1
|
Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer's disease. Acta Pharm Sin B 2022; 12:496-510. [PMID: 35256931 PMCID: PMC8897057 DOI: 10.1016/j.apsb.2021.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic variation in apolipoprotein E (APOE) influences Alzheimer's disease (AD) risk. APOE ε4 alleles are the strongest genetic risk factor for late onset sporadic AD. The AD risk is dose dependent, as those carrying one APOE ε4 allele have a 2-3-fold increased risk, while those carrying two ε4 alleles have a 10-15-fold increased risk. Individuals carrying APOE ε2 alleles have lower AD risk and those carrying APOE ε3 alleles have neutral risk. APOE is a lipoprotein which functions in lipid transport, metabolism, and inflammatory modulation. Isoform specific effects of APOE within the brain include alterations to Aβ, tau, neuroinflammation, and metabolism. Here we review the association of APOE with AD, the APOE isoform specific effects within brain and periphery, and potential therapeutics.
Collapse
Affiliation(s)
- Benjamin R. Troutwine
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Laylan Hamid
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Morris JK, Wood LB, Wilkins HM. Editorial: Metabolism in Alzheimer's Disease. Front Neurosci 2022; 15:824145. [PMID: 35058745 PMCID: PMC8763976 DOI: 10.3389/fnins.2021.824145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Alzheimer's Disease Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Levi B. Wood
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heather M. Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Alzheimer's Disease Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
3
|
The long-lived Octodon degus as a rodent drug discovery model for Alzheimer's and other age-related diseases. Pharmacol Ther 2018. [PMID: 29514054 DOI: 10.1016/j.pharmthera.2018.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial progressive neurodegenerative disease. Despite decades of research, no disease modifying therapy is available and a change of research objectives and/or development of novel research tools may be required. Much AD research has been based on experimental models using animals with a short lifespan that have been extensively genetically manipulated and do not represent the full spectrum of late-onset AD, which make up the majority of cases. The aetiology of AD is heterogeneous and involves multiple factors associated with the late-onset of the disease like disturbances in brain insulin, oxidative stress, neuroinflammation, metabolic syndrome, retinal degeneration and sleep disturbances which are all progressive abnormalities that could account for many molecular, biochemical and histopathological lesions found in brain from patients dying from AD. This review is based on the long-lived rodent Octodon degus (degu) which is a small diurnal rodent native to South America that can spontaneously develop cognitive decline with concomitant phospho-tau, β-amyloid pathology and neuroinflammation in brain. In addition, the degu can also develop several other conditions like type 2 diabetes, macular and retinal degeneration and atherosclerosis, conditions that are often associated with aging and are often comorbid with AD. Long-lived animals like the degu may provide a more realistic model to study late onset AD.
Collapse
|
4
|
Mecocci P, Boccardi V, Cecchetti R, Bastiani P, Scamosci M, Ruggiero C, Baroni M. A Long Journey into Aging, Brain Aging, and Alzheimer's Disease Following the Oxidative Stress Tracks. J Alzheimers Dis 2018; 62:1319-1335. [PMID: 29562533 PMCID: PMC5870006 DOI: 10.3233/jad-170732] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The Editors of the Journal of Alzheimer's Disease invited Professor Patrizia Mecocci to contribute a review article focused on the importance and implications of her research on aging, brain aging, and senile dementias over the last years. This invitation was based on an assessment that she was one of the journal's top authors and a strong supporter of the concept that oxidative stress is a major contributor to several alterations observed in age-related conditions (sarcopenia, osteoporosis) and, more significantly, in brain aging suggesting a pivotal role in the pathogenesis and progression of one of the most dramatic age-related diseases, Alzheimer's disease (AD). Her first pioneering research was on the discovery of high level of 8-hydroxy-2'-deoxyguanosine (OH8dG), a marker of oxidation in nucleic acids, in mitochondrial DNA isolated from cerebral cortex. This molecule increases progressively with aging and more in AD brain, supporting the hypothesis that oxidative stress, a condition of unbalance between the production of reactive oxygen species and antioxidants, gives a strong contribution to the high incidence of AD in old age subjects. OH8dG also increases in peripheral lymphocyte from AD subjects, suggesting that AD is not only a cerebral but also a systemic disease. The role of antioxidants, particularly vitamin E and zinc, were also studied in longevity and in cognitive decline and dementia. This review shows the main findings from Mecocci's laboratory related to oxidative stress in aging, brain aging, and AD and discusses the importance and implications of some of the major achievements in this field of research.
