecular mechanisms, including protein aggregation, mitochondrial dysfunction, gene mutations, and chronic neuroinflammation. Glycogen synthase kinase-3 beta (GSK-3β) is a serine/threonine kinase that is believed to play a pivotal role in the pathogenesis of NDDs. Here we summarize the structure and physiological functions of GSK3β and explore its involvement in NDDs. We also discussed its potential as a therapeutic target.
Collapse
Affiliation(s)
- Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Latif K, Saneela S, Khan AU. Ameliorative effect of carveol on scopolamine-induced memory impairment in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1504-1512. [PMID: 36544525 PMCID: PMC9742562 DOI: 10.22038/ijbms.2022.66797.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Objectives Carveol is a naturally occurring terpenoid with antispasmodic, carminative, astringent, indigestion, and dyspepsia properties, as well as anti-diabetic, anti-oxidant, anti-hyperlipidemia, and anti-inflammatory properties in the liver. Research also suggests that it has memory-enhancing and anti-oxidant properties. The purpose of this research was to see whether carveol could protect rats against scopolamine-induced memory loss in a rat model. Materials and Methods Thirty male Sprague-Dawley rats (200-250 g) were grouped as the saline group receiving saline, disease group receiving scopolamine, and four treatment groups among which three groups received scopalamine+carveol and one group received scopalamine+donepezil for 28 days. Followed by in vitro, behavioral, anti-oxidant, and molecular studies were done. P<0.005 was considered statistically significant. Results The in vitro assay showed that carveol caused diphenyl-1-picrylhydrazyl inhibition. In-vivo findings revealed that carveol (50, 100, and 200 mg/kg) significantly improved dementia by reducing escape latency and spending more time in the targeted quadrant in the Morris water maze test. Increased number of entries and percent spontaneous alterations were observed in rats' Y-maze test. In animal brain tissues, i.e., cortex and hippocampus, carveol enhanced glutathione, glutathione-s-transferase, catalase, and reduced lipid peroxide levels. Carveol also improved cellular architecture in histopathological examinations and decreased expression of inflammatory markers such as amyloid-beta, nuclear factor kappa light chain activated B cells, tumor necrosis factor-alpha, cyclooxygenase 2, prostaglandin E2, and interleukin-18, as evidenced by immunohistochemistry and enzyme-linked immunosorbent assays, as well as molecular investigations. Conclusion This study suggests that the compound could be potent against amnesia mediated through anti-oxidant, amyloid-beta inhibition, and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Komal Latif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad,Corresponding author: Komal Latif. Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Saneela Saneela
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad
| |
Collapse
|
10
|
Temporal Pattern of Neuroinflammation Associated with a Low Glycemic Index Diet in the 5xFAD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2022; 59:7303-7322. [PMID: 36175825 PMCID: PMC9616770 DOI: 10.1007/s12035-022-03047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is associated with brain amyloid-β (Aβ) peptide accumulation and neuroinflammation. Currants, a low glycemic index dried fruit, and their components display pleiotropic neuroprotective effects in AD. We examined how diet containing 5% Corinthian currant paste (CurD) administered in 1-month-old 5xFAD mice for 1, 3, and 6 months affects Aβ levels and neuroinflammation in comparison to control diet (ConD) or sugar-matched diet containing 3.5% glucose/fructose (GFD). No change in serum glucose or insulin levels was observed among the three groups. CurD administered for 3 months reduced brain Aβ42 levels in male mice as compared to ConD and GFD, but after 6 months, Aβ42 levels were increased in mice both on CurD and GFD compared to ConD. CurD for 3 months also reduced TNFα and IL-1β levels in male and female mouse cortex homogenates compared to ConD and GFD. However, after 6 months, TNFα levels were increased in cortex homogenates of mice both on CurD and GFD as compared to ConD. A similar pattern was observed for TNFα-expressing cells, mostly co-expressing the microglial marker CD11b, in mouse hippocampus. IL-1β levels were similarly increased in the brain of all groups after 6 months. Furthermore, a time dependent decrease of secreted TNFα levels was found in BV2 microglial cells treated with currant phenolic extract as compared to glucose/fructose solution. Overall, our findings suggest that a short-term currant consumption reduces neuroinflammation in 5xFAD mice as compared to sugar-matched or control diet, but longer-term intake of currant or sugar-matched diet enhances neuroinflammation.
Collapse
|
11
|
Zhang H, Jiang X, Ma L, Wei W, Li Z, Chang S, Wen J, Sun J, Li H. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol 2022; 10:964075. [PMID: 36092715 PMCID: PMC9459380 DOI: 10.3389/fcell.2022.964075] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Synaptic dysfunction is closely related to Alzheimer’s disease (AD) which is also recognized as synaptic disorder. β-amyloid (Aβ) is one of the main pathogenic factors in AD, which disrupts synaptic plasticity and mediates the synaptic toxicity through different mechanisms. Aβ disrupts glutamate receptors, such as NMDA and AMPA receptors, which mediates calcium dyshomeostasis and damages synapse plasticity characterized by long-term potentiation (LTP) suppression and long-term depression (LTD) enhancement. As Aβ stimulates and Ca2+ influx, microglial cells and astrocyte can be activated and release cytokines, which reduces glutamate uptake and further impair synapse function. Besides, extracellular glutamate accumulation induced by Aβ mediates synapse toxicity resulting from reduced glutamate receptors and glutamate spillovers. Aβ also mediates synaptic dysfunction by acting on various signaling pathways and molecular targets, disrupting mitochondria and energy metabolism. In addition, Aβ overdeposition aggravates the toxic damage of hyperphosphorylated tau to synapses. Synaptic dysfunction plays a critical role in cognitive impairment of AD. The review addresses the possible mechanisms by which Aβ mediates AD-related synaptic impairment from distant perspectives.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehui Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Surui Chang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wen
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiahui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Li,
| |
Collapse
|
