1
|
Barrientos RM, Baratta MV, Frank MG. Dr. Steven F. Maier: A fearless scientist, a rigorous mentor, and a legacy of excellence. Brain Behav Immun 2025; 128:303-304. [PMID: 40233866 DOI: 10.1016/j.bbi.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025] Open
Abstract
For more than 40 years, Dr. Steven F. Maier has shaped the field of psychoneuroimmunology through innovative research, influential mentorship, and dedicated service to the scientific community. As he concludes his tenure as Associate Editor of Brain, Behavior, and Immunity, this tribute reflects on his most transformative scientific contributions-from conceptualizing learned helplessness to uncovering the neural and immune mechanisms linking stress to disease vulnerability. Drawing from our experiences as longtime mentees and later colleagues, we also share reflections on his unique mentoring style, unwavering commitment to scientific rigor, and enduring influence on the field.
Collapse
Affiliation(s)
- Ruth M Barrientos
- Institute for Behavioral Medicine Research and Department of Psychiatry and Behavioral Health Ohio State University, Columbus, OH, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Malik S, Xavier S, Soch A, Younesi S, Yip J, Slayo M, Barrientos RM, Sominsky L, Spencer SJ. High-fat diet and aging-associated memory impairments persist in the absence of microglia in female rats. Neurobiol Aging 2024; 140:22-32. [PMID: 38703636 DOI: 10.1016/j.neurobiolaging.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Aging is associated with a priming of microglia such that they are hypersensitive to further immune challenges. As such high-fat diet during aging can have detrimental effects on cognition that is not seen in the young. However, conflicting findings also suggest that obesity may protect against cognitive decline during aging. Given this uncertainty we aimed here to examine the role of microglia in high-fat, high-sucrose diet (HFSD)-induced changes in cognitive performance in the aging brain. We hypothesised that 8 weeks of HFSD-feeding would alter microglia and the inflammatory milieu in aging and worsen aging-related cognitive deficits in a microglia-dependent manner. We found that both aging and HFSD reduced hippocampal neuron numbers and open field exploration; they also impaired recognition memory. However, the aging-related deficits occurred in the absence of a pro-inflammatory response and the deficits in memory performance persisted after depletion of microglia in the Cx3cr1-Dtr knock-in rat. Our data suggest that mechanisms additional to the acute microglial contribution play a role in aging- and HFSD-associated memory dysfunction.
Collapse
Affiliation(s)
- Sajida Malik
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Soniya Xavier
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jackson Yip
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Mary Slayo
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, Marburg, Germany
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia; Barwon Health, Geelong, Victoria, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Krejcová LV, Bento-Torres J, Diniz DG, Pereira A, Batista-de-Oliveira M, de Morais AACL, Mendes-da-Silva RF, Abadie-Guedes R, dos Santos ÂA, Lima DS, Guedes RCA, Picanço-Diniz CW. Unraveling the Influence of Litter Size, Maternal Care, Exercise, and Aging on Neurobehavioral Plasticity and Dentate Gyrus Microglia Dynamics in Male Rats. Brain Sci 2024; 14:497. [PMID: 38790475 PMCID: PMC11119659 DOI: 10.3390/brainsci14050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This study explores the multifaceted influence of litter size, maternal care, exercise, and aging on rats' neurobehavioral plasticity and dentate gyrus microglia dynamics. Body weight evolution revealed a progressive increase until maturity, followed by a decline during aging, with larger litters exhibiting lower weights initially. Notably, exercised rats from smaller litters displayed higher body weights during the mature and aged stages. The dentate gyrus volumes showed no significant differences among groups, except for aged sedentary rats from smaller litters, which exhibited a reduction. Maternal care varied significantly based on litter size, with large litter dams showing lower frequencies of caregiving behaviors. Behavioral assays highlighted the detrimental impact of a sedentary lifestyle and reduced maternal care/large litters on spatial memory, mitigated by exercise in aged rats from smaller litters. The microglial dynamics in the layers of dentate gyrus revealed age-related changes modulated by litter size and exercise. Exercise interventions mitigated microgliosis associated with aging, particularly in aged rats. These findings underscore the complex interplay between early-life experiences, exercise, microglial dynamics, and neurobehavioral outcomes during aging.
Collapse
Affiliation(s)
- Lane Viana Krejcová
- Neurodegeneration and Infection Research Laboratory, João de Barros Barreto Universitary Hospital, Institute of Biological Sciences, Federal University of Pará, Belém 66050-160, Pará, Brazil
| | - João Bento-Torres
- Neurodegeneration and Infection Research Laboratory, João de Barros Barreto Universitary Hospital, Institute of Biological Sciences, Federal University of Pará, Belém 66050-160, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Neurodegeneration and Infection Research Laboratory, João de Barros Barreto Universitary Hospital, Institute of Biological Sciences, Federal University of Pará, Belém 66050-160, Pará, Brazil
- Postgraduate Program in Oncology and Medical Sciences, João de Barros Barreto Universitary Hospital, Federal University of Pará, Belém 66075-110, Pará, Brazil
- Electron Microscopy Laboratory, Evandro Chagas Institute, Belém 66093-020, Pará, Brazil
| | - Antonio Pereira
- Neurodegeneration and Infection Research Laboratory, João de Barros Barreto Universitary Hospital, Institute of Biological Sciences, Federal University of Pará, Belém 66050-160, Pará, Brazil
| | - Manuella Batista-de-Oliveira
- Naíde Teodósio Nutrition Physiology Laboratory, Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | | | | | - Ricardo Abadie-Guedes
- Naíde Teodósio Nutrition Physiology Laboratory, Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Ângela Amâncio dos Santos
- Naíde Teodósio Nutrition Physiology Laboratory, Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Denise Sandrelly Lima
- Naíde Teodósio Nutrition Physiology Laboratory, Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Rubem Carlos Araujo Guedes
- Naíde Teodósio Nutrition Physiology Laboratory, Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Cristovam Wanderley Picanço-Diniz
- Neurodegeneration and Infection Research Laboratory, João de Barros Barreto Universitary Hospital, Institute of Biological Sciences, Federal University of Pará, Belém 66050-160, Pará, Brazil
| |
Collapse
|
4
|
Taylor MA, Kokiko-Cochran ON. Context is key: glucocorticoid receptor and corticosteroid therapeutics in outcomes after traumatic brain injury. Front Cell Neurosci 2024; 18:1351685. [PMID: 38529007 PMCID: PMC10961349 DOI: 10.3389/fncel.2024.1351685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Traumatic brain injury (TBI) is a global health burden, and survivors suffer functional and psychiatric consequences that can persist long after injury. TBI induces a physiological stress response by activating the hypothalamic-pituitary-adrenal (HPA) axis, but the effects of injury on the stress response become more complex in the long term. Clinical and experimental evidence suggests long lasting dysfunction of the stress response after TBI. Additionally, pre- and post-injury stress both have negative impacts on outcome following TBI. This bidirectional relationship between stress and injury impedes recovery and exacerbates TBI-induced psychiatric and cognitive dysfunction. Previous clinical and experimental studies have explored the use of synthetic glucocorticoids as a therapeutic for stress-related TBI outcomes, but these have yielded mixed results. Furthermore, long-term steroid treatment is associated with multiple negative side effects. There is a pressing need for alternative approaches that improve stress functionality after TBI. Glucocorticoid receptor (GR) has been identified as a fundamental link between stress and immune responses, and preclinical evidence suggests GR plays an important role in microglia-mediated outcomes after TBI and other neuroinflammatory conditions. In this review, we will summarize GR-mediated stress dysfunction after TBI, highlighting the role of microglia. We will discuss recent studies which target microglial GR in the context of stress and injury, and we suggest that cell-specific GR interventions may be a promising strategy for long-term TBI pathophysiology.
Collapse
Affiliation(s)
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Muscat SM, Butler MJ, Bettes MN, DeMarsh JW, Scaria EA, Deems NP, Barrientos RM. Post-operative cognitive dysfunction is exacerbated by high-fat diet via TLR4 and prevented by dietary DHA supplementation. Brain Behav Immun 2024; 116:385-401. [PMID: 38145855 PMCID: PMC10872288 DOI: 10.1016/j.bbi.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
Post-operative cognitive dysfunction (POCD) is an abrupt decline in neurocognitive function arising shortly after surgery and persisting for weeks to months, increasing the risk of dementia diagnosis. Advanced age, obesity, and comorbidities linked to high-fat diet (HFD) consumption such as diabetes and hypertension have been identified as risk factors for POCD, although underlying mechanisms remain unclear. We have previously shown that surgery alone, or 3-days of HFD can each evoke sufficient neuroinflammation to cause memory deficits in aged, but not young rats. The aim of the present study was to determine if HFD consumption before surgery would potentiate and prolong the subsequent neuroinflammatory response and memory deficits, and if so, to determine the extent to which these effects depend on activation of the innate immune receptor TLR4, which both insults are known to stimulate. Young-adult (3mo) & aged (24mo) male F344xBN F1 rats were fed standard chow or HFD for 3-days immediately before sham surgery or laparotomy. In aged rats, the combination of HFD and surgery caused persistent deficits in contextual memory and cued-fear memory, though it was determined that HFD alone was sufficient to cause the long-lasting cued-fear memory deficits. In young adult rats, HFD + surgery caused only cued-fear memory deficits. Elevated proinflammatory gene expression in the hippocampus of both young and aged rats that received HFD + surgery persisted for at least 3-weeks after surgery. In a separate experiment, rats were administered the TLR4-specific antagonist, LPS-RS, immediately before HFD onset, which ameliorated the HFD + surgery-associated neuroinflammation and memory deficits. Similarly, dietary DHA supplementation for 4 weeks prior to HFD onset blunted the neuroinflammatory response to surgery and prevented development of persistent memory deficits. These results suggest that HFD 1) increases risk of persistent POCD-associated memory impairments following surgery in male rats in 2) a TLR4-dependent manner, which 3) can be targeted by DHA supplementation to mitigate development of persistent POCD.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - James W DeMarsh
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Braz JM, Hamel K, Craik V, Rodriguez-Rosado S, Bhardwaj K, Jewell M, Bieri G, Villeda SA, Basbaum AI. Pain and Itch Processing in Aged Mice. THE JOURNAL OF PAIN 2024; 25:53-63. [PMID: 37482234 DOI: 10.1016/j.jpain.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Most reports agree that aging negatively impacts pain processing and that the prevalence of chronic pain increases significantly with age. To improve current therapies, it is critical that aged animals be included in preclinical studies. Here we compared sensitivities to pain and itch-provoking stimuli in naïve and injured young and aged mice. Surprisingly, we found that in the absence of injury, aged male and female mice are significantly less responsive to mechanical stimuli and, in females, also to noxious thermal (heat) stimuli. In both older male and female mice, compared to younger (6-month-old mice), we also recorded reduced pruritogen-evoked scratching. On the other hand, after nerve injury, aged mice nevertheless developed significant mechanical hypersensitivity. Interestingly, however, and in contrast to young mice, aged mice developed both ipsilateral and contralateral postinjury mechanical allodynia. In a parallel immunohistochemical analysis of microglial and astrocyte markers, we found that the ipsilateral to the contralateral ratio of nerve injury-induced expression decreased with age. That observation is consistent with our finding of contralateral hypersensitivity after nerve injury in the aged but not the young mice. We conclude that aging has opposite effects on baseline versus postinjury pain and itch processing. PERSPECTIVE: Aged male and female mice (22-24 months) are less sensitive to mechanical, thermal (heat), and itch-provoking stimuli than are younger mice (6 months).