Collapse
Affiliation(s)
- Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Roberta Cecchetti
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Patrizia Bastiani
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Michela Scamosci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Marta Baroni
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Cardoso S, Seiça R, Moreira PI. Diabesity and Brain Energy Metabolism: The Case of Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2017; 19:117-150. [PMID: 28933063 DOI: 10.1007/978-3-319-63260-5_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
It is widely accepted that high calorie diets and a sedentary lifestyle sturdily influence the incidence and outcome of type 2 diabetes and obesity, which can occur simultaneously, a situation called diabesity. Tightly linked with metabolic and energy regulation, a close association between diabetes and Alzheimer's disease (AD) has been proposed. Among the common pathogenic mechanisms that underpin both conditions, insulin resistance, brain glucose hypometabolism, and metabolic dyshomeostasis appear to have a pivotal role. This century is an unprecedented diabetogenic period in human history, so therapeutic strategies and/or approaches to control and/or revert this evolving epidemic is of utmost importance. This chapter will make a brief contextualization about the impact that diabetes and obesity can exert in brain structure and function alongside with a brief survey about the role of insulin in normal brain function, exploring its roles in cognition and brain glucose metabolism. Later, attention will be given to the intricate relation of diabesity, insulin resistance, and AD. Finally, both pharmacological and lifestyle interventions will also be reviewed as strategies aimed at fighting diabesity and/or AD-related metabolic effects.
Collapse
Affiliation(s)
- Susana Cardoso
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Scazzina F, Dei Cas A, Del Rio D, Brighenti F, Bonadonna RC. The β-cell burden index of food: A proposal. Nutr Metab Cardiovasc Dis 2016; 26:872-878. [PMID: 27381989 DOI: 10.1016/j.numecd.2016.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 01/09/2023]
Abstract
The quantity and quality of dietary fat and/or carbohydrate may alter one or more of the basic components of the insulin-glucose system, which in turn affect the pathways leading to alterations in glucose homeostasis and, possibly, to cardiovascular disease. This viewpoint article, reviewing some of the currently available tools aiming at quantifying the impact of dietary carbohydrates on the glucose-insulin homeostatic loop, highlights the unmet need of a more thorough assessment of the complex interaction between dietary factors and the glucose-insulin system. A novel index, the "β-cell burden index", may turn out to be a valuable tool to quantify the role played by the diet in shaping the risk of type 2 diabetes, cardiovascular disease and other metabolic and degenerative disorders, ideally orienting their prevention with strategies based on dietary modifications.
Collapse
Affiliation(s)
- F Scazzina
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - A Dei Cas
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Division of Endocrinology, Azienda Ospedaliera Universitaria of Parma, Parma, Italy.
| | - D Del Rio
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - F Brighenti
- Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy.
| | - R C Bonadonna
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Division of Endocrinology, Azienda Ospedaliera Universitaria of Parma, Parma, Italy.