12
|
Gupta S, Singh V, Ganesh S, Singhal NK, Sandhir R. siRNA Mediated GSK3β Knockdown Targets Insulin Signaling Pathway and Rescues Alzheimer's Disease Pathology: Evidence from In Vitro and In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:69-93. [PMID: 34967205 DOI: 10.1021/acsami.1c15305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sporadic Alzheimer's disease (sAD) is a progressive neurodegenerative disorder with dysfunctional insulin signaling and energy metabolism. Emerging evidence suggests impairments in brain insulin responsiveness, glucose utilization, and energy metabolism may be major causes of amyloid precursor protein mishandling. The support for this notion comes from the studies wherein streptozotocin (STZ) induced brain insulin resistance in rodent model resulted in sAD-like neuropathology with cognitive decline. Our previous study showed a compromised insulin signaling pathway, glucose uptake, glucose metabolism, and energy homeostasis in STZ-induced glial-neuronal coculture and in vivo model of sAD. Various components of insulin signaling pathway were examined to understand the metabolic correlation, and GSK3β was selected for gene knockdown strategy to reverse sAD pathology based on the data. In the present study, we have synthesized carboxylated graphene oxide (GO) nanosheets functionalized with PEG and subsequently with polyethylenimine (PEI) to provide attachment sites for GSK3β siRNA. Our results showed that siRNA mediated knockdown of the GSK3β gene reduced expression of amyloid pathway genes (APP and BACE1), which was further confirmed by reduced amyloid beta (Aβ) levels in the in vitro STZ-induced sAD model. GSK3β knockdown also restored insulin signaling, AMPK and Mapk3 pathway by restoring the expression of corresponding candidate genes in these pathways (IR, Glut1/3, Prkaa1/2, Mapk3, BDNF) that reflected improved cellular energy homeostasis, neuronal proliferation, differentiation, maturation, and repair. Behavioral data from Morris water maze (MWM), open field (OF), novel object recognition (NOR), Y maze, and radial arm maze (RAM) tests showed that 0.5 μg nanoformulation (GOc-PP-siRNAGSK3β) intranasally for 7 days improved spatial memory, rescued anxiety like behavior, improved visual and working memory, and rescued exploratory behavior in STZ-induced sAD rats. GSK3β silencing resulted in decreased BACE1 expression and prevented accumulation of Aβ in the cortex and hippocampus. These molecular findings with improved behavioral performances were further correlated with reduced amyloid beta (Aβ) and neurofibrillary tangle (NFTs) formation in the cortex and hippocampus of GOc-PP-siRNAGSK3β administered sAD rats. Therefore, it is conceivable from the present study that nanoparticle-mediated targeting of GSK3β in the sAD appears to be a promising strategy to reverse sAD pathology.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Vishal Singh
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Subramaniam Ganesh
- Department of Biological Science and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Nitin K Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
13
|
GSK3β Activity in Reward Circuit Functioning and Addiction. NEUROSCI 2021. [DOI: 10.3390/neurosci2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Collapse
|
14
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
15
|
Chen L, Zhou YP, Liu HY, Gu JH, Zhou XF, Yue-Qin Z. Long-term oral administration of hyperoside ameliorates AD-related neuropathology and improves cognitive impairment in APP/PS1 transgenic mice. Neurochem Int 2021; 151:105196. [PMID: 34601013 DOI: 10.1016/j.neuint.2021.105196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by the pathological hallmarks of β-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Hyperoside, a flavone glycoside isolated from Rhododendron brachycarpum G. Don (Ericaceae), has neuroprotective effects against Aβ both in vitro and in vivo. However, whether hyperoside could delay AD pathogenesis remains unclear. In the present study, we observed if chronic treatment with hyperoside can reverse pathological progressions of AD in the APP/PS1 transgenic mouse model. Meanwhile, we attempted to elucidate the molecular mechanisms involved in regulating its effects. After 9 months of treatment, we found that hyperoside can improve spatial learning and memory in APP/PS1 transgenic mice, reduce amyloid plaque deposition and tau phosphorylation, decrease the number of activated microglia and astrocytes, and attenuate neuroinflammation and oxidative stress in the brain of APP/PS1 mice. These beneficial effects may be mediated in part by influencing reduction of BACE1 and GSK3β levels. Hyperoside confers neuroprotection against the pathology of AD in APP/PS1 mouse model and is emerging as a promising therapeutic candidate drug for AD.
Collapse
Affiliation(s)
- Liang Chen
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yi-Ping Zhou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Hua-Yi Liu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Juan-Hua Gu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Xin-Fu Zhou
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China; School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Zeng Yue-Qin
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
16
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
17
|
Taylor HBC, Emptage NJ, Jeans AF. Long-term depression links amyloid-β to the pathological hyperphosphorylation of tau. Cell Rep 2021; 36:109638. [PMID: 34469725 PMCID: PMC8424646 DOI: 10.1016/j.celrep.2021.109638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
In Alzheimer's disease, soluble oligomers of the amyloid-β peptide (Aβo) trigger a cascade of events that includes abnormal hyperphosphorylation of the protein tau, which is essential for pathogenesis. However, the mechanistic link between these two key pathological proteins remains unclear. Using hippocampal slices, we show here that an Aβo-mediated increase in glutamate release probability causes enhancement of synaptically evoked N-methyl-d-aspartate subtype glutamate receptor (NMDAR)-dependent long-term depression (LTD). We also find that elevated glutamate release probability is required for Aβo-induced pathological hyperphosphorylation of tau, which is likewise NMDAR dependent. Finally, we show that chronic, repeated chemical or optogenetic induction of NMDAR-dependent LTD alone is sufficient to cause tau hyperphosphorylation without Aβo. Together, these results support a possible causal chain in which Aβo increases glutamate release probability, thus leading to enhanced LTD induction, which in turn drives hyperphosphorylation of tau. Our data identify a mechanistic pathway linking the two critical pathogenic proteins of AD.