Collapse
Affiliation(s)
- João M Braz
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Katherine Hamel
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Veronica Craik
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Sian Rodriguez-Rosado
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Karnika Bhardwaj
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Madison Jewell
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Gregor Bieri
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| |
Collapse
|
7
|
Korewo-Labelle D, Karnia MJ, Myślińska D, Kaczor JJ. Supplementation with Vitamin D 3 Protects against Mitochondrial Dysfunction and Loss of BDNF-Mediated Akt Activity in the Hippocampus during Long-Term Dexamethasone Treatment in Rats. Int J Mol Sci 2023; 24:13941. [PMID: 37762245 PMCID: PMC10530487 DOI: 10.3390/ijms241813941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Dexamethasone (DEXA) is a commonly used steroid drug with immunosuppressive and analgesic properties. Unfortunately, long-term exposure to DEXA severely impairs brain function. This study aimed to investigate the effects of vitamin D3 supplementation during chronic DEXA treatment on neurogenesis, mitochondrial energy metabolism, protein levels involved in the BDNF-mediated Akt activity, and specific receptors in the hippocampus. We found reduced serum concentrations of 25-hydroxyvitamin D3 (25(OH)D3), downregulated proBDNF and pAkt, dysregulated glucocorticosteroid and mineralocorticoid receptors, impaired mitochondrial biogenesis, and dysfunctional mitochondria energy metabolism in the DEXA-treated group. In contrast, supplementation with vitamin D3 restored the 25(OH)D3 concentration to a value close to that of the control group. There was an elevation in neurotrophic factor protein level, along with augmented activity of pAkt and increased citrate synthase activity in the hippocampus after vitamin D3 administration in long-term DEXA-treated rats. Our findings demonstrate that vitamin D3 supplementation plays a protective role in the hippocampus and partially mitigates the deleterious effects of long-term DEXA administration. The association between serum 25(OH)D3 concentration and BDNF level in the hippocampus indicates the importance of applying vitamin D3 supplementation to prevent and treat pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (D.K.-L.); (M.J.K.); (D.M.)
| |
Collapse
|
8
|
Muscat SM, Butler MJ, Mackey-Alfonso SE, Barrientos RM. Young adult and aged female rats are vulnerable to amygdala-dependent, but not hippocampus-dependent, memory impairment following short-term high-fat diet. Brain Res Bull 2023; 195:145-156. [PMID: 36870621 PMCID: PMC10257807 DOI: 10.1016/j.brainresbull.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Global populations are increasingly consuming diets high in saturated fats and refined carbohydrates, and such diets have been well-associated with heightened inflammation and neurological dysfunction. Notably, older individuals are particularly vulnerable to the impact of unhealthy diet on cognition, even after a single meal, and pre-clinical rodent studies have demonstrated that short-term consumption of high-fat diet (HFD) induces marked increases in neuroinflammation and cognitive impairment. Unfortunately though, to date, most studies on the topic of nutrition and cognition, especially in aging, have been performed only in male rodents. This is especially concerning given that older females are more vulnerable to develop certain memory deficits and/or severe memory-related pathologies than males. Thus, the aim of the present study was to determine the extent to which short-term HFD consumption impacts memory function and neuroinflammation in female rats. Young adult (3 months) and aged (20-22 months) female rats were fed HFD for 3 days. Using contextual fear conditioning, we found that HFD had no effect on long-term contextual memory (hippocampus-dependent) at either age, but impaired long-term auditory-cued memory (amygdala-dependent) regardless of age. Gene expression of Il-1β was markedly dysregulated in the amygdala, but not hippocampus, of both young and aged rats after 3 days of HFD. Interestingly, modulation of IL-1 signaling via central administration of the IL-1 receptor antagonist (which we have previously demonstrated to be protective in males) had no impact on memory function following the HFD in females. Investigation of the memory-associated gene Pacap and its receptor Pac1r revealed differential effects of HFD on their expression in the hippocampus and amygdala. Specifically, HFD induced increased expression of Pacap and Pac1r in the hippocampus, whereas decreased Pacap was observed in the amygdala. Collectively, these data suggest that both young adult and aged female rats are vulnerable to amygdala-dependent (but not hippocampus-dependent) memory impairments following short-term HFD consumption, and identify potential mechanisms related to IL-1β and PACAP signaling in these differential effects. Notably, these findings are strikingly different than those previously reported in male rats using the same diet regimen and behavioral paradigms, and highlight the importance of examining potential sex differences in the context of neuroimmune-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sabrina E Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Caruso G, Di Pietro L, Caraci F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023; 13:biom13030505. [PMID: 36979440 PMCID: PMC10046203 DOI: 10.3390/biom13030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microglia represent the immune system of the brain. Their role is central in two phenomena, neuroinflammation and oxidative stress, which are at the roots of different pathologies related to the central nervous system (CNS). In order to maintain the homeostasis of the brain and re-establish the equilibrium after a threatening imbalance, microglia communicate with each other and other cells within the CNS by receiving specific signals through membrane-bound receptors and then releasing neurotrophic factors into either the extracellular milieu or directly into the cytoplasm of nearby cells, such as astrocytes and neurons. These last two mechanisms rely on the activity of protein structures that enable the formation of channels in the membrane, namely, connexins and pannexins, that group and form gap junctions, hemichannels, and pannexons. These channels allow the release of gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, together with calcium ion (Ca2+), that seem to play a pivotal role in inter-cellular communication. The aim of the present review is focused on the physiology of channel protein complexes and their contribution to neuroinflammatory and oxidative stress-related phenomena, which play a central role in neurodegenerative disorders. We will then discuss how pharmacological modulation of these channels can impact neuroinflammatory phenomena and hypothesize that currently available nutraceuticals, such as carnosine and N-acetylcysteine, can modulate the activity of connexins and pannexins in microglial cells and reduce oxidative stress in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
10
|
Muscat SM, Deems NP, Butler MJ, Scaria EA, Bettes MN, Cleary SP, Bockbrader RH, Maier SF, Barrientos RM. Selective TLR4 Antagonism Prevents and Reverses Morphine-Induced Persistent Postoperative Cognitive Dysfunction, Dysregulation of Synaptic Elements, and Impaired BDNF Signaling in Aged Male Rats. J Neurosci 2023; 43:155-172. [PMID: 36384680 PMCID: PMC9838714 DOI: 10.1523/jneurosci.1151-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2023] [Indexed: 11/18/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Sean P Cleary
- Campus Chemical Instrumentation Center, The Ohio State University, Columbus, Ohio 43210
| | - Ross H Bockbrader
- Pharmaceutical Sciences Graduate Program, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Ridderinkhof KR, Krugers HJ. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Front Hum Neurosci 2022; 16:815759. [PMID: 35845248 PMCID: PMC9277589 DOI: 10.3389/fnhum.2022.815759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
While aging is an important risk factor for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, age-related cognitive decline can also manifest without apparent neurodegenerative changes. In this review, we discuss molecular, cellular, and network changes that occur during normal aging in the absence of neurodegenerative disease. Emerging findings reveal that these changes include metabolic alterations, oxidative stress, DNA damage, inflammation, calcium dyshomeostasis, and several other hallmarks of age-related neural changes that do not act on their own, but are often interconnected and together may underlie age-related alterations in brain plasticity and cognitive function. Importantly, age-related cognitive decline may not be reduced to a single neurobiological cause, but should instead be considered in terms of a densely connected system that underlies age-related cognitive alterations. We speculate that a decline in one hallmark of neural aging may trigger a decline in other, otherwise thus far stable subsystems, thereby triggering a cascade that may at some point also incur a decline of cognitive functions and mental well-being. Beyond studying the effects of these factors in isolation, considerable insight may be gained by studying the larger picture that entails a representative collection of such factors and their interactions, ranging from molecules to neural networks. Finally, we discuss some potential interventions that may help to prevent these alterations, thereby reducing cognitive decline and mental fragility, and enhancing mental well-being, and healthy aging.