| |
Collapse
|
7
|
Coccaro EF, Drossos T, Phillipson L. HbA1c levels as a function of emotional regulation and emotional intelligence in patients with type 2 diabetes. Prim Care Diabetes 2016; 10:334-341. [PMID: 27344533 DOI: 10.1016/j.pcd.2016.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/09/2016] [Accepted: 05/16/2016] [Indexed: 01/21/2023]
Abstract
AIMS Understanding the role of emotion in glycemic control may be critical for the long-term treatment of patients with type 2 diabetes (T2D). In this study we investigated the relationship between measures of emotional regulation and emotional intelligence and HbA1c levels in adult patients with T2 diabetes. METHODS 100 adult patients with T2 diabetes completed assessments of emotional regulation (i.e., affect intensity/lability) and emotional intelligence and were then correlated with HbA1c levels with several relevant covariates. RESULTS HbA1c levels were significantly associated with affect intensity (AI: r=.24, p=.018) and with emotional intelligence (EI: r=-.29, p=.004), but not affect lability. These results were the same even after adding income, state depression scores, insulin-dependent status, serum cholesterol, diabetes literacy and self-care as covariates (AI: β=.33, p=.001; EI: β=-.31, p=.002). Diabetes self-care, but not diabetes literacy, was also associated with HbA1c levels (β=-.29, p=.003). CONCLUSIONS These data suggest that aspects of emotional regulation and emotional intelligence play a role in glycemic control in adult patients with T2 diabetes and do so even in the context of several variables relevant to diabetes. If so, interventions that can reduce affect intensity and/or increase emotional intelligence may represent a new strategy in the glycemic control of adult patients with T2 diabetes.
Collapse
Affiliation(s)
- Emil F Coccaro
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States.
| | - Tina Drossos
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Louis Phillipson
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Wang H, Chen F, Zhong KL, Tang SS, Hu M, Long Y, Miao MX, Liao JM, Sun HB, Hong H. PPARγ agonists regulate bidirectional transport of amyloid-β across the blood-brain barrier and hippocampus plasticity in db/db mice. Br J Pharmacol 2015; 173:372-85. [PMID: 26507867 DOI: 10.1111/bph.13378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 10/18/2015] [Accepted: 10/21/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE There is emerging evidence suggesting that abnormal transport of amyloid-β (Aβ) across the blood-brain barrier (BBB) is involved in diabetes-associated cognitive decline. We investigated whether PPARγ agonists restore Aβ transport across the BBB and hippocampal plasticity in db/db mice. EXPERIMENTAL APPROACH Efflux and influx of Aβ across the BBB were determined by stereotaxic intra-cerebral or i.a. infusion of [(125) I]-Aβ1-40 respectively. Receptor for advanced glycation end products (RAGE) and low-density lipoprotein receptor-related protein 1 (LRP1), which are involved in Aβ influx and efflux, PPARγ and NF-κB p65 at the BBB, as well as hippocampal Aβ, caspase-3, Bax and Bcl-2 were assayed by Western blot, immunohistochemistry and RT-PCR. In vivo, hippocampal LTP was recorded, and Morris water maze and Y-maze tasks were performed. KEY RESULTS Treatment with PPARγ agonists, rosiglitazone (0.8 mg·kg(-1) ) and pioglitazone (9.0 mg·kg(-1) ), for 6 weeks significantly increased Aβ efflux and decreased Aβ influx across the BBB in db/db mice. Concomitantly, they decreased hippocampal Aβ1-40 and Aβ1-42 , suppressed neuronal apoptosis, as indicated by decreased caspase-3 activity and increased ratio of Bcl-2/Bax, and increased hippocampal plasticity, characterized by an enhanced in vivo LTP and better performance in behavioural tests. Furthermore, the PPARγ agonists induced the expression of LRP1 gene by activation of PPARγ and suppressed RAGE gene expression by inactivation of NF-κB signalling at the BBB of db/db mice. CONCLUSIONS AND IMPLICATIONS PPARγ agonists modify abnormal Aβ transport across the BBB and this is accompanied by amelioration of β-amyloidosis and an improvement in hippocampal plasticity in diabetic mice.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Kai Long Zhong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Su Su Tang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei Hu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Yan Long
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Ming Xing Miao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Jian Min Liao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Hong Bing Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|