Collapse
Affiliation(s)
- Henry B C Taylor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
18
|
GSK-3-TSC axis governs lysosomal acidification through autophagy and endocytic pathways. Cell Signal 2020; 71:109597. [DOI: 10.1016/j.cellsig.2020.109597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
|
19
|
Barr JL, Unterwald EM. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118746. [PMID: 32454064 DOI: 10.1016/j.bbamcr.2020.118746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase implicated in numerous physiological processes and cellular functions through its ability to regulate the function of many proteins, including transcription factors and structural proteins. GSK-3β has been demonstrated to function as a regulator of multiple behavioral processes induced by drugs of abuse, particularly psychostimulant drugs. In this review, we provide an overview of the regulation of GSK-3β activity produced by psychostimulants, and the role of GSK-3β signaling in psychostimulant-induced behaviors including drug reward, associative learning and memory which play a role in the maintenance of drug-seeking. Evidence supports the conclusion that GSK-3β is an important component of the actions of psychostimulant drugs and that GSK-3β is a valid target for developing novel therapeutics. Additional studies are required to examine the role of GSK-3β in distinct cell types within the mesolimbic and memory circuits to further elucidate the mechanisms related to the acquisition, consolidation, and recall of drug-related memories, and potentially countering neuroadaptations that reinforce drug-seeking behaviors that maintain drug dependence.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
20
|
Tsai ST, Chen SY, Lin SZ, Tseng GF. Rostral intralaminar thalamic deep brain stimulation ameliorates memory deficits and dendritic regression in β-amyloid-infused rats. Brain Struct Funct 2020; 225:751-761. [PMID: 32036422 DOI: 10.1007/s00429-020-02033-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
Rostral intralaminar thalamic deep brain stimulation (ILN-DBS) has been shown to enhance attention and cognition through neuronal activation and brain plasticity. We examined whether rostral ILN-DBS can also attenuate memory deficits and impaired synaptic plasticity and protect glutamatergic transmission in the rat intraventricular β-amyloid (Aβ) infusion model of Alzheimer's disease (AD). Spatial memory was tested in the Morris water maze (MWM), while structural synaptic plasticity and glutamatergic transmission strength were estimated by measuring dendritic spine densities in dye-injected neurons and tissue expression levels of postsynaptic density protein 95 (PSD-95) in medial prefrontal cortex (mPFC) and hippocampus. All these assessments were compared among the naïve control rats, AD rats, and AD rats with ILN-DBS. We found that a single rostral ILN-DBS treatment significantly improved MWM performance and reversed PSD-95 expression reductions in the mPFC and hippocampal region of Aβ-infused rats. In addition, ILN-DBS preserved dendritic spine densities on mPFC and hippocampal pyramidal neurons. In fact, MWM performance, PSD-95 expression levels, and dendritic spine densities did not differ between naïve control and rostral ILN-DBS treatment groups, indicating near complete amelioration of Aβ-induced spatial memory impairments and dendritic regression. These findings suggest that the ILN is critical for modulating glutamatergic transmission, neural plasticity, and spatial memory functions through widespread effects on distributed brain regions. Further, these findings provide a rationale for examining the therapeutic efficacy of ILN-DBS in AD patients.
Collapse
Affiliation(s)
- Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation/Tzu Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, No. 701, Section 3, Jhongyang Road, Hualien, 970, Taiwan.
| |
Collapse
|
21
|
El-Gazar AA, Soubh AA, Mohamed EA, Awad AS, El-Abhar HS. Morin post-treatment confers neuroprotection in a novel rat model of mild repetitive traumatic brain injury by targeting dementia markers, APOE, autophagy and Wnt/β-catenin signaling pathway. Brain Res 2019; 1717:104-116. [DOI: 10.1016/j.brainres.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
|
22
|
Toffa DH, Magnerou MA, Kassab A, Hassane Djibo F, Sow AD. Can magnesium reduce central neurodegeneration in Alzheimer's disease? Basic evidences and research needs. Neurochem Int 2019; 126:195-202. [PMID: 30905744 DOI: 10.1016/j.neuint.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
Abstract
Magnesium (Mg) is a crucial divalent cation with more than 300 cellular functions. This ion shows therapeutic properties in several neurological diseases. Although there are numerous basic evidences showing that Mg can inhibit pathological processes involved in neuroglial degeneration, this low-cost option is not well-considered in clinical research and practice for now. Nevertheless, none of the expensive drugs currently recommended by the classic guidelines (in addition to physiological rehabilitation) had shown exceptional effectiveness. Herein, focusing on Alzheimer's disease (AD), we analyze the therapeutic pathways that support the use of Mg for neurogenesis and neuroprotection. According to experimental findings reviewed, Mg shows interesting abilities to facilitate toxin clearance, reduce neuroinflammation, inhibit the pathologic processing of amyloid protein precursor (APP) as well as the abnormal tau protein phosphorylation, and to reverse the deregulation of N-methyl-D-aspartate receptors. Currently, some crucial details of the mechanisms involved in these proved effects remain elusive and clinical background is poor. Therefore, further studies are required to enable a better overview on pharmacodynamic targets of Mg and thus, to find optimal pharmacologic strategies for clinical use of this ion.
Collapse
Affiliation(s)
- Dènahin Hinnoutondji Toffa
- Epilepsy Lab, CRCHUM, Université de Montréal, Montreal, Canada; Neurology Division, CHUM, Université de Montréal, Montreal, Canada.
| | | | - Ali Kassab
- Epilepsy Lab, CRCHUM, Université de Montréal, Montreal, Canada
| | | | | |
Collapse
|
23
|
Zádori D, Veres G, Szalárdy L, Klivényi P, Vécsei L. Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. J Alzheimers Dis 2019; 62:523-547. [PMID: 29480191 DOI: 10.3233/jad-170929] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathomechanism of Alzheimer's disease (AD) certainly involves mitochondrial disturbances, glutamate excitotoxicity, and neuroinflammation. The three main aspects of mitochondrial dysfunction in AD, i.e., the defects in dynamics, altered bioenergetics, and the deficient transport, act synergistically. In addition, glutamatergic neurotransmission is affected in several ways. The balance between synaptic and extrasynaptic glutamatergic transmission is shifted toward the extrasynaptic site contributing to glutamate excitotoxicity, a phenomenon augmented by increased glutamate release and decreased glutamate uptake. Neuroinflammation in AD is predominantly linked to central players of the innate immune system, with central nervous system (CNS)-resident microglia, astroglia, and perivascular macrophages having been implicated at the cellular level. Several abnormalities have been described regarding the activation of certain steps of the kynurenine (KYN) pathway of tryptophan metabolism in AD. First of all, the activation of indolamine 2,3-dioxygenase, the first and rate-limiting step of the pathway, is well-demonstrated. 3-Hydroxy-L-KYN and its metabolite, 3-hydroxy-anthranilic acid have pro-oxidant, antioxidant, and potent immunomodulatory features, giving relevance to their alterations in AD. Another metabolite, quinolinic acid, has been demonstrated to be neurotoxic, promoting glutamate excitotoxicity, reactive oxygen species production, lipid peroxidation, and microglial neuroinflammation, and its abundant presence in AD pathologies has been demonstrated. Finally, the neuroprotective metabolite, kynurenic acid, has been associated with antagonistic effects at glutamate receptors, free radical scavenging, and immunomodulation, giving rise to potential therapeutic implications. This review presents the multiple connections of KYN pathway-related alterations to three main domains of AD pathomechanism, such as mitochondrial dysfunction, excitotoxicity, and neuroinflammation, implicating possible therapeutic options.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
24
|
Duda P, Wiśniewski J, Wójtowicz T, Wójcicka O, Jaśkiewicz M, Drulis-Fajdasz D, Rakus D, McCubrey JA, Gizak A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets 2018; 22:833-848. [PMID: 30244615 DOI: 10.1080/14728222.2018.1526925] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Glycogen synthase kinase 3 (GSK3) is at the center of cellular signaling and controls various aspects of brain functions, including development of the nervous system, neuronal plasticity and onset of neurodegenerative disorders. Areas covered: In this review, recent efforts in elucidating the roles of GSK3 in neuronal plasticity and development of brain pathologies; Alzheimer's and Parkinson's disease, schizophrenia, and age-related neurodegeneration are described. The effect of microglia and astrocytes on development of the pathological states is also discussed. Expert opinion: GSK3β and its signaling pathway partners hold great promise as therapeutic target(s) for a multitude of neurological disorders. Activity of the kinase is often elevated in brain disorders. However, due to the wide range of GSK3 cellular targets, global inhibition of the kinase leads to severe side-effects and GSK3 inhibitors rarely reach Phase-2 clinical trials. Thus, a selective modulation of a specific cellular pool of GSK3 or specific down- or upstream partners of the kinase might provide more efficient anti-neurodegenerative therapies.