Collapse
Affiliation(s)
- K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Harm J. Krugers
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
- SILS-CNS, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Hollis F, Pope BS, Gorman-Sandler E, Wood SK. Neuroinflammation and Mitochondrial Dysfunction Link Social Stress to Depression. Curr Top Behav Neurosci 2022; 54:59-93. [PMID: 35184261 DOI: 10.1007/7854_2021_300] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Major depressive disorder is a debilitating mental illness and a leading cause of global disease burden. While many etiological factors have been identified, social stress is a highly prevalent causative factor for the onset of depression. Unfortunately, rates of depression continue to increase around the world, and the recent COVID-19 pandemic has further exacerbated this mental health crisis. Though several therapeutic strategies are available, nearly 50% of patients who receive treatment never reach remission. The exact mechanisms by which social stress exposure promotes the development of depression are unclear, making it challenging to develop novel and more effective therapeutics. However, accumulating evidence points to a role for stress-induced neuroinflammation, particularly in treatment-resistant patients. Moreover, recent evidence has expanded the concept of the pathogenesis of depression to mitochondrial dysfunction, suggesting that the combined effects of social stress on mitochondria and inflammation may synergize to facilitate stress-related depression. In this chapter, we review evidence for neuroinflammation and mitochondrial dysfunction in the pathogenesis of social stress-induced depression and discuss these in the context of novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brittany S Pope
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Erin Gorman-Sandler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
13
|
Bhatt S, Hillmer AT, Rusowicz A, Nabulsi N, Matuskey D, Angarita GA, Najafzadeh S, Kapinos M, Southwick SM, Krystal JH, Carson RE, Huang Y, Cosgrove KP. Imaging brain cortisol regulation in PTSD with a target for 11β-hydroxysteroid dehydrogenase type 1. J Clin Invest 2021; 131:150452. [PMID: 34651587 DOI: 10.1172/jci150452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDInvestigations of stress dysregulation in posttraumatic stress disorder (PTSD) have focused on peripheral cortisol, but none have examined cortisol in the human brain. This study used positron emission tomography (PET) to image 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a cortisol-producing enzyme, as a putative brain cortisol marker in PTSD.METHODSSixteen individuals with PTSD and 17 healthy, trauma-exposed controls (TCs) underwent PET imaging with [18F]AS2471907, a radioligand for 11β-HSD1.RESULTSPrefrontal-limbic 11β-HSD1 availability, estimated as [18F]AS2471907 volume of distribution (VT), was significantly higher in the PTSD group compared with the TC group (β = 1.16, P = 0.0057). Lower prefrontal-limbic 11β-HSD1 availability was related to greater overall PTSD severity (R2 = 0.27, P = 0.038) in the PTSD group. 11β-HSD1 availability was not related to plasma cortisol levels (R2 = 0.026, P = 0.37). In a PTSD subset (n = 10), higher 11β-HSD1 availability was associated with higher availability of translocator protein (TSPO), a microglial marker (β = 4.40, P = 0.039).CONCLUSIONHigher brain cortisol-producing 11β-HSD1 in the PTSD group may represent a resilience-promoting neuroadaptation resulting in lower PTSD symptoms. Along with preliminary associations between 11β-HSD1 and TSPO, corroborating previous evidence of immune suppression in PTSD, these findings collectively challenge previous hypotheses of the deleterious effects of both excessive brain glucocorticoid and brain immune signaling in PTSD.FUNDINGBrain and Behavior Research Foundation Independent Investigator Grant, National Institute of Mental Health grants F30MH116607 and R01MH110674, the Veterans Affairs National Center for PTSD, the Gustavus and Louise Pfeiffer Foundation Fellowship, Clinical and Translational Science Awards grant UL1 TR000142 from the NIH National Center for Advancing Translational Science.
Collapse
Affiliation(s)
- Shivani Bhatt
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging.,Department of Psychiatry, and.,Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging.,Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging.,Department of Psychiatry, and.,Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gustavo A Angarita
- Department of Psychiatry, and.,Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Michael Kapinos
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Steven M Southwick
- Department of Psychiatry, and.,US Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - John H Krystal
- Department of Psychiatry, and.,US Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Richard E Carson
- Department of Psychiatry, and.,Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging.,Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kelly P Cosgrove
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging.,Department of Psychiatry, and.,Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,US Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
14
|
FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism. Brain Behav Immun Health 2021; 9:100143. [PMID: 34589890 PMCID: PMC8474669 DOI: 10.1016/j.bbih.2020.100143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023] Open
Abstract
Early life stress (ELS) adversely affects the brain and is commonly associated with the etiology of mental health disorders, like depression. In addition to the mood-related symptoms, patients with depression show dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, increased peripheral inflammation, and structural brain alterations. Although the underlying causes are unknown, polymorphisms in the FK506-binding protein 5 (FKBP5) gene, a regulator of glucocorticoid receptor (GR) activity, interact with childhood adversities to increase vulnerability to depressive disorders. We hypothesized that high FKBP5 protein levels combined with early life stress (ELS) would alter the HPA axis and brain, promoting depressive-like behaviors. To test this, we exposed males and females of a mouse model overexpressing FKBP5 in the brain (rTgFKBP5 mice), or littermate controls, to maternal separation for 14 days after birth. Then, we evaluated neuroendocrine, behavioral, and brain changes in young adult and aged mice. We observed lower basal corticosterone (CORT) levels in rTgFKBP5 mice, which was exacerbated in females. Aged, but not young, rTgFKBP5 mice showed increased depressive-like behaviors. Moreover, FKBP5 overexpression reduced hippocampal neuron density in aged mice, while promoting markers of microglia expression, but these effects were reversed by ELS. Together, these results demonstrate that high FKBP5 affects basal CORT levels, depressive-like symptoms, and numbers of neurons and microglia in the hippocampus in an age-dependent manner. High FKBP5 reduces basal corticosterone levels in mice, especially in females. ELS prevents FKBP5-induced susceptibility to depressive-like behavior in aged mice. FKBP5 overexpression reduces hippocampal neuron density in aged mice, while increasing microglial markers.
Collapse
|
15
|
Schroder JD, de Araújo JB, de Oliveira T, de Moura AB, Fries GR, Quevedo J, Réus GZ, Ignácio ZM. Telomeres: the role of shortening and senescence in major depressive disorder and its therapeutic implications. Rev Neurosci 2021; 33:227-255. [PMID: 34388328 DOI: 10.1515/revneuro-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.
Collapse
Affiliation(s)
- Jessica Daniela Schroder
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Julia Beatrice de Araújo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Airam Barbosa de Moura
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Gabriel Rodrigo Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| |
Collapse
|
16
|
Costa J, Martins S, Ferreira PA, Cardoso AMS, Guedes JR, Peça J, Cardoso AL. The old guard: Age-related changes in microglia and their consequences. Mech Ageing Dev 2021; 197:111512. [PMID: 34022277 DOI: 10.1016/j.mad.2021.111512] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Among all major organs, the brain is one of the most susceptible to the inexorable effects of aging. Throughout the last decades, several studies in human cohorts and animal models have revealed a plethora of age-related changes in the brain, including reduced neurogenesis, oxidative damage, mitochondrial dysfunction and cell senescence. As the main immune effectors and first responders of the nervous tissue, microglia are at the center of these events. These cells experience irrevocable changes as a result from cumulative exposure to environmental triggers, such as stress, infection and metabolic dysregulation. The age-related immunosenescent phenotype acquired by microglia is characterized by profound modifications in their transcriptomic profile, secretome, morphology and phagocytic activity, which compromise both their housekeeping and defensive functions. As a result, aged microglia are no longer capable of establishing effective immune responses and sustaining normal synaptic activity, directly contributing to age-associated cognitive decline and neurodegeneration. This review discusses how lifestyle and environmental factors drive microglia dysfunction at the molecular and functional level, also highlighting possible interventions to reverse aging-associated damage to the nervous and immune systems.
Collapse
Affiliation(s)
- Jéssica Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Solange Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro A Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; PhD Program in Biosciences, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M S Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana R Guedes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana L Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
17
|
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021; 157:73-94. [PMID: 33370457 PMCID: PMC8048448 DOI: 10.1111/jnc.15286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
18
|
Bekhbat M, Mukhara D, Dozmorov MG, Stansfield JC, Benusa SD, Hyer MM, Rowson SA, Kelly SD, Qin Z, Dupree JL, Tharp GK, Tansey MG, Neigh GN. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology 2021; 46:949-958. [PMID: 33558677 PMCID: PMC8115118 DOI: 10.1038/s41386-021-00970-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Adolescent exposure to chronic stress, a risk factor for mood disorders in adulthood, sensitizes the neuroinflammatory response to a subsequent immune challenge. We previously showed that chronic adolescent stress (CAS) in rats led to distinct patterns of neuroimmune priming in adult male and female rats. However, sex differences in the neuroimmune consequences of CAS and their underlying mechanisms are not fully understood. Here we hypothesized that biological sex would dictate differential induction of inflammation-related transcriptomic pathways and immune cell involvement (microglia activation and leukocyte presence) in the hippocampus of male and female rats with a history of CAS. Adolescent rats underwent CAS (six restraint and six social defeat episodes during postnatal days 38-49), and behavioral assessments were conducted in adolescence and adulthood. Neuroimmune measures were obtained following vehicle or a systemic lipopolysaccharide (LPS) challenge in adulthood. CAS led to increased time in the corners of the open field in adolescence. In males, CAS also increased social avoidance. As adults, CAS rats displayed an exaggerated enrichment of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway and chemokine induction following LPS challenge, and increased number of perivascular CD45+ cells in the hippocampus. However, CAS females, but not males, showed exaggerated glucocorticoid receptor (GR) pathway enrichment and increased microglial complexity. These results provide further insight to the mechanisms by which peripheral immune events may influence neuroimmune responses differentially among males and females and further demonstrate the importance of adolescent stress in shaping adult responses.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Deepika Mukhara
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Mikhail G. Dozmorov
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - John C. Stansfield
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - Savannah D. Benusa
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Molly M. Hyer
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sydney A. Rowson
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Sean D. Kelly
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Zhaohui Qin
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Jeffrey L. Dupree
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Gregory K. Tharp
- grid.189967.80000 0001 0941 6502Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322 USA
| | - Malú G. Tansey
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Gretchen N. Neigh
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA ,grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
19
|
Muscat SM, Deems NP, D'Angelo H, Kitt MM, Grace PM, Andersen ND, Silverman SN, Rice KC, Watkins LR, Maier SF, Barrientos RM. Postoperative cognitive dysfunction is made persistent with morphine treatment in aged rats. Neurobiol Aging 2021; 98:214-224. [PMID: 33341652 PMCID: PMC7870544 DOI: 10.1016/j.neurobiolaging.2020.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is the collection of cognitive impairments, lasting days to months, experienced by individuals following surgery. Persistent POCD is most commonly experienced by older individuals and is associated with a greater vulnerability to developing Alzheimer's disease, but the underlying mechanisms are not known. It is known that laparotomy (exploratory abdominal surgery) in aged rats produces memory impairments for 4 days. Here we report that postsurgical treatment with morphine extends this deficit to at least 2 months while having no effects in the absence of surgery. Indeed, hippocampal-dependent long-term memory was impaired 2, 4, and 8 weeks postsurgery only in aged, morphine-treated rats. Short-term memory remained intact. Morphine is known to have analgesic effects via μ-opioid receptor activation and neuroinflammatory effects through Toll-like receptor 4 activation. Here we demonstrate that persistent memory deficits were mediated independently of the μ-opioid receptor, suggesting that they were evoked through a neuroinflammatory mechanism and unrelated to pain modulation. In support of this, aged, laparotomized, and morphine-treated rats exhibited increased gene expression of various proinflammatory markers (IL-1β, IL-6, TNFα, NLRP3, HMGB1, TLR2, and TLR4) in the hippocampus at the 2-week time point. Furthermore, central blockade of IL-1β signaling with the specific IL-1 receptor antagonist (IL-1RA), at the time of surgery, completely prevented the memory impairment. Finally, synaptophysin and PSD95 gene expression were significantly dysregulated in the hippocampus of aged, laparotomized, morphine-treated rats, suggesting that impaired synaptic structure and/or function may play a key role in this persistent deficit. This instance of long-term memory impairment following surgery closely mirrors the timeline of persistent POCD in humans and may be useful for future treatment discoveries.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Heather D'Angelo
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Meagan M Kitt
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan D Andersen
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shaelyn N Silverman
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Perkins AE, Piazza MK, Vore AS, Deak MM, Varlinskaya EI, Deak T. Assessment of neuroinflammation in the aging hippocampus using large-molecule microdialysis: Sex differences and role of purinergic receptors. Brain Behav Immun 2021; 91:546-555. [PMID: 33166661 PMCID: PMC8454272 DOI: 10.1016/j.bbi.2020.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with an enhanced neuroinflammatory response to acute immune challenge, often termed "inflammaging." However, there are conflicting reports about whether baseline levels of inflammatory markers are elevated under ambient conditions in the aging brain, or whether such changes are observed predominantly in response to acute challenge. The present studies utilized two distinct approaches to assess inflammatory markers in young and aging Fischer 344 rats. Experiment 1 examined total tissue content of inflammatory markers from hippocampus of adult (3 month), middle-aged (12 month), and aging (18 month) male Fischer (F) 344 rats using multiplex analysis (23-plex). Though trends emerged for several cytokines, no significant differences in basal tissue content were observed across the 3 ages examined. Experiment 2 measured extracellular concentrations of inflammatory factors in the hippocampus from adult (3 month) and aging (18 month) males and females using large-molecule in vivo microdialysis. Although few significant aging-related changes were observed, robust sex differences were observed in extracellular concentrations of CCL3, CCL20, and IL-1α. Experiment 2 also evaluated the involvement of the P2X7 purinergic receptor in neuroinflammation using reverse dialysis of the selective agonist BzATP. BzATP produced an increase in IL-1α and IL-1β release and rapidly suppressed the release of CXCL1, CCL2, CCL3, CCL20, and IL-6. Other noteworthy sex by aging trends were observed in CCL3, IL-1β, and IL-6. Together, these findings provide important new insight into late-aging and sex differences in neuroinflammation, and their regulation by the P2X7 receptor.