Collapse
Affiliation(s)
- Przemysław Duda
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Janusz Wiśniewski
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Tomasz Wójtowicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Olga Wójcicka
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Michał Jaśkiewicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dominika Drulis-Fajdasz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dariusz Rakus
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - James A McCubrey
- b Department of Microbiology and Immunology , Brody School of Medicine at East Carolina University , Greenville , NC , USA
| | - Agnieszka Gizak
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| |
Collapse
|
25
|
Zhou W, Bao W, Jiang D, Kong Y, Hua F, Lu X, Guan Y. [18F]-GE-179 positron emission tomography (PET) tracer for N-methyl-d-aspartate receptors: One-pot synthesis and preliminary micro-PET study in a rat model of MCAO. Nucl Med Biol 2018; 61:45-55. [DOI: 10.1016/j.nucmedbio.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/14/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
|
26
|
Chinchalongporn V, Shukla M, Govitrapong P. Melatonin ameliorates Aβ 42 -induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J Pineal Res 2018; 64:e12470. [PMID: 29352484 DOI: 10.1111/jpi.12470] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022]
Abstract
Melatonin is involved in the physiological regulation of the β-amyloid precursor protein (βAPP)-cleaving secretases which are responsible for generation of the neurotoxic amyloid beta (Aβ) peptide, one of the hallmarks of Alzheimer's disease (AD) pathology. In this study, we aimed to determine the underlying mechanisms of this regulation under pathological conditions. We establish that melatonin prevents Aβ42 -induced downregulation of a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) as well as upregulation of β-site APP-cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) in SH-SY5Y cell cultures. We also demonstrate that the intrinsic mechanisms of the observed effects occurred via regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and glycogen synthase kinase (GSK)-3β as melatonin reversed Aβ42 -induced upregulation and nuclear translocation of NF-κBp65 as well as activation of GSK3β via its receptor activation. Furthermore, specific blocking of the NF-κB and GSK3β pathways partially abrogated the Aβ42 -induced reduction in the BACE1 and PS1 levels. In addition, GSK3β blockage affected α-secretase cleavage and modulated nuclear translocation of NF-κB. Importantly, our study for the first time shows that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is a crucial target of melatonin. The compromised levels and/or genetic variation of Pin1 are associated with age-dependent tau and Aβ pathologies and neuronal degeneration. Interestingly, melatonin alleviated the Aβ42 -induced reduction of nuclear Pin1 levels and preserved the functional integrity of this isomerase. Our findings illustrate that melatonin attenuates Aβ42 -induced alterations of βAPP-cleaving secretases possibly via the Pin1/GSK3β/NF-κB pathway.
Collapse
Affiliation(s)
- Vorapin Chinchalongporn
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
27
|
Caraci F, Nicoletti F, Copani A. Metabotropic glutamate receptors: the potential for therapeutic applications in Alzheimer's disease. Curr Opin Pharmacol 2017; 38:1-7. [PMID: 29278824 DOI: 10.1016/j.coph.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023]
Abstract
A dysfunction of glutamate signaling is implicated at several levels in the pathogenesis of Alzheimer's disease. Currently, metabotropic glutamate receptors, which have a wide distribution in the central nervous system and activate a multitude of cell signaling pathways, are pursued as targets for therapeutic intervention in Alzheimer's disease. Research is still limited, but results underscore the relevance of ongoing studies. Here we discuss the latest updates regarding metabotropic glutamate receptors and their role in Alzheimer's disease, as well as promising metabotropic glutamate receptor ligands that have been investigated in preclinical models of Alzheimer's disease.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy; Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy; Neuromed (IRCCS), Pozzilli, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, Catania, Italy; Institute of Biostructure and Bioimaging, National Research Council, Catania, Italy.
| |
Collapse
|
28
|
Jodeiri Farshbaf M, Kiani-Esfahani A. Succinate dehydrogenase: Prospect for neurodegenerative diseases. Mitochondrion 2017; 42:77-83. [PMID: 29225013 DOI: 10.1016/j.mito.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
Onset of Alzheimer's, Parkinson's and Huntington's diseases as neurodegenerative disorders is increased by age. Alleviation of clinical symptoms and protection of neurons against degeneration are the main aspects of researches to establish new therapeutic strategies. Many studies have shown that mitochondria play crucial roles in high energy demand tissues like brain. Impairments in mitochondrial activity and physiology can makes neurons vulnerable to stress and degeneration. Succinate dehydrogenase (SDH) connects tricarboxylic cycle to the electron transport chain. Therefore, dysfunction of the SDH could impair mitochondrial activity, ATP generation and energy hemostasis in the cell. Exceed lipid synthesis, induction of the excitotoxicity in neurodegenerative disorders could be controlled by SDH through direct and indirect mechanism. In addition, mutation in SDH correlates with the onset of neurodegenerative disorders. Therefore, SDH could behave as a key regulator in neuroprotection. This review will present recent findings which are about SDH activity and related pathways which could play important roles in neuronal survival. Additionally, we will discuss about all possibilities which candidate SDH as a neuroprotective agent.