Collapse
Affiliation(s)
- Amy E. Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902-6000,Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN 46805
| | - Michelle K. Piazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902-6000,Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN 46805
| | - Andrew S. Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902-6000
| | - Molly M. Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902-6000
| | - Elena I. Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton, NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
21
|
Wood M, Whirledge S. Mechanism of glucocorticoid action in immunology—Basic concepts. REPRODUCTIVE IMMUNOLOGY 2021:147-170. [DOI: 10.1016/b978-0-12-818508-7.00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
22
|
Alghadir AH, Gabr SA, Al-Momani M, Al-Momani F. Moderate aerobic training modulates cytokines and cortisol profiles in older adults with cognitive abilities. Cytokine 2020; 138:155373. [PMID: 33248912 DOI: 10.1016/j.cyto.2020.155373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/29/2020] [Accepted: 11/14/2020] [Indexed: 11/26/2022]
Abstract
Excessive expression of cortisol and pro-inflammatory cytokines exerts a negative affect on cognitive functioning and hippocampal structure in older adults. Although the interrelation between cortisol and cytokines was fully elucidated previously, few studies considered how their association with exercise can affect brain structures or play an anti-inflammatory role in preserving cognitive function among older adults. To evaluate both the neuro-protective and anti-inflammatory activities of moderate aerobic exercise in improving cognitive performance among healthy older adults, the serum levels of CRP, TNF-α, IL-6, and cortisol and their correlation with cognitive performance were estimated in all participants. A total of 60 healthy older adults aged 50-85 years were included in this study. The Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) test, colorimetric testing, and ELISA immunoassays were used to measure cognitive abilities; blood sugar; and glycated hemoglobin (HbA1c), cortisol, IL-6, TNF-α, and CRP, respectively, in older adults before and after 12-week exercise interventions. Exactly 50% of the participants showed moderate cognitive impairment (MCI) (LOTCA scores: 84.8 ± 8.2), and the remaining 50% of the participants (n = 30) were diagnosed as normal healthy subjects (LOTCA scores: 98.7 ± 8.1). There was a significant association between cognitive decline in LOTCA scores of motor praxis, vasomotor organization, thinking operations, and attention and concentration and higher levels of cortisol, CRP, TNF-α, and IL-6, as well as adiposity markers BMI and WHR, in the MCI group compared to control subjects. However, significant improvements in the same LOTCA score domains in MCI subjects were recorded along with decrements in the levels of cortisol and cytokine CRP, TNF-α, and IL-6, as well as improved adiposity markers, following a 12-week moderate exercise program. Cognitive performance correlated positively with cortisol levels and negatively with physical activity, adiposity markers, and cytokine levels. Also, in participants with normal and abnormal cortisol profiles, there was a positive interrelation between cytokine levels and cortisol. Moderate aerobic exercise for 12 weeks showed beneficial effects on cognitive performance in older adults. Our results suggest that 12 weeks of aerobic exercise improves cognitive disorders in older adults via modulating stress and pro-inflammatory cytokines. This may have been due to significant changes in the levels of cortisol, IL-6, TNF-α, and CRP, and physical activity may thus be used as non-drug strategy for treating cognitive disorders.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.
| | - Murad Al-Momani
- ORL-HNS Department, College of Medicine, King Saud University Riyadh, Saudi Arabia
| | - Fidaa Al-Momani
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
23
|
Butler MJ, Cole RM, Deems NP, Belury MA, Barrientos RM. Fatty food, fatty acids, and microglial priming in the adult and aged hippocampus and amygdala. Brain Behav Immun 2020; 89:145-158. [PMID: 32544595 PMCID: PMC7572563 DOI: 10.1016/j.bbi.2020.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Short-term (3-day) consumption of a high fat diet (HFD) rich in saturated fats is associated with a neuroinflammatory response and subsequent cognitive impairment in aged, but not young adult, male rats. This exaggerated effect in aged rats could be due to a "primed" microglial phenotype observed in the normal aging process in rodents in which aged microglia display a potentiated response to immune challenge. Here, we investigated the impact of HFD on microglial priming and lipid composition in the hippocampus and amygdala of young and aged rats. Furthermore, we investigated the microglial response to palmitate, the main saturated fatty acid (SFA) found in HFD that is proinflammatory. Our results indicate that HFD increased gene expression of microglial markers of activation indicative of microglial priming, including CD11b, MHCII, CX3CR1, and NLRP3, as well as the pro-inflammatory marker IL-1β in both hippocampus and amygdala-derived microglia. Furthermore, HFD increased the concentration of SFAs and decreased the concentration of polyunsaturated fatty acids (PUFAs) in the hippocampus. We also observed a specific decrease in the anti-inflammatory PUFA docosahexaenoic acid (DHA) in the hippocampus and amygdala of aged rats. In a separate cohort of young and aged animals, isolated microglia from the hippocampus and amygdala exposed to palmitate in vitro induced an inflammatory gene expression profile mimicking the effects of HFD in vivo. These data suggest that palmitate may be a critical nutritional signal from the HFD that is directly involved in hippocampal and amygdalar inflammation. Interestingly, microglial activation markers were increased in response to HFD or palmitate in an age-independent manner, suggesting that HFD sensitivity of microglia, under these experimental conditions, is not the sole mediator of the exaggerated inflammatory response observed in whole tissue extracts from aged HFD-fed rats.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Rachel M. Cole
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Nicholas P. Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Martha A. Belury
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA,Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Ruth M. Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA,Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA,Corresponding author: Dr. Ruth M. Barrientos, Institute for Behavioral Medicine Research and Department of Psychiatry and Behavioral Health, Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, Tel.: 614-293-6591,
| |
Collapse
|
24
|
Bordeleau M, Lacabanne C, Fernández de Cossío L, Vernoux N, Savage JC, González-Ibáñez F, Tremblay MÈ. Microglial and peripheral immune priming is partially sexually dimorphic in adolescent mouse offspring exposed to maternal high-fat diet. J Neuroinflammation 2020; 17:264. [PMID: 32891154 PMCID: PMC7487673 DOI: 10.1186/s12974-020-01914-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Maternal nutrition is critical for proper fetal development. While increased nutrient intake is essential during pregnancy, an excessive consumption of certain nutrients, like fat, can lead to long-lasting detrimental consequences on the offspring. Animal work investigating the consequences of maternal high-fat diet (mHFD) revealed in the offspring a maternal immune activation (MIA) phenotype associated with increased inflammatory signals. This inflammation was proposed as one of the mechanisms causing neuronal circuit dysfunction, notably in the hippocampus, by altering the brain-resident macrophages—microglia. However, the understanding of mechanisms linking inflammation and microglial activities to pathological brain development remains limited. We hypothesized that mHFD-induced inflammation could prime microglia by altering their specific gene expression signature, population density, and/or functions. Methods We used an integrative approach combining molecular (i.e., multiplex-ELISA, rt-qPCR) and cellular (i.e., histochemistry, electron microscopy) techniques to investigate the effects of mHFD (saturated and unsaturated fats) vs control diet on inflammatory priming, as well as microglial transcriptomic signature, density, distribution, morphology, and ultrastructure in mice. These analyses were performed on the mothers and/or their adolescent offspring at postnatal day 30. Results Our study revealed that mHFD results in MIA defined by increased circulating levels of interleukin (IL)-6 in the mothers. This phenotype was associated with an exacerbated inflammatory response to peripheral lipopolysaccharide in mHFD-exposed offspring of both sexes. Microglial morphology was also altered, and there were increased microglial interactions with astrocytes in the hippocampus CA1 of mHFD-exposed male offspring, as well as decreased microglia-associated extracellular space pockets in the same region of mHFD-exposed offspring of the two sexes. A decreased mRNA expression of the inflammatory-regulating cytokine Tgfb1 and microglial receptors Tmem119, Trem2, and Cx3cr1 was additionally measured in the hippocampus of mHFD-exposed offspring, especially in males. Conclusions Here, we described how dietary habits during pregnancy and nurturing, particularly the consumption of an enriched fat diet, can influence peripheral immune priming in the offspring. We also found that microglia are affected in terms of gene expression signature, morphology, and interactions with the hippocampal parenchyma, in a partially sexually dimorphic manner, which may contribute to the adverse neurodevelopmental outcomes on the offspring.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Chloé Lacabanne
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Julie C Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Fernando González-Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada. .,Département de médecine moléculaire, Université Laval, Québec, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Dastgerdi HH, Radahmadi M, Reisi P. Comparative study of the protective effects of crocin and exercise on long-term potentiation of CA1 in rats under chronic unpredictable stress. Life Sci 2020; 256:118018. [DOI: 10.1016/j.lfs.2020.118018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
|
26
|
Sun X, Han R, Cheng T, Zheng Y, Xiao J, So KF, Zhang L. Corticosterone-mediated microglia activation affects dendritic spine plasticity and motor learning functions in minimal hepatic encephalopathy. Brain Behav Immun 2019; 82:178-187. [PMID: 31437533 DOI: 10.1016/j.bbi.2019.08.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 01/20/2023] Open
Abstract
Minimal hepatic encephalopathy (MHE) is characterized as cognitive deficits including memory and learning dysfunctions after liver injuries or hepatic diseases. Our understandings of neurological mechanisms of MHE-associated cognitive syndromes, however, are far from complete. In the current study we generated a mouse MHE model by repetitive administrations of thioacetamide (TAA), which induced hyperammonemia plus elevated proinflammatory cytokines in both the general circulation and motor cortex. MHE mice presented prominent motor learning deficits, which were associated with excess dendritic spine pruning in the motor cortex under 2-photon in vivo microscopy. The pharmaceutical blockade of glucocorticoid receptor or suppression of its biosynthesis further rescued motor learning deficits and synaptic protein loss. Moreover, MHE mice presented microglial activation, which can be alleviated after glucocorticoid pathway inhibition. In sum, our data demonstrates corticosterone-induced microglial activation, synaptic over-pruning and motor learning impairments in MHE, providing new insights for MHE pathogenesis and potential targets of clinical interventions.
Collapse
Affiliation(s)
- Xiaoming Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Rui Han
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Tong Cheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Yuhan Zheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, College of Life Sciences, Fujian Normal University, Fuzhou, PR China; Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, PR China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macau Greater Bay Area, Guangzhou, PR China.
| | - Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macau Greater Bay Area, Guangzhou, PR China.
| |
Collapse
|
27
|
Gano A, Vore AS, Sammakia M, Deak T. Assessment of Extracellular Cytokines in the Hippocampus of the Awake Behaving Rat Using Large-Molecule Microdialysis Combined with Multiplex Arrays After Acute and Chronic Ethanol Exposure. Alcohol Clin Exp Res 2019; 43:640-654. [PMID: 30667526 PMCID: PMC6443416 DOI: 10.1111/acer.13963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Studies have demonstrated persistent changes in central nervous system (CNS) cytokine gene expression following ethanol (EtOH) exposure. However, the low endogenous expression and short half-lives of cytokines in the CNS have made cytokine protein detection challenging. The goal of these studies was to establish parameters for use of large-molecule microdialysis and sensitive multiplexing technology for the simultaneous detection of brain cytokines, corticosterone (CORT), and EtOH concentrations in the awake behaving rat. METHODS Adult (P75+) male Sprague Dawley rats that were either naïve to EtOH (Experiment 1) or had a history of adolescent chronic intermittent EtOH (CIE; Experiment 2) were given an acute EtOH challenge during microdialysis. Experiment 1 examined brain EtOH concentrations, CORT and a panel of neuroimmune analytes, including cytokines associated with innate and adaptive immunity. The natural time course of changes in these cytokines was compared to the effects of an acute 1.5 or 3.0 g/kg intraperitoneal (i.p.) EtOH challenge. In Experiment 2, rats with a history of adolescent CIE or controls exposed to vehicle were challenged with 3.0 g/kg i.p. EtOH during microdialysis in adulthood, and a panel of cytokines was examined in parallel with brain EtOH concentrations and CORT. RESULTS The microdialysis procedure itself induced a cytokine-specific response that replicated across studies, specifically a sequential elevation of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10. Surprisingly, acute EtOH did not significantly alter this course of cytokine fluctuations in the hippocampus. However, a history of adolescent CIE showed drastic effects on multiple neuroimmune analytes when rechallenged with EtOH as adults. Rats with a history of adolescent EtOH displayed a severely blunted neuroimmune response in adulthood, evinced by suppressed IL-1β, IL-10, and TNF-α. CONCLUSIONS Together, these findings provide a methodological framework for assessment of cytokine release patterns, their modulation by EtOH, and the long-lasting changes to neuroimmune reactivity evoked by a history of adolescent CIE.
Collapse
Affiliation(s)
- Anny Gano
- Medical University of South Carolina, Charleston Alcohol Research Center, Charleston, SC, USA
| | - Andrew S. Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Maryam Sammakia
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000
| |
Collapse
|
28
|
Gomes GF, Peixoto RDDF, Maciel BG, Santos KFD, Bayma LR, Feitoza Neto PA, Fernandes TN, de Abreu CC, Casseb SMM, de Lima CM, de Oliveira MA, Diniz DG, Vasconcelos PFDC, Sosthenes MCK, Diniz CWP. Differential Microglial Morphological Response, TNFα, and Viral Load in Sedentary-like and Active Murine Models After Systemic Non-neurotropic Dengue Virus Infection. J Histochem Cytochem 2019; 67:419-439. [PMID: 30924711 DOI: 10.1369/0022155419835218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.
Collapse
Affiliation(s)
- Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Railana Deise da Fonseca Peixoto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Brenda Gonçalves Maciel
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Kedma Farias Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Lohrane Rosa Bayma
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Pedro Alves Feitoza Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Taiany Nogueira Fernandes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cintya Castro de Abreu
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| |
Collapse
|
29
|
Spencer SJ, Basri B, Sominsky L, Soch A, Ayala MT, Reineck P, Gibson BC, Barrientos RM. High-fat diet worsens the impact of aging on microglial function and morphology in a region-specific manner. Neurobiol Aging 2019; 74:121-134. [PMID: 30448612 PMCID: PMC6331275 DOI: 10.1016/j.neurobiolaging.2018.10.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022]
Abstract
Hippocampal microglia are vulnerable to the effects of aging, displaying a primed phenotype and hyper-responsiveness to various stimuli. We have previously shown that short-term high-fat diet (HFD) significantly impairs hippocampal- and amygdala-based cognitive function in the aged without affecting it in the young. Here, we assessed if morphological and functional changes in microglia might be responsible for this. We analyzed hippocampus and amygdala from young and aging rats that had been given three days HFD, a treatment sufficient to cause both hippocampal- and amygdala-dependent cognitive and neuroinflammatory differences in the aged. Aging led to the expected priming of hippocampal microglia in that it increased microglial numbers and reduced branching in this region. Aging also increased microglial phagocytosis of microbeads in the hippocampus, but the only effect of HFD in this region was to increase the presence of enlarged synaptophysin boutons in the aged, indicative of neurodegeneration. In the amygdala, HFD exacerbated the effects of aging on microglial priming (morphology) and markedly suppressed phagocytosis without notably affecting synaptophysin. These data reveal that, like the hippocampus, the amygdala displays aging-related microglial priming. However, the microglia in this region are also uniquely vulnerable to the detrimental effects of short-term HFD in aging.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| | - Bashirah Basri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Monica T Ayala
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC, Australia; School of Science, RMIT University, Melbourne, VIC, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, VIC, Australia; School of Science, RMIT University, Melbourne, VIC, Australia
| | - Ruth M Barrientos
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Fonken LK, Frank MG, Gaudet AD, Maier SF. Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain Behav Immun 2018; 73:133-148. [PMID: 30009999 PMCID: PMC6129421 DOI: 10.1016/j.bbi.2018.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023] Open
Abstract
Over the course of an animal's lifespan, there is a protracted breakdown in basic homeostatic functions. Stressors (both psychological and physiological) can accelerate this process and compromise multiple homeostatic mechanisms. For example, both stress and aging can modulate neuroinflammatory function and cause a primed phenotype resulting in a heightened neuroinflammatory profile upon immune activation. Microglia, the brain's resident myeloid cell, produce "silent" immune machinery in response to stress and aging that does not cause immediate immune activation; rather, these changes prime the cell for a subsequent immune insult. Primed microglia exhibit a hyperinflammatory response upon immune activation that can exacerbate pathology. In this review, we will explore parallels between stress- and aging-induced neuroinflammatory priming. First, we will provide a background on the basic principles of neuroimmunology. Next, we will discuss evidence that neuroinflammatory responses become primed in the context of both stress and aging. We will also describe cell-specific contributions to neuroinflammatory priming with a focus on microglia. Finally, common mechanisms underlying priming in the context of stress and aging will be discussed: these mechanisms include glucocorticoid signaling; accumulation of danger signals; dis-inhibition of microglia; and breakdown of circadian rhythms. Overall, there are multifarious parallels between stress- and aging-elicited neuroinflammatory priming, suggesting that stress may promote a form of premature aging. Further unravelling mechanisms underlying priming could lead to improved treatments for buffering against stress- and aging-elicited behavioral pathologies.
Collapse
Affiliation(s)
- Laura K. Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712 USA;,To whom correspondence should be addressed: Laura K. Fonken, Division of Pharmacology and Toxicology, University of Texas at Austin, 107 W. Dean Keeton, BME 3.510C, Austin, TX 78712 USA.
| | - Matthew G. Frank
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309 USA
| | - Andrew D. Gaudet
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309 USA
| | - Steven F. Maier
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309 USA
| |
Collapse
|
31
|
Chan TE, Grossman YS, Bloss EB, Janssen WG, Lou W, McEwen BS, Dumitriu D, Morrison JH. Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex. Front Aging Neurosci 2018; 10:146. [PMID: 29875653 PMCID: PMC5974224 DOI: 10.3389/fnagi.2018.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC). Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR) with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain.
Collapse
Affiliation(s)
- Thomas E. Chan
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Yael S. Grossman
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Erik B. Bloss
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - William G. Janssen
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, Department of Neuroscience, Rockefeller University, New York, NY, United States
| | - Dani Dumitriu
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - John H. Morrison
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- California National Primate Research Center, Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Fonken LK, Frank MG, Gaudet AD, D’Angelo HM, Daut RA, Hampson EC, Ayala MT, Watkins LR, Maier SF. Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain Behav Immun 2018; 70. [PMID: 29524458 PMCID: PMC5953809 DOI: 10.1016/j.bbi.2018.03.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exposure to stressors can enhance neuroinflammatory responses, and both stress and neuroinflammation are predisposing factors in the development of psychiatric disorders. Females suffer disproportionately more from several psychiatric disorders, yet stress-induced changes in neuroinflammation have primarily been studied in males. Here we tested whether exposure to inescapable tail shock sensitizes or 'primes' neuroinflammatory responses in male and female rats. At 24 h post-stress, male and female rats exposed to a peripheral immune challenge enhanced neuroinflammatory responses and exacerbated anxiety- and depressive-like behaviors. These changes are likely glucocorticoid dependent, as administering exogenous CORT, caused a similar primed inflammatory response in the hippocampus of male and female rats. Further, stress disinhibited anti-inflammatory signaling mechanisms (such as CD200R) in the hippocampus of male and female rats. In males, microglia are considered the likely cellular source mediating neuroinflammatory priming; stress increased cytokine expression in ex vivo male microglia. Conversely, microglia isolated from stressed or CORT treated females did not exhibit elevated cytokine responses. Microglia isolated from both stressed male and female rats reduced phagocytic activity; however, suggesting that microglia from both sexes experience stress-induced functional impairments. Finally, an immune challenge following either stress or CORT in females, but not males, increased peripheral inflammation (serum IL-1β). These novel data suggest that although males and females both enhance stress-induced neuroinflammatory and behavioral responses to an immune challenge, this priming may occur through distinct, sex-specific mechanisms.