Collapse
Affiliation(s)
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 816513-1378, Iran
| |
Collapse
|
29
|
Ochalek A, Mihalik B, Avci HX, Chandrasekaran A, Téglási A, Bock I, Giudice ML, Táncos Z, Molnár K, László L, Nielsen JE, Holst B, Freude K, Hyttel P, Kobolák J, Dinnyés A. Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. ALZHEIMERS RESEARCH & THERAPY 2017; 9:90. [PMID: 29191219 PMCID: PMC5709977 DOI: 10.1186/s13195-017-0317-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia, affecting one in eight adults over 65 years of age. The majority of AD cases are sporadic, with unknown etiology, and only 5% of all patients with AD present the familial monogenic form of the disease. In the present study, our aim was to establish an in vitro cell model based on patient-specific human neurons to study the pathomechanism of sporadic AD. METHODS We compared neurons derived from induced pluripotent stem cell (iPSC) lines of patients with early-onset familial Alzheimer's disease (fAD), all caused by mutations in the PSEN1 gene; patients with late-onset sporadic Alzheimer's disease (sAD); and three control individuals without dementia. The iPSC lines were differentiated toward mature cortical neurons, and AD pathological hallmarks were analyzed by RT-qPCR, enzyme-linked immunosorbent assay, and Western blotting methods. RESULTS Neurons from patients with fAD and patients with sAD showed increased phosphorylation of TAU protein at all investigated phosphorylation sites. Relative to the control neurons, neurons derived from patients with fAD and patients with sAD exhibited higher levels of extracellular amyloid-β 1-40 (Aβ1-40) and amyloid-β 1-42 (Aβ1-42). However, significantly increased Aβ1-42/Aβ1-40 ratios, which is one of the pathological markers of fAD, were observed only in samples of patients with fAD. Additionally, we detected increased levels of active glycogen synthase kinase 3 β, a physiological kinase of TAU, in neurons derived from AD iPSCs, as well as significant upregulation of amyloid precursor protein (APP) synthesis and APP carboxy-terminal fragment cleavage. Moreover, elevated sensitivity to oxidative stress, as induced by amyloid oligomers or peroxide, was detected in both fAD- and sAD-derived neurons. CONCLUSIONS On the basis of the experiments we performed, we can conclude there is no evident difference except secreted Aβ1-40 levels in phenotype between fAD and sAD samples. To our knowledge, this is the first study in which the hyperphosphorylation of TAU protein has been compared in fAD and sAD iPSC-derived neurons. Our findings demonstrate that iPSC technology is suitable to model both fAD and sAD and may provide a platform for developing new treatment strategies for these conditions.
Collapse
Affiliation(s)
- Anna Ochalek
- Molecular Animal Biotechnology Laboratory, Szent István University, H-2100, Gödöllő, Hungary.,BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Balázs Mihalik
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Hasan X Avci
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary.,Department of Anatomy, Embryology and Histology, Faculty of Medicine, University of Szeged, H-6700, Szeged, Hungary.,Present address: University Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | | | | | - István Bock
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Maria Lo Giudice
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Zsuzsanna Táncos
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117, Budapest, Hungary
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117, Budapest, Hungary
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - Julianna Kobolák
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - András Dinnyés
- Molecular Animal Biotechnology Laboratory, Szent István University, H-2100, Gödöllő, Hungary. .,BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary.
| |
Collapse
|
30
|
Wu X, Kosaraju J, Zhou W, Tam KY. Neuroprotective Effect of SLM, a Novel Carbazole-Based Fluorophore, on SH-SY5Y Cell Model and 3xTg-AD Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2017; 8:676-685. [PMID: 28032988 DOI: 10.1021/acschemneuro.6b00388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amyloid β (Aβ) peptide aggregating to form a neurotoxic plaque, leading to cognitive deficits, is believed to be one of the plausible mechanisms for Alzheimer's disease (AD). Inhibiting Aβ aggregation is supposed to offer a neuroprotective effect to ameliorate AD. A previous report has shown that SLM, a carbazole-based fluorophore, binds to Aβ to inhibit the aggregation. However, it is not entirely clear whether the inhibition of Aβ aggregation alone would lead to the anticipated neuroprotective effects. In the current study, we intended to examine the protective action of SLM against Aβ-induced neurotoxicity in vitro and to evaluate if SLM can decrease the cognitive and behavioral deficits observed in triple transgenic AD mouse model (3xTg-AD). In the in vitro study, neurotoxicity induced by Aβ42 in human neuroblastoma (SH-SY5Y) cells was found to be reduced through the treatment with SLM. In the in vivo study, following one month SLM intraperitoneal injection (1, 2, and 4 mg/kg), 3xTg-AD mice were tested on Morris water maze (MWM) and Y-maze for their cognitive ability and sacrificed for biochemical estimations. Results show that SLM treatment improved the learning and memory ability in 3xTg-AD mice in MWM and Y-maze tasks. SLM also mitigated the amyloid burden by decreasing brain Aβ40 and Aβ42 levels and reduced tau phosphorylation, glycogen synthase kinase-3β activity, and neuro-inflammation. From our observations, SLM shows neuroprotection in SH-SY5Y cells against Aβ42 and also in 3xTg-AD mouse model by mitigating the pathological features and behavioral impairments.