Collapse
Affiliation(s)
- Laura K. Fonken
- Corresponding author: Laura K. Fonken, Division of Pharmacology and Toxicology, University of Texas, Austin, TX 78712; (512) 232-8331;
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen Y, Yu T. Glucocorticoid receptor activation is associated with increased resistance to heat-induced hyperthermia and injury. Acta Physiol (Oxf) 2018; 222:e13015. [PMID: 29230949 DOI: 10.1111/apha.13015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022]
Abstract
AIM Anti-inflammatory mediators likely play a key role in maintaining thermal homeostasis and providing protection against heat stress. The aim of this study was to investigate the association between activation of the glucocorticoid receptor (GR) and resistance to heat-induced hyperthermia and injury. METHODS Effects of heat exposure on core body temperature, muscle GR phosphorylation status and subcellular expression were examined in control mice and thermal acclimation (TA)-exposed mice. In addition, effects of TA and corticosterone on C2C12 mouse myoblast viability and subcellular GR were assessed during heat exposure. RESULTS Phosphorylated, nuclear and mitochondrial GR levels were significantly higher in the gastrocnemius muscles of mice with mild hyperthermia (tolerant), compared to mice with severe hyperthermia (intolerant) during a heat exposure test. Similar changes were found in mice after TA, compared to non-TA-exposed controls. Additional groups of TA and non-TA-exposed mice underwent a heat exposure test. TA mice presented a significantly lower hyperthermic response during heat exposure than non-TA-exposed control. C2C12 cells exposed to TA incubation had higher viability against heat shock and showed higher GR levels in their mitochondria and nuclei detected by Western blot analysis and fluorescence microscopy, compared to cells exposed to normal incubation. Furthermore, pre-incubation with 0.1 μM corticosterone increased C2C12 cell viability during heat exposure and mitochondrial and nuclear GR expression. CONCLUSION The results of these in vivo and in vitro studies suggest that GR activation is associated with increased resistance against heat-induced hyperthermia and injury.
Collapse
Affiliation(s)
- Y. Chen
- Department of Military and Emergency Medicine Uniformed Services University of the Health Sciences Bethesda MD USA
| | - T. Yu
- Department of Military and Emergency Medicine Uniformed Services University of the Health Sciences Bethesda MD USA
| |
Collapse
|
34
|
Zhang YP, Wang HY, Zhang C, Liu BP, Peng ZL, Li YY, Liu FM, Song C. Mifepristone attenuates depression-like changes induced by chronic central administration of interleukin-1β in rats. Behav Brain Res 2018; 347:436-445. [PMID: 29580890 DOI: 10.1016/j.bbr.2018.03.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
Increased proinflammatory cytokines, such as interleukin (IL)-1β, may play an important role in the etiology of depression because they cause the hypothalamic-pituitary-adrenal axis to release glucocorticoids (GC) and induce dysfunction of serotonin and norepinephrine neurotransmission. Sustained increase in GC may activate microglia to induce neuroinflammation, and suppress astrocytes to produce neurotrophins, which lead to neuronal apoptosis. Here, we tested the hypothesis that glucocorticoid receptor (GR) antagonist mifepristone (RU486) may attenuate IL-1β-induced depression-like behavior by regulating the neuroinflammation and neurotrophin functions of microglia and astrocytes. Rats received intracerebroventricular injections of IL-1β (10 ng) and/or subcutaneous injections of RU486 for 14 days. Then animal depression-like behaviors, serum corticosterone concentration, the levels of pro-inflammatory cytokines (TNF-α, IL-6), mRNA and protein expressions of CD11b, GFAP and neurotrophins (pro-BDNF, BDNF, GDNF and their receptors TrkB, p75, GFRα-1 and GFRα-2) in the amygdala were studied. Compared to controls, significantly decreased rearing score and increased defecation in the open field test, decreases in ratio of open/closed time in the elevated plus maze and in sucrose preference, while increased level of corticosterone in the serum were found in the rats administrated with IL-1β. IL-1β administration also reduced the expressions of GFAP, BDNF, GDNF and its receptor GFR-α1, but increased the expressions of CD11b, pro-BDNF, p75 and pro-inflammatory cytokines (TNF-α, IL-6) concentrations. RU486 treatment markedly attenuated these changes induced by IL-1β, except for the expressions of GFR-α1. In conclusion, RU486 may improve depression-like changes by suppressing microglia and inflammation and promoting astrocytes to restore neurotrophin function.
Collapse
Affiliation(s)
- Yong-Ping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Hao-Yin Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Bai-Ping Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhi-Lan Peng
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu-Yu Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | | | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
35
|
Dario MFR, Sara T, Estela CO, Margarita PM, Guillermo ET, Fernando RDF, Javier SL, Carmen P. Stress, Depression, Resilience and Ageing: A Role for the LPA-LPA1 Pathway. Curr Neuropharmacol 2018; 16:271-283. [PMID: 28699486 PMCID: PMC5843979 DOI: 10.2174/1570159x15666170710200352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic stress affects health and the quality of life, with its effects being particularly relevant in ageing due to the psychobiological characteristics of this population. However, while some people develop psychiatric disorders, especially depression, others seem very capable of dealing with adversity. There is no doubt that along with the identification of neurobiological mechanisms involved in developing depression, discovering which factors are involved in positive adaptation under circumstances of extreme difficulty will be crucial for promoting resilience. METHODS Here, we review recent work in our laboratory, using an animal model lacking the LPA1 receptor, together with pharmacological studies and clinical evidence for the possible participation of the LPA1 receptor in mood and resilience to stress. RESULTS Substantial evidence has shown that the LPA1 receptor is involved in emotional regulation and in coping responses to chronic stress, which, if dysfunctional, may induce vulnerability to stress and predisposition to the development of depression. Given that there is commonality of mechanisms between those involved in negative consequences of stress and in ageing, this is not surprising, considering that the LPA1 receptor may be involved in coping with adversity during ageing. CONCLUSION Alterations in this receptor may be a susceptibility factor for the presence of depression and cognitive deficits in the elderly population. However, because this is only a promising hypothesis based on previous data, future studies should focus on the involvement of the LPA-LPA1 pathway in coping with stress and resilience in ageing.
Collapse
Affiliation(s)
- Moreno-Fernández Román Dario
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Tabbai Sara
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Castilla-Ortega Estela
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Pérez-Martín Margarita
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de
Málaga; Málaga 29071, Spain
| | - Estivill-Torrús Guillermo
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitarios de Málaga, Málaga, Spain
| | - Rodríguez de Fonseca Fernando
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Santin Luis Javier
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Pedraza Carmen
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| |
Collapse
|
36
|
Verma M, Kipari TMJ, Zhang Z, Man TY, Forster T, Homer NZM, Seckl JR, Holmes MC, Chapman KE. 11β-hydroxysteroid dehydrogenase-1 deficiency alters brain energy metabolism in acute systemic inflammation. Brain Behav Immun 2018; 69:223-234. [PMID: 29162555 PMCID: PMC5871395 DOI: 10.1016/j.bbi.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/16/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11β-HSD1 deficiency attenuates the brain cytokine response to inflammation. Because inflammation is associated with altered energy metabolism, we also examined the effects of 11β-HSD1 deficiency upon hippocampal energy metabolism. Inflammation was induced in 11β-HSD1 deficient (Hsd11b1Del/Del) and C57BL/6 control mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS reduced circulating neutrophil and monocyte numbers and increased plasma corticosterone levels equally in C57BL/6 and Hsd11b1Del/Del mice, suggesting a similar peripheral inflammatory response. However, the induction of pro-inflammatory cytokine mRNAs in the hippocampus was attenuated in Hsd11b1Del/Del mice. Principal component analysis of mRNA expression revealed a distinct metabolic response to LPS in hippocampus of Hsd11b1Del/Del mice. Expression of Pfkfb3 and Ldha, key contributors to the Warburg effect, showed greater induction in Hsd11b1Del/Del mice. Consistent with increased glycolytic flux, levels of 3-phosphoglyceraldehyde and dihydroxyacetone phosphate were reduced in hippocampus of LPS injected Hsd11b1Del/Del mice. Expression of Sdha and Sdhb, encoding subunits of succinate dehydrogenase/complex II that determines mitochondrial reserve respiratory capacity, was induced specifically in hippocampus of LPS injected Hsd11b1Del/Del mice, together with increased levels of its product, fumarate. These data suggest 11β-HSD1 deficiency attenuates the hippocampal pro-inflammatory response to LPS, associated with increased capacity for aerobic glycolysis and mitochondrial ATP generation. This may provide better metabolic support and be neuroprotective during systemic inflammation or aging.
Collapse
Affiliation(s)
- Manu Verma
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tiina M J Kipari
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Zhenguang Zhang
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tak Yung Man
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Natalie Z M Homer
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jonathan R Seckl
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Megan C Holmes
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
37
|
Perkins AE, Piazza MK, Deak T. Stereological Analysis of Microglia in Aged Male and Female Fischer 344 Rats in Socially Relevant Brain Regions. Neuroscience 2018; 377:40-52. [PMID: 29496632 DOI: 10.1016/j.neuroscience.2018.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
Abstract
Aging is associated with a substantial decline in the expression of social behavior as well as increased neuroinflammation. Since immune activation and subsequent increased expression of cytokines can suppress social behavior in young rodents, we examined age and sex differences in microglia within brain regions critical to social behavior regulation (PVN, BNST, and MEA) as well as in the hippocampus. Adult (3-month) and aged (18-month) male and female F344 (N = 26, n = 5-8/group) rats were perfused and Iba-1 immunopositive microglia were assessed using unbiased stereology and optical density. For stereology, microglia were classified based on the following criteria: (1) thin ramified processes, (2) thick long processes, (3) stout processes, or (4) round/ameboid shape. Among the structures examined, the highest density of microglia was evident in the BNST and MEA. Aged rats of both sexes displayed increased total number of microglia number exclusively in the MEA. Sex differences also emerged, whereby aged females (but not males) displayed greater total number of microglia in the BNST relative to their young adult counterparts. When morphological features of microglia were assessed, aged rats exhibited increased soma size in the BNST, MEA, and CA3. Together, these findings provide a comprehensive characterization of microglia number and morphology under ambient conditions in CNS sites critical for the normal expression of social processes. To the extent that microglia morphology is predictive of reactivity and subsequent cytokine release, these data suggest that the expression of social behavior in late aging may be adversely influenced by heightened inflammation.
Collapse
Affiliation(s)
- Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Michelle K Piazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
38
|
Yuede CM, Timson BF, Hettinger JC, Yuede KM, Edwards HM, Lawson JE, Zimmerman SD, Cirrito JR. Interactions between stress and physical activity on Alzheimer's disease pathology. Neurobiol Stress 2018; 8:158-171. [PMID: 29888311 PMCID: PMC5991353 DOI: 10.1016/j.ynstr.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Physical activity and stress are both environmental modifiers of Alzheimer's disease (AD) risk. Animal studies of physical activity in AD models have largely reported positive results, however benefits are not always observed in either cognitive or pathological outcomes and inconsistencies among findings remain. Studies using forced exercise may increase stress and mitigate some of the benefit of physical activity in AD models, while voluntary exercise regimens may not achieve optimal intensity to provide robust benefit. We evaluated the findings of studies of voluntary and forced exercise regimens in AD mouse models to determine the influence of stress, or the intensity of exercise needed to outweigh the negative effects of stress on AD measures. In addition, we show that chronic physical activity in a mouse model of AD can prevent the effects of acute restraint stress on Aβ levels in the hippocampus. Stress and physical activity have many overlapping and divergent effects on the body and some of the possible mechanisms through which physical activity may protect against stress-induced risk factors for AD are discussed. While the physiological effects of acute stress and acute exercise overlap, chronic effects of physical activity appear to directly oppose the effects of chronic stress on risk factors for AD. Further study is needed to identify optimal parameters for intensity, duration and frequency of physical activity to counterbalance effects of stress on the development and progression of AD.
Collapse
Affiliation(s)
- Carla M Yuede
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.,Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Benjamin F Timson
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - Jane C Hettinger
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Kayla M Yuede
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Hannah M Edwards
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Justin E Lawson
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - Scott D Zimmerman
- Biomedical Science Department, Missouri State University, Springfield, MO, USA
| | - John R Cirrito
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Kennedy G, Hardman RJ, Macpherson H, Scholey AB, Pipingas A. How Does Exercise Reduce the Rate of Age-Associated Cognitive Decline? A Review of Potential Mechanisms. J Alzheimers Dis 2018; 55:1-18. [PMID: 27636853 DOI: 10.3233/jad-160665] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rate of age-associated cognitive decline varies considerably between individuals. It is important, both on a societal and individual level, to investigate factors that underlie these differences in order to identify those which might realistically slow cognitive decline. Physical activity is one such factor with substantial support in the literature. Regular exercise can positively influence cognitive ability, reduce the rate of cognitive aging, and even reduce the risk of Alzheimer's disease (AD) and other dementias. However, while there is substantial evidence in the extant literature for the effect of exercise on cognition, the processes that mediate this relationship are less clear. This review examines cardiovascular health, production of brain derived neurotrophic factor (BDNF), insulin sensitivity, stress, and inflammation as potential pathways, via which exercise may maintain or improve cognitive functioning, and may be particularly pertinent in the context of the aging brain. A greater understanding of these mechanisms and their potential relationships with exercise and cognition will be invaluable in providing biomarkers for investigating the efficacy of differing exercise regimes on cognitive outcomes.
Collapse
Affiliation(s)
- Greg Kennedy
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Roy J Hardman
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, VIC, Australia
| | - Andrew B Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. NPJ Sci Food 2017; 1:7. [PMID: 31304249 PMCID: PMC6550267 DOI: 10.1038/s41538-017-0008-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023] Open
Abstract
More than one-third of American adults are obese and statistics are similar worldwide. Caloric intake and diet composition have large and lasting effects on cognition and emotion, especially during critical periods in development, but the neural mechanisms for these effects are not well understood. A clear understanding of the cognitive-emotional processes underpinning desires to over-consume foods can assist more effective prevention and treatments of obesity. This review addresses recent work linking dietary fat intake and omega-3 polyunsaturated fatty acid dietary imbalance with inflammation in developing, adult, and aged brains. Thus, early-life diet and exposure to stress can lead to cognitive dysfunction throughout life and there is potential for early nutritional interventions (e.g., with essential micronutrients) for preventing these deficits. Likewise, acute consumption of a high-fat diet primes the hippocampus to produce a potentiated neuroinflammatory response to a mild immune challenge, causing memory deficits. Low dietary intake of omega-3 polyunsaturated fatty acids can also contribute to depression through its effects on endocannabinoid and inflammatory pathways in specific brain regions leading to synaptic phagocytosis by microglia in the hippocampus, contributing to memory loss. However, encouragingly, consumption of fruits and vegetables high in polyphenolics can prevent and even reverse age-related cognitive deficits by lowering oxidative stress and inflammation. Understanding relationships between diet, cognition, and emotion is necessary to uncover mechanisms involved in and strategies to prevent or attenuate comorbid neurological conditions in obese individuals.
Collapse
Affiliation(s)
- Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3788 Australia
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH Netherlands
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA, Bordeaux University, Bordeaux, UMR1286 France
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center On Aging at Tufts University, Boston, MA 02111-1524 USA
| | - Ruth M. Barrientos
- Department of Psychology & Neuroscience, and Center for Neuroscience, University of Colorado, Campus Box 345, Boulder, CO 80309-0345 USA
| |
Collapse
|
41
|
Brzozowska NI, Smith KL, Zhou C, Waters PM, Cavalcante LM, Abelev SV, Kuligowski M, Clarke DJ, Todd SM, Arnold JC. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice. Brain Behav Immun 2017; 65:251-261. [PMID: 28502879 DOI: 10.1016/j.bbi.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
Abstract
P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors.
Collapse
Affiliation(s)
- Natalia I Brzozowska
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kristie L Smith
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Cilla Zhou
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Peter M Waters
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia
| | - Ligia Menezes Cavalcante
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Sarah V Abelev
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michael Kuligowski
- The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, NSW, Australia
| | - David J Clarke
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Stephanie M Todd
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Camperdown, NSW, Australia; The Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
42
|
Takillah S, Naudé J, Didienne S, Sebban C, Decros B, Schenker E, Spedding M, Mourot A, Mariani J, Faure P. Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner. Front Aging Neurosci 2017; 9:295. [PMID: 29033825 PMCID: PMC5627040 DOI: 10.3389/fnagi.2017.00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022] Open
Abstract
Anxiolytic drugs are widely used in the elderly, a population particularly sensitive to stress. Stress, aging and anxiolytics all affect low-frequency oscillations in the hippocampus and prefrontal cortex (PFC) independently, but the interactions between these factors remain unclear. Here, we compared the effects of stress (elevated platform, EP) and anxiolytics (diazepam, DZP) on extracellular field potentials (EFP) in the PFC, parietal cortex and hippocampus (dorsal and ventral parts) of adult (8 months) and aged (18 months) Wistar rats. A potential source of confusion in the experimental studies in rodents comes from locomotion-related theta (6-12 Hz) oscillations, which may overshadow the direct effects of anxiety on low-frequency and especially on the high-amplitude oscillations in the Mu range (7-12 Hz), related to arousal. Animals were restrained to avoid any confound and isolate the direct effects of stress from theta oscillations related to stress-induced locomotion. We identified transient, high-amplitude oscillations in the 7-12 Hz range ("Mu-bursts") in the PFC, parietal cortex and only in the dorsal part of hippocampus. At rest, aged rats displayed more Mu-bursts than adults. Stress acted differently on Mu-bursts depending on age: it increases vs. decreases burst, in adult and aged animals, respectively. In contrast DZP (1 mg/kg) acted the same way in stressed adult and age animal: it decreased the occurrence of Mu-bursts, as well as their co-occurrence. This is consistent with DZP acting as a positive allosteric modulator of GABAA receptors, which globally potentiates inhibition and has anxiolytic effects. Overall, the effect of benzodiazepines on stressed animals was to restore Mu burst activity in adults but to strongly diminish them in aged rats. This work suggests Mu-bursts as a neural marker to study the impact of stress and DZP on age.