Collapse
Affiliation(s)
- Xiaoli Wu
- Drug Development Core, Faculty
of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jayasankar Kosaraju
- Drug Development Core, Faculty
of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Zhou
- Drug Development Core, Faculty
of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kin Yip Tam
- Drug Development Core, Faculty
of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
31
|
Tanokashira D, Mamada N, Yamamoto F, Taniguchi K, Tamaoka A, Lakshmana MK, Araki W. The neurotoxicity of amyloid β-protein oligomers is reversible in a primary neuron model. Mol Brain 2017; 10:4. [PMID: 28137266 PMCID: PMC5282621 DOI: 10.1186/s13041-016-0284-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of extracellular amyloid β-protein (Aβ) and intracellular hyperphosphorylated tau proteins. Recent evidence suggests that soluble Aβ oligomers elicit neurotoxicity and synaptotoxicity, including tau abnormalities, and play an initiating role in the development of AD pathology. In this study, we focused on the unclarified issue of whether the neurotoxicity of Aβ oligomers is a reversible process. Using a primary neuron culture model, we examined whether the neurotoxic effects induced by 2-day treatment with Aβ42 oligomers (Aβ-O) are reversible during a subsequent 2-day withdrawal period. Aβ-O treatment resulted in activation of caspase-3 and eIF2α, effects that were considerably attenuated following Aβ-O removal. Immunocytochemical analyses revealed that Aβ-O induced aberrant phosphorylation and caspase-mediated cleavage of tau, both of which were mostly reversed by Aβ-O removal. Furthermore, Aβ-O caused intraneuronal dislocation of β-catenin protein and a reduction in its levels, and these alterations were partially reversed upon Aβ-O withdrawal. The dislocation of β-catenin appeared to reflect synaptic disorganization. These findings indicate that removal of extracellular Aβ-O can fully or partially reverse Aβ-O-induced neurotoxic alterations in our neuron model. Accordingly, we propose that the induction of neurotoxicity by Aβ oligomers is a reversible process, which has important implications for the development of AD therapies.
Collapse
Affiliation(s)
- Daisuke Tanokashira
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Naomi Mamada
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fumiko Yamamoto
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaori Taniguchi
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Madepalli K Lakshmana
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, 34987-2352, Florida, USA
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
32
|
RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease. Neurochem Res 2016; 41:2470-80. [DOI: 10.1007/s11064-016-1960-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
|
33
|
Dunning CJ, McGauran G, Willén K, Gouras GK, O’Connell DJ, Linse S. Direct High Affinity Interaction between Aβ42 and GSK3α Stimulates Hyperphosphorylation of Tau. A New Molecular Link in Alzheimer's Disease? ACS Chem Neurosci 2016; 7:161-70. [PMID: 26618561 PMCID: PMC4759616 DOI: 10.1021/acschemneuro.5b00262] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
![]()
Amyloid
β peptide (Aβ42) assemblies are considered central to
the development of Alzheimer’s disease, but the mechanism of
this toxicity remains unresolved. We screened protein microarrays
with on-pathway oligomeric Aβ42 to identify candidate proteins
interacting with toxic Aβ42 species. Samples prepared from Alexa546-Aβ42
and Aβ42 monomers at 1:5 molar ratio were incubated with the
array during a time window of the amyloid fibril formation reaction
during which the maximum number of transient oligomers exist in the
reaction flux. A specific interaction was detected between Aβ42
and glycogen synthase kinase 3α (GSK3α), a kinase previously
implicated in the disease pathology. This interaction was validated
with anti-GSK3α immunoprecipitation assays in neuronal cell
lysates. Confocal microscopy studies further identified colocalization
of Aβ42 and GSK3α in neurites of mature primary mouse
neurons. A high binding affinity (KD =
1 nM) was measured between Alexa488-Aβ42 and GSK3α in
solution using thermophoresis. An even lower apparent KD was estimated between GSK3α and dextran-immobilized
Aβ42 in surface plasmon resonance experiments. Parallel experiments
with GSK3β also identified colocalization and high affinity
binding to this isoform. GSK3α-mediated hyperphosphorylation
of the protein tau was found to be stimulated by Aβ42 in in vitro phosphorylation assays and identified a functional
relationship between the proteins. We uncover a direct and functional
molecular link between Aβ42 and GSK3α, which opens an
important avenue toward understanding the mechanism of Aβ42-mediated
neuronal toxicity in Alzheimer’s disease.
Collapse
Affiliation(s)
- Christopher J. Dunning
- Department of Biochemistry and Structural Biology, Chemical
Centre, Lund University, P O Box 124, SE22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, SE22100 Lund, Sweden
| | - Gavin McGauran
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katarina Willén
- Department of Experimental Medical Science, Lund University, SE22100 Lund, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Lund University, SE22100 Lund, Sweden
| | - David J. O’Connell
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Chemical
Centre, Lund University, P O Box 124, SE22100 Lund, Sweden
| |
Collapse
|
34
|
Yi JH, Park HJ, Lee S, Jung JW, Kim BC, Lee YC, Ryu JH, Kim DH. Cassia obtusifolia seed ameliorates amyloid β-induced synaptic dysfunction through anti-inflammatory and Akt/GSK-3β pathways. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:50-7. [PMID: 26674159 DOI: 10.1016/j.jep.2015.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/26/2015] [Accepted: 12/02/2015] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tea infused with the seed of Cassia obtusifolia has been traditionally used as an herbal remedy for liver, eye, and acute inflammatory diseases. Recent pharmacological reports have indicated that Cassiae semen has neuroprotective effects, attributable to its anti-inflammatory actions, in ischemic stroke and Parkinson's disease models. AIM OF THE STUDY Previously, the ethanol extract of C. obtusifolia seeds (COE) was reported to have memory enhancing properties. However, the effects of COE in an Alzheimer's disease (AD) model are currently unknown. In this study, we investigated the effect(s) of COE on aberrant synaptic plasticity and memory impairment induced by amyloid β (Aβ), a key toxic component found in the AD brain. MATERIALS AND METHODS To determine the effect of COE on Aβ-induced aberrant synaptic plasticity, we used acute mouse hippocampal slices and delivered theta burst stimulation to induce long-term potentiation (LTP). Western blots were used to detect Aβ- and/or COE-induced changes in signaling proteins. The novel object location recognition test was conducted to determine the effect of COE on Aβ-induced recognition memory impairment. RESULTS COE was found to ameliorate Aβ-induced LTP impairment in the acute hippocampal slices. Glycogen synthase kinase-3β (GSK-3β), a key molecule in LTP impairment, was activated by Aβ. However, this process was inhibited by COE via Akt signaling. Moreover, COE was found to attenuate Aβ-induced microglia, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX) activation. In the in vivo studies performed, COE ameliorated the Aβ-induced object recognition memory impairment. CONCLUSION These results suggest that COE exhibits neuroprotective activities against Aβ-induced brain disorders.
Collapse
Affiliation(s)
- Jee Hyun Yi
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| | - Hey Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University, Jeju 690-756, Republic of Korea.
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan 712-715, Republic of Korea.
| | - Byeong C Kim
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju 501-757, Republic of Korea.