Collapse
Affiliation(s)
- Samir Takillah
- Team Neurophysiology and Behavior, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130Paris, France.,Team Brain Development, Repair and Ageing, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological Adaptation and Ageing (B2A), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRSParis, France.,APHP Hôpital Charles Foix, DHU Fast, Institut de la LongévitéIvry-sur-Seine, France.,Département Neurosciences et Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), Unité Fatigue et VigilanceBrétigny-sur-Orge, France.,EA7330 VIFASOM, Université Paris DescartesParis, France
| | - Jérémie Naudé
- Team Neurophysiology and Behavior, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130Paris, France
| | - Steve Didienne
- Team Neurophysiology and Behavior, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130Paris, France
| | - Claude Sebban
- Team Brain Development, Repair and Ageing, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological Adaptation and Ageing (B2A), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRSParis, France.,APHP Hôpital Charles Foix, DHU Fast, Institut de la LongévitéIvry-sur-Seine, France
| | - Brigitte Decros
- Team Brain Development, Repair and Ageing, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological Adaptation and Ageing (B2A), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRSParis, France.,APHP Hôpital Charles Foix, DHU Fast, Institut de la LongévitéIvry-sur-Seine, France
| | - Esther Schenker
- Neuroscience Drug Discovery Unit, Institut de Recherches ServierCroissy-sur-Seine, France
| | | | - Alexandre Mourot
- Team Neurophysiology and Behavior, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130Paris, France
| | - Jean Mariani
- Team Brain Development, Repair and Ageing, Institut de Biologie Paris Seine (IBPS), UMR 8256 Biological Adaptation and Ageing (B2A), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRSParis, France.,APHP Hôpital Charles Foix, DHU Fast, Institut de la LongévitéIvry-sur-Seine, France
| | - Philippe Faure
- Team Neurophysiology and Behavior, Institut de Biologie Paris Seine (IBPS), UMR 8246 Neuroscience Paris Seine (NPS), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, INSERM, U1130Paris, France
| |
Collapse
|
43
|
The Vicious Cycle of Chronic Pain in Aging Requires Multidisciplinary Non-pharmacological Approach to Treatment. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0126-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol 2017; 62:29-40. [PMID: 28755749 DOI: 10.1016/j.alcohol.2017.02.175] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 01/21/2023]
Abstract
Microglia activation and neuroinflammation are common features of neurodegenerative conditions, including alcohol use disorders (AUDs). When activated, microglia span a continuum of diverse phenotypes ranging from classically activated, pro-inflammatory (M1) microglia/macrophages to alternatively activated, growth-promoting (M2) microglia/macrophages. Identifying microglia phenotypes is critical for understanding the role of microglia in the pathogenesis of AUDs. Therefore, male rats were gavaged with 25% (w/v) ethanol or isocaloric control diet every 8 h for 4 days and sacrificed at 0, 2, 4, and 7 days after alcohol exposure (e.g., T0, T2, etc.). Microglia were isolated from hippocampus and entorhinal cortices by Percoll density gradient centrifugation. Cells were labeled with microglia surface antigens and analyzed by flow cytometry. Consistent with prior studies, isolated cells yielded a highly enriched population of brain macrophages/microglia (>95% pure), evidenced by staining for the macrophage/microglia antigen CD11b. Polarization states of CD11b+CD45low microglia were evaluated by expression of M1 surface markers, major histocompatibility complex (MHC) II, CD32, CD86, and M2 surface marker, CD206 (mannose receptor). Ethanol-treated animals begin to show increased expression of M1 and M2 markers at T0 (p = n.s.), with significant changes at the T2 time point. At T2, expression of M1 markers, MHC-II, CD86, and CD32 were increased (p < 0.05) in hippocampus and entorhinal cortices, while M2 marker, CD206, was increased significantly only in entorhinal cortices (p < 0.05). All effects resolved to control levels by T4. In summary, four-day binge alcohol exposure produces a transient increase in both M1 (MHC-II, CD32, and CD86) and M2 (CD206) populations of microglia isolated from the entorhinal cortex and hippocampus. Thus, these findings that both pro-inflammatory and potentially beneficial, recovery-promoting microglia phenotypes can be observed after a damaging exposure of alcohol are critically important to our understanding of the role of microglia in the pathogenesis of AUDs.
Collapse
|
45
|
The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. J Neurosci 2017; 36:7946-56. [PMID: 27466339 DOI: 10.1523/jneurosci.1161-16.2016] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Amplified neuroinflammatory responses following an immune challenge occur with normal aging and can elicit or exacerbate neuropathology. The mechanisms mediating this sensitized or "primed" immune response in the aged brain are not fully understood. The alarmin high mobility group box 1 (HMGB1) can be released under chronic pathological conditions and initiate inflammatory cascades. This led us to investigate whether HMGB1 regulates age-related priming of the neuroinflammatory response. Here, we show that HMGB1 protein and mRNA were elevated in the hippocampus of unmanipulated aged rats (24-month-old F344XBN rats). Furthermore, aged rats had increased HMGB1 in the CSF, suggesting increased HMGB1 release. We demonstrate that blocking HMGB1 signaling with an intracisterna magna (ICM) injection of the competitive antagonist to HMGB1, Box-A, downregulates basal expression of several inflammatory pathway genes in the hippocampus of aged rats. This indicates that blocking the actions of HMGB1 might reduce age-associated inflammatory priming. To test this hypothesis, we evaluated whether HMGB1 antagonism blocks the protracted neuroinflammatory and sickness response to peripheral Escherichia coli (E. coli) infection in aged rats. ICM pretreatment of aged rats with Box-A 24 h before E. coli infection prevented the extended hippocampal cytokine response and associated cognitive and affective behavioral changes. ICM pretreatment with Box-A also inhibited aging-induced potentiation of the microglial proinflammatory response to lipopolysaccharide ex vivo Together, these results suggest that HMGB1 mediates neuroinflammatory priming in the aged brain. Blocking the actions of HMGB1 appears to "desensitize" aged microglia to an immune challenge, thereby preventing exaggerated behavioral and neuroinflammatory responses following infection. SIGNIFICANCE STATEMENT The world's population is aging, highlighting a need to develop treatments that promote quality of life in aged individuals. Normal aging is associated with precipitous drops in cognition, typically following events that induce peripheral inflammation (e.g., infection, surgery, heart attack). Peripheral immune stimuli cause exaggerated immune responses in the aged brain, which likely underlie these behavioral deficits. Here, we investigated whether the alarmin high mobility group box 1 (HMGB1) mediates age-associated "priming" of the neuroinflammatory response. HMGB1 is elevated in aged rodent brain and CSF. Blocking HMGB1 signaling downregulated expression of inflammatory pathway genes in aged rat brain. Further, HMGB1 antagonism prevented prolonged infection-induced neuroinflammatory and sickness responses in aged rats. Overall, blocking HMGB1 "desensitized" microglia in the aged brain, thereby preventing pathological infection-elicited neuroinflammatory responses.
Collapse
|
46
|
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79:66-86. [PMID: 28476525 DOI: 10.1016/j.neubiorev.2017.04.030] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that is associated with cognitive decline as well as functional and social impairments. One structure of particular interest when considering aging and cognitive decline is the hippocampus, a brain region known to play an important role in learning and memory consolidation as well as in affective behaviours and mood regulation, and where both functional and structural plasticity (e.g., neurogenesis) occur well into adulthood. Neurobiological alterations seen in the aging hippocampus including increased oxidative stress and neuroinflammation, altered intracellular signalling and gene expression, as well as reduced neurogenesis and synaptic plasticity, are thought to be associated with age-related cognitive decline. Non-invasive strategies such as caloric restriction, physical exercise, and environmental enrichment have been shown to counteract many of the age-induced alterations in hippocampal signalling, structure, and function. Thus, such approaches may have therapeutic value in counteracting the deleterious effects of aging and protecting the brain against age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; UBC Island Medical program, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
47
|
Shivarama Shetty M, Sajikumar S. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35:22-35. [PMID: 28065806 DOI: 10.1016/j.arr.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging.
Collapse
|
48
|
Schreuder L, Eggen BJ, Biber K, Schoemaker RG, Laman JD, de Rooij SE. Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: A systematic review. Brain Behav Immun 2017; 62:362-381. [PMID: 28088641 DOI: 10.1016/j.bbi.2017.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Delirium is a frequent outcome for aged and demented patients that suffer a systemic inflammatory insult. Animal models that reconstruct these etiological processes have potential to provide a better understanding of the pathophysiology of delirium. Therefore, we systematically reviewed animal studies in which systemic inflammation was superimposed on aged or diseased animal models. In total, 77 studies were identified. Aged animals were challenged with a bacterial endotoxin in 29 studies, 25 studies superimposed surgery on aged animals, and in 6 studies a bacterial infection, Escherichia coli (E. coli), was used. Diseased animals were challenged with a bacterial endotoxin in 15 studies, two studies examined effects of the cytokine IL-1β, and one study used polyinosinic:polycytidilic acid (poly I:C). This systematic review analyzed the impact of systemic inflammation on the production of inflammatory and neurotoxic mediators in peripheral blood, cerebrospinal fluid (CSF), and on the central nervous system (CNS). Moreover, concomitant behavioral and cognitive symptoms were also evaluated. Finally, outcomes of behavioral and cognitive tests from animal studies were compared to features and symptoms present in delirious patients.
Collapse
Affiliation(s)
- Leroy Schreuder
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| | - B J Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Knut Biber
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Psychiatry and Psychotherapy, Section of Molecular Psychiatry, University of Freiburg, Freiburg, Germany.
| | - Regien G Schoemaker
- Department of Neurobiology, GELIFES, University of Groningen, Groningen, The Netherlands.
| | - Jon D Laman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Sophia E de Rooij
- University of Groningen, University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands.
| |
Collapse
|
49
|
Antonson AM, Radlowski EC, Lawson MA, Rytych JL, Johnson RW. Maternal viral infection during pregnancy elicits anti-social behavior in neonatal piglet offspring independent of postnatal microglial cell activation. Brain Behav Immun 2017; 59:300-312. [PMID: 27650113 DOI: 10.1016/j.bbi.2016.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/16/2016] [Indexed: 02/03/2023] Open
Abstract
Maternal infection during pregnancy increases risk for neurodevelopmental disorders and reduced stress resilience in offspring, but the mechanisms are not fully understood. We hypothesized that piglets born from gilts infected with a respiratory virus during late gestation would exhibit aberrant microglia activity, cognitive deficits and reduced sociability. Pregnant gilts were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV; 5×105 TCID50 of live PRRSV) or saline at gestational day 76. Gilts infected with PRRSV exhibited fever (p<0.01) and reduced appetite (p<0.001) for 2weekspost-inoculation and were PRRSV-positive at parturition. Piglets born from infected and control gilts were weaned at postnatal day (PD) 1 and assigned to two groups. Group 1 was challenged with lipopolysaccharide (LPS, 5μg/kg body weight i.p.) or saline on PD 14 and tissues were collected. Group 2 was tested in a T-maze task to assess spatial learning and in a 3-chamber arena with unfamiliar conspecifics to assess social behavior from PD 14-27. Microglia (CD11b+ CD45low) isolated from Group 2 piglets at PD 28 were challenged ex vivo with LPS; a subset of cells was analyzed for MHCII expression. Maternal infection did not affect offspring circulating TNFα, IL-10, or cortisol levels basally or 4h post-LPS challenge. While performance in the T-maze task was not affected by maternal infection, both sociability and preference for social novelty were decreased in piglets from infected gilts. There was no effect of maternal infection on microglial MHCII expression or LPS-induced cytokine production. Taken together, these results suggest the reduced social behavior elicited by maternal infection is not due to aberrant microglia activity postnatally.
Collapse
Affiliation(s)
- Adrienne M Antonson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Emily C Radlowski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Marcus A Lawson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
50
|
Niraula A, Sheridan JF, Godbout JP. Microglia Priming with Aging and Stress. Neuropsychopharmacology 2017; 42:318-333. [PMID: 27604565 PMCID: PMC5143497 DOI: 10.1038/npp.2016.185] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a 'sensitized' or 'primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits.
Collapse
Affiliation(s)
- Anzela Niraula
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, College of Dentistry, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, 231 IBMR Bld, 460 Medical Center Drive Columbus, OH 43210, USA, Tel: +614 293 3456, Fax: +614 366 2097, E-mail:
| |
Collapse
|