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 604-714, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 604-714, Republic of Korea.
| |
Collapse
|
35
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
36
|
Charkhkar H, Meyyappan S, Matveeva E, Moll JR, McHail DG, Peixoto N, Cliff RO, Pancrazio JJ. Amyloid beta modulation of neuronal network activity in vitro. Brain Res 2015; 1629:1-9. [PMID: 26453830 DOI: 10.1016/j.brainres.2015.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 01/10/2023]
Abstract
In vitro assays offer a means of screening potential therapeutics and accelerating the drug development process. Here, we utilized neuronal cultures on planar microelectrode arrays (MEA) as a functional assay to assess the neurotoxicity of amyloid-β 1-42 (Aβ42), a biomolecule implicated in the Alzheimer׳s disease (AD). In this approach, neurons harvested from embryonic mice were seeded on the substrate-integrated microelectrode arrays. The cultured neurons form a spontaneously active network, and the spiking activity as a functional endpoint could be detected via the MEA. Aβ42 oligomer, but not monomer, significantly reduced network spike rate. In addition, we demonstrated that the ionotropic glutamate receptors, NMDA and AMPA/kainate, play a role in the effects of Aβ42 on neuronal activity in vitro. To examine the utility of the MEA-based assay for AD drug discovery, we tested two model therapeutics for AD, methylene blue (MB) and memantine. Our results show an almost full recovery in the activity within 24h after administration of Aβ42 in the cultures pre-treated with either MB or memantine. Our findings suggest that cultured neuronal networks may be a useful platform in screening potential therapeutics for Aβ induced changes in neurological function.
Collapse
Affiliation(s)
- Hamid Charkhkar
- Electrical and Computer Engineering Department, George Mason University, 4400 University Dr. MSN 1G5, Fairfax, VA 22030, USA.
| | - Susheela Meyyappan
- Department of Bioengineering, George Mason University, 4400 University Dr. MSN 1G5, Fairfax, VA 22030, USA
| | - Evgenia Matveeva
- Adlyfe Inc., 9430 Key West Avenue, Suite 219, Rockville, MD 20850, USA
| | - Jonathan R Moll
- Adlyfe Inc., 9430 Key West Avenue, Suite 219, Rockville, MD 20850, USA
| | - Daniel G McHail
- Department of Molecular Neuroscience, The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Nathalia Peixoto
- Electrical and Computer Engineering Department, George Mason University, 4400 University Dr. MSN 1G5, Fairfax, VA 22030, USA
| | - Richard O Cliff
- System of Systems Analytics, Inc. (SoSACorp), 11250 Waples Mill Road, Fairfax, VA 22030, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, George Mason University, 4400 University Dr. MSN 1G5, Fairfax, VA 22030, USA
| |
Collapse
|
37
|
Zeng GF, Zong SH, Zhang ZY, Fu SW, Li KK, Fang Y, Lu L, Xiao DQ. The Role of 6-Gingerol on Inhibiting Amyloid β Protein-Induced Apoptosis in PC12 Cells. Rejuvenation Res 2015; 18:413-21. [PMID: 25811848 DOI: 10.1089/rej.2014.1657] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our previous study suggests that ginger root extract can reverse behavioral dysfunction and prevent Alzheimer's disease (AD)-like symptoms induced by the amyloid-β protein (Aβ) in a rat model. 6-Gingerol is the major gingerol in ginger rhizomes, but its effect on the treatment of AD remains unclear. In this study, we aimed to determine if 6-gingerol had a protective effect on Aβ1-42-induced damage and apoptotic death in rat pheochromocytoma cells (PC12 cells) and to investigate the underlying mechanisms by which 6-gingerol may exert its neuroprotective effects. Our results indicated that pre-treatment with 6-gingerol significantly increased cell viability and reduced cell apoptosis in Aβ1-42-treated cells. Moreover, 6-gingerol pretreatment markedly reduced the level of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), the production of nitric oxide (NO), and the leakage of lactate dehydrogenase (LDH) and increased superoxide dismutase (SOD) activity compared with the Aβ1-42 treatment group. In addition, 6-gingerol pretreatment also significantly enhanced the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β (p-GSK-3β). Overall, these results indicate that 6-gingerol exhibited protective effects on apoptosis induced by Aβ1-42 in cultured PC12 cells by reducing oxidative stress and inflammatory responses, suppressing the activation of GSK-3β and enhancing the activation of Akt, thereby exerting neuroprotective effects. Therefore, 6-gingerol may be useful in the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Gao-feng Zeng
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Shao-hui Zong
- 2 Department of Osteopathia, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Zhi-yong Zhang
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Song-wen Fu
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Ke-ke Li
- 3 Graduate School of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Ye Fang
- 3 Graduate School of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - Li Lu
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| | - De-Qiang Xiao
- 1 College of Public Hygiene of Guangxi Medical University , Nanning, Guangxi, P.R. China
| |
Collapse
|
38
|
Aβ selectively impairs mGluR7 modulation of NMDA signaling in basal forebrain cholinergic neurons: implication in Alzheimer's disease. J Neurosci 2015; 34:13614-28. [PMID: 25297090 DOI: 10.1523/jneurosci.1204-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degeneration of basal forebrain (BF) cholinergic neurons is one of the early pathological events in Alzheimer's disease (AD) and is thought to be responsible for the cholinergic and cognitive deficits in AD. The functions of this group of neurons are highly influenced by glutamatergic inputs from neocortex. We found that activation of metabotropic glutamate receptor 7 (mGluR7) decreased NMDAR-mediated currents and NR1 surface expression in rodent BF neurons via a mechanism involving cofilin-regulated actin dynamics. In BF cholinergic neurons, β-amyloid (Aβ) selectively impaired mGluR7 regulation of NMDARs by increasing p21-activated kinase activity and decreasing cofilin-mediated actin depolymerization through a p75(NTR)-dependent mechanism. Cell viability assays showed that activation of mGluR7 protected BF neurons from NMDA-induced excitotoxicity, which was selectively impaired by Aβ in BF cholinergic neurons. It provides a potential basis for the Aβ-induced disruption of calcium homeostasis that might contribute to the selective degeneration of BF cholinergic neurons in the early stage of AD.
Collapse
|
39
|
A novel brain-derived neurotrophic factor-modulating peptide attenuates Aβ1-42-induced neurotoxicity in vitro. Neurosci Lett 2015; 595:63-8. [DOI: 10.1016/j.neulet.2015.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/11/2015] [Accepted: 03/25/2015] [Indexed: 01/08/2023]
|
40
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
41
|
Scala F, Fusco S, Ripoli C, Piacentini R, Li Puma DD, Spinelli M, Laezza F, Grassi C, D'Ascenzo M. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3. Neurobiol Aging 2015; 36:886-900. [PMID: 25541422 PMCID: PMC4801354 DOI: 10.1016/j.neurobiolaging.2014.10.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022]
Abstract
Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K(+) currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K(+) currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer's mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Federico Scala
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Cristian Ripoli
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | | | - Matteo Spinelli
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy.
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy.
| |
Collapse
|
42
|
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2014; 148:114-31. [PMID: 25435019 DOI: 10.1016/j.pharmthera.2014.11.016] [Citation(s) in RCA: 1239] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Collapse
Affiliation(s)
- Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
43
|
Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma 2014; 31:1129-1138. [PMID: 24499307 PMCID: PMC4089022 DOI: 10.1089/neu.2013.3303] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Significant attention has recently been drawn to the potential link between head trauma and the development of neurodegenerative disease, namely chronic traumatic encephalopathy (CTE). The acute neurotrauma associated with sports-related concussions in athletes and blast-induced traumatic brain injury in soldiers elevates the risk for future development of chronic neurodegenerative diseases such as CTE. CTE is a progressive disease distinguished by characteristic tau neurofibrillary tangles (NFTs) and, occasionally, transactive response DNA binding protein 43 (TDP43) oligomers, both of which have a predilection for perivascular and subcortical areas near reactive astrocytes and microglia. The disease is currently only diagnosed postmortem by neuropathological identification of NFTs. A recent workshop sponsored by National Institute of Neurological Disorders and Stroke emphasized the need for premortem diagnosis, to better understand disease pathophysiology and to develop targeted treatments. In order to accomplish this objective, it is necessary to discover the mechanistic link between acute neurotrauma and the development of chronic neurodegenerative and neuropsychiatric disorders such as CTE. In this review, we briefly summarize what is currently known about CTE development and pathophysiology, and subsequently discuss injury-induced pathways that warrant further investigation. Understanding the mechanistic link between acute brain injury and chronic neurodegeneration will facilitate the development of appropriate diagnostic and therapeutic options for CTE and other related disorders.
Collapse
Affiliation(s)
- Brandon Peter Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ryan Coddington Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Aric Flint Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Julian Edwin Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Jason Delwyn Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Charles Lee Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, West Virginia
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
44
|
Brain Na(+), K(+)-ATPase Activity In Aging and Disease. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2014; 10:85-102. [PMID: 25018677 PMCID: PMC4092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/05/2014] [Indexed: 11/15/2022]
Abstract
Na(+)/K(+) pump or sodium- and potassium-activated adenosine 5'-triphosphatase (Na(+), K(+)-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K(+) with the exit of Na(+) from cells, being the responsible for Na(+)/K(+) equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na(+), K(+)-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na(+), K(+)-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca(2+) mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na(+), K(+)-ATPase involvement in signaling pathways, enzyme changes in diverse neurological diseases as well as during aging, have been summarized. Issues refer mainly to Na(+), K(+)-ATPase studies in ischemia, brain injury, depression and mood disorders, mania, stress, Alzheimer´s disease, learning and memory, and neuronal hyperexcitability and epilepsy.
Collapse
|
45
|
Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT. 7,8-Dihydroxyflavone Ameliorates Scopolamine-Induced Alzheimer-Like Pathologic Dysfunction. Rejuvenation Res 2014; 17:249-54. [PMID: 24325271 DOI: 10.1089/rej.2013.1519] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chong Chen
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Xiao-Hong Li
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Sai Zhang
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Yue Tu
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Yan-Min Wang
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Hong-Tao Sun
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| |
Collapse
|
46
|
Xuan AG, Pan XB, Wei P, Ji WD, Zhang WJ, Liu JH, Hong LP, Chen WL, Long DH. Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer's disease. Mol Neurobiol 2014; 51:300-12. [PMID: 24854198 DOI: 10.1007/s12035-014-8751-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
In the brains of patients with Alzheimer's disease (AD) and transgenic AD mouse models, astrocytes and microglia activated by amyloid-β (Aβ) contribute to the inflammatory process that develops around injury in the brain. Valproic acid (VPA) has been shown to have anti-inflammatory function. The present study intended to explore the therapeutic effect of VPA on the neuropathology and memory deficits in APPswe/PS1ΔE9 (APP/PS1) transgenic mice. Here, we report that VPA-treated APP/PS1 mice markedly improved memory deficits and decreased Aβ deposition compared with the vehicle-treated APP/PS1 mice. Moreover, the extensive astrogliosis and microgliosis as well as the increased expression in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the hippocampus and cortex of APP/PS1 transgenic mice were significantly reduced following administration of VPA, which attenuated neuronal degeneration. Concomitantly, VPA alleviated the levels of p65 NF-κB phosphorylation and enhanced the levels of acetyl-H3, Bcl-2, and phospho-glycogen synthase kinase (GSK)-3β that occurred in the hippocampus of APP/PS1 transgenic mice. These results demonstrate that VPA could significantly ameliorate spatial memory impairment and Aβ deposition at least in part via the inhibition of inflammation, suggesting that administration of VPA could provide a therapeutic approach for AD.
Collapse
Affiliation(s)
- Ai-Guo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, 510182, Guangdong, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 7:46. [PMID: 24904272 PMCID: PMC4033045 DOI: 10.3389/fnmol.2014.00046] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/02/2014] [Indexed: 01/10/2023] Open
Abstract
Alzheimer disease (AD) is the most common form of age-related dementia. The etiology of AD is considered to be multifactorial as only a negligible percentage of cases have a familial or genetic origin. Glycogen synthase kinase-3 (GSK-3) is regarded as a critical molecular link between the two histopathological hallmarks of the disease, namely senile plaques and neurofibrillary tangles. In this review, we summarize current data regarding the involvement of this kinase in several aspects of AD development and progression, as well as key observations highlighting GSK-3 as one of the most relevant targets for AD treatment.
Collapse
Affiliation(s)
| | - Jerónimo Jurado
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain ; Biology Faculty, Autónoma University Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|